JP7036120B2 - Fluorine-containing compounds and fluoropolymers and methods for producing them - Google Patents

Fluorine-containing compounds and fluoropolymers and methods for producing them Download PDF

Info

Publication number
JP7036120B2
JP7036120B2 JP2019543715A JP2019543715A JP7036120B2 JP 7036120 B2 JP7036120 B2 JP 7036120B2 JP 2019543715 A JP2019543715 A JP 2019543715A JP 2019543715 A JP2019543715 A JP 2019543715A JP 7036120 B2 JP7036120 B2 JP 7036120B2
Authority
JP
Japan
Prior art keywords
fluorine
independently
general formula
group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019543715A
Other languages
Japanese (ja)
Other versions
JPWO2019059320A1 (en
Inventor
司 臼田
祐介 ▲高▼平
義富 森澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Publication of JPWO2019059320A1 publication Critical patent/JPWO2019059320A1/en
Application granted granted Critical
Publication of JP7036120B2 publication Critical patent/JP7036120B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C22/00Cyclic compounds containing halogen atoms bound to an acyclic carbon atom
    • C07C22/02Cyclic compounds containing halogen atoms bound to an acyclic carbon atom having unsaturation in the rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/18Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C43/192Ethers having an ether-oxygen atom bound to a carbon atom of a ring other than a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F232/00Copolymers of cyclic compounds containing no unsaturated aliphatic radicals in a side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

本発明は含フッ素化合物並びに含フッ素重合体及びその製造方法に関する。特に含フッ素ノルボルネン誘導体及び該含フッ素ノルボルネン誘導体由来の構成単位を含む含フッ素重合体とその製造方法に関する。 The present invention relates to a fluorine-containing compound, a fluorine-containing polymer, and a method for producing the same. In particular, the present invention relates to a fluorinated norbornene derivative and a fluorinated polymer containing a structural unit derived from the fluorinated norbornene derivative and a method for producing the same.

従来、ノルボルネン骨格を持つ化合物(以下、「ノルボルネン誘導体」と称する。)は、金属触媒によるメタセシス反応により開環重合させて重合体を得るためのモノマーとして広く使用されている。このノルボルネン誘導体に基づく構成単位を含む重合体(ポリマー)及びその水素添加物は、高ガラス転移温度(高耐熱性)、低吸水性、高光線透過率等の諸特性のバランスに優れており、電気・電子材料、半導体材料、光学材料等の多種多様な分野に利用されている。 Conventionally, a compound having a norbornene skeleton (hereinafter referred to as "norbornene derivative") is widely used as a monomer for ring-opening polymerization by a metal-catalyzed metathesis reaction to obtain a polymer. The polymer containing the structural unit based on this norbornene derivative and its hydrogen additive have an excellent balance of various properties such as high glass transition temperature (high heat resistance), low water absorption, and high light transmittance. It is used in a wide variety of fields such as electrical / electronic materials, semiconductor materials, and optical materials.

このノルボルネン誘導体にフッ素原子を含有させた含フッ素ノルボルネン誘導体由来の重合体は、フッ素原子を含まないノルボルネン誘導体の重合体に比べて化学耐久性、耐候性、光透過性に優れることが期待される(特許文献1~3)。 A polymer derived from a fluorine-containing norbornene derivative containing a fluorine atom in this norbornene derivative is expected to be superior in chemical durability, weather resistance, and light transmission to a polymer of a norbornene derivative containing no fluorine atom. (Patent Documents 1 to 3).

日本国特許第4752399号公報Japanese Patent No. 47523999 日本国特開2004-107277号公報Japanese Patent Application Laid-Open No. 2004-107277 米国特許出願公開第2007-0191560号明細書U.S. Patent Application Publication No. 2007-0191560

Analytica Chimica Acta(2004),504(1),53-62Analytica Chimica Acta (2004), 504 (1), 53-62 CHEMICAL REVIEWS(2015),115,871-930CHEMICAL REVIEWS (2015), 115, 871-930

従来フッ素原子を含んだオレフィン誘導体は反応が進みにくいという知見があり、フッ素原子を含まないノルボルネン誘導体と置換基を有するシクロペンテン誘導体とに由来する共重合体(非特許文献1)が報告されている。しかしながら、フッ素原子を含むノルボルネン誘導体と置換基を有するシクロペンテン誘導体とに由来する共重合体が製造された報告はなかった。また、フッ素原子を含むノルボルネン誘導体とシクロペンテンとの共重合体(非特許文献2)が報告されているものの、フッ素原子を含むノルボルネン誘導体と置換基を有するシクロペンテン誘導体とに由来する共重合体が製造された報告はなかった。 Conventionally, it has been found that the reaction of an olefin derivative containing a fluorine atom is difficult to proceed, and a copolymer derived from a norbornene derivative containing no fluorine atom and a cyclopentene derivative having a substituent (Non-Patent Document 1) has been reported. .. However, there have been no reports of the production of a copolymer derived from a norbornene derivative containing a fluorine atom and a cyclopentene derivative having a substituent. Further, although a copolymer of a norbornene derivative containing a fluorine atom and cyclopentene (Non-Patent Document 2) has been reported, a copolymer derived from a norbornene derivative containing a fluorine atom and a cyclopentene derivative having a substituent is produced. There were no reports made.

そこで本発明では、フッ素原子を含むノルボルネン誘導体及び該ノルボルネン誘導体に由来する構造単位を含む、新規の含フッ素化合物、含フッ素重合体とその製造方法を提供することを目的とする。 Therefore, it is an object of the present invention to provide a novel fluorine-containing compound and a fluorine-containing polymer containing a norbornene derivative containing a fluorine atom and a structural unit derived from the norbornene derivative, and a method for producing the same.

前記課題を達成する構成として、本発明は下記<1>~<15>に関する。
<1>下記一般式1で表される含フッ素化合物。
The present invention relates to the following <1> to <15> as a configuration for achieving the above object.
<1> A fluorine-containing compound represented by the following general formula 1.

Figure 0007036120000001
Figure 0007036120000001

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子であり、R11、R12はそれぞれ独立に一価有機基であり、a11、a12はそれぞれ独立に0、1または2である。
<2>下記一般式2で表される含フッ素化合物。
However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, R 11 and R 12 are independently monovalent organic groups, and a 11 and a 12 are independently 0, 1 or 2, respectively.
<2> A fluorine-containing compound represented by the following general formula 2.

Figure 0007036120000002
Figure 0007036120000002

ただし、X21、X22はそれぞれ独立に水素原子またはフッ素原子であり、R21、R22はそれぞれ独立に一価有機基であり、a21、a22はそれぞれ独立に1または2である。
<3>下記一般式3で表される含フッ素化合物。
However, X 21 and X 22 are independently hydrogen atoms or fluorine atoms, R 21 and R 22 are independently monovalent organic groups, and a 21 and a 22 are independently 1 or 2, respectively.
<3> A fluorine-containing compound represented by the following general formula 3.

Figure 0007036120000003
Figure 0007036120000003

ただし、Y31は、それぞれ独立して、CR131132、O、S、NR133又はPR134であり、R31はエーテル性酸素原子を有する炭素数2以上の一価含フッ素有機基であり、R32~R34はそれぞれ独立して、水素原子またはハロゲン原子であり、R131~R134はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、j31は0又は1である。
<4>下記一般式11で表される構造単位または下記一般式12で表される構造単位を含む含フッ素重合体。
However, Y 31 is independently CR 131 R 132 , O, S, NR 133 or PR 134 , and R 31 is a monovalent fluorine-containing organic group having 2 or more carbon atoms having an ethereal oxygen atom. , R 32 to R 34 are independent hydrogen atoms or halogen atoms, R 131 to R 134 are independent hydrogen atoms or alkyl groups having 1 to 20 carbon atoms, and j31 is 0 or 1. Is.
<4> A fluorine-containing polymer containing a structural unit represented by the following general formula 11 or a structural unit represented by the following general formula 12.

Figure 0007036120000004
Figure 0007036120000004

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子であり、R11、R12はそれぞれ独立に一価有機基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。
<5>下記一般式21で表される構造単位または下記一般式22で表される構造単位を含む含フッ素重合体。
However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, R 11 and R 12 are independently monovalent organic groups, and a 11 and a 12 are independently 0, 1 or 2, respectively. m11 is a natural number representing the number of repetitions in the repeating unit.
<5> A fluorine-containing polymer containing a structural unit represented by the following general formula 21 or a structural unit represented by the following general formula 22.

Figure 0007036120000005
Figure 0007036120000005

ただし、X21、X22はそれぞれ独立に水素原子またはフッ素原子、R21、R22はそれぞれ独立に一価有機基、a21、a22はそれぞれ独立に1または2、m21は繰り返し単位の繰り返し数を表す自然数である。
<6>下記一般式31で表される構造単位または下記一般式32で表される構造単位を含む含フッ素重合体。
However, X 21 and X 22 are independently hydrogen or fluorine atoms, R 21 and R 22 are independently monovalent organic groups, a21 and a22 are independently 1 or 2, and m21 is the number of repeating units. It is a natural number to represent.
<6> A fluorine-containing polymer containing a structural unit represented by the following general formula 31 or a structural unit represented by the following general formula 32.

Figure 0007036120000006
Figure 0007036120000006

ただし、Y31は、それぞれ独立して、CR131132、O、S、NR133又はPR134であり、R31はエーテル性酸素原子を有する炭素数2以上の一価含フッ素有機基であり、R32~R34はそれぞれ独立して、水素原子またはハロゲン原子であり、R131~R134はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、j31は0又は1であり、m31は繰り返し単位の繰り返し数を表す自然数である。
<7>下記一般式11’で表される構造単位を含む含フッ素重合体。
However, Y 31 is independently CR 131 R 132 , O, S, NR 133 or PR 134 , and R 31 is a monovalent fluorine-containing organic group having 2 or more carbon atoms having an ethereal oxygen atom. , R 32 to R 34 are independent hydrogen atoms or halogen atoms, R 131 to R 134 are independent hydrogen atoms or alkyl groups having 1 to 20 carbon atoms, and j31 is 0 or 1. And m31 is a natural number representing the number of repetitions in the repetition unit.
<7> A fluorine-containing polymer containing a structural unit represented by the following general formula 11'.

Figure 0007036120000007
Figure 0007036120000007

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子であり、R11、R12はそれぞれ独立に一価有機基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。
<8>下記一般式21’で表される構造単位を含む含フッ素重合体。
However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, R 11 and R 12 are independently monovalent organic groups, and a 11 and a 12 are independently 0, 1 or 2, respectively. m11 is a natural number representing the number of repetitions in the repeating unit.
<8> A fluorine-containing polymer containing a structural unit represented by the following general formula 21'.

Figure 0007036120000008
Figure 0007036120000008

ただし、X21、X22はそれぞれ独立に水素原子またはフッ素原子であり、R21、R22はそれぞれ独立に一価有機基であり、a21、a22はそれぞれ独立に1または2であり、m21は繰り返し単位の繰り返し数を表す自然数である。
<9>下記一般式31’で表される構造単位を含む含フッ素重合体。
However, X 21 and X 22 are independently hydrogen atoms or fluorine atoms, R 21 and R 22 are independently monovalent organic groups, a21 and a22 are independently 1 or 2, and m21 is. It is a natural number that represents the number of repetitions in a repetition unit.
<9> A fluorine-containing polymer containing a structural unit represented by the following general formula 31'.

Figure 0007036120000009
Figure 0007036120000009

ただし、Y31は、それぞれ独立して、CR131132、O、S、NR133又はPR134であり、R31はエーテル性酸素原子を有する炭素数2以上の一価含フッ素有機基であり、R32~R34はそれぞれ独立して、水素原子またはハロゲン原子であり、R131~R134はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、j31は0又は1であり、m31は繰り返し単位の繰り返し数を表す自然数である。
<10>下記一般式Iで表される構造単位又は下記一般式IIで表される構造単位を含む含フッ素重合体。
However, Y 31 is independently CR 131 R 132 , O, S, NR 133 or PR 134 , and R 31 is a monovalent fluorine-containing organic group having 2 or more carbon atoms having an ethereal oxygen atom. , R 32 to R 34 are independent hydrogen atoms or halogen atoms, R 131 to R 134 are independent hydrogen atoms or alkyl groups having 1 to 20 carbon atoms, and j31 is 0 or 1. And m31 is a natural number representing the number of repetitions in the repetition unit.
<10> A fluorine-containing polymer containing a structural unit represented by the following general formula I or a structural unit represented by the following general formula II.

Figure 0007036120000010
Figure 0007036120000010

ただし、上記式中の記号は以下の意味を表す。
Yは、それぞれ独立して、CR121122、O、S、NR123又はPR124であり、
101~R104はそれぞれ独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれており、
105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、
121~R124はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
jは0又は1であり、
m及びnはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
<11>前記一般式I又は前記一般式IIにおけるR101~R104のうち少なくとも1の基又は原子が、炭素数1~20の(ペル)フルオロアルキル基、炭素数1~20の(ペル)フルオロアルコキシ基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~200の(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基、炭素数5~20の(ペル)フルオロアリール基、炭素数5~20の(ペル)フルオロアリールオキシ基、又はフッ素原子である、前記<10>に記載の含フッ素重合体。
<12>下記一般式I’で表される構造単位を含む含フッ素重合体。
However, the symbols in the above formula have the following meanings.
Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , respectively.
R 101 to R 104 are organic groups that may independently have a hydrogen atom, a halogen atom, or a hetero atom, and R 101 or R 102 and R 103 or R 104 are bonded to form a ring. It may be formed, and at least one group or atom of R 101 to R 104 contains one or more hydrogen atoms.
R 105 to R 110 are organic groups that may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group or a hetero atom, except that at least one group of R 105 to R 110 is a halogen. An organic group that may have an atom, a hydroxyl group, an amino group or a heteroatom.
R 121 to R 124 are independently hydrogen atoms or alkyl groups having 1 to 20 carbon atoms.
j is 0 or 1 and
m and n are natural numbers representing the number of repetitions in the repeating unit, respectively.
<11> At least one group or atom of R 101 to R 104 in the general formula I or the general formula II is a (pel) fluoroalkyl group having 1 to 20 carbon atoms and a (pel) having 1 to 20 carbon atoms. A fluoroalkoxy group, a (pel) fluoroalkyl group having 2 to 200 carbon atoms having an etheric oxygen atom between carbon atoms, and a carbon number of 2 to 200 including an etheric oxygen atom between carbon atoms. The fluorine-containing group according to the above <10>, which is a (pel) fluoroalkoxy group, a (pel) fluoroaryl group having 5 to 20 carbon atoms, a (pel) fluoroaryloxy group having 5 to 20 carbon atoms, or a fluorine atom. Polymer.
<12> A fluorine-containing polymer containing a structural unit represented by the following general formula I'.

Figure 0007036120000011
Figure 0007036120000011

ただし、上記式中の記号は以下の意味を表す。
Yは、それぞれ独立して、CR121122、O、S、NR123又はPR124であり、
101~R104はそれぞれ独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれており、
105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、
121~R124はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
jは0又は1であり、
m及びnはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
<13>金属-カルベン錯体触媒の存在下、下記一般式aで表されるフッ素原子を含むノルボルネン誘導体と、下記一般式bで表されるシクロペンテン誘導体とを共重合させる、下記一般式Iで表される構造単位を含む含フッ素重合体の製造方法。
However, the symbols in the above formula have the following meanings.
Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , respectively.
R 101 to R 104 are organic groups that may independently have a hydrogen atom, a halogen atom, or a hetero atom, and R 101 or R 102 and R 103 or R 104 are bonded to form a ring. It may be formed, and at least one group or atom of R 101 to R 104 contains one or more hydrogen atoms.
R 105 to R 110 are organic groups that may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group or a hetero atom, except that at least one group of R 105 to R 110 is a halogen. An organic group that may have an atom, a hydroxyl group, an amino group or a heteroatom.
R 121 to R 124 are independently hydrogen atoms or alkyl groups having 1 to 20 carbon atoms.
j is 0 or 1 and
m and n are natural numbers representing the number of repetitions in the repeating unit, respectively.
<13> In the presence of a metal-carbene complex catalyst, a norbornene derivative containing a fluorine atom represented by the following general formula a is copolymerized with a cyclopentene derivative represented by the following general formula b, represented by the following general formula I. A method for producing a fluoropolymer containing a structural unit.

Figure 0007036120000012
Figure 0007036120000012

ただし、上記式a、b及びI中の記号は以下の意味を表す。
Yは、それぞれ独立して、CR121122、O、S、NR123又はPR124であり、
101~R104はそれぞれ独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれており、
105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、
121~R124はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
jは0又は1であり、
m及びnはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
<14>下記一般式aで表されるフッ素原子を含むノルボルネン誘導体と、下記一般式bで表されるシクロペンテン誘導体とを付加重合反応により共重合させる、下記一般式IIで表される構造単位を含む含フッ素重合体の製造方法。
However, the symbols in the above formulas a, b and I have the following meanings.
Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , respectively.
R 101 to R 104 are organic groups that may independently have a hydrogen atom, a halogen atom, or a hetero atom, and R 101 or R 102 and R 103 or R 104 are bonded to form a ring. It may be formed, and at least one group or atom of R 101 to R 104 contains one or more hydrogen atoms.
R 105 to R 110 are organic groups that may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group or a hetero atom, except that at least one group of R 105 to R 110 is a halogen. An organic group that may have an atom, a hydroxyl group, an amino group or a heteroatom.
R 121 to R 124 are independently hydrogen atoms or alkyl groups having 1 to 20 carbon atoms.
j is 0 or 1 and
m and n are natural numbers representing the number of repetitions in the repeating unit, respectively.
<14> A structural unit represented by the following general formula II, in which a norbornene derivative containing a fluorine atom represented by the following general formula a and a cyclopentene derivative represented by the following general formula b are copolymerized by an addition polymerization reaction. A method for producing a fluoropolymer containing a fluorinated polymer.

Figure 0007036120000013
Figure 0007036120000013

ただし、上記式a、b及びII中の記号は以下の意味を表す。
Yは、それぞれ独立して、CR121122、O、S、NR123又はPR124であり、
101~R104はそれぞれ独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれており、
105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、
121~R124はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
jは0又は1であり、
m及びnはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
<15>金属-カルベン錯体触媒の存在下、下記一般式aで表されるフッ素原子を含むノルボルネン誘導体と、下記一般式bで表されるシクロペンテン誘導体とを共重合させて下記一般式Iで表される構造単位を含む含フッ素重合体を得る工程、及び、得られた前記含フッ素重合体に水素添加する工程を含む、下記一般式I’で表される構造単位を含む含フッ素重合体の製造方法。
However, the symbols in the above formulas a, b and II have the following meanings.
Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , respectively.
R 101 to R 104 are organic groups that may independently have a hydrogen atom, a halogen atom, or a hetero atom, and R 101 or R 102 and R 103 or R 104 are bonded to form a ring. It may be formed, and at least one group or atom of R 101 to R 104 contains one or more hydrogen atoms.
R 105 to R 110 are organic groups that may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group or a hetero atom, except that at least one group of R 105 to R 110 is a halogen. An organic group that may have an atom, a hydroxyl group, an amino group or a heteroatom.
R 121 to R 124 are independently hydrogen atoms or alkyl groups having 1 to 20 carbon atoms.
j is 0 or 1 and
m and n are natural numbers representing the number of repetitions in the repeating unit, respectively.
<15> In the presence of a metal-carbene complex catalyst, a norbornene derivative containing a fluorine atom represented by the following general formula a and a cyclopentene derivative represented by the following general formula b are copolymerized and represented by the following general formula I. A fluorinated polymer containing a structural unit represented by the following general formula I', which comprises a step of obtaining a fluorinated polymer containing the structural unit to be obtained and a step of hydrogenating the obtained fluorinated polymer. Production method.

Figure 0007036120000014
Figure 0007036120000014

ただし、上記式a、b、I及びI’中の記号は以下の意味を表す。
Yは、それぞれ独立して、CR121122、O、S、NR123又はPR124であり、
101~R104はそれぞれ独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれており、
105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、
121~R124はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、
jは0又は1であり、
m及びnはそれぞれ繰り返し単位の繰り返し数を表す自然数である。
However, the symbols in the above formulas a, b, I and I'represent the following meanings.
Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , respectively.
R 101 to R 104 are organic groups that may independently have a hydrogen atom, a halogen atom, or a hetero atom, and R 101 or R 102 and R 103 or R 104 are bonded to form a ring. It may be formed, and at least one group or atom of R 101 to R 104 contains one or more hydrogen atoms.
R 105 to R 110 are organic groups that may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group or a hetero atom, except that at least one group of R 105 to R 110 is a halogen. An organic group that may have an atom, a hydroxyl group, an amino group or a heteroatom.
R 121 to R 124 are independently hydrogen atoms or alkyl groups having 1 to 20 carbon atoms.
j is 0 or 1 and
m and n are natural numbers representing the number of repetitions in the repeating unit, respectively.

本発明に係る含フッ素重合体は、化学耐久性、耐候性、光透過性、透明性、撥液性に優れ、さらには低誘電率が期待される。 The fluorine-containing polymer according to the present invention is expected to have excellent chemical durability, weather resistance, light transmission, transparency, liquid repellency, and a low dielectric constant.

以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
本明細書において、ペルフルオロアルキル基とは、アルキル基の水素原子が全てフッ素原子で置換された基を意味する。ペルフルオロアリール基についても同様に、アリール基の水素原子が全てフッ素原子で置換された基を意味する。
また(ペル)フルオロアルキル基とは、フルオロアルキル基とペルフルオロアルキル基とを合わせた総称で用いる。すなわち該基は1個以上のフッ素原子を有するアルキル基である。(ペル)フルオロアリール基についても同様である。
アリール基とは、芳香族化合物において芳香環を形成する炭素原子の内いずれか1の炭素原子に結合した1の水素原子を取り去った残基に相当する一価の基を意味し、炭素環化合物から誘導されるアリール基と、ヘテロ環化合物から誘導されるヘテロアリール基とを合わせた総称で用いる。
炭化水素基の炭素数とは、ある炭化水素基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は炭化水素基骨格を形成する炭素原子の数を、該基が置換基を有する場合は炭化水素基骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
ヘテロ原子とは、炭素原子と水素原子以外の原子を意味し、好ましくは、酸素原子、窒素原子、硫黄原子、リン原子、ケイ素原子、及びハロゲン原子からなる群から選ばれる1種以上の原子である。
一般式1で表される化合物を化合物1という。
Hereinafter, the present invention will be described in detail, but the present invention is not limited to the following embodiments, and can be arbitrarily modified and carried out without departing from the gist of the present invention.
As used herein, the term "perfluoroalkyl group" means a group in which all hydrogen atoms of the alkyl group are replaced with fluorine atoms. Similarly, the perfluoroaryl group means a group in which all hydrogen atoms of the aryl group are substituted with fluorine atoms.
Further, the (per) fluoroalkyl group is used as a general term for a combination of a fluoroalkyl group and a perfluoroalkyl group. That is, the group is an alkyl group having one or more fluorine atoms. The same applies to the (pel) fluoroaryl group.
The aryl group means a monovalent group corresponding to a residue obtained by removing one hydrogen atom bonded to any one of the carbon atoms forming an aromatic ring in an aromatic compound, and is a carbon ring compound. It is used as a general term for a combination of an aryl group derived from and a heteroaryl group derived from a heterocyclic compound.
The number of carbon atoms of a hydrocarbon group means the total number of carbon atoms contained in the entire hydrocarbon group, and when the group does not have a substituent, the number of carbon atoms forming a hydrocarbon group skeleton is used. When the group has a substituent, it represents the total number obtained by adding the number of carbon atoms in the substituent to the number of carbon atoms forming the hydrocarbon group skeleton.
The hetero atom means an atom other than a carbon atom and a hydrogen atom, and is preferably one or more atoms selected from the group consisting of an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom, a silicon atom, and a halogen atom. be.
The compound represented by the general formula 1 is referred to as compound 1.

<含フッ素化合物(ノルボルネン誘導体)>
本発明に係る含フッ素化合物は、下記一般式1で表される含フッ素化合物、下記一般式2で表される含フッ素化合物、または、下記一般式3で表される含フッ素化合物である。
<Fluorine-containing compound (norbornene derivative)>
The fluorine-containing compound according to the present invention is a fluorine-containing compound represented by the following general formula 1, a fluorine-containing compound represented by the following general formula 2, or a fluorine-containing compound represented by the following general formula 3.

