JP7035643B2 - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP7035643B2
JP7035643B2 JP2018043340A JP2018043340A JP7035643B2 JP 7035643 B2 JP7035643 B2 JP 7035643B2 JP 2018043340 A JP2018043340 A JP 2018043340A JP 2018043340 A JP2018043340 A JP 2018043340A JP 7035643 B2 JP7035643 B2 JP 7035643B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
current collector
electrolyte layer
secondary battery
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018043340A
Other languages
Japanese (ja)
Other versions
JP2019160491A (en
Inventor
勝春 肥田
純一 岩田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2018043340A priority Critical patent/JP7035643B2/en
Publication of JP2019160491A publication Critical patent/JP2019160491A/en
Application granted granted Critical
Publication of JP7035643B2 publication Critical patent/JP7035643B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、リチウム二次電池に関する。 The present invention relates to a lithium secondary battery.

従来より、正極と、イオン伝導性電解質と、負極として金属リチウムを用いるリチウム二次電池において、該金属リチウム表面に絶縁性の多孔質薄膜を設けたことを特徴とするリチウム二次電池がある(例えば、特許文献1参照)。 Conventionally, in a lithium secondary battery using a positive electrode, an ionic conductive electrolyte, and metallic lithium as a negative electrode, there is a lithium secondary battery characterized in that an insulating porous thin film is provided on the surface of the metallic lithium (a positive electrode). For example, see Patent Document 1).

特開平05-275118号公報Japanese Unexamined Patent Publication No. 05-275118

リチウム二次電池では、充電に伴って負極にリチウムが析出し、放電すると負極のリチウムがイオン伝導性電解質に戻る現象が繰り返し行われる。ところで、負極に析出したリチウムが均等にイオン伝導性電解質に戻るとは限らず、部分的に負極に残存することがある。部分的に負極に残存すると、負極とイオン伝導性電解質との間に空隙が生じた状態になる。 In a lithium secondary battery, lithium is deposited on the negative electrode as it is charged, and when discharged, the lithium on the negative electrode returns to the ionic conductive electrolyte. By the way, the lithium deposited on the negative electrode does not always return to the ion conductive electrolyte evenly, and may partially remain on the negative electrode. If it partially remains on the negative electrode, a void is formed between the negative electrode and the ion conductive electrolyte.

このようにリチウムが部分的に負極に残存すると、充放電に関与するリチウムイオンが減るため、リチウム二次電池の性能が低下するおそれがある。 When lithium partially remains in the negative electrode in this way, the lithium ions involved in charging and discharging are reduced, so that the performance of the lithium secondary battery may deteriorate.

そこで、性能低下を抑制可能なリチウム二次電池を提供することを目的とする。 Therefore, it is an object of the present invention to provide a lithium secondary battery capable of suppressing performance deterioration.

本発明の実施の形態のリチウム二次電池は、正極集電体と、前記正極集電体に重ねて設けられる正極と、前記正極に重ねて設けられ、リチウムイオンを含む固体電解質層と、前記固体電解質層の前記正極に面する第1面とは反対の第2面の一部分に設けられ、前記固体電解質層に対して不活性な絶縁材料製で、前記第2面に固着される固着部材と、前記固体電解質層の第2面と、前記固着部材とに重ねて設けられ、前記固着部材に固着され、前記固体電解質層との間に析出するリチウムを前記固体電解質層に向かう方向に付勢する負極集電体とを含前記固着部材の表面のうち、前記固体電解質層に接していない領域の全てが前記負極集電体に接しているThe lithium secondary battery of the embodiment of the present invention includes a positive electrode current collector, a positive electrode provided on the positive electrode current collector, a solid electrolyte layer provided on the positive electrode and containing lithium ions, and the above. A fixing member provided on a part of the second surface of the solid electrolyte layer opposite to the first surface facing the positive electrode, made of an insulating material inert to the solid electrolyte layer, and fixed to the second surface. And, lithium that is provided so as to be overlapped with the second surface of the solid electrolyte layer and the fixing member, is fixed to the fixing member, and precipitates between the solid electrolyte layer is attached in the direction toward the solid electrolyte layer. All of the regions of the surface of the fixing member that are not in contact with the solid electrolyte layer, including the negative electrode current collector, are in contact with the negative electrode current collector.

性能低下を抑制可能なリチウム二次電池を提供することができる。 It is possible to provide a lithium secondary battery capable of suppressing performance deterioration.

実施の形態のリチウム二次電池100を示す平面図である。It is a top view which shows the lithium secondary battery 100 of embodiment. 図1のA-A矢視断面を示す図である。It is a figure which shows the cross section of AA of FIG. リチウム二次電池100の放電後と充電後の断面の様子を示す図である。It is a figure which shows the state of the cross-section after discharging and charging of a lithium secondary battery 100. リチウム二次電池100のサイクル数と、充電容量の維持率との関係を表す実験結果である。This is an experimental result showing the relationship between the number of cycles of the lithium secondary battery 100 and the maintenance rate of the charge capacity.

以下、本発明のリチウム二次電池を適用した実施の形態について説明する。 Hereinafter, embodiments to which the lithium secondary battery of the present invention is applied will be described.

<実施の形態>
図1は、実施の形態のリチウム二次電池100を示す平面図である。図2は、図1のA-A矢視断面を示す図である。以下では、説明の便宜上、図2の断面に示す上下関係を用いて説明するが、普遍的な上下関係を表すものではない。
<Embodiment>
FIG. 1 is a plan view showing the lithium secondary battery 100 of the embodiment. FIG. 2 is a diagram showing a cross section taken along the line AA of FIG. Hereinafter, for convenience of explanation, the hierarchical relationship shown in the cross section of FIG. 2 will be used for explanation, but it does not represent a universal hierarchical relationship.

