JP7036740B2 - Gas-liquid reactor - Google Patents

Gas-liquid reactor Download PDF

Info

Publication number
JP7036740B2
JP7036740B2 JP2018558022A JP2018558022A JP7036740B2 JP 7036740 B2 JP7036740 B2 JP 7036740B2 JP 2018558022 A JP2018558022 A JP 2018558022A JP 2018558022 A JP2018558022 A JP 2018558022A JP 7036740 B2 JP7036740 B2 JP 7036740B2
Authority
JP
Japan
Prior art keywords
liquid
reactor
product
containing liquid
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018558022A
Other languages
Japanese (ja)
Other versions
JPWO2018117136A1 (en
Inventor
英一郎 小林
高広 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nisso Engineering Co Ltd
Original Assignee
Nisso Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisso Engineering Co Ltd filed Critical Nisso Engineering Co Ltd
Publication of JPWO2018117136A1 publication Critical patent/JPWO2018117136A1/en
Application granted granted Critical
Publication of JP7036740B2 publication Critical patent/JP7036740B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/073Ethylbenzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/03Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of non-aromatic carbon-to-carbon double bonds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/40Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals
    • C07C15/42Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic
    • C07C15/44Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts substituted by unsaturated carbon radicals monocyclic the hydrocarbon substituent containing a carbon-to-carbon double bond
    • C07C15/46Styrene; Ring-alkylated styrenes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は気液反応装置および気液反応方法に関する。より詳細に、本発明は、溶解性気体と液体基質との化学反応を効率的に行うことができる気液反応装置および気液反応方法に関する。 The present invention relates to a gas-liquid reaction apparatus and a gas-liquid reaction method. More specifically, the present invention relates to a gas-liquid reaction apparatus and a gas-liquid reaction method capable of efficiently performing a chemical reaction between a soluble gas and a liquid substrate.

気液反応においては、溶解性気体が液境膜内を物理拡散する過程と、溶解性気体が液相内で化学反応する過程とが順次起きる。触媒などによって化学反応を促進させると液相内の溶解性気体の量が減少するので、物理拡散過程が化学反応の律速段階になることがある。
気液反応装置または気液反応方法として、例えば、以下のようなものが提案されている。
In the gas-liquid reaction, a process in which the soluble gas physically diffuses in the liquid boundary film and a process in which the soluble gas chemically reacts in the liquid phase occur in sequence. When the chemical reaction is promoted by a catalyst or the like, the amount of the soluble gas in the liquid phase decreases, so that the physical diffusion process may be the rate-determining step of the chemical reaction.
As a gas-liquid reaction device or a gas-liquid reaction method, for example, the following has been proposed.

特許文献1は、反応器中で液体アンモニアの存在において不均一系触媒によりフタロジニトリルを連続的に水素化することによってキシリレンジアミンを製造する方法であって、その際、反応器流出物の一部を液体循環流として連続的に反応器入口に返送する(循環運転方式)製造法において、混合装置を用いてフタロジニトリルを溶融物としてまたは固体の形で液体アンモニアの流(流a)および少なくとも部分流として水素化反応器の周りの循環流から取り出されるさらに他の流(流b)、または流aおよびbからの混合物と混合しかつ結果生じる液体混合物を水素化反応器中に送り込むことを特徴とする、反応器中で液体アンモニアの存在において不均一系触媒によりフタロジニトリルを連続的に水素化することによってキシリレンジアミンを製造する方法を開示している。 Patent Document 1 is a method for producing xylylene diamine by continuously hydrogenating phthalodinitrile with a heterogeneous catalyst in the presence of liquid ammonia in a reactor, in which case the reactor effluent is produced. In a manufacturing method in which a part of the liquid is continuously returned to the reactor inlet as a liquid circulating flow (circulation operation method), a flow of liquid ammonia (flow a) of phthalodinitrile as a melt or in the form of a solid using a mixing device. And at least another stream (flow b) taken from the circulating stream around the hydrogenation reactor as a partial stream, or a mixture from the streams a and b and the resulting liquid mixture delivered into the hydrogenation reactor. Disclosed is a method for producing xylylene diamine by continuously hydrogenating phthalodinitrile with a heterogeneous catalyst in the presence of liquid ammonia in a reactor.