Figure 0007036120000015
Figure 0007036120000015

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子、R11、R12はそれぞれ独立に一価有機基、a11、a12はそれぞれ独立に0、1または2である。また、X21、X22はそれぞれ独立に水素原子またはフッ素原子、R21、R22はそれぞれ独立に一価有機基、a21、a22はそれぞれ独立に1または2である。また、Y31は、それぞれ独立して、CR131132、O、S、NR133又はPR134であり、R31はエーテル性酸素原子を有する炭素数2以上の一価含フッ素有機基であり、R32~R34はそれぞれ独立して、水素原子またはハロゲン原子であり、R131~R134はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、j31は0又は1である。However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, R 11 and R 12 are independently monovalent organic groups, and a11 and a12 are independently 0, 1 or 2, respectively. Further, X 21 and X 22 are independently hydrogen atoms or fluorine atoms, R 21 and R 22 are independently monovalent organic groups, and a 21 and a 22 are independently 1 or 2, respectively. Further, Y 31 is independently CR 131 R 132 , O, S, NR 133 or PR 134 , and R 31 is a monovalent fluorine-containing organic group having 2 or more carbon atoms having an ethereal oxygen atom. , R 32 to R 34 are independent hydrogen atoms or halogen atoms, R 131 to R 134 are independent hydrogen atoms or alkyl groups having 1 to 20 carbon atoms, and j31 is 0 or 1. Is.

11、R12としては、1価の炭化水素基、ヘテロ原子を含む1価の炭化水素基が挙げられ、特に、エーテル性酸素原子を有する含フッ素炭化水素基が好ましい。1価の有機基の炭素数は1~200が好ましく、1~100がより好ましく、1~20がさらに好ましい。すなわち含フッ素化合物1におけるノルボルネンの置換基(-(CHa11-O-CFX11-R11および-(CHa12-O-CFX12-R12)としては2個以上のエーテル性酸素原子を有する含フッ素炭化水素基が好ましい。
含フッ素化合物1における置換基(-(CHa11-O-CFX11-R11および-(CHa12-O-CFX12-R12)の具体例としては、例えば、下記に示す構造が挙げられる。
-O-CFCHF-(O-CFCFCFd22-O-CFCFCF (d22=0~65)
-O-CFCHF-(O-CFd23-(O-CFCFd24-O-CF (d23=0~198、d24=0~99)
-O-CFCHF-(O-CFCFCFCF-O-CFCFd25-O-CF (d25=0~33)
-O-CFCHF-(O-CFCFd26-O-CF (d26=0~99)
-O-CFCHF-(O-CFd27-O-CF (d27=0~198)
-O-CFCHF-(O-CFCF(CF))d28-O-CFCFCF (d28=0~65)
-CH-O-CFCHF-(O-CFCFCFd1-O-CFCFCF (d1=0~65)
-CH-O-CFCHF-(O-CFd2-(O-CFCFd3-O-CF (d2=0~198、d3=0~99)
-CH-O-CFCHF-(O-CFCFCFCF-O-CFCFd4-O-CF (d4=0~33)
-CH-O-CFCHF-(O-CFCFd5-O-CF (d5=0~99)
-CH-O-CFCHF-(O-CFd6-O-CF (d6=0~198)
-CH-O-CFCHF-(O-CFCF(CF))d19-O-CFCFCF (d19=0~65)
-CHCH-O-CFCHF-(O-CFCFCFd7-O-CFCFCF (d7=0~65)
-CHCH-O-CFCHF-(O-CFd8-(O-CFCFd9-O-CF (d8=0~198、d9=0~99)
-CHCH-O-CFCHF-(O-CFCFCFCF-O-CFCFd10-O-CF (d10=0~33)
-CHCH-O-CFCHF-(O-CFCFd11-O-CF (d11=0~99)
-CHCH-O-CFCHF-(O-CFd12-O-CF (d12=0~198)
-CHCH-O-CFCHF-(O-CFCF(CF))d20-O-CFCFCF (d20=0~65)
Examples of R 11 and R 12 include a monovalent hydrocarbon group and a monovalent hydrocarbon group containing a hetero atom, and a fluorine-containing hydrocarbon group having an ethereal oxygen atom is particularly preferable. The monovalent organic group preferably has 1 to 200 carbon atoms, more preferably 1 to 100 carbon atoms, and even more preferably 1 to 20 carbon atoms. That is, two or more etheric oxygens are used as the substituents (-(CH 2 ) a11 -O-CFX 11 -R 11 and-(CH 2 ) a12 -O-CFX 12 -R 12 ) of norbornene in the fluorine-containing compound 1. A fluorine-containing hydrocarbon group having an atom is preferable.
Specific examples of the substituents (-(CH 2 ) a11 -O-CFX 11 -R 11 and-(CH 2 ) a12 -O-CFX 12 -R 12 ) in the fluorine-containing compound 1 are as shown below. Can be mentioned.
-O-CF 2 CHF- (O-CF 2 CF 2 CF 2 ) d22 -O-CF 2 CF 2 CF 3 (d22 = 0-65)
-O-CF 2 CHF- (O-CF 2 ) d23- (O-CF 2 CF 2 ) d24 -O-CF 3 (d23 = 0 to 198, d24 = 0 to 99)
-O-CF 2 CHF- (O-CF 2 CF 2 CF 2 CF 2 -O-CF 2 CF 2 ) d25 -O-CF 3 (d25 = 0-33)
-O-CF 2 CHF- (O-CF 2 CF 2 ) d26 -O-CF 3 (d26 = 0-99)
-O-CF 2 CHF- (O-CF 2 ) d27 -O-CF 3 (d27 = 0-198)
-O-CF 2 CHF- (O-CF 2 CF (CF 3 )) d28 -O-CF 2 CF 2 CF 3 (d28 = 0-65)
-CH 2 -O-CF 2 CHF- (O-CF 2 CF 2 CF 2 ) d1 -O-CF 2 CF 2 CF 3 (d1 = 0 to 65)
-CH 2 -O-CF 2 CHF- (O-CF 2 ) d2- (O-CF 2 CF 2 ) d3 -O-CF 3 (d2 = 0 to 198, d3 = 0 to 99)
-CH 2 -O-CF 2 CHF- (O-CF 2 CF 2 CF 2 CF 2 -O-CF 2 CF 2 ) d4 -O-CF 3 (d4 = 0-33)
-CH 2 -O-CF 2 CHF- (O-CF 2 CF 2 ) d5 -O-CF 3 (d5 = 0-99)
-CH 2 -O-CF 2 CHF- (O-CF 2 ) d6 -O-CF 3 (d6 = 0-198)
-CH 2 -O-CF 2 CHF- (O-CF 2 CF (CF 3 )) d19 -O-CF 2 CF 2 CF 3 (d19 = 0-65)
-CH 2 CH 2 -O-CF 2 CHF- (O-CF 2 CF 2 CF 2 ) d7 -O-CF 2 CF 2 CF 3 (d7 = 0 to 65)
-CH 2 CH 2 -O-CF 2 CHF- (O-CF 2 ) d8- (O-CF 2 CF 2 ) d9 -O-CF 3 (d8 = 0 to 198, d9 = 0 to 99)
-CH 2 CH 2 -O-CF 2 CHF- (O-CF 2 CF 2 CF 2 CF 2 -O-CF 2 CF 2 ) d10 -O-CF 3 (d10 = 0 to 33)
-CH 2 CH 2 -O-CF 2 CHF- (O-CF 2 CF 2 ) d11 -O-CF 3 (d11 = 0 to 99)
-CH 2 CH 2 -O-CF 2 CHF- (O-CF 2 ) d12 -O-CF 3 (d12 = 0 to 198)
-CH 2 CH 2 -O-CF 2 CHF- (O-CF 2 CF (CF 3 )) d20 -O-CF 2 CF 2 CF 3 (d20 = 0 to 65)

含フッ素化合物1における置換基(-(CHa11-O-CFX11-R11および-(CHa12-O-CFX12-R12)としては、
-CH-O-CFCHF-O-CFCFCF
-CH-O-CFCHF-O-CFCF(CF)-O-CFCFCF
-CH-O-CFCHF-O-CFCF-O-CF-O-CF-O-CF
-CH-O-CFCF-O-CFCF-O-CFCF3、
-CH-O-CFCF-O-CFCF-O-CFCFCFCF
-CH-O-CFCF(CF)-O-CFCFCF
-CHCH-O-CFCHF-O-CFCFCF
-CHCH-O-CFCHF-O-CFCF(CF)-O-CFCFCF
-CHCH-O-CFCHF-O-CFCF-O-CF-O-CF-O-CF
-CHCH-O-CFCF-O-CFCF-O-CFCF
-CHCH-O-CFCF-O-CFCF-O-CFCFCFCF
-CHCH-O-CFCF(CF)-O-CFCFCF等が特に好適に例示される。
As the substituents (-(CH 2 ) a11 -O-CFX 11 -R 11 and-(CH 2 ) a12 -O-CFX 12 -R 12 ) in the fluorine-containing compound 1,
-CH 2 -O-CF 2 CHF-O-CF 2 CF 2 CF 3 ,
-CH 2 -O-CF 2 CHF-O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 ,
-CH 2 -O-CF 2 CHF-O-CF 2 CF 2 -O-CF 2 -O-CF 2 -O-CF 3 ,
-CH 2 -O-CF 2 CF 2 -O-CF 2 CF 2 -O-CF 2 CF 3,
-CH 2 -O-CF 2 CF 2 -O-CF 2 CF 2 -O-CF 2 CF 2 CF 2 CF 3 ,
-CH 2 -O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 ,
-CH 2 CH 2 -O-CF 2 CHF-O-CF 2 CF 2 CF 3 ,
-CH 2 CH 2 -O-CF 2 CHF-O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 ,
-CH 2 CH 2 -O-CF 2 CHF-O-CF 2 CF 2 -O-CF 2 -O-CF 2 -O-CF 3 ,
-CH 2 CH 2 -O-CF 2 CF 2 -O-CF 2 CF 2 -O-CF 2 CF 3 ,
-CH 2 CH 2 -O-CF 2 CF 2 -O-CF 2 CF 2 -O-CF 2 CF 2 CF 2 CF 3 ,
-CH 2 CH 2 -O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 and the like are particularly preferably exemplified.

21、R22としては、R11、R12と好適な態様も含めて同様である。
化合物3は、例えば、後述するようなシクロペンタジエン等の五員環構造のジエンとオレフィンとのディールズアルダー(Diels-Alder)反応によって合成することができる。前記五員環構造のジエンの構造によってY31を定めることができる。なかでも、Y31はCH、O、又はNHであることが反応性、入手性の点から好ましく、CHが特に好ましい。
31としては、好ましくは、エーテル性酸素原子を有する炭素数2以上の1価含フッ素炭化水素基、エーテル性酸素原子及びヘテロ原子(エーテル性酸素原子を除く)を含む炭素数2以上の1価含フッ素炭化水素基が挙げられる。すなわち化合物3におけるノルボルネンの置換基(OR31)としては、エーテル性酸素原子を2個以上(アルコキシ基の付け根の酸素原子も含めて2個以上)有する炭素数2以上の含フッ素アルコキシ基が好ましい。1価含フッ素有機基の炭素数は2~200が好ましく、2~100がより好ましく、3~20がさらに好ましい。
OR31の具体例としては、例えば、下記に示す構造が挙げられる。
-(O-CFCFCFd13-O-CFCFCF (d13=0~65)
-(O-CFd14-(O-CFCFd15-O-CF (d14=0~199、d15=0~99)
-(O-CFCFCFCF-O-CFCFd16-O-CF (d16=0~33)
-(O-CFCFd17-O-CF (d17=0~99)
-(O-CFd18-O-CF (d18=0~199)
-(O-CFCF(CF))d21-O-CFCFCF (d21=0~65)
The R 21 and R 22 are the same as those of R 11 and R 12 , including suitable embodiments.
Compound 3 can be synthesized, for example, by a Diels-Alder reaction between a diene having a five-membered ring structure such as cyclopentadiene and an olefin as described later. Y 31 can be defined by the structure of the diene of the five-membered ring structure. Among them, Y 31 is preferably CH 2 , O, or NH from the viewpoint of reactivity and availability, and CH 2 is particularly preferable.
The R 31 is preferably 1 having 2 or more carbon atoms including a monovalent fluorine-containing hydrocarbon group having 2 or more carbon atoms having an ethereal oxygen atom, an ethereal oxygen atom and a hetero atom (excluding the etheric oxygen atom). A valence-containing fluorine hydrocarbon group can be mentioned. That is, as the substituent (OR 31 ) of norbornene in compound 3, a fluorine-containing alkoxy group having 2 or more carbon atoms having two or more ethereal oxygen atoms (two or more including the oxygen atom at the base of the alkoxy group) is preferable. .. The monovalent fluorine-containing organic group preferably has 2 to 200 carbon atoms, more preferably 2 to 100 carbon atoms, and even more preferably 3 to 20 carbon atoms.
Specific examples of the OR 31 include the structure shown below.
-(O-CF 2 CF 2 CF 2 ) d13 -O-CF 2 CF 2 CF 3 (d13 = 0-65)
-(O-CF 2 ) d14- (O-CF 2 CF 2 ) d15 -O-CF 3 (d14 = 0 to 199, d15 = 0 to 99)
-(O-CF 2 CF 2 CF 2 CF 2 -O-CF 2 CF 2 ) d16 -O-CF 3 (d16 = 0 to 33)
-(O-CF 2 CF 2 ) d17 -O-CF 3 (d17 = 0 to 99)
-(O-CF 2 ) d18 -O-CF 3 (d18 = 0-199)
-(O-CF 2 CF (CF 3 )) d21 -O-CF 2 CF 2 CF 3 (d21 = 0-65)

OR31としては、
-O-CFCF(CF)-O-CFCFCF
-O-CFCF-O-CF-O-CF-O-CF
-O-CFCFCF-O-CF
-O-CFCF(CF)-O-CFCF(CF)-O-CFCFCF等が特に好適に例示される。
As OR 31 ,
-O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 ,
-O-CF 2 CF 2 -O-CF 2 -O-CF 2 -O-CF 3 ,
-O-CF 2 CF 2 CF 2 -O-CF 3 ,
-O-CF 2 CF (CF 3 ) -O-CF 2 CF (CF 3 ) -O-CF 2 CF 2 CF 3 and the like are particularly preferably exemplified.

32~R34はそれぞれ独立して、水素原子またはハロゲン原子であり、水素原子またはフッ素原子が好ましい。R 32 to R 34 are independently hydrogen atoms or halogen atoms, and hydrogen atoms or fluorine atoms are preferable.

以下に、化合物1~3の合成方法を示す。
含フッ素化合物1は例えば、ヒドロキシル基を2つ有するノルボルネン誘導体と含フッ素化合物から合成することができる。
化合物1の合成方法の具体的な例として、以下の化合物1-1の合成方法が挙げられる。化合物1-1は、ノルボルネン誘導体に対して1種類の含フッ素化合物を2倍量で反応させて得られるため、対称化合物である。ノルボルネン誘導体に対して異なる種類の含フッ素化合物を1倍量ずつ反応させれば、非対称の含フッ素化合物1を得ることができる。
11、a12、X11は、上記化合物1における定義と好ましい態様を含めて同様である。R11’は、含フッ素炭化水素基、又はエーテル性酸素原子を有する含フッ素炭化水素基が好ましい。R11’の炭素数は1~20が好ましい。
The method for synthesizing compounds 1 to 3 is shown below.
The fluorine-containing compound 1 can be synthesized, for example, from a norbornene derivative having two hydroxyl groups and a fluorine-containing compound.
Specific examples of the method for synthesizing compound 1 include the following methods for synthesizing compound 1-1. Compound 1-1 is a symmetric compound because it is obtained by reacting a norbornene derivative with one kind of fluorine-containing compound in a double amount. An asymmetric fluorine-containing compound 1 can be obtained by reacting a norbornene derivative with different types of fluorine-containing compounds in 1-fold amounts.
a 11 , a 12 , and X 11 are the same, including the definition and the preferred embodiment in the above-mentioned compound 1. R 11'is preferably a fluorinated hydrocarbon group or a fluorinated hydrocarbon group having an ethereal oxygen atom. The carbon number of R 11'is preferably 1 to 20.

Figure 0007036120000016
Figure 0007036120000016

含フッ素化合物2は例えば、ヒドロキシル基を2つ有するノルボルネン誘導体と含フッ素化合物から合成することができる。
化合物2の合成方法の具体的な例として、以下の化合物2-1の合成方法が挙げられる。化合物2-1は、ノルボルネン誘導体に対して1種類の含フッ素化合物を2倍量で反応させて得られるため、対称化合物である。ノルボルネン誘導体に対して異なる種類の含フッ素化合物を1倍量ずつ反応させれば、非対称の含フッ素化合物2を得ることができる。
21、a22、X21は、上記化合物2における定義と好ましい態様を含めて同様である。R21’は、含フッ素炭化水素基、又はエーテル性酸素原子を有する含フッ素炭化水素基が好ましい。R21’の炭素数は1~20が好ましい。
The fluorine-containing compound 2 can be synthesized, for example, from a norbornene derivative having two hydroxyl groups and a fluorine-containing compound.
Specific examples of the method for synthesizing compound 2 include the following methods for synthesizing compound 2-1. Compound 2-1 is a symmetric compound because it is obtained by reacting a norbornene derivative with one kind of fluorine-containing compound in a double amount. An asymmetric fluorine-containing compound 2 can be obtained by reacting a norbornene derivative with different types of fluorine-containing compounds in 1-fold amounts.
a 21 , a 22 , and X 21 are the same, including the definition and the preferred embodiment in the above-mentioned compound 2. R 21'is preferably a fluorine-containing hydrocarbon group or a fluorine-containing hydrocarbon group having an ethereal oxygen atom. The carbon number of R 21'preferably 1 to 20.

Figure 0007036120000017
Figure 0007036120000017

含フッ素化合物3は、例えば、五員環構造のジエンとオレフィンとのディールズアルダー反応によって合成することができる。ジエンとオレフィンとを反応させることでj31=0の含フッ素ノルボルネン誘導体を合成することができ、さらにジエンと再度反応させることで、j31=1の含フッ素ノルボルネン誘導体を合成することができる。ここでY31及びR31~R34はそれぞれ先述したとおりである。The fluorine-containing compound 3 can be synthesized, for example, by a Diels-Alder reaction between a diene having a five-membered ring structure and an olefin. A fluorine-containing norbornene derivative having j31 = 0 can be synthesized by reacting a diene with an olefin, and a fluorine-containing norbornene derivative having j31 = 1 can be synthesized by further reacting with a diene. Here, Y 31 and R 31 to R 34 are as described above, respectively.

Figure 0007036120000018
Figure 0007036120000018

<含フッ素重合体>
本発明に係る含フッ素重合体の一態様は、前記一般式Iで表される構造単位又は前記一般式IIで表される構造単位を含む共重合体である。
<Fluorine-containing polymer>
One aspect of the fluorine-containing polymer according to the present invention is a copolymer containing the structural unit represented by the general formula I or the structural unit represented by the general formula II.

一般式Iで表される構造単位又は前記一般式IIで表される構造単位を含む共重合体は、少なくとも、下記一般式aで表されるフッ素原子を含むノルボルネン誘導体(含フッ素ノルボルネン誘導体)と、下記一般式bで表されるシクロペンテン誘導体とを、原料モノマーとし、それらを共重合することにより製造することができる。 The copolymer containing the structural unit represented by the general formula I or the structural unit represented by the general formula II is at least a norbornene derivative (fluorine-containing norbornene derivative) containing a fluorine atom represented by the following general formula a. , The cyclopentene derivative represented by the following general formula b can be produced by using a raw material monomer and copolymerizing them.

Figure 0007036120000019
Figure 0007036120000019

上記式中、Yはそれぞれ独立して、CR121122、O、S、NR123又はPR124であり、R101~R104はそれぞれ独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれており、R105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、R121~R124はそれぞれ独立して、水素原子又は炭素数1~20のアルキル基であり、jは0又は1である。
ここで、「R101~R104」とは、R101、R102、R103及びR104を意味する。同様に、「R105~R110」とは、R105、R106、R107、R108、R109及びR110を意味する。また、「R121~R124」とは、R121、R122、R123及びR124を意味する。
In the above formula, Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , and R 101 to R 104 each independently have a hydrogen atom, a halogen atom or a hetero atom. It is an organic group which may be present, and R 101 or R 102 may be bonded to R 103 or R 104 to form a ring, and fluorine may be added to at least one group or atom of R 101 to R 104 . It contains one or more atoms, and R 105 to R 110 are organic groups that may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group, or a hetero atom, except that R 105 to R. At least one group out of 110 is an organic group which may have a halogen atom, a hydroxyl group, an amino group or a hetero atom, and R 121 to R 124 are independently hydrogen atoms or carbon atoms 1 to 20. It is an alkyl group, and j is 0 or 1.
Here, "R 101 to R 104 " means R 101 , R 102 , R 103 , and R 104 . Similarly, "R 105 to R 110 " means R 105 , R 106 , R 107 , R 108 , R 109 and R 110 . Further, "R 121 to R 124 " means R 121 , R 122 , R 123 and R 124 .

(含フッ素ノルボルネン誘導体)
原料モノマーとなる含フッ素ノルボルネン誘導体は前記一般式aで表される。
一般式aにおいて、Yはそれぞれ独立してCR121122、O、S、NR123又はPR124である。
含フッ素ノルボルネン誘導体は、例えば、後述するようにシクロペンタジエン等の五員環構造のジエンとオレフィンとのディールズアルダー(Diels-Alder)反応によって合成することができる。前記五員環構造のジエンの構造によってYを定めることができる。
なかでも、YはCH、O、NHであることが反応性、入手性の点から好ましい。
(Fluorine-containing norbornene derivative)
The fluorine-containing norbornene derivative serving as the raw material monomer is represented by the above general formula a.
In the general formula a, Y is independently CR 121 R 122 , O, S, NR 123 or PR 124 , respectively.
The fluorine-containing norbornene derivative can be synthesized, for example, by a Diels-Alder reaction between a diene having a five-membered ring structure such as cyclopentadiene and an olefin, as described later. Y can be determined by the structure of the diene of the five-membered ring structure.
Among them, it is preferable that Y is CH 2 , O, and NH from the viewpoint of reactivity and availability.

一般式a中、R101~R104は各々独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよい。また、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれている。
101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれていれば、その他のR101~R104で表される基又は原子の構造は特に限定されない。
In the general formula a, R 101 to R 104 are organic groups each independently which may have a hydrogen atom, a halogen atom or a hetero atom, and R 101 or R 102 and R 103 or R 104 are They may be combined to form a ring. Further, at least one group or atom of R 101 to R 104 contains one or more fluorine atoms.
As long as at least one group or atom of R 101 to R 104 contains one or more fluorine atoms, the structure of the other groups or atoms represented by R 101 to R 104 is not particularly limited.

101~R104のうち少なくとも1の基又は原子が、炭素数1~20の(ペル)フルオロアルキル基、炭素数1~20の(ペル)フルオロアルコキシ基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~200の(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を含む炭素数2~200の(ペル)フルオロアルコキシ基、炭素数5~20の(ペル)フルオロアリール基、炭素数5~20の(ペル)フルオロアリールオキシ基、又はフッ素原子であることが好ましく、炭素数1~10の(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数2~10の(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を含む炭素数2~10の(ペル)フルオロアルコキシ基、又はフッ素原子であることがより好ましい。At least one group or atom of R 101 to R 104 is a (pel) fluoroalkyl group having 1 to 20 carbon atoms, a (pel) fluoroalkoxy group having 1 to 20 carbon atoms, and an ether between carbon atoms. A (pel) fluoroalkyl group having 2 to 200 carbon atoms having a sex oxygen atom, a (pel) fluoroalkoxy group having 2 to 200 carbon atoms including an ethereal oxygen atom between carbon atoms, and 5 to 20 carbon atoms. (Pel) fluoroaryl group, (pel) fluoroaryloxy group having 5 to 20 carbon atoms, or fluorine atom, preferably (pel) fluoroalkyl group having 1 to 10 carbon atoms, carbon atom and carbon atom. A (pel) fluoroalkyl group having 2 to 10 carbon atoms having an ethereal oxygen atom between them, a (pel) fluoroalkoxy group having 2 to 10 carbon atoms including an ethereal oxygen atom between carbon atoms, or fluorine. It is more preferably an atom.