リチウム二次電池100は、基板101の上に設けられており、正極集電体110、正極120、固体電解質層130、固着部材140、及び負極集電体150を含む。リチウム二次電池100は、すべての構成要素が固体である全固体リチウム二次電池の一例である。 The lithium secondary battery 100 is provided on the substrate 101 and includes a positive electrode current collector 110, a positive electrode 120, a solid electrolyte layer 130, a fixing member 140, and a negative electrode current collector 150. The lithium secondary battery 100 is an example of an all-solid-state lithium secondary battery in which all the components are solid.

リチウム二次電池100は、実際には、正極集電体110と負極集電体150にそれぞれ接続される正極端子及び負極端子に加えて、正極集電体110、正極120、固体電解質層130、固着部材140、及び負極集電体150を覆うケース等の構成要素を含むが、ここではリチウム二次電池100の中身を示し、正極端子、負極端子、及びケース等の構成要素を省略する。 In the lithium secondary battery 100, in addition to the positive electrode terminal and the negative electrode terminal connected to the positive electrode current collector 110 and the negative electrode current collector 150, respectively, the positive electrode current collector 110, the positive electrode 120, and the solid electrolyte layer 130 Although the components such as the case covering the fixing member 140 and the negative electrode current collector 150 are included, the contents of the lithium secondary battery 100 are shown here, and the components such as the positive electrode terminal, the negative electrode terminal, and the case are omitted.

基板101は、シリコン層101Aと絶縁層101Bを含む。基板101は、シリコンウェハの上面を酸化することによって、二酸化シリコン(SiO)製の絶縁層101Bを形成したものである。絶縁層101Bは、リチウム二次電池100とシリコン層101Aとを絶縁するために設けられている。 The substrate 101 includes a silicon layer 101A and an insulating layer 101B. The substrate 101 is formed by oxidizing the upper surface of a silicon wafer to form an insulating layer 101B made of silicon dioxide (SiO 2 ). The insulating layer 101B is provided to insulate the lithium secondary battery 100 and the silicon layer 101A.

基板101は、リチウム二次電池100を作製するための基台として設けられており、基板101自体は、リチウム二次電池100の構成要素に含まれなくてよいものである。このため、基板101は、シリコンウェハで作製されたものに限られず、リチウム二次電池100との絶縁が確保可能なものであれば、どのようなものであってもよい。 The substrate 101 is provided as a base for manufacturing the lithium secondary battery 100, and the substrate 101 itself does not have to be included in the components of the lithium secondary battery 100. Therefore, the substrate 101 is not limited to that made of a silicon wafer, and may be any material as long as it can secure insulation from the lithium secondary battery 100.

正極集電体110は、絶縁層101Bの上に重ねて設けられ、平面視で矩形状である。正極集電体110は、正極120の正極活物質を保持し、電流を正極活物質に供給する機能を有する。正極集電体110は、一例として、チタン(Ti)層111Aと、白金(Pt)層111Bとを有する。 The positive electrode current collector 110 is provided so as to be superposed on the insulating layer 101B, and has a rectangular shape in a plan view. The positive electrode current collector 110 has a function of holding the positive electrode active material of the positive electrode 120 and supplying an electric current to the positive electrode active material. The positive electrode current collector 110 has, for example, a titanium (Ti) layer 111A and a platinum (Pt) layer 111B.

チタン層111Aは、絶縁層101Bと白金層111Bとの密着層として設けられている。また、白金層111Bには、正極120が面接続される。白金層111Bは、固体電解質層130の外部に表出している部分において、図示しない正極端子に接続される。チタン層111A及び白金層111Bの厚さは、それぞれ、一例として、30nm及び170nmである。 The titanium layer 111A is provided as an adhesion layer between the insulating layer 101B and the platinum layer 111B. Further, the positive electrode 120 is surface-connected to the platinum layer 111B. The platinum layer 111B is connected to a positive electrode terminal (not shown) at a portion exposed to the outside of the solid electrolyte layer 130. The thicknesses of the titanium layer 111A and the platinum layer 111B are, for example, 30 nm and 170 nm, respectively.

正極120は、正極集電体110の上に重ねて設けられ、平面視で矩形状である。正極120は、平面視で正極集電体110の中に収まるように配置される。すなわち、正極120は、平面視で正極集電体110よりも小さい。 The positive electrode 120 is provided so as to be superposed on the positive electrode current collector 110, and has a rectangular shape in a plan view. The positive electrode 120 is arranged so as to fit inside the positive electrode current collector 110 in a plan view. That is, the positive electrode 120 is smaller than the positive electrode current collector 110 in a plan view.

正極120は、一例として、正極活物質としてコバルト酸リチウム(LiCoO)を用いて作製される。正極120の厚さは、一例として、3.0μmである。 As an example, the positive electrode 120 is manufactured using lithium cobalt oxide (LiCoO 2 ) as the positive electrode active material. The thickness of the positive electrode 120 is, for example, 3.0 μm.

