JP7035264B1 - Ultrasonic flow meter - Google Patents

Ultrasonic flow meter Download PDF

Info

Publication number
JP7035264B1
JP7035264B1 JP2021191288A JP2021191288A JP7035264B1 JP 7035264 B1 JP7035264 B1 JP 7035264B1 JP 2021191288 A JP2021191288 A JP 2021191288A JP 2021191288 A JP2021191288 A JP 2021191288A JP 7035264 B1 JP7035264 B1 JP 7035264B1
Authority
JP
Japan
Prior art keywords
ultrasonic
flow meter
metal member
tube
receivers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021191288A
Other languages
Japanese (ja)
Other versions
JP2023077822A (en
Inventor
光楠 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiso Co Ltd
Original Assignee
Tokyo Keiso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiso Co Ltd filed Critical Tokyo Keiso Co Ltd
Priority to JP2021191288A priority Critical patent/JP7035264B1/en
Application granted granted Critical
Publication of JP7035264B1 publication Critical patent/JP7035264B1/en
Publication of JP2023077822A publication Critical patent/JP2023077822A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

【課題】可塑性物質と金属部材から成る消音構造体を管体の周囲に配置することによって、管体を伝達するノイズを効果的に吸収する。【解決手段】管体1に沿って管体1の外面に一対の超音波送受信器3、4がくさび台5を介して固定され、測定管路部2とされている。測定管路部2の周囲には消音構造体6が構設されており、消音構造体6は超音波送受信器3、4、くさび台5を除く測定管路部2の周囲を覆うように設けられている。消音構造体6は金属部材7と音波吸収材8とから成り、金属部材7は型材による複数個の長片部材とされ、管体1の長さ方向に沿って管体1の外面に接するように配置されている。音波吸収材8は金属部材7同士の間隙、管体1と金属部材7との間隙に充填されている。【選択図】図2PROBLEM TO BE SOLVED: To effectively absorb noise transmitted through a pipe body by arranging a sound deadening structure composed of a plastic substance and a metal member around the pipe body. SOLUTION: A pair of ultrasonic transmitters / receivers 3 and 4 are fixed to an outer surface of a tube body 1 along a tube body 1 via a wedge stand 5 to form a measuring tube section 2. A muffling structure 6 is installed around the measuring conduit 2, and the muffling structure 6 is provided so as to cover the periphery of the measuring conduit 2 excluding the ultrasonic transmitters / receivers 3 and 4 and the wedge stand 5. Has been done. The sound deadening structure 6 is composed of a metal member 7 and a sound wave absorbing material 8, and the metal member 7 is a plurality of long piece members made of a mold material so as to be in contact with the outer surface of the pipe body 1 along the length direction of the pipe body 1. Is located in. The sound wave absorbing material 8 is filled in the gap between the metal members 7 and the gap between the tube body 1 and the metal member 7. [Selection diagram] Fig. 2

Description

本発明は、管体を伝達するノイズを消音構造体で吸収し、S/Nを大きくして、測定精度の向上を図る超音波流量計に関するものである。 The present invention relates to an ultrasonic flow meter that absorbs noise transmitted through a tube body by a sound deadening structure, increases S / N, and improves measurement accuracy.

超音波流量計では、管体を伝達する余分な超音波のノイズ成分が超音波受信素子に混入し、S/Nが小さくなり測定精度が悪化し易い。そのために、例えば特許文献1などに記載されているように、管体の周囲にゴム体や粘着ゲルのような超音波消音材を配置し、ノイズを吸収して減少させることが開示されている。或いは、超音波消音材中に金属粒子等を混在して、吸収性能を向上させることも行われている。 In the ultrasonic flow meter, an extra ultrasonic noise component transmitted through the tube is mixed in the ultrasonic receiving element, the S / N becomes small, and the measurement accuracy tends to deteriorate. Therefore, for example, as described in Patent Document 1, it is disclosed that an ultrasonic sound deadening material such as a rubber body or an adhesive gel is arranged around a tube body to absorb and reduce noise. .. Alternatively, metal particles and the like are mixed in the ultrasonic sound deadening material to improve the absorption performance.