101~R104のハロゲン原子としては、例えばフッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
101~R104の有機基としては、直鎖状でも分岐状でもよく、環状構造を有していてもよい。R101~R104の有機基としては、炭素数1~100の有機基が好ましく、例えば、アルキル基、アルコキシ基、アリール基、アリールオキシ基、シクロアルキル基、ケイ素含有アルキル基、アルコキシカルボニル基、アルキルカルボニル基、シアノ基、シアノ基含有アルキル基、エステル基含有アルキル基、エーテル基含有アルキル基、ヒドロキシカルボニル基、カルボキシ基含有アルキル基、ヒドロキシ基、ヒドロキシ基含有アルキル等が挙げられる。これらはヘテロ原子を有していてもよいし、ヘテロ原子を含む炭素数1~100の置換基をさらに有していてもよい。また、環状構造としては単環に限定されず、複数の環が結合した多環構造を有していてもよい。多環構造は縮合環でもスピロ環でもよい。これら環状構造は炭素環化合物に限られず、1以上の炭素原子がヘテロ原子に置換されたヘテロ環化合物であってもよい。環を形成する水素原子のうち、一部又は全部の水素原子がハロゲン原子に置換されていてもよい。
Examples of the halogen atom of R 101 to R 104 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
The organic groups of R 101 to R 104 may be linear or branched, and may have a cyclic structure. As the organic group of R 101 to R 104 , an organic group having 1 to 100 carbon atoms is preferable, and for example, an alkyl group, an alkoxy group, an aryl group, an aryloxy group, a cycloalkyl group, a silicon-containing alkyl group, an alkoxycarbonyl group, and the like. Examples thereof include an alkylcarbonyl group, a cyano group, a cyano group-containing alkyl group, an ester group-containing alkyl group, an ether group-containing alkyl group, a hydroxycarbonyl group, a carboxy group-containing alkyl group, a hydroxy group, and a hydroxy group-containing alkyl. These may have a heteroatom, or may further have a substituent containing a heteroatom and having 1 to 100 carbon atoms. Further, the cyclic structure is not limited to a single ring, and may have a polycyclic structure in which a plurality of rings are bonded. The polycyclic structure may be a fused ring or a spiro ring. These cyclic structures are not limited to the carbocyclic compound, and may be a heterocyclic compound in which one or more carbon atoms are substituted with heteroatoms. Of the hydrogen atoms forming the ring, some or all of the hydrogen atoms may be replaced with halogen atoms.

一般式a中、jは0又は1である。一般式aで表される含フッ素ノルボルネン誘導体は、例えば下記スキームに示すように、五員環構造のジエンとオレフィンとのディールズアルダー反応によってj=0の含フッ素ノルボルネン誘導体を合成することができ、さらにジエンと再度反応させることで、j=1の含フッ素ノルボルネン誘導体を合成することができる。ここでY及びR101~R104はそれぞれ先述したとおりである。In the general formula a, j is 0 or 1. As the fluorine-containing norbornene derivative represented by the general formula a, for example, as shown in the following scheme, a fluorine-containing norbornene derivative having j = 0 can be synthesized by a Diels-Alder reaction between a diene having a five-membered ring structure and an olefin. Further, by further reacting with diene, a fluorine-containing norbornene derivative having j = 1 can be synthesized. Here, Y and R 101 to R 104 are as described above, respectively.

Figure 0007036120000020
Figure 0007036120000020

原料となるジエンはシクロペンタジエン及びその誘導体(Y=CR121122)、フラン(Y=O)、チオフェン(Y=S)、アゾール及びその誘導体(Y=NR123)、ホスホール及びその誘導体(A=PR124)を用いることができる。
原料となるオレフィン化合物において、R101~R104は各々独立して、水素原子、ハロゲン原子又はヘテロ原子を有していてもよい有機基であり、R101又はR102と、R103又はR104とが結合して環を形成していてもよく、R101~R104のうち少なくとも1の基又は原子にフッ素原子が1以上含まれていればよい。
The raw material diene is cyclopentadiene and its derivative (Y = CR 121 R 122 ), furan (Y = O), thiophene (Y = S), azole and its derivative (Y = NR 123 ), phosphole and its derivative (A). = PR 124 ) can be used.
In the olefin compound as a raw material, R 101 to R 104 are organic groups which may independently have a hydrogen atom, a halogen atom or a hetero atom, respectively, and are R 101 or R 102 and R 103 or R 104 . And may be bonded to form a ring, and it is sufficient that at least one group or atom of R 101 to R 104 contains one or more hydrogen atoms.

尚、含フッ素ノルボルネン誘導体の合成法はディールズアルダー反応に限定されず、他の合成法により得ることもできる。例えば反応性官能基を有するノルボルネン誘導体と含フッ素化合物から合成することができ、前記反応性官能基としてはヒドロキシル基やアミノ基、チオール基等が挙げられる。具体的な例として、以下の反応が挙げられる。なお、式中R’としては(ペル)フルオロアルキル基、(ペル)フルオロアルコキシ基、炭素原子と炭素原子の間にエーテル性酸素原子を有する(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を含む(ペル)フルオロアルコキシ基、(ペル)フルオロアリール基、(ペル)フルオロアリールオキシ基、フッ素原子が挙げられる。 The method for synthesizing the fluorine-containing norbornene derivative is not limited to the Diels-Alder reaction, and can be obtained by other synthetic methods. For example, it can be synthesized from a norbornene derivative having a reactive functional group and a fluorine-containing compound, and examples of the reactive functional group include a hydroxyl group, an amino group and a thiol group. Specific examples include the following reactions. In the formula, R'refers to be a (pel) fluoroalkyl group, a (pel) fluoroalkoxy group, a (pel) fluoroalkyl group having an ethereal oxygen atom between carbon atoms, and between carbon atoms and carbon atoms. Examples thereof include a (pel) fluoroalkoxy group containing an ethereal oxygen atom, a (pel) fluoroaryl group, a (pel) fluoroaryloxy group, and a fluorine atom.

Figure 0007036120000021
Figure 0007036120000021

一般式aで表される含フッ素化合物の例としては、下記化合物が挙げられるが、これらに限定されない。 Examples of the fluorine-containing compound represented by the general formula a include, but are not limited to, the following compounds.

Figure 0007036120000022
Figure 0007036120000022

Figure 0007036120000023
Figure 0007036120000023

(シクロペンテン誘導体)
原料モノマーとなるシクロペンテン誘導体は前記一般式bで表される。
一般式bにおいて、R105~R110はそれぞれ独立して、水素原子、ハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、ただしR105~R110のうち少なくとも1の基はハロゲン原子、水酸基、アミノ基又はヘテロ原子を有していてもよい有機基であり、互いに結合して環を形成していてもよい。有機基としては、直鎖状でも分岐状でもよく、環状構造を有していてもよい。
すなわち、一般式bで表されるシクロペンテン誘導体は、置換基を有するシクロペンテン誘導体と換言でき、一般式bにおけるR105~R110がすべて水素原子である化合物は除かれる。
(Cyclopentene derivative)
The cyclopentene derivative as the raw material monomer is represented by the above general formula b.
In the general formula b, R 105 to R 110 are organic groups which may independently have a hydrogen atom, a halogen atom, a hydroxyl group, an amino group or a hetero atom, respectively, and at least among R 105 to R 110 . The group 1 is an organic group which may have a halogen atom, a hydroxyl group, an amino group or a hetero atom, and may be bonded to each other to form a ring. The organic group may be linear or branched, and may have a cyclic structure.
That is, the cyclopentene derivative represented by the general formula b can be rephrased as a cyclopentene derivative having a substituent, and compounds in which R 105 to R 110 in the general formula b are all hydrogen atoms are excluded.

ヘテロ原子を有していてもよい有機基としては、例えば、ハロゲン原子、酸素原子、窒素原子、イオウ原子、リン原子及びケイ素原子からなる群から選ばれる原子を1以上含んでいてもよい炭素数1~200の一価炭化水素基やシアノ基、カルボキシル基、イソシアネート基等が挙げられる。
炭素数1~200の一価炭化水素基としては炭素数1~200のアルキル基、炭素数1~200のアルコキシ基、炭素数5~20のアリール基、炭素数5~20のアリールオキシ基等が例示できる。該一価炭化水素基は、直鎖状又は分岐状でもよい。また、二価炭化水素基として環を形成していてもよい。
これらの好ましい基は少なくとも一部の炭素原子にハロゲン原子が結合していてもよい。すなわち例えば(ペル)フルオロアルキル基、(ペル)フルオロアルコキシ基であってもよい。またこれらの好ましい基は、炭素原子と炭素原子の間にエーテル性酸素原子を有していてもよい。またこれらの好ましい基は、さらに、ハロゲン原子、酸素原子、窒素原子、硫黄原子、リン原子及びケイ素原子からなる群から選ばれる原子を1以上含む置換基を有していてもよい。該置換基としては、ヒドロキシル基、アミノ基、イミノ基、ニトリル基、アミド基(カルボニルアミノ基)、カルバメート基(オキシカルボニルアミノ基)、ニトロ基、カルボキシル基、エステル基(アシルオキシ基またはアルコキシカルボニル基)及びシリル基(アルキルシリル基、アルコキシシリル基又はハロゲン化シリル基)、カルボニル基、アルコキシ基等が例示できる。これらの基は更にアルキル基又はアリール基で置換されていてもよい。例えばアミノ基(-NH)はモノアルキルアミノ基(-NHR)、モノアリールアミノ基(-NHAr)、ジアルキルアミノ基(-NR)、またはジアリールアミノ基(-NAr)であってもよい。ただしRは炭素数1~12のアルキル基または炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数1~12のアルキル基であり、Arは炭素数5~12のアリール基である。
The organic group which may have a hetero atom may contain, for example, one or more atoms selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. Examples thereof include a monovalent hydrocarbon group of 1 to 200, a cyano group, a carboxyl group, an isocyanate group and the like.
Examples of the monovalent hydrocarbon group having 1 to 200 carbon atoms include an alkyl group having 1 to 200 carbon atoms, an alkoxy group having 1 to 200 carbon atoms, an aryl group having 5 to 20 carbon atoms, and an aryloxy group having 5 to 20 carbon atoms. Can be exemplified. The monovalent hydrocarbon group may be linear or branched. Further, a ring may be formed as a divalent hydrocarbon group.
These preferred groups may have a halogen atom bonded to at least a part of the carbon atom. That is, for example, it may be a (pel) fluoroalkyl group or a (pel) fluoroalkoxy group. Further, these preferable groups may have an ethereal oxygen atom between carbon atoms. Further, these preferable groups may further have a substituent containing one or more atoms selected from the group consisting of a halogen atom, an oxygen atom, a nitrogen atom, a sulfur atom, a phosphorus atom and a silicon atom. Examples of the substituent include a hydroxyl group, an amino group, an imino group, a nitrile group, an amide group (carbonylamino group), a carbamate group (oxycarbonylamino group), a nitro group, a carboxyl group and an ester group (acyloxy group or an alkoxycarbonyl group). ), A silyl group (alkylsilyl group, alkoxysilyl group or halide silyl group), carbonyl group, alkoxy group and the like can be exemplified. These groups may be further substituted with an alkyl group or an aryl group. For example, the amino group (-NH 2 ) may be a monoalkylamino group (-NHR), a monoarylamino group (-NHAr), a dialkylamino group (-NR 2 ), or a diarylamino group (-NAr 2 ). .. However, R is an alkyl group having 1 to 12 carbon atoms or an alkyl group having 1 to 12 carbon atoms having an ethereal oxygen atom between carbon atoms, and Ar is an aryl group having 5 to 12 carbon atoms.

中でも、R105~R110は各々独立して、炭素数1~10の(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を有する炭素数1~10の(ペル)フルオロアルキル基、炭素原子と炭素原子の間にエーテル性酸素原子を含む炭素数1~10の(ペル)フルオロアルコキシ基、炭素数1~12のエステル基、炭素数1~12のエーテル性酸素原子を有するアルキル基、炭素数1~12のシアノ基を有するアルキル基、炭素数1~12のヒドロキシル基を有するアルキル基、炭素数1~12のカルボキシル基を有するアルキル基、炭素数1~12のイソシアネート基を有するアルキル基等がより好ましい。
一般式bで表されるシクロペンテン誘導体のより具体的な例としては、下記化合物が挙げられる。
Among them, R 105 to R 110 are independent (pel) fluoroalkyl groups having 1 to 10 carbon atoms, and (pel) fluoro having 1 to 10 carbon atoms having an ethereal oxygen atom between carbon atoms. An alkyl group, a (pel) fluoroalkoxy group having 1 to 10 carbon atoms including an ethereal oxygen atom between carbon atoms, an ester group having 1 to 12 carbon atoms, and an ethereal oxygen atom having 1 to 12 carbon atoms. An alkyl group having an alkyl group, an alkyl group having a cyano group having 1 to 12 carbon atoms, an alkyl group having a hydroxyl group having 1 to 12 carbon atoms, an alkyl group having a carboxyl group having 1 to 12 carbon atoms, and an isocyanate having 1 to 12 carbon atoms. An alkyl group having a group or the like is more preferable.
More specific examples of the cyclopentene derivative represented by the general formula b include the following compounds.

Figure 0007036120000024
Figure 0007036120000024

(その他の原料モノマー)
本発明に係る含フッ素重合体は、一般式aで表される含フッ素ノルボルネン誘導体と一般式bで表されるシクロペンテン誘導体以外のモノマーをさらに原料モノマーとすることもできる。重合体11、21または31においても同様である。この場合のその他の原料モノマーとしては、オレフィン構造を有する化合物であればよく、例えばエチレン、プロピレン、1-ブテン、1-ヘキセンなどのα-オレフィン、スチレン、環状オレフィン等が挙げられる。
(Other raw material monomers)
In the fluorine-containing polymer according to the present invention, a monomer other than the fluorine-containing norbornene derivative represented by the general formula a and the cyclopentene derivative represented by the general formula b can be further used as a raw material monomer. The same applies to the polymer 11, 21 or 31. The other raw material monomer in this case may be a compound having an olefin structure, and examples thereof include α-olefins such as ethylene, propylene, 1-butene and 1-hexene, styrene, and cyclic olefins.

本発明に係る含フッ素重合体のさらなる一態様は、前記一般式11で表される構造単位、前記一般式12で表される構造単位、前記一般式21で表される構造単位、前記一般式22で表される構造単位、前記一般式31で表される構造単位、前記一般式32で表される構造単位、前記一般式11’で表される構造単位、前記一般式21’で表される構造単位、又は、前記一般式31’で表される構造単位を含む重合体である。 A further aspect of the fluoropolymer according to the present invention is a structural unit represented by the general formula 11, a structural unit represented by the general formula 12, a structural unit represented by the general formula 21, and the general formula. The structural unit represented by 22, the structural unit represented by the general formula 31, the structural unit represented by the general formula 32, the structural unit represented by the general formula 11', and the structural unit represented by the general formula 21'. It is a polymer containing a structural unit or a structural unit represented by the general formula 31'.

<重合方法>
一般式aで表される含フッ素ノルボルネン誘導体と一般式bで表されるシクロペンテン誘導体とを原料モノマーとして少なくとも用い、重合反応を行うことにより下記一般式Iで表される構造単位又は下記一般式IIで表される構造単位を含む含フッ素共重合体を得ることができる。式中の記号は前記したものとそれぞれ同じ意味を表す。
<Polymerization method>
The structural unit represented by the following general formula I or the following general formula II is obtained by carrying out a polymerization reaction using at least a fluorine-containing norbornene derivative represented by the general formula a and a cyclopentene derivative represented by the general formula b as raw material monomers. A fluorine-containing copolymer containing a structural unit represented by is obtained. The symbols in the formula have the same meanings as those described above.

Figure 0007036120000025
Figure 0007036120000025

重合反応においてメタセシス反応による開環重合(開環メタセシス重合、ROMP)を行うことにより一般式Iで表される構造単位を含む含フッ素共重合体を得ることができ、付加重合反応による共重合を行うことにより一般式IIで表される構造単位を含む含フッ素共重合体を得ることができる。 By carrying out ring-opening polymerization (ring-opening metathesis polymerization, ROMP) by a metathesis reaction in the polymerization reaction, a fluoropolymer containing a structural unit represented by the general formula I can be obtained, and copolymerization by an addition polymerization reaction can be performed. By doing so, a fluorine-containing copolymer containing a structural unit represented by the general formula II can be obtained.

得られる共重合体としては、例えば交互共重合体、ブロック共重合体、ランダム共重合体が合成可能であり、原料であるモノマーの仕込み比や、重合条件によって所望の共重合体を得ることができる。 As the obtained copolymer, for example, an alternate copolymer, a block copolymer, and a random copolymer can be synthesized, and a desired copolymer can be obtained depending on the charging ratio of the raw material monomer and the polymerization conditions. can.

原料のモノマーとしては、一般式aで表される含フッ素ノルボルネン誘導体を主モノマーとして用いてもよいし、コモノマーとして用いてもよいが、主モノマーとして用いることが化学耐久性、撥液性向上の点から好ましい。また、他のオレフィン化合物をさらに原料モノマーとして用いることで、3元系以上の多元共重合体とすることもできる。 As the raw material monomer, a fluorine-containing norbornene derivative represented by the general formula a may be used as a main monomer or a comonomer, but using it as a main monomer improves chemical durability and liquid repellency. It is preferable from the point of view. Further, by further using another olefin compound as a raw material monomer, a ternary or higher multidimensional copolymer can be obtained.

化合物1~3についても同様に、化合物1を開環メタセシス重合させることにより構造単位11を含む含フッ素重合体が、化合物1を付加重合させることにより構造単位12を含む含フッ素重合体が得られる。また化合物2を開環メタセシス重合させることにより構造単位21を含む含フッ素重合体が、化合物2を付加重合させることにより構造単位22を含む含フッ素重合体が得られる。また化合物3を開環メタセシス重合させることにより構造単位31を含む含フッ素重合体が、化合物3を付加重合させることにより構造単位32を含む含フッ素重合体が得られる。式中の記号は前記したものとそれぞれ同じ意味を表す。 Similarly, for compounds 1 to 3, a fluorine-containing polymer containing structural unit 11 can be obtained by ring-opening metathesis polymerization of compound 1, and a fluorine-containing polymer containing structural unit 12 can be obtained by addition polymerization of compound 1. .. Further, a fluorine-containing polymer containing structural unit 21 can be obtained by ring-opening metathesis polymerization of compound 2, and a fluorine-containing polymer containing structural unit 22 can be obtained by addition polymerization of compound 2. Further, a fluorine-containing polymer containing structural unit 31 can be obtained by ring-opening metathesis polymerization of compound 3, and a fluorine-containing polymer containing structural unit 32 can be obtained by addition polymerization of compound 3. The symbols in the formula have the same meanings as those described above.

Figure 0007036120000026
Figure 0007036120000026

重合体の分子量は1,000~1,000,000が機械的物性、物理的物性の点から好ましい。前記分子量は重量平均分子量であり、ゲルパーミエーションクロマトグラフィー(GPC)を用いて重合体溶液の条件下で測定される。 The molecular weight of the polymer is preferably 1,000 to 1,000,000 from the viewpoint of mechanical and physical properties. The molecular weight is a weight average molecular weight and is measured under the conditions of a polymer solution using gel permeation chromatography (GPC).

一般式I又は一般式IIで表される構造単位においてmで表される繰り返し単位の繰り返し数は1~10,000であることが機械的物性、物理的物性の点から好ましく、より好ましくは5~6,500である。また、nで表される繰り返し単位の繰り返し数は1~10,000であることが機械的物性、物理的物性の点から好ましく、より好ましくは5~6,500である。さらに、繰り返し単位の繰り返し数の総数は2~10,000であることが好ましく、より好ましくは5~6,500である。
前記一般式11、一般式12、一般式21、一般式22、一般式31、又は一般式32、及び、後述する一般式11’、一般式21’、又は一般式31’表される構造単位における、繰り返し単位の繰り返し数m11、m21、またはm31についても同様に、その繰り返し数は、1~10,000であることが機械的物性、物理的物性の点から好ましく、より好ましくは5~6,500である。
In the structural unit represented by the general formula I or the general formula II, the number of repetitions of the repeating unit represented by m is preferably 1 to 10,000 from the viewpoint of mechanical and physical properties, and more preferably 5. It is ~ 6,500. The number of repetitions of the repeating unit represented by n is preferably 1 to 10,000, more preferably 5 to 6,500 from the viewpoint of mechanical and physical properties. Further, the total number of repeating units is preferably 2 to 10,000, more preferably 5 to 6,500.
The structural unit represented by the general formula 11, the general formula 12, the general formula 21, the general formula 22, the general formula 31, or the general formula 32, and the general formula 11', the general formula 21', or the general formula 31'described later. Similarly, the number of repetitions m11, m21, or m31 of the repetition unit in the above is preferably 1 to 10,000, and more preferably 5 to 6 from the viewpoint of mechanical and physical properties. , 500.

得られた重合体は高耐熱性、低吸水性、高光線透過率(透明性)、高化学耐久性、高耐候性、高撥液性等といった特性を有し、これら諸特性のバランスにも優れることから、電気・電子材料、半導体材料、光学材料、医療器具・細胞培養材料、撥液材料、エラストマー材料、架橋剤等の多種多様な分野に利用することができる。 The obtained polymer has properties such as high heat resistance, low water absorption, high light transmittance (transparency), high chemical durability, high weather resistance, and high liquid repellency, and also balances these properties. Since it is excellent, it can be used in a wide variety of fields such as electric / electronic materials, semiconductor materials, optical materials, medical instruments / cell culture materials, liquid repellent materials, elastomer materials, and cross-linking agents.

[開環メタセシス重合]
原料モノマーとして一般式aで表される含フッ素ノルボルネン誘導体及び一般式bで表されるシクロペンテン誘導体を用い、金属-カルベン錯体触媒の存在下で共重合することにより、一般式Iで表される構造単位を含む含フッ素共重合体を得ることができる。
それぞれ式中の記号は先述したとおりである。
[Ring-opening metathesis polymerization]
A structure represented by the general formula I is obtained by copolymerizing a fluorine-containing norbornene derivative represented by the general formula a and a cyclopentene derivative represented by the general formula b as a raw material monomer in the presence of a metal-carbene complex catalyst. A fluoropolymer containing a unit can be obtained.
The symbols in each formula are as described above.

Figure 0007036120000027
Figure 0007036120000027

また原料モノマーとして化合物1を用い、金属-カルベン錯体触媒の存在下で重合することにより、一般式11で表される構造単位を含む含フッ素重合体を得ることができる。また原料モノマーとして化合物2を用い、金属-カルベン錯体触媒の存在下で重合することにより、一般式21で表される構造単位を含む含フッ素重合体を得ることができる。また原料モノマーとして化合物3を用い、金属-カルベン錯体触媒の存在下で重合することにより、一般式31で表される構造単位を含む含フッ素重合体を得ることができる。それぞれ式中の記号は先述したとおりである。 Further, by using compound 1 as a raw material monomer and polymerizing in the presence of a metal-carbene complex catalyst, a fluorine-containing polymer containing a structural unit represented by the general formula 11 can be obtained. Further, by using compound 2 as a raw material monomer and polymerizing in the presence of a metal-carbene complex catalyst, a fluorine-containing polymer containing a structural unit represented by the general formula 21 can be obtained. Further, by using compound 3 as a raw material monomer and polymerizing in the presence of a metal-carbene complex catalyst, a fluorine-containing polymer containing a structural unit represented by the general formula 31 can be obtained. The symbols in each formula are as described above.

Figure 0007036120000028
Figure 0007036120000028

Figure 0007036120000029
Figure 0007036120000029

Figure 0007036120000030
Figure 0007036120000030

上記開環メタセシス重合反応は触媒の存在下で進行するが、開環メタセシス重合する触媒であれば特に限定されない。[L]M=CAで表される金属-カルベン錯体化合物はその代表例である。金属-カルベン錯体化合物としては、ルテニウム-カルベン錯体、モリブデン-カルベン錯体、又はタングステン-カルベン錯体(以下、「金属-カルベン錯体」とも総称する。)が例示できる。The ring-opening metathesis polymerization reaction proceeds in the presence of a catalyst, but is not particularly limited as long as it is a catalyst for ring-opening metathesis polymerization. The metal-carbene complex compound represented by [L] M = CA 1 A 2 is a typical example. Examples of the metal-carbene complex compound include a ruthenium-carbene complex, a molybdenum-carbene complex, and a tungsten-carbene complex (hereinafter, also collectively referred to as “metal-carbene complex”).