固体電解質層130は、リチウムイオンを含む固体状の電解質層であり、平面視で矩形状である。固体電解質層130のサイズは、一例として、四辺がそれぞれ5mmである。固体電解質層130は、正極120及び正極集電体110を覆い、平面視で最外部の四辺が絶縁層101Bに接するように設けられている。なお、正極集電体110の一部分(図中の左端の部分)は、固体電解質層130に覆われずに表出する。正極端子に接続するためである。 The solid electrolyte layer 130 is a solid electrolyte layer containing lithium ions, and has a rectangular shape in a plan view. As an example, the size of the solid electrolyte layer 130 is 5 mm on each side. The solid electrolyte layer 130 covers the positive electrode 120 and the positive electrode current collector 110, and is provided so that the outermost four sides are in contact with the insulating layer 101B in a plan view. A part of the positive electrode current collector 110 (the leftmost part in the figure) is exposed without being covered with the solid electrolyte layer 130. This is to connect to the positive electrode terminal.

固体電解質層130は、一例として、固体電解質としてリン酸三リチウム(LiPO)を形成した薄膜層であり、厚さは2.0μmである。なお、固体電解質層130の下面(正極120に面する面)は第1面の一例であり、上面(固着部材140が設けられる面)は第2面の一例である。 The solid electrolyte layer 130 is, for example, a thin film layer on which trilithium phosphate (Li 3 PO 4 ) is formed as a solid electrolyte, and has a thickness of 2.0 μm. The lower surface of the solid electrolyte layer 130 (the surface facing the positive electrode 120) is an example of the first surface, and the upper surface (the surface on which the fixing member 140 is provided) is an example of the second surface.

固着部材140は、固体電解質層130の上面に設けられ、平面視で矩形環状の部材である。固着部材140は、平面視で負極集電体150の内部に収まるように設けられている。すなわち、固着部材140は、固体電解質層130の上面の一部分に設けられており、また、固体電解質層130の上面のうち、負極集電体150が位置する領域のうちの一部分に設けられている。 The fixing member 140 is provided on the upper surface of the solid electrolyte layer 130 and is a rectangular annular member in a plan view. The fixing member 140 is provided so as to fit inside the negative electrode current collector 150 in a plan view. That is, the fixing member 140 is provided on a part of the upper surface of the solid electrolyte layer 130, and is provided on a part of the upper surface of the solid electrolyte layer 130 in the region where the negative electrode current collector 150 is located. ..

これは、固体電解質層130と負極集電体150とが直接的に接する部分を確保するとともに、固着部材140が固体電解質層130と負極集電体150との間に位置するようにするためである。固着部材140は、固体電解質層130の上面に固着されている。 This is to secure a portion where the solid electrolyte layer 130 and the negative electrode current collector 150 are in direct contact with each other, and to ensure that the fixing member 140 is located between the solid electrolyte layer 130 and the negative electrode current collector 150. be. The fixing member 140 is fixed to the upper surface of the solid electrolyte layer 130.

固着部材140は、固体電解質層130に対して不活性な絶縁材料製である。固着部材140は、固体電解質層130の上面と、負極集電体150との両方に固着され、リチウム二次電池100が充電されたときに固体電解質層130と負極集電体150との間にリチウムが析出(溶解析出)しても、固体電解質層130及び負極集電体150に固着した状態を保持可能な強度を有する。換言すれば、固着部材140は、固体電解質層130と負極集電体150とを固着している。固着部材140には、固体電解質層130に対して不活性な絶縁材料の中でも、特に金属酸化物のようなセラミックが適している。 The fixing member 140 is made of an insulating material that is inert to the solid electrolyte layer 130. The fixing member 140 is fixed to both the upper surface of the solid electrolyte layer 130 and the negative electrode current collector 150, and is between the solid electrolyte layer 130 and the negative electrode current collector 150 when the lithium secondary battery 100 is charged. Even if lithium is precipitated (dissolved and precipitated), it has a strength capable of retaining the state of being fixed to the solid electrolyte layer 130 and the negative electrode current collector 150. In other words, the fixing member 140 fixes the solid electrolyte layer 130 and the negative electrode current collector 150. Among the insulating materials inert to the solid electrolyte layer 130, ceramics such as metal oxides are particularly suitable for the fixing member 140.

固着部材140は、一例として、アルミナ(Al)製であり、厚さは20nmである。なお、固着部材140の材料として、アルミナ(Al)の代わりに、ジルコニア(ZrO)を用いてもよい。 As an example, the fixing member 140 is made of alumina (Al 2 O 3 ) and has a thickness of 20 nm. As the material of the fixing member 140, zirconia (ZrO 2 ) may be used instead of alumina (Al 2 O 3 ).

固着部材140として、固体電解質層130に対して不活性な絶縁材料又は金属酸化物を用いるのは、固体電解質層130の上面と固着部材140との界面における還元反応が生じないようにして、リチウム二次電池100の充電及び放電が繰り返されても、固着部材140と固体電解質層130の上面との固着状態を保持できるようにするためである。 The use of an insulating material or metal oxide that is inert to the solid electrolyte layer 130 as the fixing member 140 is such that a reduction reaction does not occur at the interface between the upper surface of the solid electrolyte layer 130 and the fixing member 140, and lithium is used. This is so that the fixed state of the fixing member 140 and the upper surface of the solid electrolyte layer 130 can be maintained even if the secondary battery 100 is repeatedly charged and discharged.

負極集電体150は、固着部材140の全体を覆うように、固体電解質層130の上面に設けられている。また、リチウム二次電池100の充放電が繰り返し行われても、負極集電体150は、固着部材140の上面に固着された状態に保持される。充放電が繰り返し行われても、負極集電体150と固着部材140との間にリチウム又は他の物質が入り込むことはないからである。 The negative electrode current collector 150 is provided on the upper surface of the solid electrolyte layer 130 so as to cover the entire fixing member 140. Further, even if the lithium secondary battery 100 is repeatedly charged and discharged, the negative electrode current collector 150 is held in a state of being fixed to the upper surface of the fixing member 140. This is because lithium or other substances do not enter between the negative electrode current collector 150 and the fixing member 140 even if charging and discharging are repeated.