特許文献2は、液体フタロジニトリルを、不均一系触媒上で液体アンモニアの存在下で反応器内において連続的に水素化することによってキシリレンジアミンを製造する方法において、混合装置によってフタロジニトリル溶融物流を液状で液体アンモニア流と混合し、そしてこの液体混合物を水素化反応器内に導入すること、反応器排出物の一部を、液体の回流として反応器入口に連続的に返送し(循環式)、そしてアンモニアとフタロジニトリルとの液体混合物を、水素化反応器をめぐる回流中に給送し、その際、前記回流は、93質量%を上回るまで液体アンモニア及びキシリレンジアミンから構成されていることを特徴とする方法を開示している。 Patent Document 2 describes a method for producing xylylene diamine by continuously hydrogenating a liquid phthalodinitrile in a reactor in the presence of liquid ammonia on a heterogeneous catalyst, using a mixing device. Mixing the molten stream in liquid form with a liquid ammonia stream and introducing this liquid mixture into the hydrogenation reactor, a portion of the reactor discharge is continuously returned to the reactor inlet as a liquid circulation ( (Circulation type), and a liquid mixture of ammonia and phthalodinitrile is fed into a circulation around the hydrogenation reactor, where the circulation is composed of liquid ammonia and xylylene diamine up to more than 93% by mass. It discloses a method characterized by being hydrogenated.

特許文献3は、反応器中で、液体アンモニアの存在下で、不均一系触媒上で、液体フタロニトリルを連続的に水素化し、その際、反応器搬出物の一部を液体循環流として、連続的に反応器入口に再循環( 循環様式) させる、キシリレンジアミンの製造方法において、混合ユニットを用いて、フタロニトリル溶融物の流を液体の形で、水素化反応器周囲の循環流に導入し、その際、反応器中のフタロニトリル変換率はシングルパスで9 9 % を上廻り、かつ循環流は、9 3 質量% を上廻る液体アンモニアおよびキシリレンジアミンから成り、かつフタロニトリルのための他の溶剤を含有することはないことを特徴とする、キシリレンジアミンの製造方法を開示している。 Patent Document 3 continuously hydrogenates liquid phthalonitrile in a reactor in the presence of liquid ammonia on a heterogeneous catalyst, and at that time, a part of the reactor carry-out material is used as a liquid circulating flow. In the method for producing xylylene diamine, which is continuously recirculated to the reactor inlet (circulation mode), a mixing unit is used to flow the phthalonitrile melt in liquid form into the circulating flow around the hydrogenation reactor. Upon introduction, the phthalonitrile conversion rate in the reactor exceeds 99% in a single pass, and the circulating flow consists of liquid ammonia and xylylene diamine in excess of 93% by mass, and of phthalonitrile. Disclosed is a method for producing a xylylene diamine, characterized in that it does not contain other solvents for this purpose.

特許文献4は、触媒の存在下で、前記触媒が成形体として固定床中に配置されている反応器内で、水素を用いて有機ニトリルを水素化するための方法であって、前記成形体が球状またはストランド状の場合はそれぞれ2.5mm以下の直径、タブレット状の場合は2.5mm以下の高さ、および全ての他の形状の場合はそれぞれ、0.5mm以下の等価直径L=1/a’[式中、a’は単位体積あたりの外表面積(mms2/mmp3)であり、a’=Ap/Vpであり、前記Apは触媒粒子の外表面積(mms2)であり、且つ、前記Vpは触媒粒子の体積(mmp3)である]を有すること、および水素化反応器からの排出物の一部(部分排出物)を、返送流として反応器に戻し(循環流)、且つ、循環流と供給される出発材料流との比が0.5:1~250:1の範囲であることを特徴とする、方法を開示している。Patent Document 4 is a method for hydrogenating an organic nitrile with hydrogen in a reactor in which the catalyst is arranged in a fixed bed as a molded body in the presence of a catalyst. A diameter of 2.5 mm or less when is spherical or strand-shaped, a height of 2.5 mm or less when tablet-shaped, and an equivalent diameter L = 1 of 0.5 mm or less for all other shapes, respectively. / A'[In the formula, a'is the outer surface area per unit volume (mms 2 / mmp 3 ), a' = Ap / V p , and the above Ap is the outer surface surface of the catalyst particles (mms 2 ). And the Vp is the volume of the catalyst particles (mmp 3 )], and a part of the discharge from the hydrogenation reactor (partial discharge) is returned to the reactor as a return flow (circulation). Flow), and the method is disclosed, wherein the ratio of the circulating flow to the supplied starting material flow is in the range of 0.5: 1 to 250: 1.

特許文献5は、触媒の存在下で、前記触媒が固定床中に配置されている反応器内で、水素を用いてニトリルを水素化するための方法であって、反応器内の断面積負荷量が5kg/(m2s)~50kg/(m2s)の範囲であり、水素化反応器からの排出物の一部(部分排出物)を、返送流として反応器に戻し(循環流)、且つ、循環流と供給される出発材料流との比が0.5:1~250:1の範囲である方法を開示している。Patent Document 5 is a method for hydrogenating nitrile with hydrogen in a reactor in which the catalyst is arranged in a fixed bed in the presence of a catalyst, and is a cross-sectional area load in the reactor. The amount is in the range of 5 kg / (m 2 s) to 50 kg / (m 2 s), and a part (partial discharge) of the discharge from the hydrogenation reactor is returned to the reactor as a return flow (circulation flow). ), And discloses a method in which the ratio of the circulating flow to the supplied starting material flow is in the range of 0.5: 1 to 250: 1.