オレフィンメタセシス反応活性を有する金属-カルベン錯体化合物は、含フッ素重合体の製造方法において触媒としての役割を果たすが、試薬として投入するもの及び反応中で生成するもの(触媒活性種)の両方を意味する。ここで、金属-カルベン錯体化合物は反応条件下、配位子のいくつかが解離することで触媒活性を示すようになるものと、配位子の解離なしで触媒活性を示すものが知られているが、本発明ではいずれでもよく限定されない。また一般に、開環メタセシス重合は触媒への環状オレフィンの配位と開環と解離とを繰り返しながら進行するため、反応中、触媒上に環状オレフィン以外の配位子がいくつ配位しているかは必ずしも明確でない。したがって本明細書中、[L]は配位子の数や種類を特定するものではない。また、金属-カルベン錯体化合物における金属はルテニウム、モリブデン、またはタングステンであることが好ましい。 The metal-carbene complex compound having olefin metathesis reaction activity plays a role as a catalyst in the method for producing a fluorine-containing polymer, but means both those added as a reagent and those produced during the reaction (catalytically active species). do. Here, it is known that the metal-carbene complex compound exhibits catalytic activity by dissociating some of the ligands under reaction conditions, and exhibits catalytic activity without dissociation of the ligands. However, the present invention is not limited to any of them. In general, ring-opening metathesis polymerization proceeds by repeating the coordination, ring-opening, and dissociation of the cyclic olefin to the catalyst. Therefore, how many ligands other than the cyclic olefin are coordinated on the catalyst during the reaction? Not always clear. Therefore, in the present specification, [L] does not specify the number or type of ligand. Further, the metal in the metal-carbene complex compound is preferably ruthenium, molybdenum, or tungsten.

これらの触媒のうち中心金属がルテニウムのものは一般的に「ルテニウム-カルベン錯体」と称されるものであり、例えばVougioukalakis,G.C.et al.,Chem.Rev.,2010,110,1746-1787.に記載されているルテニウム-カルベン錯体を利用することができる。また、例えばAldrich社やUmicore社から市販されているルテニウム-カルベン錯体を利用することができる。 Among these catalysts, those having a ruthenium central metal are generally referred to as "ruthenium-carbene complexes", and are, for example, Vougioukarakis, G. et al. C. et al. , Chem. Rev. , 2010, 110, 1746-1787. The ruthenium-carbene complex described in 1 can be utilized. Further, for example, a ruthenium-carbene complex commercially available from Aldrich and Umicore can be used.

ルテニウム-カルベン錯体の具体例としては、ビス(トリフェニルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)-3-メチル-2-ブテニリデンルテニウムジクロリド、(1,3-ジイソプロピルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジシクロヘキシルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチルイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ビス(2,6-ジイソプロピルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ビス(2-メチルフェニル)-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、[1,3-ジシクロヘキシル-4,5-ジヒドロイミダゾール-2-イリデン](トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、ビス(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)エトキシメチリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[ビス(3-ブロモピリジン)]ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(2-イソプロポキシフェニルメチリデン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[(トリシクロヘキシルホスホラニル)メチリデン]ジクロロルテニウムテトラフルオロボラート、UmicoreM2、UmicoreM51、UmicoreM52、UmicoreM71SIMes、UmicoreM71SIPr、UmicoreM73SIMes、UmicoreM73SIPr等が挙げられ、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(トリシクロヘキシルホスフィン)ベンジリデンルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)(2-イソプロポキシフェニルメチリデン)ルテニウムジクロリド、(1,3-ジメシチル-4,5-ジヒドロイミダゾール-2-イリデン)[(トリシクロヘキシルホスホラニル)メチリデン]ジクロロルテニウムテトラフルオロボラート、UmicoreM2、UmicoreM51、UmicoreM52、UmicoreM71SIMes、UmicoreM71SIPr、UmicoreM73SIMes、UmicoreM73SIPrが特に好ましい。なお上記錯体のうち、「Umicore」で始まる名称は、Umicore社の製品の商品名である。
なお、上記ルテニウム-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
Specific examples of the rutenium-carbene complex include bis (triphenylphosphine) benzylphosphine dichloride, bis (tricyclohexylphosphine) benzylphosphenium dichloride, bis (tricyclohexylphosphine) -3-methyl-2-butenilidene ruthenium dichloride, (tricyclohexylphosphine). 1,3-Diisopropylimidazole-2-iriden) (tricyclohexylphosphine) benzylidene lutenium dichloride, (1,3-dicyclohexylphosyl-2-iriden) (tricyclohexylphosphine) benzylhosyl imidazolide, (1,3-dicyclohexylphosphine) -2-Ilidene) (Tricyclohexylphosphin) benzylidene lutenium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-iriden) (tricyclohexylphosphine) benzylidene lutenium dichloride, [1,3-bis (2,) 6-Diisopropylphenyl) -4,5-dihydroimidazole-2-iriden] (tricyclohexylphosphine) benzylphostenium dichloride, [1,3-bis (2-methylphenyl) -4,5-dihydroimidazole-2-iriden] (Tricyclohexylphosphine) benzylphosphine dichloride, [1,3-dicyclohexyl-4,5-dihydroimidazole-2-iriden] (tricyclohexylphosphine) benzylphosphine dichloride, bis (tricyclohexylphosphine) ethoxymethylphosdentium dichloride, (1) , 3-Dimesityl-4,5-dihydroimidazole-2-iriden) (tricyclohexylphosphine) ethoxymethylphosdentium dichloride, (1,3-dimesityl-4,5-dihydroimidazole-2-iriden) [bis (3-) Bromopyridine)] benzylidene lutenium dichloride, (1,3-dimesityl-4,5-dihydroimidazol-2-iriden) (2-isopropoxyphenylmethylidene) lutenium dichloride, (1,3-dimesityl-4,5-dihydro) Imidazole-2-iriden) [(Tricyclohexylpholanyl) methylidene] Dichlorolutenium tetrafluoroborate, UmicoreM2, UmicoreM51, UmicoreM52, UmicoreM71SIMs, UmicoreM71SITr, UmicoreM73SIMs, UmicoreM73 SIPr and the like include (1,3-dimeshtyl-4,5-dihydroimidazol-2-ylidene) (tricyclohexylphosphine) benzylidene ruthenium dichloride, (1,3-dimeshtyl-4,5-dihydroimidazol-2-ylidene). ) (2-Isopropoxyphenylmethylidene) ruthenium dichloride, (1,3-dimeshtyl-4,5-dihydroimidazol-2-ylidene) [(tricyclohexylphoranyl) methylidene] dichlororuthenium tetrafluoroborate, UmicoreM2, Umicore M51, Umicore M52, Umicore M71 SIMes, Umicore M71 SIPr, Umicore M73 SIMes, and Umicore M73 SIPr are particularly preferable. Among the above complexes, the name starting with "Umicore" is a trade name of a product of Umicore.
The ruthenium-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina, or a polymer.

これらの触媒のうち中心金属がモリブデン、タングステンであるものは一般的に「モリブデン-カルベン錯体」、「タングステン-カルベン錯体」と称されるものであり、例えばGrela,K.(Ed)Olefin Metathesis:Theory and Practice,Wiley,2014.に記載されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。また、例えばAldrich社やStrem社、Ximo社から市販されているモリブデン-カルベン錯体又はタングステン-カルベン錯体を利用することができる。
なお、上記モリブデン-カルベン錯体又はタングステン-カルベン錯体は、単独で用いてもよいし、2種類以上併用してもよい。さらに必要に応じてシリカゲルやアルミナ、ポリマー等の担体に担持して用いてもよい。
Among these catalysts, those whose central metal is molybdenum or tungsten are generally referred to as "molybdenum-carbene complex" or "tungsten-carbene complex", and are, for example, Grela, K. et al. (Ed) Olefin Mathesis: Theory and Practice, Wiley, 2014. The molybdenum-carbene complex or the tungsten-carbene complex described in 1 can be used. Further, for example, a molybdenum-carbene complex or a tungsten-carbene complex commercially available from Aldrich, Strem, or Ximo can be used.
The molybdenum-carbene complex or the tungsten-carbene complex may be used alone or in combination of two or more. Further, if necessary, it may be supported on a carrier such as silica gel, alumina, or a polymer.

具体例を下記に示す。なお、Meとはメチル基を、i-Prとはイソプロピル基を、t-Buとはターシャリーブチル基を、Phとはフェニル基を、それぞれ意味する。 Specific examples are shown below. In addition, Me means a methyl group, i-Pr means an isopropyl group, t-Bu means a tertiary butyl group, and Ph means a phenyl group.

Figure 0007036120000031
Figure 0007036120000031

Figure 0007036120000032
Figure 0007036120000032

Figure 0007036120000033
Figure 0007036120000033

目的物収率向上の点で、原料となるモノマーは脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。原料となるモノマーについて、前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
また原料となるモノマーは微量の不純物(例えば過酸化物等)を含むことがあるので、目的物収率向上の点で精製してもよい。精製方法については特に制限はない。例えば文献(Armarego,W.L.F.et al.,Purification of Laboratory Chemicals(Sixth Edition),2009,Elsevier)に記載の方法に従って行うことができる。
From the viewpoint of improving the yield of the target product, it is preferable to use a degassed and dehydrated monomer as a raw material. There are no particular restrictions on the degassing operation, but freeze degassing may be performed. The dehydration operation is not particularly limited, but is usually brought into contact with a molecular sieve or the like. For the raw material monomer, the degassing and dehydrating operations are usually performed before contacting with the metal-carbene complex.
Further, since the monomer as a raw material may contain a trace amount of impurities (for example, peroxide), it may be purified from the viewpoint of improving the yield of the target product. There are no particular restrictions on the purification method. For example, it can be carried out according to the method described in the literature (Armarego, LF et al., Purification of Laboratory Chemicals (Sixth Edition), 2009, Elsevier).

原料となるモノマーを反応容器に投入するが、原料となる2種以上のモノマーを反応容器にあらかじめ混合してから投入しても、別々に投入しても構わない。 The monomers used as raw materials are charged into the reaction vessel, but two or more kinds of monomers used as raw materials may be mixed in the reaction vessel in advance and then charged, or they may be charged separately.

金属-カルベン錯体は試薬として投入しても、系内で発生させてもよい。
試薬として投入する場合、市販の金属-カルベン錯体をそのまま用いてもよく、あるいは市販試薬から公知の方法で合成した市販されていない金属-カルベン錯体を用いてもよい。
系内で発生させる場合、公知の方法で前駆体となる金属錯体から調製した金属-カルベン錯体を本発明に用いることができる。
The metal-carbene complex may be charged as a reagent or generated in the system.
When charged as a reagent, a commercially available metal-carbene complex may be used as it is, or a non-commercially available metal-carbene complex synthesized from a commercially available reagent by a known method may be used.
When generated in a system, a metal-carbene complex prepared from a metal complex as a precursor by a known method can be used in the present invention.

用いる金属-カルベン錯体の量としては、特に制限はないが、原料となるモノマーの内、基準となる一般式aで表される含フッ素ノルボルネン誘導体1モルに対して、通常0.000001(1ppm)~1モル程度用い、好ましくは0.00001(10ppm)~0.2モル程度用いる。 The amount of the metal-carbene complex to be used is not particularly limited, but is usually 0.000001 (1 ppm) with respect to 1 mol of the fluorine-containing norbornene derivative represented by the general formula a as a reference among the monomers used as raw materials. It is used in an amount of about 1 mol, preferably about 0.00001 (10 ppm) to 0.2 mol.

用いる金属-カルベン錯体は、通常固体のまま反応容器に投入するが、溶媒に溶解又は懸濁させて投入してもよい。この時用いる溶媒としては、反応に悪影響を及ぼさない範囲で特に制限はなく、有機溶媒、含フッ素有機溶媒、イオン液体、水等を単独又は混合して用いることができる。なお、これらの溶媒分子中、一部又はすべての水素原子が重水素原子で置換されていてもよい。
またモノマーが液体である場合(加熱して液化する場合も含む)は、溶媒を用いないでバルク重合とすることが好ましい。この場合一般式aで表される含フッ素ノルボルネン誘導体に金属-カルベン錯体化合物が溶解することが好ましい。
The metal-carbene complex to be used is usually put into the reaction vessel as a solid, but it may be put into the reaction vessel after being dissolved or suspended in a solvent. The solvent used at this time is not particularly limited as long as it does not adversely affect the reaction, and an organic solvent, a fluorine-containing organic solvent, an ionic liquid, water and the like can be used alone or in combination. In these solvent molecules, some or all hydrogen atoms may be substituted with deuterium atoms.
When the monomer is a liquid (including the case of liquefying by heating), it is preferable to carry out bulk polymerization without using a solvent. In this case, it is preferable that the metal-carbene complex compound is dissolved in the fluorine-containing norbornene derivative represented by the general formula a.

開環メタセシス重合を行う時は分子量、およびその分布を制御する目的で、連鎖移動剤としてオレフィンまたはジエンを使用することができる。
オレフィンとしては、例えば、エチレン、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン等のα-オレフィンまたはこれらのフッ素含有オレフィンを用いることができる。さらには、ビニルトリメチルシラン、アリルトリメチルシラン、ビニルトリエトキシシラン、アリルトリエトキシシラン、ジメトキシメチルビニルシラン、ジエトキシメチルビニルシラン、アリルトリエチルシラン、アリルトリイソプロピルシラン、トリクロロビニルシラン、トリクロロアリルシラン、トリメトキシ(2-トリメトキシシリルエテニル)シラン、ビス(トリエトキシシリル)エチレン、トリクロロ(2-トリクロロシリルエテニル)シラン、1,4-ビス(トリメトキシシリル)-2-ブテン、1,4-ビス(トリエトキシシリル)-2-ブテン、1,4-ビス(トリクロロシリル)-2-ブテン等のケイ素含有オレフィンまたはこれらのフッ素およびケイ素含有オレフィン等も連鎖移動剤として用いることもできる。
ジエンとしては、1,4-ペンタジエン、1,5-ヘキサジエン、1,6-ヘプタジエン等の非共役系ジエンまたはこれらのフッ素含有非共役系ジエンがあげられる。これらオレフィン、フッ素含有オレフィンまたはジエンはそれぞれ単独で用いてもよく、2種類以上を併用してもよい。
When performing ring-opening metathesis polymerization, olefins or dienes can be used as chain transfer agents for the purpose of controlling the molecular weight and its distribution.
As the olefin, for example, α-olefins such as ethylene, propylene, 1-butene, 1-pentene, 1-hexene and 1-octene, or fluorine-containing olefins thereof can be used. Furthermore, vinyltrimethylsilane, allyltrimethylsilane, vinyltriethoxysilane, allyltriethoxysilane, dimethoxymethylvinylsilane, diethoxymethylvinylsilane, allyltriethylsilane, allyltriisopropylsilane, trichlorovinylsilane, trichloroallylsilane, and trimethoxy (2-tri). Methoxysilyl ethenyl) silane, bis (triethoxysilyl) ethylene, trichloro (2-trichlorosilylethenyl) silane, 1,4-bis (trimethoxysilyl) -2-butene, 1,4-bis (triethoxysilyl) silane ) -2-Buten, silicon-containing olefins such as 1,4-bis (trichlorosilyl) -2-butene, or these fluorine and silicon-containing olefins can also be used as the chain transfer agent.
Examples of the diene include non-conjugated diene such as 1,4-pentadiene, 1,5-hexadiene and 1,6-heptadiene, or fluorine-containing non-conjugated diene thereof. These olefins, fluorine-containing olefins or dienes may be used alone or in combination of two or more.

有機溶媒としては、例えば、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン等の芳香族炭化水素系溶媒;ヘキサン、シクロヘキサン等の脂肪族炭化水素系溶媒;ジクロロメタン、クロロホルム、1,2-ジクロロエタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン系溶媒;テトラヒドロフラン(THF)、ジオキサン、ジエチルエーテル、グライム、ジグライム等のエーテル系溶媒等を使用することができる。含フッ素有機溶媒としては、例えば、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン、ジクロロペンタフルオロプロパン等を使用することができる。イオン液体としては、例えば、各種ピリジニウム塩、各種イミダゾリウム塩等を用いることができる。上記溶媒の中でも、金属-カルベン錯体の溶解性等の点で、ベンゼン、トルエン、o-,m-,p-キシレン、メシチレン、ジクロロメタン、クロロホルム、クロロベンゼン、o-ジクロロベンゼン、ジエチルエーテル、ジオキサン、THF、ヘキサフルオロベンゼン、m-ビス(トリフルオロメチル)ベンゼン、p-ビス(トリフルオロメチル)ベンゼン、α,α,α-トリフルオロメチルベンゼン等、及びこれらの混合物が好ましい。
なお、目的物収率向上の点で、前記溶媒は脱気及び脱水されたものを用いることが好ましい。脱気操作について、特に制限はないが、凍結脱気等を行うことがある。脱水操作について、特に制限はないが、通常モレキュラーシーブ等と接触させる。前記脱気及び脱水操作は通常金属-カルベン錯体と接触させる前に行う。
Examples of the organic solvent include aromatic hydrocarbon solvents such as benzene, toluene, o-, m-, p-xylene and mesitylene; aliphatic hydrocarbon solvents such as hexane and cyclohexane; dichloromethane, chloroform, 1 and 2. -Halogen solvents such as dichloroethane, chlorobenzene and o-dichlorobenzene; ether solvents such as tetrahydrofuran (THF), dioxane, diethyl ether, glyme and diglyme can be used. Examples of the fluorine-containing organic solvent include hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, α, α, α-trifluoromethylbenzene, dichloropentafluoropropane and the like. Can be used. As the ionic liquid, for example, various pyridinium salts, various imidazolium salts and the like can be used. Among the above solvents, benzene, toluene, o-, m-, p-xylene, mesitylene, dichloromethane, chloroform, chlorobenzene, o-dichlorobenzene, diethyl ether, dioxane, THF, etc., in terms of solubility of the metal-carbene complex, etc. , Hexafluorobenzene, m-bis (trifluoromethyl) benzene, p-bis (trifluoromethyl) benzene, α, α, α-trifluoromethylbenzene and the like, and mixtures thereof are preferable.
From the viewpoint of improving the yield of the target product, it is preferable to use a degassed and dehydrated solvent. There are no particular restrictions on the degassing operation, but freeze degassing may be performed. The dehydration operation is not particularly limited, but is usually brought into contact with a molecular sieve or the like. The degassing and dehydrating operations are usually performed prior to contact with the metal-carbene complex.

モノマーと金属-カルベン錯体を接触させる雰囲気としては、特に限定はないが、触媒の長寿命化の点で、不活性気体雰囲気下が好ましく、中でも窒素又はアルゴン雰囲気下が好ましい。ただし、反応条件において気体となる化合物を原料モノマーとして用いる場合、これらの気体雰囲気下で行うことができる。
モノマーと金属-カルベン錯体を接触させる相としては、特に制限はないが、反応速度の点で、通常は液相が用いられる。原料となるモノマーが反応条件下で気体の場合、液相で実施するのが難しいため、気-液二相で実施することもできる。なお、液相で実施する場合には溶媒を用いることができる。このとき用いる溶媒としては、上記、金属-カルベン錯体の溶解又は懸濁に用いた溶媒と同様のものを利用することができる。なお、原料として用いるモノマーに反応条件下で液体のものが含まれる場合、無溶媒で実施できることがある(バルク重合)。
The atmosphere in which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but is preferably under an inert gas atmosphere, particularly preferably under a nitrogen or argon atmosphere, in terms of extending the life of the catalyst. However, when a compound that becomes a gas under the reaction conditions is used as the raw material monomer, it can be carried out under these gas atmospheres.
The phase for contacting the monomer and the metal-carbene complex is not particularly limited, but a liquid phase is usually used in terms of reaction rate. When the monomer as a raw material is a gas under the reaction conditions, it is difficult to carry out in the liquid phase, so it can also be carried out in the gas-liquid two-phase. In addition, when carrying out in a liquid phase, a solvent can be used. As the solvent used at this time, the same solvent as that used for dissolving or suspending the metal-carbene complex can be used. If the monomer used as a raw material contains a liquid under reaction conditions, it may be possible to carry out without a solvent (bulk polymerization).

モノマーと金属-カルベン錯体を接触させる容器としては、反応に悪影響を与えない範囲で特に制限はなく、例えば金属製容器又はガラス製容器等を用いることができる。なお、開環メタセシス重合は反応条件下、気体状態のモノマー化合物を扱うことがあるので、高気密が可能な耐圧容器が好ましい。 The container for contacting the monomer and the metal-carbene complex is not particularly limited as long as it does not adversely affect the reaction, and for example, a metal container or a glass container can be used. Since ring-opening metathesis polymerization may handle a monomer compound in a gaseous state under reaction conditions, a pressure-resistant container capable of high airtightness is preferable.

モノマーと金属-カルベン錯体を接触させる温度としては、特に制限はないが、通常-100~200℃の範囲で実施することができ、反応速度の点で、0~150℃が好ましい。なお、低温では反応が開始せず、高温では錯体の速やかな分解が生じることがあるので適宜温度の下限と上限を設定する必要がある。通常、用いる溶媒の沸点以下の温度で実施される。
モノマーと金属-カルベン錯体を接触させる時間としては、特に制限はないが、通常1分~48時間の範囲で実施される。
モノマーと金属-カルベン錯体を接触させる圧力としては、特に制限はないが、加圧下でも、常圧下でもよいし、減圧下でもよい。通常0.001~10MPa程度、好ましくは0.01~1MPa程度である。
モノマーの仕込み比や、上記反応温度や反応時間、反応圧力等の反応条件を適宜調整することで、得られる重合体の分子量を目的のものとすることができる。
The temperature at which the monomer and the metal-carbene complex are brought into contact with each other is not particularly limited, but can usually be carried out in the range of -100 to 200 ° C., and 0 to 150 ° C. is preferable in terms of the reaction rate. Since the reaction does not start at low temperature and rapid decomposition of the complex may occur at high temperature, it is necessary to appropriately set the lower and upper limits of the temperature. Usually, it is carried out at a temperature equal to or lower than the boiling point of the solvent used.
The time for contacting the monomer and the metal-carbene complex is not particularly limited, but is usually carried out in the range of 1 minute to 48 hours.
The pressure for bringing the monomer into contact with the metal-carbene complex is not particularly limited, but may be under pressure, normal pressure, or reduced pressure. It is usually about 0.001 to 10 MPa, preferably about 0.01 to 1 MPa.
The molecular weight of the obtained polymer can be targeted by appropriately adjusting the reaction conditions such as the charging ratio of the monomers, the reaction temperature, the reaction time, and the reaction pressure.

モノマーと金属-カルベン錯体を接触させる際に、反応に悪影響を及ぼさない範囲で無機塩や有機化合物、金属錯体等を共存させてもよい。また、反応に悪影響を及ぼさない範囲で、モノマーと金属-カルベン錯体の混合物を攪拌してもよい。このとき、攪拌の方法としては、メカニカルスターラーやマグネティックスターラー等を用いることができる。 When the monomer and the metal-carbene complex are brought into contact with each other, an inorganic salt, an organic compound, a metal complex or the like may coexist as long as the reaction is not adversely affected. Further, the mixture of the monomer and the metal-carbene complex may be stirred as long as it does not adversely affect the reaction. At this time, as a stirring method, a mechanical stirrer, a magnetic stirrer, or the like can be used.

モノマーと金属-カルベン錯体を接触させて重合反応を終えた後、目的物である重合体は公知の方法で単離してもよい。単離方法としては、例えば、溶液の場合、撹拌下の貧溶媒中に反応溶液を排出し重合体水素化物を沈殿させスラリーとし、濾過法、遠心分離法、デカンテーション法等により回収する方法、反応溶液にスチームを吹き込んで重合体を析出させるスチームストリッピング法、反応溶液から溶媒を加熱等により直接除去する方法等が挙げられ、スラリーの場合、そのまま濾過法、遠心分離法、デカンテーション法等により回収する方法等が挙げられる。その他、カラムクロマトグラフィー、リサイクル分取HPLC等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。 After the polymerization reaction is completed by contacting the monomer with the metal-carbene complex, the target polymer may be isolated by a known method. As an isolation method, for example, in the case of a solution, a reaction solution is discharged into a poor solvent under stirring to precipitate a polymer hydride to form a slurry, which is then recovered by a filtration method, a centrifugation method, a decantation method, or the like. Examples include a steam stripping method in which steam is blown into a reaction solution to precipitate a polymer, a method in which the solvent is directly removed from the reaction solution by heating, etc., and in the case of a slurry, a filtration method, a centrifugation method, a decantation method, etc. A method of collecting the solution can be mentioned. In addition, column chromatography, recycled preparative HPLC and the like can be mentioned, and these can be used alone or in combination as needed.