負極集電体150は、リチウム二次電池100が充電されるときに固体電解質層130と負極集電体150との間にリチウムが析出すると、固着部材140によって下方向に固定された状態で、固着部材140に接していない部分が上方へ変形し、固体電解質層130の上面との間に生じる空間に、還元反応によって固体電解質層130から析出するリチウムが収まるようになっている。 When lithium is deposited between the solid electrolyte layer 130 and the negative electrode current collector 150 when the lithium secondary battery 100 is charged, the negative electrode current collector 150 is fixed downward by the fixing member 140. The portion not in contact with the fixing member 140 is deformed upward, and the lithium precipitated from the solid electrolyte layer 130 due to the reduction reaction is accommodated in the space generated between the portion not in contact with the fixing member 140 and the upper surface of the solid electrolyte layer 130.

この状態では、負極集電体150は、固着部材140によって下方向に引っ張られ、平面視で固着部材140に囲まれている部分には張力が掛かるため、析出したリチウムを固体電解質層130側に押し戻す(付勢する)。すなわち、負極集電体150が板バネのように作用し、復元力を発生する。 In this state, the negative electrode current collector 150 is pulled downward by the fixing member 140, and tension is applied to the portion surrounded by the fixing member 140 in a plan view, so that the precipitated lithium is transferred to the solid electrolyte layer 130 side. Push back (to urge). That is, the negative electrode current collector 150 acts like a leaf spring to generate a restoring force.

このように、析出したリチウムを負極集電体150が固体電解質層130側に押し戻す(付勢する)力を利用して、リチウム二次電池100が放電されるときに、固体電解質層130と負極集電体150との間に析出しているリチウムを効率的に固体電解質層130に押し戻すことにより、固体電解質層130と負極集電体150との間にリチウムが残存することを抑制している。 As described above, when the lithium secondary battery 100 is discharged by utilizing the force that the negative electrode current collector 150 pushes back (urges) the precipitated lithium to the solid electrolyte layer 130 side, the solid electrolyte layer 130 and the negative electrode are used. By efficiently pushing the lithium deposited between the current collector 150 and the solid electrolyte layer 130 back to the solid electrolyte layer 130, it is possible to prevent the lithium from remaining between the solid electrolyte layer 130 and the negative electrode current collector 150. ..

そして、リチウム二次電池100の充電時の還元反応及び放電時の酸化反応に関わるリチウムの量の減少をリチウム二次電池100のライフサイクルにわたって抑制することにより、性能低下を抑制する。 Then, by suppressing the decrease in the amount of lithium involved in the reduction reaction during charging and the oxidation reaction during discharging of the lithium secondary battery 100 over the life cycle of the lithium secondary battery 100, the deterioration in performance is suppressed.

このような負極集電体150としては、一例として、銅(Cu)薄膜を用いる。厚さは、一例として、200nmである。負極集電体150は、リチウムよりもイオン化傾向が小さく、負極集電体に適した金属製であればよいため、銅以外には、例えばニッケルを用いることができる。 As such a negative electrode current collector 150, a copper (Cu) thin film is used as an example. The thickness is, for example, 200 nm. Since the negative electrode current collector 150 has a lower ionization tendency than lithium and may be made of a metal suitable for the negative electrode current collector, nickel can be used in addition to copper, for example.

以上のようなリチウム二次電池100は、次のようにして作製することができる。まず、絶縁層101Bを有する基板101の上に、正極集電体110になるチタン層111A及び白金層111Bをスパッタ法で成膜し、白金層111Bの上に、コバルト酸リチウムをスパッタ法で成膜し、600℃で30分間アニール処理を行うことによって正極120を形成する。 The lithium secondary battery 100 as described above can be manufactured as follows. First, a titanium layer 111A and a platinum layer 111B to be a positive electrode current collector 110 are formed on a substrate 101 having an insulating layer 101B by a sputtering method, and lithium cobalt oxide is formed on the platinum layer 111B by a sputtering method. The positive electrode 120 is formed by forming a film and performing an annealing treatment at 600 ° C. for 30 minutes.

さらに、正極120の上に、固体電解質層130としてのリン酸三リチウム及び固体電解質層130の上に固着部材140としてのアルミナをスパッタ法で成膜し、最後に固体電解質層130及び固着部材140の上に負極集電体150としての銅薄膜をスパッタ法で成膜することによって、リチウム二次電池100が完成する。 Further, trilithium phosphate as the solid electrolyte layer 130 and alumina as the fixing member 140 are formed on the positive electrode 120 by a sputtering method, and finally the solid electrolyte layer 130 and the fixing member 140 are formed. The lithium secondary battery 100 is completed by forming a copper thin film as the negative electrode current collector 150 on the film by a sputtering method.

なお、ここでは、正極集電体110、コバルト酸リチウム、固着部材140としてのアルミナ、固体電解質層130としてのリン酸三リチウム及び負極集電体150としての銅薄膜をスパッタ法で成膜する形態について説明したが、スパッタ法の代わりに、蒸着法又はPLD(Pulsed Laser Deposition)法で成膜してもよい。 Here, a form in which a positive electrode current collector 110, lithium cobalt oxide, alumina as a fixing member 140, trilithium phosphate as a solid electrolyte layer 130, and a copper thin film as a negative electrode current collector 150 are formed by a sputtering method. However, instead of the sputtering method, a thin film may be formed by a vapor deposition method or a PLD (Pulsed Laser Deposition) method.