また特許文献2には、管体の周囲に、未架橋ゴムなどから成る超音波吸収体を配置し、更にその外側に連続気泡を有するマット状の弾性多孔体から成る超音波緩衝材を配置し、管体を伝達するノイズを吸収することが開示されている。 Further, in Patent Document 2, an ultrasonic absorber made of uncrosslinked rubber or the like is arranged around the tube body, and an ultrasonic cushioning material made of a mat-shaped elastic porous body having open cells is arranged outside the ultrasonic absorber. , It is disclosed to absorb the noise transmitted through the tube.

特開平6-117894号公報Japanese Unexamined Patent Publication No. 6-117894 特開2018-105735号公報Japanese Unexamined Patent Publication No. 2018-105735

しかし、これらの特許文献1、2等で使用されるゴム体等の超音波消音材は、管体の表面に接触してノイズを吸収できるが、管体の表面積には限界があり、ノイズの吸収が不十分で、ノイズが多く残留するので望ましい測定精度が得られるとは云えない。 However, although the ultrasonic sound deadening material such as the rubber body used in Patent Documents 1 and 2 can absorb noise by coming into contact with the surface of the tube body, the surface area of the tube body is limited and the noise is increased. It cannot be said that the desired measurement accuracy can be obtained because the absorption is insufficient and a lot of noise remains.

特に、流体として気体を測定対象とする場合には、気体中を伝播する超音波パルスの減衰が大きく、管体を伝達するノイズによる影響が増加し、得られる超音波信号よりも1000倍程度も大きなノイズ量となることがある。このため、信号がノイズ中に埋もれることがあって、S/N比が極端に小さくなり、このノイズを十分に除去しないと、測定の信頼性を確保し難いという問題点がある。 In particular, when a gas is measured as a fluid, the attenuation of the ultrasonic pulse propagating in the gas is large, the influence of the noise transmitted through the tube increases, and it is about 1000 times larger than the obtained ultrasonic signal. It may result in a large amount of noise. Therefore, the signal may be buried in the noise, and the S / N ratio becomes extremely small. Unless this noise is sufficiently removed, it is difficult to secure the reliability of the measurement.

管体が合成樹脂材の場合には伝達ノイズは少ないので、除去が十分でなくとも流速は容易に測定できるが、金属管の場合には伝達ノイズ量が大きく、除去がなかなか困難である。 When the tube is made of synthetic resin, the transmission noise is small, so the flow velocity can be easily measured even if the removal is not sufficient, but when the tube is a metal tube, the amount of transmission noise is large and it is difficult to remove.

本発明の目的は、上述の課題を解消し、管体の測定管路部の周囲に、金属部材と音波吸収材とから成る消音構造体を配置して、伝達ノイズを効果的に吸収し、特に気体を測定対象とする場合でも適用可能な超音波流量計を提供することにある。 An object of the present invention is to solve the above-mentioned problems and to arrange a sound deadening structure composed of a metal member and a sound wave absorbing material around a measuring pipe section of a pipe body to effectively absorb transmission noise. In particular, it is an object of the present invention to provide an ultrasonic flow meter that can be applied even when a gas is a measurement target.

上記目的を達成するための本発明に係る超音波流量計は、管体内の流体の流速を超音波パルスにより測定する一対の超音波送受信器を配置した測定管路部の周囲に、前記管体を伝達するノイズを吸収する消音構造体を取り付けた超音波流量計であって、前記消音構造体は、複数個の金属部材を前記管体の外面に配置すると共に、前記金属部材同士の間隙及び前記管体と前記金属部材との間隙に可塑性を有する軟質高密度の音波吸収材を充填したことを特徴とする。 The ultrasonic flow meter according to the present invention for achieving the above object is a tube body around a measuring tube portion in which a pair of ultrasonic transmitters / receivers for measuring the flow velocity of a fluid in a tube by an ultrasonic pulse are arranged. An ultrasonic flow meter equipped with a sound deadening structure that absorbs noise transmitted through the sound wave, in which a plurality of metal members are arranged on the outer surface of the pipe body, and gaps between the metal members and The gap between the tube and the metal member is filled with a soft, high-density sound wave absorber having plasticity.