本反応で得られた目的物は通常の高分子化合物と同様の公知の方法で同定することができる。例えば、H-,19F-,13C-NMR、GPC、静的光散乱、SIMSやGC-MS等が挙げられ、必要に応じてこれらを単独又は複数組み合わせて用いることができる。The target product obtained by this reaction can be identified by a known method similar to that of a normal polymer compound. For example, 1 H-, 19 F-, 13 C-NMR, GPC, static light scattering, SIMS, GC-MS and the like can be mentioned, and these can be used alone or in combination as needed.

得られる重合体が共重合体である場合、含フッ素共重合体を構成する2種以上の単位構造の比はモノマーの仕込み比に依存する。通常、基準となる一般式aで表される含フッ素ノルボルネン誘導体由来の繰り返し単位の繰り返し数を1とすると、一般式bで表されるシクロペンテン誘導体由来の繰返し単位の繰り返し数は0.01~100程度であり、好ましくは0.1~10程度である。また、3元系以上の多元共重合体である場合、その他のオレフィン由来の繰り返し単位の繰り返し数は合計で0.001~1000程度であり、好ましくは0.01~100程度である。 When the obtained polymer is a copolymer, the ratio of two or more unit structures constituting the fluorine-containing copolymer depends on the charging ratio of the monomers. Normally, assuming that the number of repetitions of the repeating unit derived from the fluorine-containing norbornene derivative represented by the general formula a as a reference is 1, the number of repetitions of the repeating unit derived from the cyclopentene derivative represented by the general formula b is 0.01 to 100. It is about 0.1 to 10. Further, in the case of a ternary or higher multi-dimensional copolymer, the total number of repeating units derived from other olefins is about 0.001 to 1000, preferably about 0.01 to 100.

[開環メタセシス重合体の水素添加物]
本発明における一般式Iで表される構造単位を含む含フッ素共重合体(開環メタセシス重合体)の水素添加物は、一般式Iで表される構造単位を含む含フッ素共重合体の主鎖二重結合部分に水素添加されたものであり、一般式I’で表される構造単位を含む。
同様に構造単位11を含む含フッ素重合体の水素添加物は、構造単位11を含む含フッ素重合体の主鎖二重結合部分に水素添加されたものであり、一般式11’で表される構造単位を含む。また構造単位21を含む含フッ素重合体の水素添加物は、構造単位21を含む含フッ素重合体の主鎖二重結合部分に水素添加されたものであり、一般式21’で表される構造単位を含む。また構造単位31を含む含フッ素重合体の水素添加物は、構造単位31を含む含フッ素重合体の主鎖二重結合部分に水素添加されたものであり、一般式31’で表される構造単位を含む。
一般式I’で表される構造単位を含む含フッ素共重合体の構成単位のうち、一般式Iで表される構造単位から一般式I’で表される構造単位へと水素添加される反応率(還元率)は、好ましくは50%以上100%以下であり、より好ましくは80%以上100%以下である。同様に構造単位11’を含む含フッ素重合体の構成単位のうち、還元率は50~100%が好ましく、80~100%がより好ましい。また構造単位21’を含む含フッ素重合体の構成単位のうち、還元率は50~100%が好ましく、80~100%がより好ましい。また構造単位31’を含む含フッ素重合体の構成単位のうち、還元率は50~100%が好ましく、80~100%がより好ましい。
なお、式中の記号はそれぞれ先述したとおりである。
[Hydrogenated ring-opening metathesis polymer]
The hydrogenated additive of the fluorine-containing copolymer (ring-opening metathesis polymer) containing the structural unit represented by the general formula I in the present invention is mainly the fluorine-containing copolymer containing the structural unit represented by the general formula I. It is hydrogenated to the chain double bond portion and contains a structural unit represented by the general formula I'.
Similarly, the hydrogenated product of the fluoropolymer containing structural unit 11 is hydrogenated to the main chain double bond portion of the fluoropolymer containing structural unit 11, and is represented by the general formula 11'. Includes structural units. The hydrogenated product of the fluoropolymer containing the structural unit 21 is hydrogenated to the main chain double bond portion of the fluoropolymer containing the structural unit 21, and has a structure represented by the general formula 21'. Includes units. The hydrogenated product of the fluoropolymer containing structural unit 31 is hydrogenated to the main chain double bond portion of the fluoropolymer containing structural unit 31, and has a structure represented by the general formula 31'. Includes units.
Of the structural units of the fluorine-containing copolymer containing the structural unit represented by the general formula I', the reaction in which the structural unit represented by the general formula I is hydrogenated to the structural unit represented by the general formula I'. The rate (reduction rate) is preferably 50% or more and 100% or less, and more preferably 80% or more and 100% or less. Similarly, among the constituent units of the fluorine-containing polymer containing the structural unit 11', the reduction rate is preferably 50 to 100%, more preferably 80 to 100%. Further, among the constituent units of the fluorine-containing polymer containing the structural unit 21', the reduction rate is preferably 50 to 100%, more preferably 80 to 100%. Further, among the constituent units of the fluorine-containing polymer containing the structural unit 31', the reduction rate is preferably 50 to 100%, more preferably 80 to 100%.
The symbols in the formula are as described above.

Figure 0007036120000034
Figure 0007036120000034

Figure 0007036120000035
Figure 0007036120000035

Figure 0007036120000036
Figure 0007036120000036

Figure 0007036120000037
Figure 0007036120000037

本発明に係る含フッ素重合体が、特定の波長に対して、特に紫外線領域の波長に対して光を吸収する主鎖二重結合を多く含有すると紫外線領域の波長に対する光透過性が低下し光学特性を損なうおそれがある。この光透過性は、開環メタセシス重合体の主鎖二重結合に対して水素原子を添加(付加)し、飽和結合にすることで必要とする透過率に制御できる。
また含フッ素重合体が有する二重結合の量が多いと屈折率は高くなり、水素添加することによって飽和結合の量を増すと屈折率を低下させることができる。この水素原子の添加の割合(以下、水素添加率ということがある)の増減で屈折率を任意に調整できる。
When the fluorine-containing polymer according to the present invention contains a large amount of a main chain double bond that absorbs light at a specific wavelength, particularly at a wavelength in the ultraviolet region, the light transmittance with respect to the wavelength in the ultraviolet region is lowered and optical. There is a risk of impairing the characteristics. This light transmittance can be controlled to the required transmittance by adding (adding) a hydrogen atom to the main chain double bond of the ring-opening metathesis polymer to form a saturated bond.
Further, when the amount of double bonds contained in the fluorine-containing polymer is large, the refractive index becomes high, and when the amount of saturated bonds is increased by hydrogenation, the refractive index can be lowered. The refractive index can be arbitrarily adjusted by increasing or decreasing the rate of hydrogen atom addition (hereinafter, may be referred to as hydrogenation rate).

一方、これらの主鎖二重結合は、幾何学的に平面構造を有することでポリマーの自由な運動を制限する。すなわち、二重結合が多くあれば、ガラス転移温度は高くなり、耐熱特性が向上する。しかし、二重結合は酸化に対する安定性を悪化させることがあり、酸化を防止する目的で、一般的にオレフィン系重合体に使用することができる酸化防止剤などを適宜加えることによって問題を解決することができる。また、二重結合を酸化させてエポキサイドの構造を持たせてもよい。 On the other hand, these backbone double bonds have a geometrically planar structure that limits the free movement of the polymer. That is, if there are many double bonds, the glass transition temperature becomes high and the heat resistance characteristics are improved. However, the double bond may deteriorate the stability against oxidation, and the problem is solved by appropriately adding an antioxidant or the like that can be generally used for an olefin polymer for the purpose of preventing oxidation. be able to. Further, the double bond may be oxidized to have an epoxiside structure.

さらに、これら二重結合の量は、ポリマーの機械的強度、耐衝撃性にも影響を与え、その量が多ければ剛性を高め、二重結合を水素添加し飽和結合に変換すれば、柔軟性や耐衝撃強度を高めることができる。この主鎖二重結合の水素添加の割合は、光透過性、耐熱性、耐候性や機械的強度、耐衝撃性などのポリマー物性のバランスによって任意に決めることができる。 Furthermore, the amount of these double bonds also affects the mechanical strength and impact resistance of the polymer, and if the amount is large, the rigidity is increased, and if the double bonds are hydrogenated and converted into saturated bonds, the flexibility is increased. And impact resistance can be increased. The ratio of hydrogenation of this main chain double bond can be arbitrarily determined by the balance of polymer physical properties such as light transmission, heat resistance, weather resistance, mechanical strength, and impact resistance.

開環メタセシス重合体水素添加物の分子量は1,000~1,000,000が機械的物性、物理的物性の点から好ましい。前記分子量は重量平均分子量で表される値であり、GPCを用いて重合体溶液の条件下で測定される。 The molecular weight of the ring-opening metathesis polymer hydrogenated product is preferably 1,000 to 1,000,000 from the viewpoint of mechanical and physical properties. The molecular weight is a value represented by a weight average molecular weight, and is measured under the condition of a polymer solution using GPC.

[付加重合]
原料モノマーとして、一般式aで表される含フッ素ノルボルネン誘導体及び一般式bで表されるシクロペンテン誘導体を用いた付加重合反応による共重合により、一般式IIで表される構造単位を含む含フッ素共重合体を得ることができる。
式中の記号は先述したとおりである。
[Addition polymerization]
By copolymerization by an addition polymerization reaction using a fluorine-containing norbornene derivative represented by the general formula a and a cyclopentene derivative represented by the general formula b as a raw material monomer, a fluorine-containing co-container containing a structural unit represented by the general formula II. A polymer can be obtained.
The symbols in the formula are as described above.

Figure 0007036120000038
Figure 0007036120000038

同様に原料モノマーとして化合物1を用い付加重合することにより、一般式12で表される構造単位を含む含フッ素重合体を得ることができる。また原料モノマーとして化合物2を用い付加重合することにより、一般式22で表される構造単位を含む含フッ素重合体を得ることができる。また原料モノマーとして化合物3を用い付加重合することにより、一般式32で表される構造単位を含む含フッ素重合体を得ることができる。
式中の記号は先述したとおりである。
Similarly, by addition polymerization using compound 1 as a raw material monomer, a fluorine-containing polymer containing a structural unit represented by the general formula 12 can be obtained. Further, by addition polymerization using compound 2 as a raw material monomer, a fluorine-containing polymer containing a structural unit represented by the general formula 22 can be obtained. Further, by addition polymerization using compound 3 as a raw material monomer, a fluorine-containing polymer containing a structural unit represented by the general formula 32 can be obtained.
The symbols in the formula are as described above.

Figure 0007036120000039
Figure 0007036120000039

Figure 0007036120000040
Figure 0007036120000040

Figure 0007036120000041
Figure 0007036120000041

重合方法としては、ラジカル重合、カチオン重合、アニオン重合、配位重合が挙げられ、中でもラジカル重合又は配位重合が好ましい。 Examples of the polymerization method include radical polymerization, cationic polymerization, anionic polymerization and coordination polymerization, and radical polymerization or coordination polymerization is preferable.

付加重合反応は公知の方法により実施する事ができる。好ましくは、含フッ素環状オレフィンを付加重合する方法である。付加重合の条件については、当業者に周知の条件を適宜最適化して採用することができる。 The addition polymerization reaction can be carried out by a known method. A method of addition polymerization of a fluorine-containing cyclic olefin is preferable. As for the conditions of addition polymerization, conditions well known to those skilled in the art can be appropriately optimized and adopted.

重合反応を終えた後の単離や同定は開環メタセシス重合の際と同様の方法を用いることができる。 For isolation and identification after completion of the polymerization reaction, the same method as for ring-opening metathesis polymerization can be used.

得られた重合体が共重合体である場合、含フッ素共重合体を構成する単位構造の比はモノマーの仕込み比に依存する。通常、基準となる一般式aで表される含フッ素ノルボルネン誘導体由来の繰り返し単位の繰り返し数を1とすると、一般式bで表されるシクロペンテン誘導体由来の繰返し単位の繰り返し数は0.01~100程度であり、好ましくは0.1~10程度である。また、3元系以上の多元共重合体である場合、その他のオレフィン由来の繰り返し単位の繰り返し数は合計で0.01~100程度であり、好ましくは0.1~10程度である。 When the obtained polymer is a copolymer, the ratio of the unit structures constituting the fluorine-containing copolymer depends on the charging ratio of the monomers. Normally, assuming that the number of repetitions of the repeating unit derived from the fluorine-containing norbornene derivative represented by the general formula a as a reference is 1, the number of repetitions of the repeating unit derived from the cyclopentene derivative represented by the general formula b is 0.01 to 100. It is about 0.1 to 10. Further, in the case of a ternary or higher multi-dimensional copolymer, the total number of repeating units derived from other olefins is about 0.01 to 100, preferably about 0.1 to 10.

以下に実施例を挙げ、本発明を具体的に説明するが、本発明はこれらに限定されない。
<市販試薬>
本実施例において、触媒および試薬は、特に記載しない場合においては、市販品をそのまま反応に用いた。溶媒は、脱水・脱酸素された市販品を用いた。
<評価方法>
本実施例において、合成した化合物の構造は日本電子株式会社製の核磁気共鳴装置(JNM-AL300)によりH-NMR、19F-NMR測定を行うことで同定した。
また、分子量は株式会社島津製作所製のガスクロマトグラフ質量分析計(GCMS-QP2010Ultra)を用いて、化学イオン化法(CI)により求めた。
含フッ素重合体の質量平均分子量(Mw)および数平均分子量(Mn)は、高速ゲルパーミエーションクロマトグラフィー(GPC)装置(東ソー社製、HLC-8220)によって得られたクロマトグラムから、分子量既知の標準ポリメチルメタクリレート試料を用いて作成した検量線を用いて求めた。
水およびn-ヘキサデカンの接触角は、協和界面科学社製固体表面エナジー解析装置CA-XE型を使用してJIS R3257(基板ガラス表面のぬれ性試験方法)に準拠し、約2μLの液滴を基材表面に滴下し、静滴法により、基材表面に液敵が接触してから1分以内に接触角を測定した。
Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto.
<Commercial reagent>
In this example, as the catalyst and the reagent, unless otherwise specified, commercially available products were used as they were in the reaction. As the solvent, a commercially available product dehydrated and deoxidized was used.
<Evaluation method>
In this example, the structure of the synthesized compound was identified by performing 1 H-NMR and 19 F-NMR measurements with a nuclear magnetic resonance apparatus (JNM-AL300) manufactured by JEOL Ltd.
The molecular weight was determined by a chemical ionization method (CI) using a gas chromatograph mass spectrometer (GCMS-QP2010Ultra) manufactured by Shimadzu Corporation.
The mass average molecular weight (Mw) and the number average molecular weight (Mn) of the fluorine-containing polymer are known from the chromatogram obtained by a high-speed gel permeation chromatography (GPC) apparatus (HLC-8220, manufactured by Toso Co., Ltd.). It was determined using a calibration curve prepared using a standard polymethylmethacrylate sample.
The contact angle of water and n-hexadecane conforms to JIS R3257 (wetness test method for substrate glass surface) using a solid surface energy analyzer CA-XE manufactured by Kyowa Surface Science Co., Ltd., and a droplet of about 2 μL is produced. It was dropped on the surface of the base material, and the contact angle was measured within 1 minute after the liquid enemy came into contact with the surface of the base material by the static drip method.

下記に示す例のうち、例1-1~例1-3、例6-1~例6-3は比較例であり、例2-1~例2-3、例3-1~例3-3、例4-1~例4-3、例5-1~例5-2、例7-1~例7-3は実施例である。
また、例8-1~例8-2、例9-1~例9-2、例10-1~例10-2、例11-1~例11-2、例12-1~例12-2は実施例である。
Among the examples shown below, Examples 1-1 to 1-3 and Examples 6-1 to 6-3 are comparative examples, and Examples 2-1 to 2-3 and Examples 3-1 to 3- 3. Examples 4-1 to 4-3, 5-1 to 5-2, and 7-1 to 7-3 are examples.
In addition, Example 8-1 to Example 8-2, Example 9-1 to Example 9-2, Example 10-1 to Example 10-2, Example 11-1 to Example 11-2, Example 12-1 to Example 12- 2 is an example.

<例1-1> 含フッ素ノルボルネン誘導体NM-PPVEの合成
水酸化カリウム(3.56g、63.4mmol)、アセトニトリル(25mL)、ビシクロ[2.2.1]ヘプタ-5-エン-2-メタノール(4.10g、33.0mmol)およびペルフルオロ(プロピルビニルエーテル)(18.6g、70.1mmol)を100mLの丸底フラスコに仕込み、ジムロートを取り付けて50℃で3時間反応させた。氷冷水150gを300mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水にゆっくりと連続的に導入した。更にAK-225(ジクロロペンタフルオロプロパン:AGC社製、40mL)を加え攪拌した後、有機相を分取した。前分液の水層にAK-225(40mL)を加え再抽出し、得られた有機相を先に得られた有機相と併せた。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去した。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)にて精製しNDM-2PPVEで表される化合物を得た。収量は11.7g、収率は91%であった。
H-NMR(CDCl3):δ(ppm)6.1~5.7(m,3H)、4.1~3.5(m,2H)、2.9~0.5(m,7H)。
19F-NMR(CDCl3):δ(ppm)-81.8(3F)、-85.0~-85.6(1F)、-87.2~-87.7(1F)、-89.0~-91.1(2F)、-130.3(s,2F)、-144.8~-145.2(1F)。
GC-MS(CI):[M+H]=391
<Example 1-1> Synthesis of fluorine-containing norbornene derivative NM-PPVE Potassium hydroxide (3.56 g, 63.4 mmol), acetonitrile (25 mL), bicyclo [2.2.1] hepta-5-ene-2-methanol (4.10 g, 33.0 mmol) and perfluoro (propyl vinyl ether) (18.6 g, 70.1 mmol) were placed in a 100 mL round bottom flask, and a Dimroth was attached and reacted at 50 ° C. for 3 hours. 150 g of ice-cold water was placed in a 300 mL beaker and stirred, and the above reaction solution was slowly and continuously introduced into the ice-cold water. Further, AK-225 (dichloropentafluoropropane: manufactured by AGC, 40 mL) was added and stirred, and then the organic phase was separated. AK-225 (40 mL) was added to the aqueous layer of the pre-divided liquid and re-extracted, and the obtained organic phase was combined with the previously obtained organic phase. Anhydrous sodium sulfate was added to the organic phase, and the mixture was stirred, and then insoluble matter was removed by vacuum filtration. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase: n-hexane) to obtain a compound represented by NDM-2PPVE. The yield was 11.7 g and the yield was 91%.
1 1 H-NMR (CDCl3): δ (ppm) 6.1 to 5.7 (m, 3H), 4.1 to 3.5 (m, 2H), 2.9 to 0.5 (m, 7H) ..
19 F-NMR (CDCl3): δ (ppm) -81.8 (3F), -85.0 to -85.6 (1F), -87.2 to -87.7 (1F), -89.0 ~ 91.1 (2F), -130.3 (s, 2F), -144.8 ~ -145.2 (1F).
GC-MS (CI): [M + H] + = 391

Figure 0007036120000042
Figure 0007036120000042

<例1-2> NM-PPVEの開環メタセシス重合
窒素下で10mLのスクリュー管瓶に、Grubbs第二世代触媒(22mg、0.026mmol)をジクロロメタン(5mL)に溶解し、溶液(A)を調製した。次に、例1-1で得られたNM-PPVE(2.0g、5.13mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した溶液(A)を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(419μL)を反応液に加え重合を停止させた後、AE-3000(1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル:AGC社製)を40mL加え反応液を希釈した。希釈された反応液をメタノール(200mL)に連続添加した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。目的のポリマー(P-NM-PPVE)の収率は98%であった。
これら一連の反応を以下に示す。なお、式中mは繰り返し単位の繰り返し数を示す正の整数である。
<Example 1-2> Ring-opening metathesis polymerization of NM-PPVE In a 10 mL screw tube bottle under nitrogen, Grubbs second generation catalyst (22 mg, 0.026 mmol) was dissolved in dichloromethane (5 mL), and the solution (A) was added. Prepared. Next, the NM-PPVE (2.0 g, 5.13 mmol) and dichloromethane (19 mL) obtained in Example 1-1 were charged into a 100 mL screw tube bottle and dissolved, and then the previously prepared solution (A) was added. 1 mL (corresponding to 0.1 mol% of catalyst) was added and the mixture was reacted at room temperature for 3 hours. Next, ethyl vinyl ether (419 μL) was added to the reaction solution to terminate the polymerization, and then AE-3000 (1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether: manufactured by AGC) was added. 40 mL was added to dilute the reaction solution. After the diluted reaction solution was continuously added to methanol (200 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 50 ° C. The yield of the target polymer (P-NM-PPVE) was 98%.
A series of these reactions is shown below. In the formula, m is a positive integer indicating the number of repetitions in the repeating unit.

Figure 0007036120000043
Figure 0007036120000043

<例1-3>
例1-2で合成したポリマー(P-NM-PPVE)を3M社製HFE-7200に3wt%濃度で溶解し、ポリマーのHFE-7200溶液を調製した。次いで、P-NM-PPVEのHFE-7200溶液をガラス基板に塗布し、スピンコーターを用いて均一にコートした後、150℃で10分乾燥して評価基板を作成した。コート面の水接触角は108度、n-ヘキサデカンの接触角は63度であった。
<Example 1-3>
The polymer (P-NM-PPVE) synthesized in Example 1-2 was dissolved in HFE-7200 manufactured by 3M at a concentration of 3 wt% to prepare an HFE-7200 solution of the polymer. Next, an HFE-7200 solution of P-NM-PPVE was applied to a glass substrate, coated uniformly using a spin coater, and then dried at 150 ° C. for 10 minutes to prepare an evaluation substrate. The water contact angle of the coated surface was 108 degrees, and the contact angle of n-hexadecane was 63 degrees.