図3は、リチウム二次電池100の放電後と充電後の断面の様子を示す図である。図3には、正極120、固体電解質層130、固着部材140、及び負極集電体150の部分を厚さ方向に拡大して示す。 FIG. 3 is a diagram showing a cross-sectional view of the lithium secondary battery 100 after discharging and charging. FIG. 3 shows the portions of the positive electrode 120, the solid electrolyte layer 130, the fixing member 140, and the negative electrode current collector 150 enlarged in the thickness direction.

図3(A)には放電後の状態を示し、図3(B)には充電後の状態を示す。リチウム二次電池100の充電状態は、SOC(State of Charge)で表される。放電後とは、リチウム二次電池100の仕様上の完全放電状態であり、SOCが0%の状態をいう。充電後とは、リチウム二次電池100の仕様上の満充電状態であり、SOCが100%の状態をいう。 FIG. 3A shows the state after discharging, and FIG. 3B shows the state after charging. The state of charge of the lithium secondary battery 100 is represented by SOC (State of Charge). After discharge is a completely discharged state according to the specifications of the lithium secondary battery 100, and means a state in which the SOC is 0%. After charging is a fully charged state according to the specifications of the lithium secondary battery 100, and means a state in which the SOC is 100%.

放電後は、図3(A)に示すように、固体電解質層130と負極集電体150との間にリチウムは析出しておらず、負極集電体150は、固体電解質層130の上面に密着している。また、上述したように、負極集電体150としての銅薄膜は、固体電解質層130及び固着部材140の上に成膜されるため、図3(A)に示す状態は、負極集電体150に応力が掛かっていない自然な状態である。 After the discharge, as shown in FIG. 3A, no lithium was deposited between the solid electrolyte layer 130 and the negative electrode current collector 150, and the negative electrode current collector 150 was placed on the upper surface of the solid electrolyte layer 130. It is in close contact. Further, as described above, since the copper thin film as the negative electrode current collector 150 is formed on the solid electrolyte layer 130 and the fixing member 140, the state shown in FIG. 3A is the negative electrode current collector 150. It is a natural state without stress.

また、リチウム二次電池100が充電されても、固着部材140と負極集電体150との界面にリチウムは析出しないため、充電及び放電が繰り返されても、負極集電体150は、固着部材140に固着された状態である。 Further, even if the lithium secondary battery 100 is charged, lithium does not precipitate at the interface between the fixing member 140 and the negative electrode current collector 150, so that the negative electrode current collector 150 is a fixing member even if charging and discharging are repeated. It is in a state of being fixed to 140.

そして、図3(A)に示す状態から充電を開始すると、負極集電体150との還元反応によって固体電解質層130からリチウムが析出し、満充電になると、図3(B)に示すように固体電解質層130と負極集電体150との間にリチウム130Aが溜まった状態になる。リチウム130Aは、負極として機能する。 Then, when charging is started from the state shown in FIG. 3 (A), lithium is precipitated from the solid electrolyte layer 130 by the reduction reaction with the negative electrode current collector 150, and when fully charged, as shown in FIG. 3 (B). Lithium 130A is accumulated between the solid electrolyte layer 130 and the negative electrode current collector 150. Lithium 130A functions as a negative electrode.

図3(B)に示す状態では、負極集電体150は、リチウム130Aによって上向きに押されるとともに、固着部材140によって下向きに引っ張られるため、負極集電体150には、図3(A)に示すように平坦な状態に戻ろうとする力が作用し、リチウム130Aを下向き(固体電解質層130に向かう方向)に押す(付勢する)ことになる。 In the state shown in FIG. 3B, the negative electrode current collector 150 is pushed upward by the lithium 130A and pulled downward by the fixing member 140. Therefore, the negative electrode current collector 150 is shown in FIG. 3A. As shown, a force trying to return to a flat state acts to push (urge) the lithium 130A downward (toward the solid electrolyte layer 130).

このため、満充電の状態で図3(B)に示すようにリチウム130Aが溜まった状態から放電が始まると、リチウム130Aは、負極集電体150によって固体電解質層130に向かう方向に付勢されるので、固体電解質層130と負極集電体150との間にリチウム130Aが残存することが抑制される。この結果、充電による還元反応と、放電による酸化反応に関与するリチウム(リチウムイオン)の量が減少することが抑制され、経時劣化によるリチウム二次電池100の性能低下を抑制することができる。 Therefore, when the discharge starts from the state where the lithium 130A is accumulated as shown in FIG. 3B in the fully charged state, the lithium 130A is urged toward the solid electrolyte layer 130 by the negative electrode current collector 150. Therefore, the residual lithium 130A between the solid electrolyte layer 130 and the negative electrode current collector 150 is suppressed. As a result, it is possible to suppress a decrease in the amount of lithium (lithium ion) involved in the reduction reaction due to charging and the oxidation reaction due to discharge, and it is possible to suppress a deterioration in the performance of the lithium secondary battery 100 due to deterioration over time.

図4は、リチウム二次電池100のサイクル数と、充電容量の維持率との関係を表す実験結果である。図4には、実線で実施の形態のリチウム二次電池100の特性を示し、比較用に固着部材140を含まないリチウム二次電池の特性を破線で示す。 FIG. 4 is an experimental result showing the relationship between the number of cycles of the lithium secondary battery 100 and the maintenance rate of the charge capacity. In FIG. 4, the characteristics of the lithium secondary battery 100 of the embodiment are shown by a solid line, and the characteristics of a lithium secondary battery that does not include the fixing member 140 are shown by a broken line for comparison.