特表2009-503018号公報Special Table 2009-503018 Gazette 特表2007-533616号公報Special Table 2007-533616A Gazette 特表2007-505073号公報Japanese Patent Publication No. 2007-505073 特表2014-516342号公報Special Table 2014-516342A Gazette 特表2014-516344号公報Special Table 2014-516344 Gazette

本発明の目的は、溶解性気体の物理拡散速度を高めて、溶解性気体と液体基質との化学反応を効率的に行うことができる気液反応装置および気液反応方法を提供することである。 An object of the present invention is to provide a gas-liquid reaction apparatus and a gas-liquid reaction method capable of efficiently performing a chemical reaction between a soluble gas and a liquid substrate by increasing the physical diffusion rate of the soluble gas. ..

上記目的を達成するために検討した結果、以下の形態を包含する本発明を完成するに至った。 As a result of studies for achieving the above object, the present invention including the following embodiments has been completed.

〔1〕 溶解性気体を一定流量で反応器入口に供給するための気体供給流路、
液体基質を一定流量で反応器入口に供給するための液体供給流路、
溶解性気体と液体基質とを反応させて生成物を得るための反応器、
反応器出口から排出される生成物含有液体に含まれていることがある気泡を検出するための気泡検出器、
反応器出口から排出される生成物含有液体のうちの一部を一定流量で抜き出すための生成物排出流路、
反応器出口から排出される生成物含有液体のうちの残りを反応器入口に供給するための返送流路、および
生成物含有液体に含まれる気泡の量が所定値以下になるように、反応器内の圧力、反応器内の温度および返送流路における生成物含有液体の流量からなる群から選ばれる少なくとも一つを制御するための制御機器
を有する気液反応装置。
[1] A gas supply flow path for supplying a soluble gas to the reactor inlet at a constant flow rate,
A liquid supply channel for supplying the liquid substrate to the reactor inlet at a constant flow rate,
Reactor for reacting a soluble gas with a liquid substrate to obtain a product,
Bubble detector for detecting bubbles that may be contained in the product-containing liquid discharged from the reactor outlet,
Product discharge flow path for extracting a part of the product-containing liquid discharged from the reactor outlet at a constant flow rate,
The reactor so that the return flow path for supplying the rest of the product-containing liquid discharged from the reactor outlet to the reactor inlet and the amount of bubbles contained in the product-containing liquid are equal to or less than a predetermined value. A gas-liquid reactor having a control device for controlling at least one selected from the group consisting of pressure in a reactor, temperature in a reactor and flow rate of a product-containing liquid in a return flow path.

〔2〕 一定流量で供給される溶解性気体と一定流量で供給される液体基質と制御された流量で返送される生成物含有液体とを混合して反応物含有液体を調製し、
調製された反応物含有液体を反応器に連続的に供給し化学反応させ、得られた生成物含有液体を反応器から連続的に排出し、
排出された生成物含有液体に含まれていることがある気泡を検出し、
排出された生成物含有液体のうちの一部は一定流量で抜き出し、
排出された生成物含有液体のうちの残りは返送し、
生成物含有液体に含まれる気泡の量が所定値以下になるように、反応物含有液体の圧力、反応物含有液体の温度および返送される生成物含有液体の流量からなる群から選ばれる少なくとも一つを制御することを含む
気液反応方法。
[2] A reactant-containing liquid is prepared by mixing a soluble gas supplied at a constant flow rate, a liquid substrate supplied at a constant flow rate, and a product-containing liquid returned at a controlled flow rate.
The prepared reaction product-containing liquid is continuously supplied to the reactor and chemically reacted, and the obtained product-containing liquid is continuously discharged from the reactor.
Detects air bubbles that may be contained in the discharged product-containing liquid and
Part of the discharged product-containing liquid is withdrawn at a constant flow rate and
The rest of the discharged product-containing liquid will be returned and returned.
At least one selected from the group consisting of the pressure of the reactant-containing liquid, the temperature of the reactant-containing liquid and the flow rate of the returned product-containing liquid so that the amount of bubbles contained in the product-containing liquid is less than or equal to a predetermined value. A gas-liquid reaction method comprising controlling one.

本発明の気液反応装置および気液反応方法によれば、溶解性気体の物理拡散速度を高めて、溶解性気体と液体基質との化学反応を効率的に行うことができる。 According to the gas-liquid reaction apparatus and the gas-liquid reaction method of the present invention, the physical diffusion rate of the soluble gas can be increased to efficiently carry out the chemical reaction between the soluble gas and the liquid substrate.

本発明の気液反応装置の一例を示す図である。It is a figure which shows an example of the gas-liquid reaction apparatus of this invention. 本発明の気液反応装置の別の一例を示す図である。It is a figure which shows another example of the gas-liquid reaction apparatus of this invention.