<例2-1> 含フッ素ノルボルネン誘導体NDM-2PPVEの合成
水酸化カリウム(3.64g、64.8mmol)、アセトニトリル(50mL)、ビシクロ[2.2.1]ヘプタ-5-エン-2,2-ジメタノール(2.5g、16.2mmol)およびペルフルオロ(プロピルビニルエーテル)(17.3g、64.8mmol)を100mLの丸底フラスコに仕込み、ジムロートを取り付けて50℃で3時間反応させた。氷25gと水道水25gを200mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水に連続的に導入した。更にn-ペンタン(50mL)を加え攪拌した後、有機相を分取した。前分液の水層にAK-225(30mL)を加え再抽出し、得られた有機相を先に得られた有機相と併せた。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去した。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(移動相:n-ペンタン)にて精製しNDM-2PPVEで表される化合物を得た。収量は9.3g、収率は84%であった。
H-NMR(CDCl3):δ(ppm)6.3~6.0(m,2H)、6.0~5.7(m,2H)、4.1~3.9(m,2H)、3.8~3.6(m,2H)、2.91(s,1H)、2.68(s,1H)、1.6~0.8(m,4H)。
19F-NMR(CDCl3):δ(ppm)-81.9(t,6F,J=3.1Hz)、-85.2~-85.8(m,2F)、-87.1~-87.7(m,2F)、-89.1~-89.8(m,2F)、-90.6~-91.8(m,2F)、-130.4(s,4F)、-145.0~-145.3(m,2F)。
GC-MS(CI):[M+H]=687
<Example 2-1> Synthesis of fluorine-containing norbornene derivative NDM-2PPVE Potassium hydroxide (3.64 g, 64.8 mmol), acetonitrile (50 mL), bicyclo [2.2.1] hepta-5-en-2,2 -Dimethanol (2.5 g, 16.2 mmol) and perfluoro (propyl vinyl ether) (17.3 g, 64.8 mmol) were placed in a 100 mL round bottom flask, and a Dimroth was attached and reacted at 50 ° C. for 3 hours. 25 g of ice and 25 g of tap water were placed in a 200 mL beaker and stirred, and the above reaction solution was continuously introduced into ice-cold water. Further, n-pentane (50 mL) was added and stirred, and then the organic phase was separated. AK-225 (30 mL) was added to the aqueous layer of the pre-divided liquid and re-extracted, and the obtained organic phase was combined with the previously obtained organic phase. Anhydrous sodium sulfate was added to the organic phase, and the mixture was stirred, and then insoluble matter was removed by vacuum filtration. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase: n-pentane) to obtain a compound represented by NDM-2PPVE. The yield was 9.3 g and the yield was 84%.
1 1 H-NMR (CDCl3): δ (ppm) 6.3 to 6.0 (m, 2H), 6.0 to 5.7 (m, 2H), 4.1 to 3.9 (m, 2H) 3.8 to 3.6 (m, 2H), 2.91 (s, 1H), 2.68 (s, 1H), 1.6 to 0.8 (m, 4H).
19 F-NMR (CDCl3): δ (ppm) -81.9 (t, 6F, J = 3.1Hz), -85.2 to -85.8 (m, 2F), -87.1 to -87 .7 (m, 2F), -89.1 to -89.8 (m, 2F), -90.6 to -91.8 (m, 2F), -130.4 (s, 4F), 145 .0 to -145.3 (m, 2F).
GC-MS (CI): [M + H] + = 687

Figure 0007036120000044
Figure 0007036120000044

<例2-2> NDM-2PPVEの開環メタセシス重合
窒素下で10mLのスクリュー管瓶に、Grubbs第二世代触媒(6.2mg、0.0073mmol)をジクロロメタン(5mL)に溶解し、溶液(B)を調製した。次に、例2-1で得られたNDM-2PPVE(1.0g、1.46mmol)とジクロロメタン(9mL)を50mLのスクリュー管瓶に仕込み溶解させた後、先に調製した溶液(B)を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(119μL)を反応液に加え重合を停止させた後、AE-3000を30mL加え反応液を希釈した。希釈された反応液をメタノール(200mL)に連続添加した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。目的のポリマー(P-NDM-2PPVE)の収率は95%であった。
これら一連の反応を以下に示す。なお、式中mは繰り返し単位の繰り返し数を示す正の整数である。
<Example 2-2> Ring-opening metathesis polymerization of NDM-2PPVE A Grubbs second generation catalyst (6.2 mg, 0.0073 mmol) is dissolved in dichloromethane (5 mL) in a 10 mL screw tube bottle under nitrogen, and a solution (B) is used. ) Was prepared. Next, NDM-2PPVE (1.0 g, 1.46 mmol) and dichloromethane (9 mL) obtained in Example 2-1 were charged into a 50 mL screw tube bottle and dissolved, and then the previously prepared solution (B) was added. 1 mL (corresponding to 0.1 mol% of catalyst) was added and the mixture was reacted at room temperature for 3 hours. Then, ethyl vinyl ether (119 μL) was added to the reaction solution to terminate the polymerization, and then 30 mL of AE-3000 was added to dilute the reaction solution. After the diluted reaction solution was continuously added to methanol (200 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 50 ° C. The yield of the target polymer (P-NDM-2PPVE) was 95%.
A series of these reactions is shown below. In the formula, m is a positive integer indicating the number of repetitions in the repeating unit.

Figure 0007036120000045
Figure 0007036120000045

<例2-3>
例2-2で合成したポリマー(P-NDM-2PPVE)を3M社製HFE-7300に3wt%濃度で溶解し、ポリマーのHFE-7300溶液を調製した。次いで、P-NDM-2PPVEのHFE-7300溶液をガラス基板に塗布し、スピンコーターを用いて均一にコートした後、150℃で10分乾燥して評価基板を作成した。コート面の水接触角は115度、n-ヘキサデカンの接触角は84度であった。
<Example 2-3>
The polymer (P-NDM-2PPVE) synthesized in Example 2-2 was dissolved in HFE-7300 manufactured by 3M at a concentration of 3 wt% to prepare an HFE-7300 solution of the polymer. Next, an HFE-7300 solution of P-NDM-2PPVE was applied to a glass substrate, coated uniformly using a spin coater, and then dried at 150 ° C. for 10 minutes to prepare an evaluation substrate. The water contact angle of the coated surface was 115 degrees, and the contact angle of n-hexadecane was 84 degrees.

<例3-1> 含フッ素ノルボルネン誘導体NDM-2PHVEの合成
水酸化カリウム(4.4g、78.4mmol)、アセトニトリル(40mL)、ビシクロ[2.2.1]ヘプタ-5-エン-2,2-ジメタノール(3.0g、19.5mmol)および下記式1で表される含フッ素オレフィン(33.6g、77.8mmol)を300mLの丸底フラスコに仕込み、ジムロートを取り付けて50℃で3時間反応させた。氷35gと水道水35gを500mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水にゆっくりっと連続的に導入した。更にAK-225(30mL)を加え攪拌した後、有機相を分取した。前分液の水層にAK-225(30mL)を加え再抽出し、得られた有機相を先に得られた有機相と併せた。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去した。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)にて精製しNDM-2PHVEで表される化合物を得た。収量は16.0g、収率は81%であった。
H-NMR(CDCl3):δ(ppm)6.25(m,1H)、6.06(m,1H)、5.93(m,1H)、5.76(m,1H)、4.03(m,2H)、3.72(m,2H)、2.90(s,1H)、2.67(s,1H)、1.59~1.50(m,3H)、0.84(m、1H)。
19F-NMR(CDCl3):δ(ppm)-80.7(m,6F)、-81.9(t,6F、J=6.5Hz)、-82.1~-82.5(m,4F)、-83.8~-86.7(m,4F)、-89.3~-91.3(m,4F)、-130.3(s,4F)、-144.8~-145.5(m,2F)、-145.7(q,2F、J=23.1Hz)。
<Example 3-1> Synthesis of fluorine-containing norbornene derivative NDM-2PHVE Potassium hydroxide (4.4 g, 78.4 mmol), acetonitrile (40 mL), bicyclo [2.2.1] hepta-5-en-2,2 -Dimethanol (3.0 g, 19.5 mmol) and fluorine-containing olefin (33.6 g, 77.8 mmol) represented by the following formula 1 are placed in a 300 mL round-bottom flask, and a Dimroth is attached to the flask for 3 hours. It was reacted. 35 g of ice and 35 g of tap water were placed in a 500 mL beaker and stirred, and the above reaction solution was slowly and continuously introduced into cold ice water. Further, AK-225 (30 mL) was added and stirred, and then the organic phase was separated. AK-225 (30 mL) was added to the aqueous layer of the pre-divided liquid and re-extracted, and the obtained organic phase was combined with the previously obtained organic phase. Anhydrous sodium sulfate was added to the organic phase, and the mixture was stirred, and then insoluble matter was removed by vacuum filtration. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase: n-hexane) to obtain a compound represented by NDM-2PHVE. The yield was 16.0 g and the yield was 81%.
1 1 H-NMR (CDCl3): δ (ppm) 6.25 (m, 1H), 6.06 (m, 1H), 5.93 (m, 1H), 5.76 (m, 1H), 4. 03 (m, 2H), 3.72 (m, 2H), 2.90 (s, 1H), 2.67 (s, 1H), 1.59 to 1.50 (m, 3H), 0.84 (M, 1H).
19 F-NMR (CDCl3): δ (ppm) -80.7 (m, 6F), -81.9 (t, 6F, J = 6.5Hz), -82.1 to -82.5 (m, 4F), -83.8 to -86.7 (m, 4F), -89.3 to -91.3 (m, 4F), -130.3 (s, 4F), -144.8 to 145 .5 (m, 2F), -145.7 (q, 2F, J = 23.1Hz).

Figure 0007036120000046
Figure 0007036120000046

<例3-2> NDM-2PHVEの開環メタセシス重合
窒素下で20mLのスクリュー管瓶に、Grubbs第二世代触媒(16.7mg、0.020mmol)をジクロロメタン(10mL)に溶解し、溶液(C)を調製した。次に、例3-1で得られたNDM-2PHVE(2.0g、1.96mmol)、ジクロロメタン(19mL)および1,3-ビス(トリフルオロメチル)ベンゼンを100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した溶液(C)を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(160μL)を反応液に加え重合を停止させた後、AK-225を20mL加え反応液を希釈した。希釈された反応液をメタノール(200mL)に連続添加した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。目的のポリマー(P-NDM-2PHVE)の収率は95%であった。
これら一連の反応を以下に示す。なお、式中mは繰り返し単位の繰り返し数を示す正の整数である。
<Example 3-2> Ring-opening metathesis polymerization of NDM-2PHVE A Grubbs second generation catalyst (16.7 mg, 0.020 mmol) is dissolved in dichloromethane (10 mL) in a 20 mL screw tube bottle under nitrogen, and a solution (C) is used. ) Was prepared. Next, NDM-2PHVE (2.0 g, 1.96 mmol), dichloromethane (19 mL) and 1,3-bis (trifluoromethyl) benzene obtained in Example 3-1 were charged into a 100 mL screw tube bottle and dissolved. After that, 1 mL (corresponding to 0.1 mol% of catalyst) of the previously prepared solution (C) was added, and the mixture was reacted at room temperature for 3 hours. Then, ethyl vinyl ether (160 μL) was added to the reaction solution to terminate the polymerization, and then 20 mL of AK-225 was added to dilute the reaction solution. After the diluted reaction solution was continuously added to methanol (200 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 50 ° C. The yield of the target polymer (P-NDM-2PHVE) was 95%.
A series of these reactions is shown below. In the formula, m is a positive integer indicating the number of repetitions in the repeating unit.

Figure 0007036120000047
Figure 0007036120000047

<例3-3>
例3-2で合成したポリマー(P-NDM-2PHVE)を3M社製HFE-7300に3wt%濃度で溶解し、ポリマーのHFE-7300溶液を調製した。次いで、P-NDM-2PHVEのHFE-7300溶液をガラス基板に塗布し、スピンコーターを用いて均一にコートした後、150℃で10分乾燥して評価基板を作成した。コート面の水接触角は124度、n-ヘキサデカンの接触角は87度であった。
<Example 3-3>
The polymer (P-NDM-2PHVE) synthesized in Example 3-2 was dissolved in HFE-7300 manufactured by 3M at a concentration of 3 wt% to prepare an HFE-7300 solution of the polymer. Next, an HFE-7300 solution of P-NDM-2PHVE was applied to a glass substrate, coated uniformly using a spin coater, and then dried at 150 ° C. for 10 minutes to prepare an evaluation substrate. The water contact angle of the coated surface was 124 degrees, and the contact angle of n-hexadecane was 87 degrees.

<例4-1> 含フッ素ノルボルネン誘導体NDM-2,3-2PHVEの合成
水酸化カリウム(7.28g、129.7mmol)、アセトニトリル(100mL)、ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジメタノール(5.0g、32.4mmol)および下記式1で表される含フッ素オレフィン(56.0g、129.7mmol)を200mLの丸底フラスコに仕込み、ジムロートを取り付けて70℃で4時間反応させた。氷50gと水道水50gを500mLのビーカーに仕込み攪拌を行い、先の反応液を氷冷水にゆっくりっと連続的に導入した。更にAK-225(100mL)を加え攪拌した後、有機相を分取した。前分液の水層にAK-225(50mL)を加え再抽出し、得られた有機相を先に得られた有機相と併せた。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去した。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)にて精製しNDM-2,3-2PHVEで表される化合物を得た。収量は26.4g、収率は80%であった。
H-NMR(CDCl3):δ(ppm)6.18(m,2H)、5.93(m,1H)、5.75(m,1H)、3.6-4.1(m,4H)、2.95(s,2H)、2.8-2.50(m,2H)、1.3-1.6(m、2H)。
19F-NMR(CDCl3):δ(ppm)-80.7(m,6F)、-81.9(m,6F)、-82.1~-82.5(m,4F)、-83.8~-86.7(m,4F)、-89.5~-90.9(m,4F)、-130.2(s,4F)、-144.9~-145.2(m,2F)、-145.6~-145.8(m,2F)。
<Example 4-1> Synthesis of fluorine-containing norbornene derivative NDM-2,3-2PHVE Potassium hydroxide (7.28 g, 129.7 mmol), acetonitrile (100 mL), bicyclo [2.2.1] hepta-5-ene -2,3-Dimethanol (5.0 g, 32.4 mmol) and a fluorine-containing olefin represented by the following formula 1 (56.0 g, 129.7 mmol) were placed in a 200 mL round-bottom flask, and a Dimroth was attached to 70. The reaction was carried out at ° C. for 4 hours. 50 g of ice and 50 g of tap water were placed in a 500 mL beaker and stirred, and the above reaction solution was slowly and continuously introduced into cold ice water. Further, AK-225 (100 mL) was added and stirred, and then the organic phase was separated. AK-225 (50 mL) was added to the aqueous layer of the pre-divided liquid and re-extracted, and the obtained organic phase was combined with the previously obtained organic phase. Anhydrous sodium sulfate was added to the organic phase, and the mixture was stirred, and then insoluble matter was removed by vacuum filtration. The obtained organic phase was concentrated by an evaporator and then purified by silica gel column chromatography (mobile phase: n-hexane) to obtain a compound represented by NDM-2,3-2PHVE. The yield was 26.4 g and the yield was 80%.
1 1 H-NMR (CDCl3): δ (ppm) 6.18 (m, 2H), 5.93 (m, 1H), 5.75 (m, 1H), 3.6-4.1 (m, 4H) ), 2.95 (s, 2H), 2.8-2.50 (m, 2H), 1.3-1.6 (m, 2H).
19 F-NMR (CDCl3): δ (ppm) -80.7 (m, 6F), -81.9 (m, 6F), -82.1 to -82.5 (m, 4F), -83. 8 to -86.7 (m, 4F), -89.5 to 90.9 (m, 4F), -130.2 (s, 4F), -144.9 to -145.2 (m, 2F) ), -145.6 to -145.8 (m, 2F).

Figure 0007036120000048
Figure 0007036120000048

<例4-2> NDM-2,3-2PHVEの開環メタセシス重合
窒素下で20mLのスクリュー管瓶に、Grubbs第二世代触媒(16.7mg、0.020mmol)をジクロロメタン(10mL)に溶解し、溶液(D)を調製した。次に、例4-1で得られたNDM-2,3-2PHVE(2.0g、1.96mmol)、ジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した溶液(D)を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(160μL)を反応液に加え重合を停止させた後、AK-225を20mL加え反応液を希釈した。希釈された反応液をメタノール(200mL)に連続添加した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。目的のポリマー(P-2,3-NDM-2PHVE)の収率は79%であった。
これら一連の反応を以下に示す。なお、式中mは繰り返し単位の繰り返し数を示す正の整数である。
<Example 4-2> Ring-opening metathesis polymerization of NDM-2,3-2PHVE Grubbs second generation catalyst (16.7 mg, 0.020 mmol) is dissolved in dichloromethane (10 mL) in a 20 mL screw tube bottle under nitrogen. , Solution (D) was prepared. Next, NDM-2,3-2PHVE (2.0 g, 1.96 mmol) and dichloromethane (19 mL) obtained in Example 4-1 were charged into a 100 mL screw tube bottle and dissolved, and then the solution prepared above was prepared. 1 mL (corresponding to 0.1 mol% of catalyst) of (D) was added, and the mixture was reacted at room temperature for 3 hours. Then, ethyl vinyl ether (160 μL) was added to the reaction solution to terminate the polymerization, and then 20 mL of AK-225 was added to dilute the reaction solution. After the diluted reaction solution was continuously added to methanol (200 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 50 ° C. The yield of the target polymer (P-2,3-NDM-2PHVE) was 79%.
A series of these reactions is shown below. In the formula, m is a positive integer indicating the number of repetitions in the repeating unit.

Figure 0007036120000049
Figure 0007036120000049

<例4-3>
例4-2で合成したポリマー(P-2,3-NDM-2PHVE)を3M社製HFE-7300に3wt%濃度で溶解し、ポリマーのHFE-7300溶液を調製した。次いで、P-2,3-NDM-2PHVEのHFE-7300溶液をガラス基板に塗布し、スピンコーターを用いて均一にコートした後、150℃で10分乾燥して評価基板を作成した。コート面の水接触角は130度、n-ヘキサデカンの接触角は87度であった。
<Example 4-3>
The polymer (P-2,3-NDM-2PHVE) synthesized in Example 4-2 was dissolved in HFE-7300 manufactured by 3M at a concentration of 3 wt% to prepare an HFE-7300 solution of the polymer. Next, an HFE-7300 solution of P-2,3-NDM-2PHVE was applied to a glass substrate, coated uniformly using a spin coater, and then dried at 150 ° C. for 10 minutes to prepare an evaluation substrate. The water contact angle of the coated surface was 130 degrees, and the contact angle of n-hexadecane was 87 degrees.

<例5-1> 含フッ素ノルボルネン誘導体NDM-2,2-2PEVEの合成
窒素雰囲気下、1Lの丸底フラスコに水酸化カリウム(14.8g、263mmol)、アセトニトリル(269mL)およびビシクロ[2.2.1]ヘプタ-5-エン-2,2-ジメタノール(13.5g、87.6mmol)を仕込み氷冷下で攪拌し内温を1.5℃とした。次いで、C7PEVE(109g、262mmol)を10分間かけて滴下し、ジムロートを取り付けてオイルバスにて85 ℃で7時間反応させた。反応液にAE3000(288g)を加えセライトろ過し、ろ液をエバポレーターで濃縮した。濃縮物をシリカゲルカラムクロマトグラフィー(移動相:AE3000)にて精製し2,2-NDM-2PEVEで表される化合物を得た。収量は79.2g、収率は92%であった。
1H-NMR(CDCl3):δ(ppm)6.3~6.1(m,2H)、5.9~5.7(m,2H)、4.1~4.0(m,2H)、3.8~3.7(m,2H)、2.90(s,1H)、2.68(s,1H)、1.6~1.5(m,3H)、0.85(m,1H)。
19F-NMR(CDCl3):δ(ppm)-53.9~-54.0(m,4F)、-56.1(q,4F,J=9.16Hz)、-57.6(t,6F,J=9.16Hz)、-89.5~-92.0(m,12F)、-145.0~145.4(m,2F)。
<Example 5-1> Synthesis of fluorine-containing norbornene derivative NDM-2,2-2PEVE Under a nitrogen atmosphere, potassium hydroxide (14.8 g, 263 mmol), acetonitrile (269 mL) and bicyclo [2.2] were placed in a 1 L round-bottom flask. .1] Hepta-5-en-2,2-dimethanol (13.5 g, 87.6 mmol) was charged and stirred under ice-cooling to bring the internal temperature to 1.5 ° C. Then, C7PEVE (109 g, 262 mmol) was added dropwise over 10 minutes, a Dimroth condenser was attached, and the mixture was reacted at 85 ° C. for 7 hours in an oil bath. AE3000 (288 g) was added to the reaction solution, filtered through cerite, and the filtrate was concentrated with an evaporator. The concentrate was purified by silica gel column chromatography (mobile phase: AE3000) to obtain a compound represented by 2,2-NDM-2PEVE. The yield was 79.2 g and the yield was 92%.
1H-NMR (CDCl3): δ (ppm) 6.3 to 6.1 (m, 2H), 5.9 to 5.7 (m, 2H), 4.1 to 4.0 (m, 2H), 3.8 to 3.7 (m, 2H), 2.90 (s, 1H), 2.68 (s, 1H), 1.6 to 1.5 (m, 3H), 0.85 (m, 1H).
19F-NMR (CDCl3): δ (ppm) -53.9 to -54.0 (m, 4F), -56.1 (q, 4F, J = 9.16Hz), -57.6 (t, 6F) , J = 9.16Hz), -89.5 to -92.0 (m, 12F), -145.0 to 145.4 (m, 2F).

Figure 0007036120000050
Figure 0007036120000050

<例5-2>連鎖移動剤存在下での2,2-NDM-2PEVEの開環メタセシス重合
窒素下で100mLのスクリュー管瓶に、Grubbs第一世代触媒(921mg、1.12mmol)をジクロロメタン(92mL)に溶解し、触媒溶液を調製した。次に、例5-1で得られた2,2-NDM-2PEVE(55.1g、56.1mmol)、ジクロロメタン(412mL)、ヘキサフルオロベンゼン(56mL)を1Lの丸底フラスコに仕込み、氷水で冷却した。反応容器内を減圧脱気した後、エチレンで置換し、ガス採集袋でエチレン雰囲気下とした。室温下で45分撹拌した後、先に調製した触媒溶液を全量加え室温下でそれぞれ23時間反応させた。反応液を減圧濃縮した後、シリカゲルカラムクロマトグラフィーにて精製しE-2,2-NDM-2PEVEで表される化合物を得た。収量は47.3g、収率は83%であった。
1H-NMR(CDCl3):δ(ppm)5.93~5.69(m,4H)、5.09~4.94(m,4H)、3.94~3.71(m,4H)、2.63~2.52(m,2H)、2.00~1.76(m,2H)、1.57~1.42(m,2H)。
19F-NMR(CDCl3):δ(ppm)-53.83~-53.98(m,4F)、-56.11(td,4F、J=18.3、9.2Hz)、-57.56(t,6F、J=9.2Hz)、-89.48~-92.31(m,12F)、-144.66~-145.16(m,2F)。
<Example 5-2> Ring-opening metathesis polymerization of 2,2-NDM-2PEVE in the presence of a chain transfer agent Grubbs first generation catalyst (921 mg, 1.12 mmol) is added to dichloromethane (921 mg, 1.12 mmol) in a 100 mL screw tube bottle under nitrogen. It was dissolved in 92 mL) to prepare a catalytic solution. Next, 2,2-NDM-2PEVE (55.1 g, 56.1 mmol), dichloromethane (412 mL) and hexafluorobenzene (56 mL) obtained in Example 5-1 were placed in a 1 L round-bottom flask and placed in ice water. Cooled. After degassing the inside of the reaction vessel under reduced pressure, the mixture was replaced with ethylene, and the mixture was placed in an ethylene atmosphere with a gas collection bag. After stirring at room temperature for 45 minutes, all the catalyst solutions prepared above were added and reacted at room temperature for 23 hours each. The reaction mixture was concentrated under reduced pressure and then purified by silica gel column chromatography to obtain a compound represented by E-2,2-NDM-2PEVE. The yield was 47.3 g and the yield was 83%.
1H-NMR (CDCl3): δ (ppm) 5.93 to 5.69 (m, 4H), 5.09 to 4.94 (m, 4H), 3.94 to 3.71 (m, 4H), 2.63 to 2.52 (m, 2H), 2.00 to 1.76 (m, 2H), 1.57 to 1.42 (m, 2H).
19F-NMR (CDCl3): δ (ppm) -53.83 to -53.98 (m, 4F), -56.11 (td, 4F, J = 18.3, 9.2Hz), -57.56 (T, 6F, J = 9.2Hz), -89.48 to -92.31 (m, 12F), -144.66 to -145.16 (m, 2F).

Figure 0007036120000051
Figure 0007036120000051

<例6-1> 含フッ素ノルボルネン誘導体N-PPVEの合成
ステンレス鋼(SUS316)製高圧ミニチュア・ボンベにペルフルオロ(プロピルビニルエーテル)(20.0g、75.2mmol)、ジシクロペンタジエン(4.95g、37.5mmol)、ジエチルエーテル(8mL)およびヒドロキノン(0.12g、1.12mmol)を仕込み、100~150℃で11時間反応させた。反応液を30mLのフラスコに移液し、減圧蒸留にてN-PPVEを含む留分を分画した(蒸留条件30~50mmHg,60~65℃)。更に、シリカゲルカラムクロマトグラフィー(移動相:n-ヘキサン)にて精製し、N-PPVEで表される化合物を得た。収量は1.83g、収率は7%であった。
H-NMR(CDCl3):δ(ppm)6.3~5.6(m,2H)、3.9~3.1(m,2H)、2.8~2.0(m,2H)。
19F-NMR(CDCl3):δ(ppm)-79.3~-86.6(2F)、-81.7~-81.9(3F)、-105.0~-126.5(3F)、-130.2~-130.4(2F)。
<Example 6-1> Synthetic of fluorine-containing norbornene derivative N-PPVE Stainless steel (SUS316) high-pressure miniature cylinder with perfluoro (propyl vinyl ether) (20.0 g, 75.2 mmol), dicyclopentadiene (4.95 g, 37). .5 mmol), diethyl ether (8 mL) and hydroquinone (0.12 g, 1.12 mmol) were charged and reacted at 100-150 ° C. for 11 hours. The reaction solution was transferred to a 30 mL flask, and the fraction containing N-PPVE was fractionated by vacuum distillation (distillation conditions 30 to 50 mmHg, 60 to 65 ° C.). Further, purification was performed by silica gel column chromatography (mobile phase: n-hexane) to obtain a compound represented by N-PPVE. The yield was 1.83 g and the yield was 7%.
1 1 H-NMR (CDCl3): δ (ppm) 6.3 to 5.6 (m, 2H), 3.9 to 3.1 (m, 2H), 2.8 to 2.0 (m, 2H) ..
19 F-NMR (CDCl3): δ (ppm) -79.3 to -86.6 (2F), -81.7 to -81.9 (3F), -105.0 to -126.5 (3F) , -130.2 to -130.4 (2F).