なお、充電は、定電流定電圧(CC-CV:constant current-constant voltage)方式で0.5mAで行い、4.2Vで完了とした。放電は、定電流(CC:constant current)方式で0.5mAで行い、2Vで完了とした。また、性能評価の実験は、室温で行った。 Charging was performed at 0.5 mA using a constant current-constant voltage (CC-CV) method, and was completed at 4.2 V. Discharge was performed at 0.5 mA by a constant current (CC) method and completed at 2 V. The performance evaluation experiment was conducted at room temperature.

固着部材140を含まないリチウム二次電池とは、リチウム二次電池100から固着部材140を取り除いた構成を有し、リチウム130Aが析出していない状態では、負極集電体150の下面の全体が固体電解質層130の上面と接している。 The lithium secondary battery that does not include the fixing member 140 has a configuration in which the fixing member 140 is removed from the lithium secondary battery 100, and in a state where the lithium 130A is not deposited, the entire lower surface of the negative electrode current collector 150 is covered. It is in contact with the upper surface of the solid electrolyte layer 130.

また、サイクル数とは、充放電の繰り返し回数である。充電容量の維持率は、新品の状態での充電容量に対する、サイクル数分だけ充放電を繰り返し行った状態での充電容量を百分率(%)で表す。 The number of cycles is the number of times charging / discharging is repeated. The maintenance rate of the charge capacity is expressed as a percentage (%) of the charge capacity in a state where charging and discharging are repeated for the number of cycles with respect to the charge capacity in a new state.

図4に示すように、実線で示す実施の形態のリチウム二次電池100の特性と、破線で示す比較用のリチウム二次電池の特性とを比べると、両方ともサイクル数が数回くらいから100%よりも低くなり、回数を経るにつれて、両者の差は開いている。 As shown in FIG. 4, when the characteristics of the lithium secondary battery 100 of the embodiment shown by the solid line and the characteristics of the lithium secondary battery for comparison shown by the broken line are compared, the number of cycles is about several to 100 in both cases. It is lower than%, and as the number of times goes by, the difference between the two becomes wider.

実線で示す実施の形態のリチウム二次電池100の特性は、破線で示す比較用のリチウム二次電池の特性に比べて改善されており、サイクル数が10回くらいまでは約10%の改善であり、その後は約15%程度の改善が見られた。 The characteristics of the lithium secondary battery 100 of the embodiment shown by the solid line are improved as compared with the characteristics of the comparative lithium secondary battery shown by the broken line, and the improvement is about 10% up to about 10 cycles. After that, an improvement of about 15% was seen.

このように、固着部材140を設けることにより、充放電を繰り返し行った場合の充電容量の低下が抑制されることを確認することができた。 In this way, it was confirmed that by providing the fixing member 140, the decrease in charge capacity when charging and discharging are repeated is suppressed.

従って、実施の形態によれば、性能低下を抑制可能なリチウム二次電池100を提供することができる。すなわち、サイクル特性を改善したリチウム二次電池100を提供することができる。 Therefore, according to the embodiment, it is possible to provide the lithium secondary battery 100 capable of suppressing the deterioration of performance. That is, it is possible to provide a lithium secondary battery 100 having improved cycle characteristics.

なお、以上では、固着部材140が平面視で矩形環状である形態について説明したが、固着部材140は、平面視で円環状、複数の直線状、又は、複数のドット状等であってもよい。固着部材140は、リチウム130Aが析出した際に、負極集電体150がリチウム130Aを固体電解質層130に向かう方向に付勢できるように、負極集電体150を固着して下向きに引っ張る力を発揮するものであればよい。 In the above, the form in which the fixing member 140 has a rectangular annular shape in a plan view has been described, but the fixing member 140 may have an annular shape, a plurality of linear shapes, a plurality of dot shapes, or the like in a plan view. .. The fixing member 140 fixes the negative electrode current collector 150 and pulls downward so that the negative electrode current collector 150 can urge the lithium 130A toward the solid electrolyte layer 130 when the lithium 130A is deposited. Anything that can be demonstrated will do.

また、以上では、固体電解質層130及び固着部材140の上に負極集電体150を直接的に設ける形態について説明したが、SOCが0%の状態でも、固体電解質層130と負極集電体150との間に負極としてのリチウム層が存在するようにしてもよい。 Further, although the embodiment in which the negative electrode current collector 150 is directly provided on the solid electrolyte layer 130 and the fixing member 140 has been described above, the solid electrolyte layer 130 and the negative electrode current collector 150 are described even when the SOC is 0%. A lithium layer as a negative electrode may be present between the two.

また、以上では、正極集電体110が白金層111Bを有する形態について説明したが、白金層111Bの代わりに金(Au)層を用いてもよい。 Further, although the form in which the positive electrode current collector 110 has the platinum layer 111B has been described above, a gold (Au) layer may be used instead of the platinum layer 111B.

また、以上では、正極120の作製に用いる正極活物質としてコバルト酸リチウム(LiCoO)を用いる形態について説明したが、代わりにリン酸鉄リチウム(LiFePO)又はマンガン酸リチウム(LiMn)を用いてもよい。 Further, in the above, the embodiment in which lithium cobalt oxide (LiCoO 2 ) is used as the positive electrode active material used for producing the positive electrode 120 has been described, but instead, lithium iron phosphate (LiFePO 4 ) or lithium manganate (LiMn 2 O 4 ) has been described. May be used.