図1を参照しながら本発明の気液反応装置および気液反応方法を説明する。
図1に示される気液反応装置は、気体供給流路1、液体供給流路2、反応器3、気泡検出器4、生成物排出流路5、返送流路6、および制御機器を有する。
The gas-liquid reaction apparatus and the gas-liquid reaction method of the present invention will be described with reference to FIG.
The gas-liquid reactor shown in FIG. 1 includes a gas supply flow path 1, a liquid supply flow path 2, a reactor 3, a bubble detector 4, a product discharge flow path 5, a return flow path 6, and a control device.

溶解性気体容器14から気体供給流路1を通して混合器13を経て反応器3に溶解性気体を供給する。溶解性気体の供給流量は実質的に一定である。
液体基質容器15から液体供給流路2を通してポンプ9および混合器13を経て反応器3に液体基質を供給する。液体基質の供給流量は実質的に一定である。
溶解性気体および液体基質の供給流量は、溶解性気体と液体基質との化学反応に応じて設定する。例えば、アセトアルデヒドの水素還元反応の場合、アセトアルデヒド1モルに対して水素1モルとなる割合に設定することができる。
CH3CHO+H2 → CH3CH2OH
Soluble gas is supplied from the soluble gas container 14 to the reactor 3 through the gas supply flow path 1 and the mixer 13. The supply flow rate of the soluble gas is substantially constant.
The liquid substrate is supplied from the liquid substrate container 15 to the reactor 3 through the liquid supply flow path 2 and the pump 9 and the mixer 13. The supply flow rate of the liquid substrate is substantially constant.
The supply flow rate of the soluble gas and the liquid substrate is set according to the chemical reaction between the soluble gas and the liquid substrate. For example, in the case of a hydrogen reduction reaction of acetaldehyde, the ratio can be set to 1 mol of hydrogen with respect to 1 mol of acetaldehyde.
CH 3 CHO + H 2 → CH 3 CH 2 OH

液体基質としては、基質自体が反応温度において液体のもの、基質を溶媒に溶解させてなるものを用いることができる。
溶解性気体としては、酸素、水素、一酸化炭素などを用いることができる。
As the liquid substrate, one in which the substrate itself is liquid at the reaction temperature or one in which the substrate is dissolved in a solvent can be used.
As the soluble gas, oxygen, hydrogen, carbon monoxide and the like can be used.

図1に示される装置においては、一定流量で供給される液体基質に制御された流量で返送される生成物含有液体が先ず混ぜ合わせられ、次いで、それに一定流量で供給される溶解性気体が混合器13において混ぜ合わせられている。なお、混合の順序はこれに限られない。また、混合器13はミリリアクタまたはマイクロリアクタ(マイクロミキサ)であることが好ましい。このような混合によって、反応物含有液体が調製される。混合器には、スタティックミキサなどの撹拌するための装置が設置されていてもよい。 In the apparatus shown in FIG. 1, the product-containing liquid returned at a controlled flow rate is first mixed with the liquid substrate supplied at a constant flow rate, and then the soluble gas supplied at a constant flow rate is mixed with the liquid substrate. It is mixed in the vessel 13. The order of mixing is not limited to this. Further, the mixer 13 is preferably a millireactor or a microreactor (micromixer). Such mixing prepares the reactant-containing liquid. The mixer may be equipped with a device for stirring such as a static mixer.

調製された反応物含有液体を反応器3に連続的に供給し化学反応させる。反応器3には、反応物含有液体を撹拌するための装置が設けられていてもよい。撹拌装置としてはスタティックミキサ、スクリューミキサ、リボンミキサなどを挙げることができる。また、反応器3には、化学反応を促進させるために触媒層を設けてもよい。触媒層は、固定床式、流動床式、移動床式のいずれであってもよい。図1に示される装置における反応器3は固定床式触媒層を有する。また、図1に示される装置では反応物含有液体を反応器3の底部から頂部に向かって流している。 The prepared reactant-containing liquid is continuously supplied to the reactor 3 for a chemical reaction. The reactor 3 may be provided with a device for stirring the reaction-containing liquid. Examples of the stirring device include a static mixer, a screw mixer, a ribbon mixer, and the like. Further, the reactor 3 may be provided with a catalyst layer in order to promote a chemical reaction. The catalyst layer may be a fixed bed type, a fluidized bed type, or a moving bed type. The reactor 3 in the apparatus shown in FIG. 1 has a fixed bed catalyst layer. Further, in the apparatus shown in FIG. 1, the reactant-containing liquid is flowed from the bottom to the top of the reactor 3.