Figure 0007036120000052
Figure 0007036120000052

<例6-2> N-PPVEの開環メタセシス重合
窒素下で20mLのスクリュー管瓶に、Grubbs第二世代触媒(9.8mg、0.011mmol)をジクロロメタン(10mL)に溶解し、溶液(A)を調製した。次に、例6-1で得られたN-PPVE(0.38g、1.15mmol)、1-ヘキセン(2μL)およびジクロロメタン(3mL)を20mLのスクリュー管瓶に仕込み溶解させた後、先に調製した溶液(A)を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(93μL)を反応液に加え重合を停止させた後、AE-3000(AGC社製)を5mL加えた。次に反応液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(移動相:AE-3000)にて精製し、P-N-PPVEで表される化合物を得た。目的のポリマー(P-N-PPVE)の収率は66%であった。これら一連の反応を以下に示す。なお、式中mは繰り返し単位の繰り返し数を示す正の整数である。
<Example 6-2> Ring-opening metathesis polymerization of N-PPVE Grubbs second generation catalyst (9.8 mg, 0.011 mmol) is dissolved in dichloromethane (10 mL) in a 20 mL screw tube bottle under nitrogen, and the solution (A). ) Was prepared. Next, N-PPVE (0.38 g, 1.15 mmol), 1-hexene (2 μL) and dichloromethane (3 mL) obtained in Example 6-1 were charged into a 20 mL screw tube bottle and dissolved, and then first. 1 mL (corresponding to 0.1 mol% of catalyst) of the prepared solution (A) was added, and the mixture was reacted at room temperature for 3 hours. Then, ethyl vinyl ether (93 μL) was added to the reaction solution to terminate the polymerization, and then 5 mL of AE-3000 (manufactured by AGC) was added. Next, the reaction solution was concentrated under reduced pressure and purified by silica gel column chromatography (mobile phase: AE-3000) to obtain a compound represented by PN-PPVE. The yield of the target polymer (PN-PPVE) was 66%. A series of these reactions is shown below. In the formula, m is a positive integer indicating the number of repetitions in the repeating unit.

Figure 0007036120000053
Figure 0007036120000053

<例6-3>
例6-2で合成したポリマー(P-N-PPVE)を3M社製HFE-7200に3wt%濃度で溶解し、ポリマーのHFE-7200溶液を調製した。次いで、P-NM-PPVEのHFE-7200溶液をガラス基板に塗布し、スピンコーターを用いて均一にコートした後、150℃で10分乾燥して評価基板を作成した。コート面の水接触角は104度、n-ヘキサデカンの接触角は54度であった。
<Example 6-3>
The polymer (PN-PPVE) synthesized in Example 6-2 was dissolved in HFE-7200 manufactured by 3M at a concentration of 3 wt% to prepare an HFE-7200 solution of the polymer. Next, an HFE-7200 solution of P-NM-PPVE was applied to a glass substrate, coated uniformly using a spin coater, and then dried at 150 ° C. for 10 minutes to prepare an evaluation substrate. The water contact angle of the coated surface was 104 degrees, and the contact angle of n-hexadecane was 54 degrees.

<例7-1> 含フッ素ノルボルネン誘導体N-PEVEの合成
ステンレス鋼(SUS316)製高圧ミニチュア・ボンベに下記式2で表される含フッ素オレフィン(25.4g、61.0mmol)、ジシクロペンタジエン(3.93g、29.7mmol)およびヒドロキノン(0.10g、0.92mmol)を仕込み、180℃で20時間反応させた。反応液を30mLのフラスコに移液し、減圧蒸留にて精製し、N-PEVEで表される化合物を得た(57~62℃、5mmHg)。収量は14.6g、収率は51%であった。
H-NMR(CDCl3):δ(ppm)6.3~5.6(m,2H)、3.8~3.1(m,2H)、2.8~2.0(m,2H)。
19F-NMR(CDCl3):δ(ppm)-53.7~-54.1(2F)、-56.0~-56.3(2F)、-57.4~-57.7(3F)、-81.8~-91.0(4F)、-104.9~-132.2(3F)。
GC-MS(EI):[M]+=480
<Example 7-1> Fluorine-containing olefin (25.4 g, 61.0 mmol) represented by the following formula 2 and dicyclopentadiene (25.4 g, 61.0 mmol) in a high-pressure miniature cylinder made of synthetic stainless steel (SUS316) of a fluorine-containing norbornene derivative N-PEVE. 3.93 g, 29.7 mmol) and hydroquinone (0.10 g, 0.92 mmol) were charged and reacted at 180 ° C. for 20 hours. The reaction mixture was transferred to a 30 mL flask and purified by vacuum distillation to obtain a compound represented by N-PEVE (57 to 62 ° C., 5 mmHg). The yield was 14.6 g and the yield was 51%.
1 1 H-NMR (CDCl3): δ (ppm) 6.3 to 5.6 (m, 2H), 3.8 to 3.1 (m, 2H), 2.8 to 2.0 (m, 2H) ..
19 F-NMR (CDCl3): δ (ppm) -53.7 to -54.1 (2F), -56.0 to -56.3 (2F), -57.4 to -57.7 (3F) , -81.8 to -91.0 (4F), -104.9 to -132.2 (3F).
GC-MS (EI): [M] + = 480

Figure 0007036120000054
Figure 0007036120000054

<例7-2> N-PEVEの開環メタセシス重合
窒素下で20mLのスクリュー管瓶に、Grubbs第二世代触媒(7.1mg、0.0083mmol)をジクロロメタン(10mL)に溶解し、溶液(B)を調製した。次に、例7-1で得られたN-PEVE(0.40g、0.83mmol)、1-ヘキセン(2μL)およびジクロロメタン(4mL)を30mLのスクリュー管瓶に仕込み溶解させた後、先に調製した溶液(B)を1mL(触媒0.1mol%相当)加え室温下で3時間反応させた。次いでエチルビニルエーテル(68μL)を反応液に加え重合を停止させた後、AE-3000(AGC社製)を5mL加えた。次に反応液を減圧濃縮し、シリカゲルカラムクロマトグラフィー(移動相:AE-3000)にて精製し、P-N-PEVEで表される化合物を得た。目的のポリマー(P-N-PEVE)の収率は76%であった。これら一連の反応を以下に示す。なお、式中mは繰り返し単位の繰り返し数を示す正の整数である。
<Example 7-2> Ring-opening metathesis polymerization of N-PEVE A Grubbs second generation catalyst (7.1 mg, 0.0083 mmol) is dissolved in dichloromethane (10 mL) in a 20 mL screw tube bottle under nitrogen, and a solution (B) is used. ) Was prepared. Next, N-PEVE (0.40 g, 0.83 mmol), 1-hexene (2 μL) and dichloromethane (4 mL) obtained in Example 7-1 were charged into a 30 mL screw tube bottle and dissolved, and then first. 1 mL (corresponding to 0.1 mol% of catalyst) of the prepared solution (B) was added, and the mixture was reacted at room temperature for 3 hours. Then, ethyl vinyl ether (68 μL) was added to the reaction solution to terminate the polymerization, and then 5 mL of AE-3000 (manufactured by AGC) was added. Next, the reaction solution was concentrated under reduced pressure and purified by silica gel column chromatography (mobile phase: AE-3000) to obtain a compound represented by PN-PEVE. The yield of the target polymer (PN-PEVE) was 76%. A series of these reactions is shown below. In the formula, m is a positive integer indicating the number of repetitions in the repeating unit.

Figure 0007036120000055
Figure 0007036120000055

<例7-3>
例7-2で合成したポリマー(P-N-PEVE)を3M社製HFE-7200に3wt%濃度で溶解し、ポリマーのHFE-7200溶液を調製した。次いで、P-N-PEVEのHFE-7200溶液をガラス基板に塗布し、スピンコーターを用いて均一にコートした後、150℃で10分乾燥して評価基板を作成した。コート面の水接触角は119度、n-ヘキサデカンの接触角は73度であった。
<Example 7-3>
The polymer (PN-PEVE) synthesized in Example 7-2 was dissolved in HFE-7200 manufactured by 3M at a concentration of 3 wt% to prepare an HFE-7200 solution of the polymer. Next, an HFE-7200 solution of PN-PEVE was applied to a glass substrate, coated uniformly using a spin coater, and then dried at 150 ° C. for 10 minutes to prepare an evaluation substrate. The water contact angle of the coated surface was 119 degrees, and the contact angle of n-hexadecane was 73 degrees.

例1-3(比較例)と、例2-3、例3-3及び例4-3(実施例)との対比から、含フッ素有機基の置換数が2以上のノルボルネン誘導体の重合体が、高い撥液性能を有する事が分かった。例6-3(比較例)と例7-3(実施例)との対比から、含フッ素有機基中にエーテル性酸素原子を2以上含むノルボルネン誘導体の重合体が、高い撥液性能を有する事が分かった。 From the comparison between Example 1-3 (Comparative Example) and Example 2-3, Example 3-3 and Example 4-3 (Example), a polymer of a norbornene derivative having 2 or more substitutions of a fluorine-containing organic group was found. It was found that it has high liquid repellency. From the comparison between Example 6-3 (Comparative Example) and Example 7-3 (Example), the polymer of the norbornene derivative containing two or more ethereal oxygen atoms in the fluorine-containing organic group has high liquid repellency. I understood.

<例8-1>NM-PPVEとシクロペンテン誘導体(MCPC)のROMP共重合
窒素雰囲気下、例1-1で得られたNM-PPVE(1.0g、2.56mmol)を主モノマーとし、3-シクロペンテン-1-カルボン酸メチル(MCPC、0.32g、2.56mmol)をコモノマーとして20mLのスクリュー管瓶に投入し、最後にGrubbs第二世代触媒(2.2mg、0.0026mmol)を仕込み室温下で3時間反応させた。次いでエチルビニルエーテル(209μL)を反応液に加え重合を停止させた後、クロロホルム(7mL)とAK-225(2mL)加えポリマーを溶解させた。前記ポリマー溶液をメタノール(150mL)に滴下した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。収量は1.13gであった。得られたポリマーを重クロロホルムとヘキサフルオロベンゼンの混液に溶解させ、H-NMRを測定した結果、得られたポリマーは初期のコポリマーAで表される共重合体であった。ポリマー中成分のmol比は主モノマー:コモノマー=1.0:0.34であった。これより、モノマー転化率は主モノマーが100%、コモノマーが35%であった。GPC分析より、本ポリマーの重量平均分子量(Mw)は303,611、分子量分布(Mw/Mn)は2.091であった。
これら一連の反応を以下に示す。なお、式中m及びnはそれぞれ繰り返し単位の繰り返し数を示す正の整数である。
<Example 8-1> ROMP copolymerization of NM-PPVE and cyclopentene derivative (MCPC) Under a nitrogen atmosphere, NM-PPVE (1.0 g, 2.56 mmol) obtained in Example 1-1 was used as a main monomer, and 3-. Methyl cyclopentene-1-carboxylate (MCPC, 0.32 g, 2.56 mmol) was put into a 20 mL screw tube bottle as a copolymer, and finally a Grubbs second generation catalyst (2.2 mg, 0.0026 mmol) was charged at room temperature. Was reacted for 3 hours. Then, ethyl vinyl ether (209 μL) was added to the reaction solution to terminate the polymerization, and then chloroform (7 mL) and AK-225 (2 mL) were added to dissolve the polymer. After dropping the polymer solution into methanol (150 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 50 ° C. The yield was 1.13 g. The obtained polymer was dissolved in a mixed solution of deuterated chloroform and hexafluorobenzene, and 1 H-NMR was measured. As a result, the obtained polymer was a copolymer represented by the initial copolymer A. The mol ratio of the components in the polymer was main monomer: commonomer = 1.0: 0.34. From this, the monomer conversion rate was 100% for the main monomer and 35% for the comonomer. From GPC analysis, the weight average molecular weight (Mw) of this polymer was 303,611, and the molecular weight distribution (Mw / Mn) was 2.091.
A series of these reactions is shown below. In the formula, m and n are positive integers indicating the number of repetitions in the repeating unit, respectively.

Figure 0007036120000056
Figure 0007036120000056

<例8-2>NM-PPVEとシクロペンテン誘導体(CPMO)のROMP共重合
窒素雰囲気下、例1-1で得られたNM-PPVE(1.0g、2.56mmol)を主モノマーとし、4-ヒドロキシメチル-1-シクロペンテン(CPMO、0.25g、2.56mmol)をコモノマーとして20mLのスクリュー管瓶に投入し、最後にGrubbs第二世代触媒(2.2mg、0.0026mmol)を仕込み室温下で3時間反応させた。次いでエチルビニルエーテル(209μL)を反応液に加え重合を停止させた後、クロロホルム(3mL)、AK-225(3mL)、メタノール(1mL)加え重合懸濁液を希釈した。前記ポリマー懸濁液をn-ペンタン(150mL)に全量導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥した。収量は0.85gであった。得られたポリマーを重クロロホルムに溶解させ、H-NMRを測定した結果、得られたポリマーは初期のコポリマーBで表される共重合体であった。ポリマー中成分のmol比は主モノマー:コモノマー=1.0:0.53であった。これより、モノマー転化率は主モノマーが75%、コモノマーが40%であった。
<Example 8-2> ROMP copolymerization of NM-PPVE and cyclopentene derivative (CPMO) Under a nitrogen atmosphere, NM-PPVE (1.0 g, 2.56 mmol) obtained in Example 1-1 was used as a main monomer and 4-. Hydroxymethyl-1-cyclopentene (CPMO, 0.25 g, 2.56 mmol) is put into a 20 mL screw tube bottle as a copolymer, and finally a Grubbs second generation catalyst (2.2 mg, 0.0026 mmol) is charged at room temperature. The reaction was carried out for 3 hours. Then, ethyl vinyl ether (209 μL) was added to the reaction solution to terminate the polymerization, and then chloroform (3 mL), AK-225 (3 mL) and methanol (1 mL) were added to dilute the polymerization suspension. After introducing the entire amount of the polymer suspension into n-pentane (150 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 50 ° C. The yield was 0.85 g. The obtained polymer was dissolved in deuterated chloroform and measured by 1 H-NMR. As a result, the obtained polymer was a copolymer represented by the initial copolymer B. The mol ratio of the components in the polymer was main monomer: commonomer = 1.0: 0.53. From this, the monomer conversion rate was 75% for the main monomer and 40% for the comonomer.

Figure 0007036120000057
Figure 0007036120000057

<例9-1>NDM-2PPVEとシクロペンテン誘導体(MCPC)のROMP共重合
窒素雰囲気下、例2-1で得られたNDM-2PPVE(1.0g、1.46mmol)を主モノマーとし、3-シクロペンテン-1-カルボン酸メチル(MCPC、0.184g、1.46mmol)をコモノマーとして6mLのスクリュー管瓶に投入し、最後にGrubbs第二世代触媒(2.5mg、0.0029mmol)を仕込み室温下で30分間攪拌した。次いで反応器を80℃のオイルバスで5分間加熱し再度室温に戻して4時間反応させた。次いでエチルビニルエーテル(238μL)を反応液に加え重合を停止させた後、クロロホルム(2mL)とAK-225(1mL)加えポリマーを溶解させた。前記ポリマー溶液をメタノール(100mL)に滴下した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。収量は0.94gであった。得られたポリマーを重クロロホルムとヘキサフルオロベンゼンの混液に溶解させ、H-NMRを測定した結果、得られたポリマーは初期のコポリマーCで表される共重合体であった。ポリマー中成分のmol比は主モノマー:コモノマー=1.0:0.67であった。これより、モノマー転化率は主モノマーが83%、コモノマーが56%であった。GPC分析より、本ポリマーの重量平均分子量(Mw)は240,525、分子量分布(Mw/Mn)は6.674であった。
<Example 9-1> ROMP copolymerization of NDM-2PPVE and cyclopentene derivative (MCPC) Under a nitrogen atmosphere, NDM-2PPVE (1.0 g, 1.46 mmol) obtained in Example 2-1 was used as the main monomer, and 3-. Methyl cyclopentene-1-carboxylate (MCPC, 0.184 g, 1.46 mmol) was put into a 6 mL screw tube bottle as a copolymer, and finally a Grubbs second generation catalyst (2.5 mg, 0.0029 mmol) was charged at room temperature. Was stirred for 30 minutes. Then, the reactor was heated in an oil bath at 80 ° C. for 5 minutes, returned to room temperature, and reacted for 4 hours. Then, ethyl vinyl ether (238 μL) was added to the reaction solution to terminate the polymerization, and then chloroform (2 mL) and AK-225 (1 mL) were added to dissolve the polymer. After dropping the polymer solution into methanol (100 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 60 ° C. The yield was 0.94 g. The obtained polymer was dissolved in a mixed solution of deuterated chloroform and hexafluorobenzene, and 1 H-NMR was measured. As a result, the obtained polymer was a copolymer represented by the initial copolymer C. The mol ratio of the components in the polymer was main monomer: commonomer = 1.0: 0.67. From this, the monomer conversion rate was 83% for the main monomer and 56% for the comonomer. From GPC analysis, the weight average molecular weight (Mw) of this polymer was 240,525, and the molecular weight distribution (Mw / Mn) was 6.674.

Figure 0007036120000058
Figure 0007036120000058

<例9-2>NDM-2PPVEとシクロペンテン誘導体(CPMO)のROMP共重合
窒素雰囲気下、例2-1で得られたNDM-2PPVE(1.0g、1.46mmol)を主モノマーとし、4-ヒドロキシメチル-1-シクロペンテン(CPMO、0.14g、1.46mmol)をコモノマーとして6mLのスクリュー管瓶に投入し、最後にGrubbs第二世代触媒(2.5mg、0.0029mmol)を仕込み室温下で30分間攪拌した。次いで反応器を80℃のオイルバスで5分間加熱し再度室温に戻して4時間反応させた。次いでエチルビニルエーテル(238μL)を反応液に加え重合を停止させた後、クロロホルム(2mL)とメタノール(1mL)加え重合懸濁液を希釈した。前記ポリマー懸濁液をn-ヘキサン(150mL)に全量導入した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥しコポリマーDで表される共重合体を得た。収量は0.80gであった。
<Example 9-2> ROMP copolymerization of NDM-2PPVE and cyclopentene derivative (CPMO) Under a nitrogen atmosphere, NDM-2PPVE (1.0 g, 1.46 mmol) obtained in Example 2-1 was used as a main monomer and 4-. Hydroxymethyl-1-cyclopentene (CPMO, 0.14 g, 1.46 mmol) was put into a 6 mL screw tube bottle as a copolymer, and finally a Grubbs second generation catalyst (2.5 mg, 0.0029 mmol) was charged at room temperature. The mixture was stirred for 30 minutes. Then, the reactor was heated in an oil bath at 80 ° C. for 5 minutes, returned to room temperature, and reacted for 4 hours. Then, ethyl vinyl ether (238 μL) was added to the reaction solution to terminate the polymerization, and then chloroform (2 mL) and methanol (1 mL) were added to dilute the polymerization suspension. After introducing the entire amount of the polymer suspension into n-hexane (150 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 60 ° C. to obtain a copolymer represented by the copolymer D. The yield was 0.80 g.

Figure 0007036120000059
Figure 0007036120000059

<例10-1>NDM-2PHVEとシクロペンテン誘導体(MCPC)のROMP共重合
窒素雰囲気下、例3-1で得られたNDM-2PHVE(1.0g、0.98mmol)を主モノマーとし、3-シクロペンテン-1-カルボン酸メチル(MCPC、0.125g、0.98mmol)をコモノマーとして6mLのスクリュー管瓶に投入し、最後にGrubbs第二世代触媒(0.79mg、0.0009mmol)を仕込み60℃で2時間反応させた。次いでエチルビニルエーテル(80μL)を反応液に加え重合を停止させた後、AK-225(4mL)加えポリマーを溶解させた。前記ポリマー溶液をメタノール(100mL)に滴下した後、析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥した。収量は0.72gであった。得られたポリマーを重クロロホルムに溶解させ、H-NMRを測定した結果、得られたポリマーは初期のコポリマーEで表される共重合体であった。ポリマー中成分のmol比は主モノマー:コモノマー=1:0.59であった。これより、モノマー転化率は主モノマーが67%、コモノマーが39%であった。
<Example 10-1> ROMP copolymerization of NDM-2PHVE and cyclopentene derivative (MCPC) Under a nitrogen atmosphere, NDM-2PHVE (1.0 g, 0.98 mmol) obtained in Example 3-1 was used as a main monomer, and 3-. Methyl cyclopentene-1-carboxylate (MCPC, 0.125 g, 0.98 mmol) was put into a 6 mL screw tube bottle as a copolymer, and finally a Grubbs second generation catalyst (0.79 mg, 0.0009 mmol) was charged at 60 ° C. Was reacted for 2 hours. Then, ethyl vinyl ether (80 μL) was added to the reaction solution to terminate the polymerization, and then AK-225 (4 mL) was added to dissolve the polymer. After dropping the polymer solution into methanol (100 mL), the precipitated polymer was recovered by vacuum filtration and dried under reduced pressure at 60 ° C. The yield was 0.72 g. The obtained polymer was dissolved in deuterated chloroform and measured by 1 H-NMR. As a result, the obtained polymer was a copolymer represented by the initial copolymer E. The mol ratio of the components in the polymer was main monomer: commonomer = 1: 0.59. From this, the monomer conversion rate was 67% for the main monomer and 39% for the comonomer.

Figure 0007036120000060
Figure 0007036120000060

<例10-2>NDM-2PHVEとシクロペンテン誘導体(CPMO)のROMP共重合
窒素雰囲気下、例3-1で得られたNDM-2PHVE(1.0g、0.98mmol)を主モノマーとし、4-ヒドロキシメチル-1-シクロペンテン(CPMO、97mg、0.99mmol)をコモノマーとして6mLのスクリュー管瓶に投入し、最後にGrubbs第二世代触媒(1.09mg、0.0013mmol)を仕込み60℃で1.5時間反応させた。次いでエチルビニルエーテル(80μL)を反応液に加え重合を停止させた後、クロロホルム(1mL)とメタノール(2mL)加え攪拌しポリマー懸濁液とした。前記ポリマー懸濁液中に析出したポリマーを減圧濾過で回収し、60℃で減圧乾燥しコポリマーFで表される共重合体を得た。収量は1.0gであった。
<Example 10-2> ROMP copolymerization of NDM-2PHVE and cyclopentene derivative (CPMO) Under a nitrogen atmosphere, NDM-2PHVE (1.0 g, 0.98 mmol) obtained in Example 3-1 was used as a main monomer and 4-. Hydroxymethyl-1-cyclopentene (CPMO, 97 mg, 0.99 mmol) was charged into a 6 mL screw tube bottle as a copolymer, and finally a Grubbs second generation catalyst (1.09 mg, 0.0013 mmol) was charged at 60 ° C. 1. The reaction was carried out for 5 hours. Then, ethyl vinyl ether (80 μL) was added to the reaction solution to terminate the polymerization, chloroform (1 mL) and methanol (2 mL) were added, and the mixture was stirred to prepare a polymer suspension. The polymer precipitated in the polymer suspension was recovered by vacuum filtration and dried under reduced pressure at 60 ° C. to obtain a copolymer represented by the copolymer F. The yield was 1.0 g.

Figure 0007036120000061
Figure 0007036120000061

<例11-1>含フッ素ノルボルネン誘導体(4)の合成
(1)ビシクロ[2.2.1]ヘプタ-5-エン-2,2-ジメタノール(3.50g、22.7mmol)、ジクロロメタン(45mL)、および2,6-ルチジン(5.82g、54.4mmol)を100mLの丸底フラスコに仕込み氷冷下で攪拌する。氷冷攪拌下、トリフルオロメタンスルホン酸無水物( 14.0g、49.6mmol)を反応液に滴下する。反応液をシリカゲルカラムクロマトグラフィーにて精製しNDM-Tfで表される化合物を得る。
<Example 11-1> Synthesis of fluorine-containing norbornene derivative (4) (1) Bicyclo [2.2.1] Hepta-5-en-2,2-dimethanol (3.50 g, 22.7 mmol), dichloromethane ( 45 mL) and 2,6-lutidine (5.82 g, 54.4 mmol) are placed in a 100 mL round-bottom flask and stirred under ice-cooling. Trifluoromethanesulfonic anhydride (14.0 g, 49.6 mmol) is added dropwise to the reaction solution under ice-cooling stirring. The reaction solution is purified by silica gel column chromatography to obtain a compound represented by NDM-Tf.