また、以上では、固体電解質層130がリン酸三リチウム(LiPO)である形態について説明したが、代わりにリン酸リチウムオキシナイトライド(LiPON)を用いてもよい。 Further, although the form in which the solid electrolyte layer 130 is trilithium phosphate (Li 3 PO 4 ) has been described above, lithium phosphate oxynitride (LiPON) may be used instead.

以上、本発明の例示的な実施の形態のリチウム二次電池について説明したが、本発明は、具体的に開示された実施の形態に限定されるものではなく、特許請求の範囲から逸脱することなく、種々の変形や変更が可能である。 Although the lithium secondary battery of the exemplary embodiment of the present invention has been described above, the present invention is not limited to the specifically disclosed embodiment and deviates from the scope of claims. It is possible to make various modifications and changes.

以上の実施の形態に関し、さらに以下の付記を開示する。
(付記1)
正極集電体と、
前記正極集電体に重ねて設けられる正極と、
前記正極に重ねて設けられ、リチウムイオンを含む固体電解質層と、
前記固体電解質層の前記正極に面する第1面とは反対の第2面の一部分に設けられ、前記固体電解質層に対して不活性な絶縁材料製で、前記第2面に固着される固着部材と、
前記固体電解質層の第2面と、前記固着部材とに重ねて設けられ、前記前記固着部材に固着され、前記固体電解質層との間に析出するリチウムを前記固体電解質層に向かう方向に付勢する負極集電体と
を含む、リチウム二次電池。
(付記2)
前記固着部材は、平面視で矩形環状、円環状、複数の直線状、又は、複数のドット状である、付記1記載のリチウム二次電池。
(付記3)
前記絶縁材料は、アルミナ又はジルコニアである、付記1又は2記載のリチウム二次電池。
(付記4)
平面視で、前記固着部材が存在していない部分において、前記固体電解質層と前記負極集電体との間に設けられるリチウム製の負極をさらに含む、付記1乃至3のいずれか一項記載のリチウム二次電池。
(付記5)
前記負極集電体は、金属薄膜である、付記1乃至4のいずれか一項記載のリチウム二次電池。
(付記6)
前記負極集電体は、銅製である、付記1乃至5のいずれか一項記載のリチウム二次電池。
(付記7)
前記正極集電体は、前記正極に面接続される白金層を有する、付記1乃至6のいずれか一項記載のリチウム二次電池。
The following additional notes will be further disclosed with respect to the above embodiments.
(Appendix 1)
Positive current collector and
A positive electrode provided on the positive electrode current collector and a positive electrode
A solid electrolyte layer provided on the positive electrode and containing lithium ions,
It is made of an insulating material that is provided on a part of the second surface of the solid electrolyte layer opposite to the first surface facing the positive electrode and is inert to the solid electrolyte layer, and is fixed to the second surface. Members and
Lithium, which is provided so as to overlap the second surface of the solid electrolyte layer and the fixing member, is fixed to the fixing member, and precipitates between the solid electrolyte layer, is urged toward the solid electrolyte layer. Lithium secondary battery, including a negative electrode current collector.
(Appendix 2)
The lithium secondary battery according to Appendix 1, wherein the fixing member has a rectangular annular shape, an annular shape, a plurality of linear shapes, or a plurality of dot shapes in a plan view.
(Appendix 3)
The lithium secondary battery according to Appendix 1 or 2, wherein the insulating material is alumina or zirconia.
(Appendix 4)
2. Lithium secondary battery.
(Appendix 5)
The lithium secondary battery according to any one of Supplementary note 1 to 4, wherein the negative electrode current collector is a metal thin film.
(Appendix 6)
The lithium secondary battery according to any one of Supplementary note 1 to 5, wherein the negative electrode current collector is made of copper.
(Appendix 7)
The lithium secondary battery according to any one of Supplementary note 1 to 6, wherein the positive electrode current collector has a platinum layer surface-connected to the positive electrode.

100 リチウム二次電池
110 正極集電体
111A チタン層
111B 白金層
120 正極
130 固体電解質層
140 固着部材
150 負極集電体
100 Lithium secondary battery 110 Positive electrode current collector 111A Titanium layer 111B Platinum layer 120 Positive electrode 130 Solid electrolyte layer 140 Sticking member 150 Negative electrode current collector

Claims (6)