本発明に係る超音波流量計によれば、金属部材と軟質高密度の音波吸収材とから成る消音構造体を管体の測定管路部の周囲に配置することによって、管体を伝達するノイズを効果的に吸収し測定管路部における測定精度を向上する。 According to the ultrasonic flow meter according to the present invention, noise transmitted through the tube by arranging a sound deadening structure composed of a metal member and a soft high-density sound absorber around the measurement tube portion of the tube. Is effectively absorbed and the measurement accuracy in the measurement pipeline is improved.

測定管路部の縦断面図である。It is a vertical cross-sectional view of the measurement pipeline part. 測定管路部の拡大横断面図である。It is an enlarged cross-sectional view of the measurement pipeline part. 管体の周囲に金属部材を配置した状態の斜視図である。It is a perspective view of the state where the metal member is arranged around the tube body. 他の形状の金属部材を使用した測定管路部の拡大横断面図である。It is an enlarged cross-sectional view of the measurement line part using the metal member of another shape. 他の形状の金属部材の断面図である。It is sectional drawing of the metal member of another shape.

本発明を図示の実施例に基づいて詳細に説明する。 The present invention will be described in detail with reference to the illustrated examples.

図1は測定管路部の縦断面図である。気体である流体を流す管体1の一部は測定管路部2とされている。測定管路部2においては、例えば径50mmの金属製の管体1の外面に一対の超音波送受信器3、4がくさび台5を介して固定されている。超音波送受信器3、4はそれぞれ振動子を内蔵しており、超音波パルスの送信及び受信が可能とされている。くさび台5は管体1に対して超音波パルスを所定の角度で送受信させるものであり、超音波を伝達し易い例えばチタンなどの材料から成っている。 FIG. 1 is a vertical cross-sectional view of the measurement pipeline portion. A part of the pipe body 1 through which the fluid which is a gas flows is regarded as the measurement pipe portion 2. In the measuring tube portion 2, for example, a pair of ultrasonic transmitters / receivers 3 and 4 are fixed to the outer surface of a metal tube 1 having a diameter of 50 mm via a wedge base 5. The ultrasonic transmitters and receivers 3 and 4 each have a built-in vibrator, and can transmit and receive ultrasonic pulses. The wedge base 5 transmits and receives ultrasonic pulses to and from the tube 1 at a predetermined angle, and is made of a material such as titanium that easily transmits ultrasonic waves.

超音波送受信器3、4は管体1に沿って管体1表面の上流側と下流側とにずれて配置され、超音波送受信器3、4の何れかから発信された超音波パルスPが管体1中の流体を斜め方向に横断し、管体1の内壁で反射し折り返され他方の超音波送受信器3、4で受信される所謂V型方式の配置とされている。なお、超音波送受信器3、4を管体1を挟んで上流側と下流側とに配置し、超音波パルスPを管体1内の流体を斜め1方向のみに横断させるZ型方式の配置とすることもできる。 The ultrasonic transmitters / receivers 3 and 4 are arranged so as to be offset from the upstream side and the downstream side of the surface of the tubular body 1 along the tubular body 1, and the ultrasonic pulse P transmitted from any of the ultrasonic transmitters / receivers 3 and 4 is generated. It is a so-called V-shaped arrangement that crosses the fluid in the tube 1 in an oblique direction, is reflected by the inner wall of the tube 1, is folded back, and is received by the other ultrasonic transmitters / receivers 3 and 4. It should be noted that the ultrasonic transmitters / receivers 3 and 4 are arranged on the upstream side and the downstream side with the tube body 1 interposed therebetween, and the ultrasonic pulse P is arranged in a Z-type system so as to cross the fluid in the tube body 1 in only one diagonal direction. It can also be.

測定管路部2の周囲には、図2、図3にも示すように、管体1を伝達する超音波状のノイズを吸収する消音構造体6が構設されている。消音構造体6は金属部材7と音波吸収材8とから成り、金属部材7には型材等から成るSUSなどの多数個のブロック材が使用され、音波吸収材8には油粘土、高分子材料などの可塑性を有する軟質高密度材料が使用されている。なお、図3に示す消音構造体6には、音波吸収材8の図示は省略している。 As shown in FIGS. 2 and 3, a sound deadening structure 6 for absorbing ultrasonic noise transmitted through the tube 1 is constructed around the measurement tube 2. The sound deadening structure 6 is composed of a metal member 7 and a sound wave absorbing material 8, a large number of block materials such as SUS made of a mold material are used for the metal member 7, and oil clay and a polymer material are used for the sound wave absorbing material 8. A soft high-density material having plasticity such as is used. The sound wave absorbing material 8 is not shown in the sound deadening structure 6 shown in FIG.