次いで、この化学反応によって得られる生成物含有液体を反応器から連続的に排出する。反応器から排出された生成物含有液体のうちの一部は一定流量で抜き出し、生成物容器16に受け取る。受け取られた生成物含有液体は、必要に応じて、公知の手法によって、分離、精製などを行って目的物質を得ることができる。反応器から排出された生成物含有液体のうちの残りは返送流路6を通して反応器3に返送する。返送流量は後述する方法で制御する。 The product-containing liquid obtained by this chemical reaction is then continuously discharged from the reactor. A part of the product-containing liquid discharged from the reactor is withdrawn at a constant flow rate and received in the product container 16. The received product-containing liquid can be separated, purified, or the like by a known method, if necessary, to obtain a target substance. The rest of the product-containing liquid discharged from the reactor is returned to the reactor 3 through the return flow path 6. The return flow rate is controlled by the method described later.

反応物含有液体には溶解性気体が気泡状態で含まれていることがあるので、気液分離器や脱揮装置によって気泡状態の溶解性気体を除去することができる。水素などの可燃性ガスの気泡が含まれている場合は、窒素ガス11などで希釈して大気放出するか、フレアスタック等で焼却して大気放出する。図1に示す装置では、返送流路6と生成物排出流路5との分岐部の手前に気液分離器12が設置されているが、分岐部の後流である生成物排出流路5に気液分離器を設置することもできる。 Since the reaction-containing liquid may contain a soluble gas in a bubble state, the soluble gas in a bubble state can be removed by a gas-liquid separator or a devolatilizer. When bubbles of flammable gas such as hydrogen are contained, it is diluted with nitrogen gas 11 or the like and released to the atmosphere, or incinerated with a flare stack or the like and released to the atmosphere. In the apparatus shown in FIG. 1, the gas-liquid separator 12 is installed in front of the branch portion between the return flow path 6 and the product discharge flow path 5, but the product discharge flow path 5 which is the wake of the branch portion. A gas-liquid separator can also be installed in.

本発明においては、反応器から排出された生成物含有液体に含まれていることがある気泡を検出する。気泡の量が所定値よりも多く検出される場合は、触媒劣化、気液接触不十分などの原因で化学反応が反応器3において十分に進んでいない可能性があることを示唆する。気泡が検出されない場合は、化学反応が反応器3において十分に進んでいるか、または溶解性気体の供給が止まっているか、少ないか若しくは気体が漏れているかなどの可能性があることを示唆する。溶解性気体の供給量は気体供給流路に設置した流量計で監視することができる。反応器3、返送流路6、気体供給流路1、液体供給流路2が収納された恒温槽17内のガス組成を監視することによってガス漏れを検知することができる。気体供給流路に設置した流量計および恒温槽17内のガス組成が正常値である場合、気泡が検出されないことは、化学反応が反応器3において十分に進んでいることを示唆する。 In the present invention, bubbles that may be contained in the product-containing liquid discharged from the reactor are detected. If the amount of bubbles is detected in excess of the predetermined value, it is suggested that the chemical reaction may not have sufficiently proceeded in the reactor 3 due to catalyst deterioration, insufficient gas-liquid contact, or the like. If no bubbles are detected, it is suggested that the chemical reaction may have proceeded sufficiently in the reactor 3, the supply of the soluble gas may have stopped, the amount may be small, or the gas may be leaking. The supply amount of the soluble gas can be monitored by a flow meter installed in the gas supply flow path. Gas leakage can be detected by monitoring the gas composition in the constant temperature bath 17 in which the reactor 3, the return flow path 6, the gas supply flow path 1, and the liquid supply flow path 2 are housed. When the gas composition in the flow meter and the constant temperature bath 17 installed in the gas supply flow path is a normal value, the fact that no bubbles are detected suggests that the chemical reaction is sufficiently proceeding in the reactor 3.

本発明においては、生成物含有液体に含まれる気泡の量が所定値以下、好ましくはゼロになるように、反応物含有液体の圧力、反応物含有液体の温度および返送される生成物含有液体の流量からなる群から選ばれる少なくとも一つを制御する。 In the present invention, the pressure of the reactant-containing liquid, the temperature of the reactant-containing liquid, and the returned product-containing liquid so that the amount of bubbles contained in the product-containing liquid is equal to or less than a predetermined value, preferably zero. Control at least one selected from the group consisting of flow rates.

反応物含有液体の圧力を高くするほどに溶解性気体の物理拡散速度(溶解速度)が高くなって気泡を減少させる傾向がある。反応物含有液体の温度を低くするほどに溶解性気体の物理拡散速度(溶解速度)が高くなって気泡を減少させる傾向がある。返送される生成物含有液体の流量を高くするほどに溶解性気体の物理拡散速度(溶解速度)が高くなって気泡を減少させる傾向がある。 As the pressure of the reaction-containing liquid increases, the physical diffusion rate (dissolution rate) of the soluble gas tends to increase and the number of bubbles tends to decrease. The lower the temperature of the reaction-containing liquid, the higher the physical diffusion rate (dissolution rate) of the soluble gas, and the more the bubbles tend to decrease. As the flow rate of the returned product-containing liquid increases, the physical diffusion rate (dissolution rate) of the soluble gas tends to increase and the number of bubbles tends to decrease.