正極集電体と、
前記正極集電体に重ねて設けられる正極と、
前記正極に重ねて設けられ、リチウムイオンを含む固体電解質層と、
前記固体電解質層の前記正極に面する第1面とは反対の第2面の一部分に設けられ、前記固体電解質層に対して不活性な絶縁材料製で、前記第2面に固着される固着部材と、
前記固体電解質層の第2面と、前記固着部材とに重ねて設けられ、前記固着部材に固着され、前記固体電解質層との間に析出するリチウムを前記固体電解質層に向かう方向に付勢する負極集電体と
を含
前記固着部材の表面のうち、前記固体電解質層に接していない領域の全てが前記負極集電体に接している、リチウム二次電池。
Positive current collector and
A positive electrode provided on the positive electrode current collector and a positive electrode
A solid electrolyte layer provided on the positive electrode and containing lithium ions,
It is made of an insulating material that is provided on a part of the second surface of the solid electrolyte layer opposite to the first surface facing the positive electrode and is inert to the solid electrolyte layer, and is fixed to the second surface. Members and
Lithium, which is provided so as to be overlapped with the second surface of the solid electrolyte layer and the fixing member, is fixed to the fixing member, and precipitates between the solid electrolyte layer, is urged toward the solid electrolyte layer. Including the negative electrode current collector
A lithium secondary battery in which all of the surface of the fixing member that is not in contact with the solid electrolyte layer is in contact with the negative electrode current collector .
前記固着部材は、平面視で矩形環状、円環状、複数の直線状、又は、複数のドット状である、請求項1記載のリチウム二次電池。 The lithium secondary battery according to claim 1, wherein the fixing member has a rectangular annular shape, an annular shape, a plurality of linear shapes, or a plurality of dot shapes in a plan view. 前記絶縁材料は、アルミナ又はジルコニアである、請求項1又は2記載のリチウム二次電池。 The lithium secondary battery according to claim 1 or 2, wherein the insulating material is alumina or zirconia. 平面視で、前記固着部材が存在していない部分において、前記固体電解質層と前記負極集電体との間に設けられるリチウム製の負極をさらに含む、請求項1乃至3のいずれか一項記載のリチウム二次電池。 The invention according to any one of claims 1 to 3, further comprising a lithium negative electrode provided between the solid electrolyte layer and the negative electrode current collector in a portion where the fixing member does not exist in a plan view. Lithium secondary battery. 前記負極集電体は、金属薄膜である、請求項1乃至4のいずれか一項記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 4, wherein the negative electrode current collector is a metal thin film. 前記負極集電体は、銅製である、請求項1乃至5のいずれか一項記載のリチウム二次電池。 The lithium secondary battery according to any one of claims 1 to 5, wherein the negative electrode current collector is made of copper.
JP2018043340A 2018-03-09 2018-03-09 Lithium secondary battery Active JP7035643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018043340A JP7035643B2 (en) 2018-03-09 2018-03-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018043340A JP7035643B2 (en) 2018-03-09 2018-03-09 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2019160491A JP2019160491A (en) 2019-09-19
JP7035643B2 true JP7035643B2 (en) 2022-03-15

Family

ID=67996387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018043340A Active JP7035643B2 (en) 2018-03-09 2018-03-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP7035643B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208671A1 (en) 2008-02-18 2009-08-20 Front Edge Technology, Inc. Thin film battery fabrication using laser shaping
JP2012038425A (en) 2010-08-03 2012-02-23 Toyota Motor Corp Method of manufacturing electrode body, and electrode body
JP2016012495A (en) 2014-06-30 2016-01-21 トヨタ自動車株式会社 Lithium solid type secondary battery, and method for manufacturing the same
JP2016152076A (en) 2015-02-16 2016-08-22 富士通株式会社 All-solid type secondary battery and method for manufacturing the same
CN207149640U (en) 2017-07-18 2018-03-27 中国人民解放军63971部队 A kind of button cell based on solid electrolyte diaphragm
JP2018073513A (en) 2016-10-25 2018-05-10 日立造船株式会社 All-solid lithium ion secondary battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090208671A1 (en) 2008-02-18 2009-08-20 Front Edge Technology, Inc. Thin film battery fabrication using laser shaping
JP2012038425A (en) 2010-08-03 2012-02-23 Toyota Motor Corp Method of manufacturing electrode body, and electrode body
JP2016012495A (en) 2014-06-30 2016-01-21 トヨタ自動車株式会社 Lithium solid type secondary battery, and method for manufacturing the same
JP2016152076A (en) 2015-02-16 2016-08-22 富士通株式会社 All-solid type secondary battery and method for manufacturing the same
JP2018073513A (en) 2016-10-25 2018-05-10 日立造船株式会社 All-solid lithium ion secondary battery
CN207149640U (en) 2017-07-18 2018-03-27 中国人民解放军63971部队 A kind of button cell based on solid electrolyte diaphragm

Also Published As

Publication number Publication date
JP2019160491A (en) 2019-09-19

Similar Documents

Publication Publication Date Title
JP6047583B2 (en) Jelly roll type electrode assembly coated with active material and secondary battery having the same
US20110052972A1 (en) Electrode plate, electrode assembly and manufacturing method of electrode plate
KR101146616B1 (en) Thin film battery and method of connecting electrode terminal of thin film battery
JP5400013B2 (en) Electrode group and secondary battery using the same
JP2008123954A (en) Method of manufacturing lithium secondary battery, and lithium secondary battery
KR102561096B1 (en) Cathode layer, lithium secondary battery including the same and method for manufacturing thereof
JP2002231299A (en) Rolled electrode battery provided with heat sink
JP2020087710A (en) All-solid battery
JP2014056673A (en) Power storage device and method of manufacturing power storage device
JP7035643B2 (en) Lithium secondary battery
JP2004146297A (en) Solid battery
JP2018501605A (en) Electrode, manufacturing method thereof, electrode manufactured thereby, and secondary battery including the same
JP5279388B2 (en) Center pin for secondary battery and secondary battery
JP2020529720A (en) How to Form Solid Lithium Base Batteries and Solid Lithium Base Batteries
KR101610431B1 (en) Electrode assembly of jelly roll type and secondary battery comprising the same
US10608454B2 (en) Electrochemical device, such as a microbattery, and fabrication method thereof
JP2011159467A (en) Nonaqueous electrolyte battery
EP3771018B1 (en) Electrode assembly
JP2019140053A (en) Secondary battery
KR20210033322A (en) Lithium ion secondary battery and manufacturing method of the same
JP2022127950A (en) Secondary battery and manufacturing method for secondary battery
JP2021114394A (en) Solid state battery
CN113841268A (en) Electrochemical cell and method for manufacturing the same
KR101131555B1 (en) Pattern mask for thin film battery, thin film battery and method of manufacturing the same
JP6565203B2 (en) All solid state secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220214

R150 Certificate of patent or registration of utility model

Ref document number: 7035643

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150