金属部材7は、例えば100mm、50mmの2種類の長さの長片部材が、管体1の長さ方向に多数列に、適宜な間隔をおいて継ぎ足されて配列されている。図2に示す実施例では、金属部材7の断面は例えば正方形とされ、管体1に接する面に沿って凹部が形成されている。金属部材7は音波吸収材8への吸音効率を向上させるために、その断面では音波吸収材8に接する表面積が大きな形状であることが好ましい。 In the metal member 7, for example, two types of long piece members having a length of 100 mm and 50 mm are arranged in a large number of rows in the length direction of the tubular body 1 by adding them at appropriate intervals. In the embodiment shown in FIG. 2, the cross section of the metal member 7 is, for example, a square, and a recess is formed along the surface in contact with the tubular body 1. In order to improve the sound absorption efficiency of the sound wave absorbing material 8, the metal member 7 preferably has a shape having a large surface area in contact with the sound wave absorbing material 8 in its cross section.

測定管路部2では、2種類の金属部材7が適宜に組み合わされて配置されており、このように金属部材7に長さの異なるものを用いるのは、その表面に音波吸収材8を配置してランダム性を高めるためであるが、同一長、同一形状の金属部材7を用いても支障はない。 In the measuring pipeline portion 2, two types of metal members 7 are appropriately combined and arranged, and the reason why the metal members 7 having different lengths are used is that the sound wave absorber 8 is arranged on the surface thereof. This is to increase the randomness, but there is no problem even if the metal members 7 having the same length and the same shape are used.

音波吸収材8は金属部材7同士の間隙、及び管体1と金属部材7との間隙、更には金属部材7の周囲に、その可塑性を利用して隙間なく充填されている。 The sound wave absorbing material 8 is filled tightly in the gap between the metal members 7, the gap between the tube 1 and the metal member 7, and further around the metal member 7 by utilizing its plasticity.

この消音構造体6は、超音波送受信器3、4、くさび台5を除く測定管路部2の周囲を覆うように設けられている。更に、消音構造体6の外側は、図示を省略する例えば金属製の専用カバー部材により覆われ、消音構造体6はこのカバー部材により管体1に強く密着可能とされている。 The sound deadening structure 6 is provided so as to cover the periphery of the measuring pipeline portion 2 excluding the ultrasonic transmitters / receivers 3 and 4 and the wedge stand 5. Further, the outside of the sound deadening structure 6 is covered with, for example, a special metal cover member (not shown), and the sound deadening structure 6 can be strongly adhered to the pipe body 1 by this cover member.

測定に際しては、超音波送受信器3、4にそれぞれ内蔵した振動子から交互に超音波パルスPが発信され、超音波パルスPは管体1内の流体を横断して管体1の内壁で反射され、超音波送受信器4、3の振動子で受信される。上流側の超音波送受信器3から下流側の超音波送受信器4に向い流体の流れに沿って進行する超音波パルスPと、下流側の超音波送受信器4から上流側の超音波送受信器3に向い流れと逆行する超音波パルスPとの到達時間差を基に流速が演算により求められる。この流速に管体1の断面積を乗じて流量が求められるが、この測定原理は公知なので、更なる詳細な説明は省略する。 At the time of measurement, ultrasonic pulse P is alternately transmitted from the vibrators built in the ultrasonic transmitters / receivers 3 and 4, and the ultrasonic pulse P crosses the fluid in the tube 1 and is reflected by the inner wall of the tube 1. It is received by the oscillators of the ultrasonic transmitters and receivers 4 and 3. The ultrasonic pulse P traveling along the flow of fluid from the upstream ultrasonic transmitter / receiver 3 toward the downstream ultrasonic transmitter / receiver 4, and the downstream ultrasonic transmitter / receiver 4 to the upstream ultrasonic transmitter / receiver 3 The flow velocity is calculated by calculation based on the arrival time difference between the flow toward and the ultrasonic pulse P going backward. The flow rate is obtained by multiplying this flow velocity by the cross-sectional area of the tube body 1, but since this measurement principle is known, further detailed description will be omitted.