本発明に用いられる制御機器は、例えば、反応器3に取り付けた圧力計により反応器の圧力を計測し、その計測値に基いてポンプ8の吐出圧、窒素ガス供給圧、背圧弁10などを調節することによって、反応物含有液体又は反応器の圧力を制御することができる。本発明に用いられる制御機器は、例えば、少なくとも反応器3、返送流路6、気体供給流路1、液体供給流路2が収納された恒温槽17内の温度を温度計7で計測し、その計測値に基いて恒温槽17のヒータもしくはクーラの出力を調節することによって反応物含有液体又は反応器の温度を制御することができる。返送流路6に熱交換器を設置して返送流路6を流れる反応物含有液体の温度を熱交換器によって制御することができる。また、本発明に用いられる制御機器は、例えば、返送流路に設置した流量計で返送流量を計測し、その計測値に基いてポンプ8の吐出量を調節することによって返送される生成物含有液体の流量を制御することができる。 The control device used in the present invention measures, for example, the pressure of the reactor with a pressure gauge attached to the reactor 3, and based on the measured values, determines the discharge pressure of the pump 8, the nitrogen gas supply pressure, the back pressure valve 10, and the like. By adjusting, the pressure of the reactant-containing liquid or the reactor can be controlled. The control device used in the present invention measures, for example, the temperature in the constant temperature bath 17 in which at least the reactor 3, the return flow path 6, the gas supply flow path 1, and the liquid supply flow path 2 are housed by a thermometer 7. The temperature of the reactant-containing liquid or the reactor can be controlled by adjusting the output of the heater or the cooler of the constant temperature bath 17 based on the measured value. A heat exchanger can be installed in the return flow path 6 to control the temperature of the reactant-containing liquid flowing through the return flow path 6 by the heat exchanger. Further, the control device used in the present invention contains a product to be returned by measuring the return flow rate with a flow meter installed in the return flow path and adjusting the discharge amount of the pump 8 based on the measured value, for example. The flow rate of the liquid can be controlled.

図2を参照しながら、本発明の効果を説明する。
直径200μmの球状のパラジウムカーボン(Pd 5重量%)を充填した長さ50mm、内径6mmの管型反応器3に、図2に示すように、混合器13(日曹エンジニアリング社製ミリリアクタ)、気泡検出器4(オムロン社製E3NX-FA[625nm])、気液分離器12、温度計7、温度計18、恒温槽17、気体供給流路1、液体供給流路2、返送流路6、およびポンプ8を取り付けた。その他、図示していないバルブ、計装機器なども取り付けて、反応装置を組み立てた。
液体供給流路2を通して5重量%スチレンのメタノール溶液を0.95ml/分で、気体供給流路1を通して水素ガスを8.47Nml/分で、混合器13に供給し、両者を混ぜ合わせた。得られた混合物を温度25℃に設定された管型反応器3の底部に供給し、スチレンと水素とを反応させた。管型反応器3の頂部から抜き出された液の一部を気液分離器に供給し、分離された液体を生成物排出流路5を通して0.95ml/minで抜き出した。
The effect of the present invention will be described with reference to FIG.
As shown in FIG. 2, a tubular reactor 3 having a length of 50 mm and an inner diameter of 6 mm filled with spherical palladium carbon (Pd 5% by weight) having a diameter of 200 μm was mixed with a mixer 13 (Millireactor manufactured by Nippon Soda Engineering Co., Ltd.). Bubble detector 4 (E3NX-FA [625nm] manufactured by Omron), gas-liquid separator 12, thermometer 7, thermometer 18, constant temperature bath 17, gas supply flow path 1, liquid supply flow path 2, return flow path 6 , And the pump 8 was installed. In addition, valves and instrumentation equipment (not shown) were also attached to assemble the reactor.
A methanol solution of 5 wt% styrene was supplied to the mixer 13 at 0.95 ml / min through the liquid supply channel 2 and hydrogen gas was supplied to the mixer 13 at 8.47 Nml / min through the gas supply channel 1 and both were mixed. The obtained mixture was supplied to the bottom of the tubular reactor 3 set at a temperature of 25 ° C., and styrene and hydrogen were reacted. A part of the liquid extracted from the top of the tubular reactor 3 was supplied to the gas-liquid separator, and the separated liquid was extracted at 0.95 ml / min through the product discharge flow path 5.

ポンプ8の吐出量を調節して、管型反応器3の頂部から抜き出された液の残部を返送流路6を通して20ml/分で混合器13の入口側に戻した。この条件にて反応装置が定常状態になったとき、気泡検出量は0.072~0.103Nml/分であった。 The discharge amount of the pump 8 was adjusted, and the rest of the liquid extracted from the top of the tubular reactor 3 was returned to the inlet side of the mixer 13 at 20 ml / min through the return flow path 6. When the reactor was put into a steady state under these conditions, the amount of air bubbles detected was 0.072 to 0.103 Nml / min.