Figure 0007036120000062
Figure 0007036120000062

(2)窒素雰囲気下、NDM-Tf(1.30g、3.1mmol)、ジエチレングリコールジメチルエーテル(20mL)、下記式3で表される含フッ素化合物(2.16g、6.2mmol)およびフッ化セシウム(1.88g、12.4mmol)を100mLの丸底フラスコに仕込み室温下で16時間攪拌する。反応液にジクロロメタン(50mL)、飽和炭酸水素ナトリウム水溶液(50mL)を加え攪拌後、有機相を分取する。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去する。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し(4)で表される化合物を得る。 (2) Under a nitrogen atmosphere, NDM-Tf (1.30 g, 3.1 mmol), diethylene glycol dimethyl ether (20 mL), a fluorine-containing compound represented by the following formula 3 (2.16 g, 6.2 mmol) and cesium fluoride (2). 1.88 g, 12.4 mmol) is placed in a 100 mL round bottom flask and stirred at room temperature for 16 hours. Dichloromethane (50 mL) and saturated aqueous sodium hydrogen carbonate solution (50 mL) are added to the reaction solution, and the mixture is stirred and then the organic phase is separated. After adding anhydrous sodium sulfate to the organic phase and stirring, the insoluble matter is removed by vacuum filtration. The obtained organic phase is concentrated by an evaporator and then purified by silica gel column chromatography to obtain the compound represented by (4).

Figure 0007036120000063
Figure 0007036120000063

<例11-2>含フッ素ノルボルネン(2)のROMP単独重合
窒素雰囲気下、Grubbs第二世代触媒(9.9mg、0.012mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製する。次に、例11-1で得られた化合物(4)(2.0g、2.34mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1mL(触媒0.1mol%相当)加え室温下で3時間反応させる。次いでエチルビニルエーテル(422μL)を反応液に加え重合を停止させた後、クロロホルムを40mL加え重合懸濁液を希釈する。前記ポリマー懸濁液をメタノール(250mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥し目的のポリマーを得る。
<Example 11-2> ROMP homopolymerization of fluorine-containing norbornene (2) Under a nitrogen atmosphere, a Grubbs second generation catalyst (9.9 mg, 0.012 mmol) was weighed in a 10 mL screw tube bottle and dissolved in dichloromethane (5 mL). Prepare a catalytic solution. Next, the compound (4) (2.0 g, 2.34 mmol) and dichloromethane (19 mL) obtained in Example 11-1 were charged into a 100 mL screw tube bottle and dissolved, and then 1 mL of the catalyst solution prepared above was added. (Equivalent to 0.1 mol% of catalyst) is added and reacted at room temperature for 3 hours. Then, ethyl vinyl ether (422 μL) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension. After continuously introducing the polymer suspension into methanol (250 mL), the precipitated polymer is recovered by vacuum filtration and dried under reduced pressure at 50 ° C. to obtain the desired polymer.

Figure 0007036120000064
Figure 0007036120000064

<例12-1>含フッ素ノルボルネン誘導体(5)の合成
(1)ビシクロ[2.2.1]ヘプタ-5-エン-2,3-ジメタノール(3.50g、22.7mmol)、ジクロロメタン(45mL)、および2,6-ルチジン(5.82g、54.4mmol)を100mLの丸底フラスコに仕込み氷冷下で攪拌する。氷冷攪拌下、トリフルオロメタンスルホン酸無水物(14.0g、49.6mmol)を反応液に滴下する。反応液をシリカゲルカラムクロマトグラフィーにて精製し2,3-NDM-Tfで表される化合物を得る。
<Example 12-1> Synthesis of Fluorine-Containing Norbornene Derivative (5) (1) Bicyclo [2.2.1] Hepta-5-en-2,3-dimethanol (3.50 g, 22.7 mmol), dichloromethane ( 45 mL) and 2,6-lutidine (5.82 g, 54.4 mmol) are placed in a 100 mL round-bottom flask and stirred under ice-cooling. Trifluoromethanesulfonic anhydride (14.0 g, 49.6 mmol) is added dropwise to the reaction solution under ice-cooling stirring. The reaction solution is purified by silica gel column chromatography to obtain a compound represented by 2,3-NDM-Tf.

Figure 0007036120000065
Figure 0007036120000065

(2)窒素雰囲気下、2,3-NDM-Tf(1.30g、3.1mmol)、ジエチレングリコールジメチルエーテル(20mL)、下記式3で表される含フッ素化合物(2.16g、6.2mmol)およびフッ化セシウム(1.88g、12.4mmol)を100mLの丸底フラスコに仕込み室温下で16時間攪拌する。反応液にジクロロメタン(50mL)、飽和炭酸水素ナトリウム水溶液(50mL)を加え攪拌後、有機相を分取する。有機相に無水硫酸ナトリウムを加え攪拌した後、減圧濾過にて不溶物を除去する。得られた有機相をエバポレーターで濃縮した後、シリカゲルカラムクロマトグラフィーにて精製し(5)で表される化合物を得る。 (2) Under a nitrogen atmosphere, 2,3-NDM-Tf (1.30 g, 3.1 mmol), diethylene glycol dimethyl ether (20 mL), a fluorine-containing compound represented by the following formula 3 (2.16 g, 6.2 mmol) and Cesium fluoride (1.88 g, 12.4 mmol) is placed in a 100 mL round bottom flask and stirred at room temperature for 16 hours. Dichloromethane (50 mL) and saturated aqueous sodium hydrogen carbonate solution (50 mL) are added to the reaction solution, and the mixture is stirred and then the organic phase is separated. After adding anhydrous sodium sulfate to the organic phase and stirring, the insoluble matter is removed by vacuum filtration. The obtained organic phase is concentrated by an evaporator and then purified by silica gel column chromatography to obtain the compound represented by (5).

Figure 0007036120000066
Figure 0007036120000066

<例12-2>含フッ素ノルボルネン(5)のROMP単独重合
窒素雰囲気下、Grubbs第二世代触媒(9.9mg、0.012mmol)を10mLのスクリュー管瓶に秤取りジクロロメタン(5mL)に溶解させ触媒溶液を調製する。次に、例12-1で得られた化合物(5)(2.0g、2.34mmol)とジクロロメタン(19mL)を100mLのスクリュー管瓶に仕込み溶解させた後、先に調製した触媒溶液を1mL(触媒0.1mol%相当)加え室温下で3時間反応させる。次いでエチルビニルエーテル(422μL)を反応液に加え重合を停止させた後、クロロホルムを40mL加え重合懸濁液を希釈する。前記ポリマー懸濁液をメタノール(250mL)に連続導入した後、析出したポリマーを減圧濾過で回収し、50℃で減圧乾燥し目的のポリマーを得る。
<Example 12-2> ROMP homopolymerization of fluorine-containing norbornene (5) Under a nitrogen atmosphere, a Grubbs second generation catalyst (9.9 mg, 0.012 mmol) was weighed in a 10 mL screw tube bottle and dissolved in dichloromethane (5 mL). Prepare a catalytic solution. Next, the compound (5) (2.0 g, 2.34 mmol) and dichloromethane (19 mL) obtained in Example 12-1 were charged into a 100 mL screw tube bottle and dissolved, and then 1 mL of the catalyst solution prepared above was added. (Equivalent to 0.1 mol% of catalyst) is added and reacted at room temperature for 3 hours. Then, ethyl vinyl ether (422 μL) is added to the reaction solution to terminate the polymerization, and then 40 mL of chloroform is added to dilute the polymerization suspension. After continuously introducing the polymer suspension into methanol (250 mL), the precipitated polymer is recovered by vacuum filtration and dried under reduced pressure at 50 ° C. to obtain the desired polymer.

Figure 0007036120000067
Figure 0007036120000067

本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年9月21日出願の日本特許出願(特願2017-181540)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on September 21, 2017 (Japanese Patent Application No. 2017-181540), the contents of which are incorporated herein by reference.

本発明によれば、含フッ素ノルボルネン誘導体由来の構成単位とシクロペンテン誘導体由来の構成単位とを含む新規な含フッ素重合体が得られ、当該重合体は機能性高分子として電気・電子材料、半導体材料、光学材料、医療器具・細胞培養材料、撥液材料、エラストマー材料、架橋剤等の多種多様な分野に利用することができる。 According to the present invention, a novel fluoropolymer containing a constituent unit derived from a fluorine-containing norbornene derivative and a constituent unit derived from a cyclopentene derivative can be obtained, and the polymer can be used as a functional polymer as an electric / electronic material or a semiconductor material. , Optical materials, medical instruments / cell culture materials, liquid repellent materials, elastomer materials, cross-linking agents, etc.

Claims (16)

下記一般式1で表される含フッ素化合物。
Figure 0007036120000068

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子であり、R11、R12はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a11、a12はそれぞれ独立に0、1または2である。
A fluorine-containing compound represented by the following general formula 1.
Figure 0007036120000068

However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, and R 11 and R 12 are monovalent fluorine-containing hydrocarbon groups having 1 to 200 carbon atoms each independently having an ethereal oxygen atom . , A11, a12 are 0, 1 or 2, respectively.
前記RThe R 1111 及びRAnd R 1212 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~100の一価の含フッ素炭化水素基である請求項1に記載の含フッ素化合物。The fluorine-containing compound according to claim 1, which is a monovalent fluorine-containing hydrocarbon group having 1 to 100 carbon atoms, each independently having an ethereal oxygen atom. 下記一般式2で表される含フッ素化合物。
Figure 0007036120000069

ただし、X21、X22はそれぞれ独立に水素原子またはフッ素原子であり、R21、R22はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a21、a22はそれぞれ独立に1または2である。
A fluorine-containing compound represented by the following general formula 2.
Figure 0007036120000069

However, X 21 and X 22 are independently hydrogen atoms or fluorine atoms, and R 21 and R 22 are monovalent fluorine-containing hydrocarbon groups having 1 to 200 carbon atoms each independently having an ethereal oxygen atom . , A21 and a22 are 1 or 2 independently, respectively.
前記RThe R 2121 及びRAnd R 2222 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~100の一価の含フッ素炭化水素基である請求項3に記載の含フッ素化合物。The fluorine-containing compound according to claim 3, wherein each is a monovalent fluorine-containing hydrocarbon group having 1 to 100 carbon atoms and each independently has an ethereal oxygen atom. 下記一般式11で表される構造単位または下記一般式12で表される構造単位を含む含フッ素重合体。
Figure 0007036120000070

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子であり、R11、R12はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。
A fluorine-containing polymer containing a structural unit represented by the following general formula 11 or a structural unit represented by the following general formula 12.
Figure 0007036120000070

However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, and R 11 and R 12 are monovalent fluorine-containing hydrocarbon groups having 1 to 200 carbon atoms each independently having an ethereal oxygen atom . , A11 and a12 are independently 0, 1 or 2, respectively, and m11 is a natural number representing the number of repetitions in the repetition unit.
前記R 11 及びR 12 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~100の一価の含フッ素炭化水素基である請求項5に記載の含フッ素重合体The fluorine-containing polymer according to claim 5, wherein R 11 and R 12 are monovalent fluorine-containing hydrocarbon groups having 1 to 100 carbon atoms each independently having an ethereal oxygen atom . 下記一般式21で表される構造単位または下記一般式22で表される構造単位を含む含フッ素重合体。
Figure 0007036120000071

ただし、X21、X22はそれぞれ独立に水素原子またはフッ素原子、R21、R22はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基、a21、a22はそれぞれ独立に1または2であり、m21は繰り返し単位の繰り返し数を表す自然数である。
A fluorine-containing polymer containing a structural unit represented by the following general formula 21 or a structural unit represented by the following general formula 22.
Figure 0007036120000071

However, X 21 and X 22 are independently hydrogen atoms or fluorine atoms, and R 21 and R 22 are monovalent fluorine-containing hydrocarbon groups having 1 to 200 carbon atoms each independently having an ethereal oxygen atom , a21 and a22. Are independently 1 or 2 , and m21 is a natural number representing the number of repetitions in the repeating unit.
前記R 21 及びR 22 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~100の一価の含フッ素炭化水素基である請求項7に記載の含フッ素重合体The fluorine-containing polymer according to claim 7, wherein R 21 and R 22 are monovalent fluorine-containing hydrocarbon groups having 1 to 100 carbon atoms, each of which has an ethereal oxygen atom independently . 下記一般式11’で表される構造単位を含む含フッ素重合体。
Figure 0007036120000072

ただし、X11、X12はそれぞれ独立に水素原子またはフッ素原子であり、R11、R12はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。
A fluorine-containing polymer containing a structural unit represented by the following general formula 11'.
Figure 0007036120000072

However, X 11 and X 12 are independently hydrogen atoms or fluorine atoms, and R 11 and R 12 are monovalent fluorine-containing hydrocarbon groups having 1 to 200 carbon atoms each independently having an ethereal oxygen atom . , A11 and a12 are independently 0, 1 or 2, respectively, and m11 is a natural number representing the number of repetitions in the repetition unit.
下記一般式21’で表される構造単位を含む含フッ素重合体。
Figure 0007036120000073

ただし、X21、X22はそれぞれ独立に水素原子またはフッ素原子であり、R21、R22はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a21、a22はそれぞれ独立に1または2であり、m21は繰り返し単位の繰り返し数を表す自然数である。
A fluorine-containing polymer containing a structural unit represented by the following general formula 21'.
Figure 0007036120000073

However, X 21 and X 22 are independently hydrogen atoms or fluorine atoms, and R 21 and R 22 are monovalent fluorine-containing hydrocarbon groups having 1 to 200 carbon atoms each independently having an ethereal oxygen atom . , A21 and a22 are independently 1 or 2, respectively, and m21 is a natural number representing the number of repetitions in the repetition unit.
金属-カルベン錯体触媒の存在下、下記一般式1で表される含フッ素化合物を重合させる、下記一般式11で表される構造単位を含む含フッ素重合体の製造方法。A method for producing a fluorine-containing polymer containing a structural unit represented by the following general formula 11 by polymerizing a fluorine-containing compound represented by the following general formula 1 in the presence of a metal-carbene complex catalyst.
Figure 0007036120000074
Figure 0007036120000074

ただし、XHowever, X 1111 、X, X 1212 はそれぞれ独立に水素原子またはフッ素原子であり、RAre independently hydrogen or fluorine atoms, and R 1111 、R, R 1212 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。Is a monovalent fluorine-containing hydrocarbon group having 1 to 200 carbon atoms independently having an ethereal oxygen atom, a11 and a12 are independently 0, 1 or 2, respectively, and m11 is the number of repetitions in the repeating unit. It is a natural number to represent.
下記一般式1で表される含フッ素化合物を重合させる、下記一般式12で表される構造単位を含む含フッ素重合体の製造方法。A method for producing a fluorine-containing polymer containing a structural unit represented by the following general formula 12, which polymerizes a fluorine-containing compound represented by the following general formula 1.
Figure 0007036120000075
Figure 0007036120000075

ただし、XHowever, X 1111 、X, X 1212 はそれぞれ独立に水素原子またはフッ素原子であり、RAre independently hydrogen or fluorine atoms, and R 1111 、R, R 1212 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。Is a monovalent fluorine-containing hydrocarbon group having 1 to 200 carbon atoms independently having an ethereal oxygen atom, a11 and a12 are independently 0, 1 or 2, respectively, and m11 is the number of repetitions in the repeating unit. It is a natural number to represent.
金属-カルベン錯体触媒の存在下、下記一般式2で表される含フッ素化合物を重合させる、下記一般式21で表される構造単位を含む含フッ素重合体の製造方法。A method for producing a fluorine-containing polymer containing a structural unit represented by the following general formula 21, which polymerizes a fluorine-containing compound represented by the following general formula 2 in the presence of a metal-carbene complex catalyst.
Figure 0007036120000076
Figure 0007036120000076

ただし、XHowever, X 2121 、X, X 2222 はそれぞれ独立に水素原子またはフッ素原子であり、RAre independently hydrogen or fluorine atoms, and R 2121 、R, R 2222 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a21、a22はそれぞれ独立に1または2であり、m21は繰り返し単位の繰り返し数を表す自然数である。Is a monovalent fluorine-containing hydrocarbon group having 1 to 200 carbon atoms independently having an ethereal oxygen atom, a21 and a22 are independently 1 or 2, and m21 is a natural number representing the number of repetitions of the repeating unit. Is.
下記一般式2で表される含フッ素化合物を重合させる、下記一般式22で表される構造単位を含む含フッ素重合体の製造方法。A method for producing a fluorine-containing polymer containing a structural unit represented by the following general formula 22, which polymerizes the fluorine-containing compound represented by the following general formula 2.
Figure 0007036120000077
Figure 0007036120000077

ただし、XHowever, X 2121 、X, X 2222 はそれぞれ独立に水素原子またはフッ素原子であり、RAre independently hydrogen or fluorine atoms, and R 2121 、R, R 2222 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a21、a22はそれぞれ独立に1または2であり、m21は繰り返し単位の繰り返し数を表す自然数である。Is a monovalent fluorine-containing hydrocarbon group having 1 to 200 carbon atoms independently having an ethereal oxygen atom, a21 and a22 are independently 1 or 2, and m21 is a natural number representing the number of repetitions of the repeating unit. Is.
下記一般式11で表される構造単位を含む含フッ素重合体に水素添加する、下記一般式11’で表される構造単位を含む含フッ素重合体の製造方法。A method for producing a fluorinated polymer containing a structural unit represented by the following general formula 11', which hydrogenates a fluorinated polymer containing the structural unit represented by the following general formula 11.
Figure 0007036120000078
Figure 0007036120000078

ただし、XHowever, X 1111 、X, X 1212 はそれぞれ独立に水素原子またはフッ素原子であり、RAre independently hydrogen or fluorine atoms, and R 1111 、R, R 1212 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a11、a12はそれぞれ独立に0、1または2であり、m11は繰り返し単位の繰り返し数を表す自然数である。Is a monovalent fluorine-containing hydrocarbon group having 1 to 200 carbon atoms independently having an ethereal oxygen atom, a11 and a12 are independently 0, 1 or 2, respectively, and m11 is the number of repetitions in the repeating unit. It is a natural number to represent.
下記一般式21で表される構造単位を含む含フッ素重合体に水素添加する、下記一般式21’で表される構造単位を含む含フッ素重合体の製造方法。A method for producing a fluorinated polymer containing a structural unit represented by the following general formula 21', which hydrogenates a fluorinated polymer containing the structural unit represented by the following general formula 21.
Figure 0007036120000079
Figure 0007036120000079

ただし、XHowever, X 2121 、X, X 2222 はそれぞれ独立に水素原子またはフッ素原子であり、RAre independently hydrogen or fluorine atoms, and R 2121 、R, R 2222 はそれぞれ独立にエーテル性酸素原子を有する炭素数1~200の一価の含フッ素炭化水素基であり、a21、a22はそれぞれ独立に1または2であり、m21は繰り返し単位の繰り返し数を表す自然数である。Is a monovalent fluorine-containing hydrocarbon group having 1 to 200 carbon atoms independently having an ethereal oxygen atom, a21 and a22 are independently 1 or 2, and m21 is a natural number representing the number of repetitions of the repeating unit. Is.
JP2019543715A 2017-09-21 2018-09-20 Fluorine-containing compounds and fluoropolymers and methods for producing them Active JP7036120B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017181540 2017-09-21
JP2017181540 2017-09-21
PCT/JP2018/034927 WO2019059320A1 (en) 2017-09-21 2018-09-20 Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer

Publications (2)

Publication Number Publication Date
JPWO2019059320A1 JPWO2019059320A1 (en) 2020-11-05
JP7036120B2 true JP7036120B2 (en) 2022-03-15

Family

ID=65810269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019543715A Active JP7036120B2 (en) 2017-09-21 2018-09-20 Fluorine-containing compounds and fluoropolymers and methods for producing them

Country Status (2)

Country Link
JP (1) JP7036120B2 (en)
WO (1) WO2019059320A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532413A (en) 2001-10-26 2005-10-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated polymers having ester groups and microlithographic photoresists
JP2009092711A (en) 2007-10-03 2009-04-30 Tokyo Ohka Kogyo Co Ltd Material for forming protection film, and method of forming photoresist pattern
CN101759670A (en) 2010-01-07 2010-06-30 浙江大学 Perfluoroalkoxy epoxy compound, preparation method and purpose thereof
WO2019059318A1 (en) 2017-09-21 2019-03-28 Agc株式会社 Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040126695A1 (en) * 2002-05-07 2004-07-01 Honeywell International, Inc. Fluorinated polymers
JP2004107277A (en) * 2002-09-19 2004-04-08 Jsr Corp Norbornene-based compound, silicon-containing compound, polysiloxane, and radiation-sensitive resin composition
US7138550B2 (en) * 2003-08-04 2006-11-21 Air Products And Chemicals, Inc. Bridged carbocyclic compounds and methods of making and using same
JP4774815B2 (en) * 2005-06-07 2011-09-14 旭硝子株式会社 Fluorine-containing norbornenyl ester compound and polymer thereof
JP2007077141A (en) * 2005-08-17 2007-03-29 Asahi Glass Co Ltd New fluorosulfonyl group-containing norbornene and method for producing the same
JP2008088247A (en) * 2006-09-29 2008-04-17 Univ Of Tokyo Method for producing norbornene polymer having fluorosulfonyl group, polymer having sulfonic acid group and electrolyte membrane for fuel cell by using the polymer
JP2009256468A (en) * 2008-04-16 2009-11-05 Asahi Glass Co Ltd Method of producing fluorine-containing polymer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005532413A (en) 2001-10-26 2005-10-27 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Fluorinated polymers having ester groups and microlithographic photoresists
JP2009092711A (en) 2007-10-03 2009-04-30 Tokyo Ohka Kogyo Co Ltd Material for forming protection film, and method of forming photoresist pattern
CN101759670A (en) 2010-01-07 2010-06-30 浙江大学 Perfluoroalkoxy epoxy compound, preparation method and purpose thereof
WO2019059318A1 (en) 2017-09-21 2019-03-28 Agc株式会社 Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry,No.4,1997年,p.787-794

Also Published As

Publication number Publication date
JPWO2019059320A1 (en) 2020-11-05
WO2019059320A1 (en) 2019-03-28

Similar Documents

Publication Publication Date Title
JPWO2008150033A1 (en) Stereoselective alternating copolymerization of epoxides with carbon dioxide.
US11794178B2 (en) Catalyst for ring expansion metathesis polymerization of cyclic monomers
JP6616779B2 (en) Method for producing polar group-containing olefin polymer
JP7036120B2 (en) Fluorine-containing compounds and fluoropolymers and methods for producing them
JP7331992B2 (en) Fluorine-containing silane compound
WO2019059318A1 (en) Fluorine-containing compound, fluorine-containing polymer, and method for producing fluorine-containing polymer
JP6696435B2 (en) Method for producing olefin
US20090124772A1 (en) Process for producing organic transition metal complex compound, metathesis catalyst produced by using the same, ring-opening metathesis polymer obtainable with the metathesis catalyst, and process for producing the polymer
JP6593351B2 (en) Method for producing fluoropolymer
JP6593433B2 (en) Method for producing a base material into which an organic group containing a fluorine atom and a carbon-carbon double bond is introduced
US20170335051A1 (en) Method for producing fluorine-containing polymer
JP5492711B2 (en) Isobutylene polymer
JP6669085B2 (en) Method for producing fluoropolymer
CN107406354B (en) Process for producing fluoroolefin compound
KR101601493B1 (en) Catalyst for Ring Opening Polymerization of Cycloolefin Polymers and Method of Preparing Cycloolefin Polymers Using the Same
JP6607200B2 (en) Method for producing fluorine-containing diene
JP2018024600A (en) Method for producing fluorine-containing olefin
WO2023037849A1 (en) Catalyst for olefin polymerization and method for producing olefin polymer
JP2016160231A (en) Method for producing fluorine-containing olefin
JP6673107B2 (en) Method for producing substrate into which organic group containing fluorine atom is introduced
JP5212164B2 (en) Novel dithiocarbonate norbornene and its (co) polymer
JP2018002613A (en) Method for producing fluorine-containing olefin
JPWO2016129607A1 (en) Method for producing fluorine-containing cycloolefin
JP6413848B2 (en) Method for producing fluorine-containing symmetric olefin
WO2011030792A1 (en) Vinyl ether compound, vinyl ether polymer, and method for producing vinyl ether compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7036120

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150