管体1の周囲には、消音構造体6の特に金属部材7が管体1に接するように配置されているので、管体1を伝達してきたノイズは金属部材7に伝達され、更に金属部材7に接する音波吸収材8で効果的に吸収され、超音波送受信器3、4へのノイズの入力は少なくなる。 Since the sound deadening structure 6 in particular, the metal member 7, is arranged around the pipe body 1 so as to be in contact with the pipe body 1, the noise transmitted through the pipe body 1 is transmitted to the metal member 7, and further, the metal member 7 is transmitted. It is effectively absorbed by the sound wave absorbing material 8 in contact with 7, and the input of noise to the ultrasonic transmitters / receivers 3 and 4 is reduced.

ノイズの低減を音響インピーダンスに関して説明すると、音響インピーダンスは媒質の密度と音速を乗じた値である。金属製の管体1とほぼ同等の大きさの音響インピーダンスを持つ金属部材7を管体1に密着させると、管体1のノイズは金属部材7に伝達し分散する。そして、金属部材7中のノイズが音波吸収材8に伝達されて吸収される。このようにして、管体1、金属部材7に伝達されたノイズのエネルギーは主に音波吸収材8により熱エネルギーに変換され、音波吸収材8で消音される。 Explaining the reduction of noise in terms of acoustic impedance, the acoustic impedance is a value obtained by multiplying the density of the medium and the speed of sound. When a metal member 7 having an acoustic impedance having an acoustic impedance substantially equal to that of the metal tube 1 is brought into close contact with the tube 1, the noise of the tube 1 is transmitted to the metal member 7 and dispersed. Then, the noise in the metal member 7 is transmitted to the sound wave absorbing material 8 and absorbed. In this way, the noise energy transmitted to the tube body 1 and the metal member 7 is mainly converted into heat energy by the sound wave absorbing material 8 and silenced by the sound wave absorbing material 8.

消音構造体6の外側に金属製カバーを被着し、緊締バンド等により締め付けると、ノイズの吸収が更に良好となる。つまり、金属製カバーは消音構造体6を管体1に強く密着させ、金属製カバーは消音構造体6にも密着するので、音響整合状態が変化し、管体1から金属部材7、音波吸収材8へのノイズの伝達、金属部材7、音波吸収材8から金属製カバーへのノイズの伝達が多くなり、ノイズの吸収が効果的に行われる。また、金属製カバーを被着することにより、空気との接触が少なくなり、音波吸収材8の変質が防止される。 When a metal cover is attached to the outside of the sound deadening structure 6 and tightened with a tightening band or the like, noise absorption is further improved. That is, since the metal cover strongly adheres the sound deadening structure 6 to the tube body 1, and the metal cover also adheres to the sound deadening structure 6, the acoustic matching state changes, and the metal member 7 and the sound wave absorption from the tube body 1. The transmission of noise to the material 8 and the transmission of noise from the metal member 7 and the sound wave absorber 8 to the metal cover are increased, and the noise is effectively absorbed. Further, by attaching the metal cover, the contact with air is reduced, and the deterioration of the sound wave absorbing material 8 is prevented.

図4は断面半円弧状の金属部材7を使用した場合の測定管路部2の断面図であり、金属部材7の一部は管体1に沿って接触しており、管体1の周囲、金属部材7同士の間隙には音波吸収材8が充填されている。 FIG. 4 is a cross-sectional view of the measurement conduit portion 2 when the metal member 7 having a semi-arc-shaped cross section is used. , The gap between the metal members 7 is filled with the sound wave absorbing material 8.

図5(a)~(d)は金属部材7の断面形状の例であり、これらの表面積を大きくした金属部材7を用いることにより、消音構造体6による消音効果が発揮される。なお、消音構造体6にはこれらの形状が異なる金属部材7を混在することもできる。 5 (a) to 5 (d) are examples of cross-sectional shapes of the metal member 7, and by using the metal member 7 having a large surface area, the sound deadening effect of the sound deadening structure 6 is exhibited. The sound deadening structure 6 may contain metal members 7 having different shapes.