ポンプ8を制御して、返送流路6を通して戻す液の量を徐々に上昇させると、気泡検出量が徐々に低下し、エチルベンゼンの収率が徐々に上昇した。
返送流路6を通して戻す液の量を38ml/分にした。この条件にて反応装置が定常状態になったとき、気泡検出量は0~0.014Nml/分で、生成物排出流路5を通して抜き出された液にて測定したエチルベンゼンの収率は98.0%であった。
When the pump 8 was controlled to gradually increase the amount of the liquid returned through the return flow path 6, the amount of air bubbles detected gradually decreased, and the yield of ethylbenzene gradually increased.
The amount of liquid returned through the return flow path 6 was 38 ml / min. When the reactor was put into a steady state under these conditions, the amount of air bubbles detected was 0 to 0.014 Nml / min, and the yield of ethylbenzene measured with the liquid extracted through the product discharge flow path 5 was 98. It was 0%.

1:気体供給流路; 2:液体供給流路; 3:反応器(触媒層); 4:気泡検出器; 5:生成物排出流路; 6:返送流路; 7:温度計; 8:ポンプ; 9:ポンプ; 10:背圧弁; 11:窒素ガス; 12:気液分離器; 13:混合器; 14:溶解性気体容器; 15:液体基質容器; 16:生成物容器; 17:恒温槽; 18:温度計 1: Gas supply flow path; 2: Liquid supply flow path; 3: Reactor (catalyst layer); 4: Bubble detector; 5: Product discharge flow path; 6: Return flow path; 7: Thermometer; 8: Pump; 9: Pump; 10: Back pressure valve; 11: Nitrogen gas; 12: Gas-liquid separator; 13: Mixer; 14: Soluble gas container; 15: Liquid substrate container; 16: Product container; 17: Constant temperature Tank; 18: Thermometer

Claims (2)

溶解性気体を一定流量で反応器入口に供給するための気体供給流路、
液体基質を一定流量で反応器入口に供給するための液体供給流路、
溶解性気体と液体基質とを反応させて生成物を得るための触媒層を有する反応器、
反応器出口から排出される生成物含有液体に含まれていることがある気泡を検出するための気泡検出器、
反応器出口から排出される生成物含有液体のうちの一部を一定流量で抜き出すための生成物排出流路、
反応器出口から排出される生成物含有液体のうちの残りを反応器入口に供給するための返送流路、
気体供給流路、液体供給流路、反応器および返送流路を中におさめた恒温槽、および
生成物含有液体に含まれる気泡の量が所定値以下になるように、反応器内の圧力、反応器内の温度および返送流路における生成物含有液体の流量からなる群から選ばれる少なくとも一つを制御するための制御機器
を有する気液反応装置。
Gas supply flow path for supplying soluble gas to the reactor inlet at a constant flow rate,
A liquid supply channel for supplying the liquid substrate to the reactor inlet at a constant flow rate,
A reactor having a catalyst layer for reacting a soluble gas with a liquid substrate to obtain a product,
A bubble detector for detecting bubbles that may be contained in the product-containing liquid discharged from the reactor outlet,
Product discharge flow path for extracting a part of the product-containing liquid discharged from the reactor outlet at a constant flow rate,
A return channel for supplying the rest of the product-containing liquid discharged from the reactor outlet to the reactor inlet,
The pressure inside the reactor so that the amount of bubbles contained in the gas supply flow path, the liquid supply flow path, the constant temperature bath containing the reactor and the return flow path, and the product-containing liquid is below a predetermined value. A gas-liquid reactor having a control device for controlling at least one selected from the group consisting of the temperature in the reactor and the flow rate of the product-containing liquid in the return flow path.
恒温槽の中で、一定流量で供給される溶解性気体と一定流量で供給される液体基質と制御された流量で返送される生成物含有液体とを混合して反応物含有液体を調製し、
前記恒温槽の中で、調製された反応物含有液体を、触媒層を有する反応器に連続的に供給し化学反応させ、得られた生成物含有液体を反応器から連続的に排出し、
排出された生成物含有液体に含まれていることがある気泡を検出し、
排出された生成物含有液体のうちの一部は一定流量で抜き出し、
前記恒温槽の中で、排出された生成物含有液体のうちの残りは返送し、
生成物含有液体に含まれる気泡の量が所定値以下になるように、反応物含有液体の圧力、反応物含有液体の温度および返送される生成物含有液体の流量からなる群から選ばれる少なくとも一つを制御することを含む
気液反応方法。
In a constant temperature bath, a soluble gas supplied at a constant flow rate, a liquid substrate supplied at a constant flow rate, and a product-containing liquid returned at a controlled flow rate are mixed to prepare a reaction-containing liquid.
In the constant temperature bath, the prepared reaction product-containing liquid is continuously supplied to a reactor having a catalyst layer for a chemical reaction, and the obtained product-containing liquid is continuously discharged from the reactor.
Detects air bubbles that may be contained in the discharged product-containing liquid and
Part of the discharged product-containing liquid is withdrawn at a constant flow rate and
In the constant temperature bath, the rest of the discharged product-containing liquid is returned and returned.
At least one selected from the group consisting of the pressure of the reactant-containing liquid, the temperature of the reactant-containing liquid and the flow rate of the returned product-containing liquid so that the amount of bubbles contained in the product-containing liquid is less than or equal to a predetermined value. A gas-liquid reaction method comprising controlling one.
JP2018558022A 2016-12-20 2017-12-20 Gas-liquid reactor Active JP7036740B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016247137 2016-12-20
JP2016247137 2016-12-20
PCT/JP2017/045640 WO2018117136A1 (en) 2016-12-20 2017-12-20 Gas-liquid reaction device