なお、実施例においては、金属部材7は長片状のブロック材で、管体1の長手方向に沿って接することを説明したが、その形状は実施例に限定されず、また管体1の短手方向に巻き付けるように配置することもできる。また、金属部材7は管体1の周囲にひれ状に一体的に形成してもよい。つまり、金属部材7の表面積を大にして、ノイズを音波吸収材8に効果的に伝達できるようにすればよい。 In the embodiment, it has been described that the metal member 7 is a long piece-shaped block material and is in contact with the tubular body 1 along the longitudinal direction, but the shape thereof is not limited to the embodiment, and the tubular body 1 is not limited in shape. It can also be arranged so as to be wound in the lateral direction. Further, the metal member 7 may be integrally formed around the tubular body 1 in a fin shape. That is, the surface area of the metal member 7 may be increased so that noise can be effectively transmitted to the sound wave absorbing material 8.

1 管体
2 測定管路部
3、4 超音波送受信器
5 くさび台
6 消音構造体
7 金属部材
8 音波吸収材
1 Pipe 2 Measurement pipe 3, 4 Ultrasonic transmitter / receiver 5 Wedge stand 6 Sound deadening structure 7 Metal member 8 Sound wave absorber

Claims (6)

管体内の流体の流速を超音波パルスにより測定する一対の超音波送受信器を配置した測定管路部の周囲に、前記管体を伝達するノイズを吸収する消音構造体を取り付けた超音波流量計であって、
前記消音構造体は、複数個の金属部材を前記管体の外面に配置すると共に、前記金属部材同士の間隙及び前記管体と前記金属部材との間隙に可塑性を有する軟質高密度の音波吸収材を充填したことを特徴とする超音波流量計。
An ultrasonic flow meter equipped with a muffling structure that absorbs noise transmitted through the tube around the measurement tube section where a pair of ultrasonic transmitters and receivers are arranged to measure the flow velocity of the fluid in the tube by ultrasonic pulses. And,
In the sound deadening structure, a plurality of metal members are arranged on the outer surface of the pipe body, and a soft, high-density sound wave absorber having plasticity in the gap between the metal members and the gap between the pipe body and the metal member. An ultrasonic flow meter characterized by being filled with.
前記測定管路部の外面の上流側と下流側に前記一対の前記超音波送受信器を取り付け、前記超音波パルスを一方の前記超音波送受信器から発信し他方の前記超音波送受信器で受信することを交互に繰り返して、流量を測定することを特徴とする請求項1に記載の超音波流量計。 The pair of ultrasonic transmitters / receivers are attached to the upstream side and the downstream side of the outer surface of the measurement conduit portion, and the ultrasonic pulse is transmitted from one of the ultrasonic transmitters / receivers and received by the other ultrasonic transmitter / receiver. The ultrasonic flow meter according to claim 1, wherein the above is alternately repeated to measure the flow rate. 前記金属部材は長片状で表面積が大きな型材とし、その一部が前記管体の長手方向に沿って接するようにしたことを特徴とする請求項1又は2に記載の超音波流量計。 The ultrasonic flow meter according to claim 1 or 2, wherein the metal member is a long piece-shaped material having a large surface area, and a part thereof is in contact with the tubular body along the longitudinal direction. 前記音波吸収材は油粘土、高分子材料としたことを特徴とする請求項1~3の何れか1項に記載の超音波流量計。 The ultrasonic flow meter according to any one of claims 1 to 3, wherein the sound wave absorbing material is made of oil clay or a polymer material. 前記消音構造体の周囲を金属製カバーにより覆うことを特徴とする請求項1~4の何れか1項に記載の超音波流量計。 The ultrasonic flow meter according to any one of claims 1 to 4, wherein the periphery of the sound deadening structure is covered with a metal cover. 金属製カバーは前記消音構造体を外側から締付可能としたことを特徴とする請求項1~5の何れか1項に記載の超音波流量計。 The ultrasonic flow meter according to any one of claims 1 to 5, wherein the metal cover can be tightened from the outside of the sound deadening structure.
JP2021191288A 2021-11-25 2021-11-25 Ultrasonic flow meter Active JP7035264B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021191288A JP7035264B1 (en) 2021-11-25 2021-11-25 Ultrasonic flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021191288A JP7035264B1 (en) 2021-11-25 2021-11-25 Ultrasonic flow meter