Publications (2)

Publication Number Publication Date
JPWO2018117136A1 JPWO2018117136A1 (en) 2019-10-31
JP7036740B2 true JP7036740B2 (en) 2022-03-15

Family

ID=62627413

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018558022A Active JP7036740B2 (en) 2016-12-20 2017-12-20 Gas-liquid reactor

Country Status (2)

Country Link
JP (1) JP7036740B2 (en)
WO (1) WO2018117136A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067862A1 (en) 2004-01-14 2005-07-28 Mitsubishi Rayon Co., Ltd. Carbonate spring producing system
JP2010119811A (en) 2008-11-19 2010-06-03 Viita Kk Method and apparatus for producing carbonate spring
JP2010241689A (en) 2007-08-17 2010-10-28 Kashima Chemical Kk Method for producing chlorohydrin

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1768264C3 (en) * 1968-04-23 1982-01-28 Henkel KGaA, 4000 Düsseldorf Process for the production of hydroxy-alkyl mercaptans
DE59608335D1 (en) * 1995-03-24 2002-01-17 Basf Ag Process for performing gas / liquid reactions while avoiding a coherent gas phase

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005067862A1 (en) 2004-01-14 2005-07-28 Mitsubishi Rayon Co., Ltd. Carbonate spring producing system
JP2010241689A (en) 2007-08-17 2010-10-28 Kashima Chemical Kk Method for producing chlorohydrin
JP2010119811A (en) 2008-11-19 2010-06-03 Viita Kk Method and apparatus for producing carbonate spring

Also Published As

Publication number Publication date
WO2018117136A1 (en) 2018-06-28
JPWO2018117136A1 (en) 2019-10-31

Similar Documents

Publication Publication Date Title
TW555592B (en) Retrofit reactor apparatus including gas/liquid ejector and monolith catalyst, a reaction process therein
US8961892B2 (en) Device for carrying out chemical reactions under homogenous and heterogenous conditions
US7611683B2 (en) Apparatus and process for the continuous reaction of a liquid with a gas over a solid catalyst
RU2667519C2 (en) Improved reactor systems, which are catalyzed by homogeneous catalysts
JP4331434B2 (en) Tubular reactor with gas injector for gas phase catalytic reaction
JP5241721B2 (en) Method for producing amine by hydrogenation of nitrile compound
KR100676269B1 (en) Low pressure amine reactor
KR20190100180A (en) Production of Amine Oxides by Oxidation of Tertiary Amines
CN106622045A (en) Method and device for improving reaction efficiency of bubble tower by micro-nano bubbles
JP7036740B2 (en) Gas-liquid reactor
PL200925B1 (en) Method of catalitically conducting multiple-phase reactions, in particular carboxylic acid vinylating reactions
JPS6347771B2 (en)
CN113286651B (en) Fixed bed multitubular reactor for manufacturing alkenyl acetate
CN111203171B (en) Novel self-pressure forced circulation type reactor for gas-liquid phase reaction
WO2006134401A1 (en) Multi-phase reactions
JP2009544594A (en) Acrylic acid production apparatus and method with reduced auto-oxidation tendency
CN110514545A (en) A kind of pyridine base-synthesized fluidized bed catalyst evaluation device and method
CN109896996A (en) Organic carboxyl acid is continuously synthesizing to method
Yap et al. Triphasic segmented flow Millireactors for rapid nanoparticle—catalyzed gas-liquid reactions—hydrodynamic studies and reactor modeling
CN109678120A (en) A kind of hydrogenation reactor and method for hydrogenation of hydrogen dioxide solution production by anthraquinone process
JP2002191962A (en) Gas-liquid contact reaction apparatus and method for manufacturing chemical product using the same
CN109678121B (en) High-efficiency hydrogenation process and system for producing hydrogen peroxide by anthraquinone method
CN112898144A (en) Production process of hydroanthraquinone and special reactor
JP7352617B2 (en) reactor
WO2022113423A1 (en) Fixed bed multi-tubular reactor for producing alkenyl acetate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220303

R150 Certificate of patent or registration of utility model

Ref document number: 7036740

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150