Publications (2)

Publication Number Publication Date
JP7035264B1 true JP7035264B1 (en) 2022-03-14
JP2023077822A JP2023077822A (en) 2023-06-06

Family

ID=81213462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021191288A Active JP7035264B1 (en) 2021-11-25 2021-11-25 Ultrasonic flow meter

Country Status (1)

Country Link
JP (1) JP7035264B1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100257941A1 (en) * 2008-04-10 2010-10-14 Expro Meters, Inc. Apparatus for attenuating ultrasonic waves propagating within a pipe wall
JP2012021782A (en) * 2010-07-12 2012-02-02 Panasonic Corp Ultrasonic flow rate measuring unit
JP2015210252A (en) * 2014-04-30 2015-11-24 アズビル株式会社 Method of sticking ultrasonic absorber and ultrasonic flow meter
JP2019095322A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Ultrasonic wave flow rate measurement structure
JP2019158675A (en) * 2018-03-14 2019-09-19 株式会社キーエンス Clamp-on type ultrasonic flow sensor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100257941A1 (en) * 2008-04-10 2010-10-14 Expro Meters, Inc. Apparatus for attenuating ultrasonic waves propagating within a pipe wall
JP2012021782A (en) * 2010-07-12 2012-02-02 Panasonic Corp Ultrasonic flow rate measuring unit
JP2015210252A (en) * 2014-04-30 2015-11-24 アズビル株式会社 Method of sticking ultrasonic absorber and ultrasonic flow meter
JP2019095322A (en) * 2017-11-24 2019-06-20 富士電機株式会社 Ultrasonic wave flow rate measurement structure
JP2019158675A (en) * 2018-03-14 2019-09-19 株式会社キーエンス Clamp-on type ultrasonic flow sensor

Also Published As

Publication number Publication date
JP2023077822A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
EP1173733B1 (en) Clamp-on ultrasonic flow meter for low density fluids
JP4233445B2 (en) Ultrasonic flow meter
JP2944206B2 (en) Ultrasonic flow meter
JP4782327B2 (en) Clamp-on type ultrasonic flowmeter
EP2310810B1 (en) Fluid flow meter apparatus for attenuating ultrasonic waves propagating within a pipe wall
JP2003075219A (en) Clamp-on ultrasonic flowmeter
JPH10122923A (en) Ultrasonic flow meter
KR20150141876A (en) Clamp-on type ultrasonic flowmeter and method for measuring flow rate
JP2014178202A (en) Ultrasonic flowmeter and method for measuring ultrasonic flow
JP3569799B2 (en) Ultrasonic flow meter
JP3761399B2 (en) Ultrasonic flow meter
US5907099A (en) Ultrasonic device with enhanced acoustic properties for measuring a volume amount of fluid
JP6781627B2 (en) Ultrasonic flow meter, ultrasonic shock absorber, ultrasonic flow measurement method, ultrasonic buffer method, and ultrasonic shock absorber mounting method
JP7035264B1 (en) Ultrasonic flow meter
JP2006292381A (en) Ultrasonic flowmeter
JP2017083353A (en) Clamp-on type ultrasonic flowmeter installation kit, and method for installing clamp-on type ultrasonic flowmeter
EP2269010B1 (en) Apparatus for attenuating ultrasonic waves propagating within a pipe wall
JP3328505B2 (en) Ultrasonic flow meter
JP3646876B2 (en) Ultrasonic flow meter
JP6909100B2 (en) Ultrasonic flow meter and ultrasonic flow measurement method
JP2005180988A (en) Ultrasonic flowmeter
JP2011007763A (en) Ultrasonic flowmeter
JP2505647Y2 (en) Ultrasonic flow meter
JP3013596B2 (en) Transmission ultrasonic flowmeter
JPH0915012A (en) Ultrasonic wave flowmeter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211210

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220302

R150 Certificate of patent or registration of utility model

Ref document number: 7035264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150