JP7033730B2 - Cooling device, battery temperature control system and vehicle - Google Patents

Cooling device, battery temperature control system and vehicle Download PDF

Info

Publication number
JP7033730B2
JP7033730B2 JP2018131669A JP2018131669A JP7033730B2 JP 7033730 B2 JP7033730 B2 JP 7033730B2 JP 2018131669 A JP2018131669 A JP 2018131669A JP 2018131669 A JP2018131669 A JP 2018131669A JP 7033730 B2 JP7033730 B2 JP 7033730B2
Authority
JP
Japan
Prior art keywords
wall portion
coolant
refrigerant
passage
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018131669A
Other languages
Japanese (ja)
Other versions
JP2020009694A (en
Inventor
祐紀 牧田
敦 末吉
勝志 谷口
圭俊 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2018131669A priority Critical patent/JP7033730B2/en
Priority to DE102019118356.1A priority patent/DE102019118356A1/en
Priority to CN201910611221.5A priority patent/CN110718724A/en
Publication of JP2020009694A publication Critical patent/JP2020009694A/en
Application granted granted Critical
Publication of JP7033730B2 publication Critical patent/JP7033730B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0037Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the conduits for the other heat-exchange medium also being formed by paired plates touching each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0081Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by a single plate-like element ; the conduits for one heat-exchange medium being integrated in one single plate-like element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0093Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/003Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units
    • B60K2001/005Arrangement or mounting of electrical propulsion units with means for cooling the electrical propulsion units the electric storage means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • B60K2001/0405Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion characterised by their position
    • B60K2001/0438Arrangement under the floor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • Y04S10/126Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation the energy generation units being or involving electric vehicles [EV] or hybrid vehicles [HEV], i.e. power aggregation of EV or HEV, vehicle to grid arrangements [V2G]

Description

本開示は、冷却装置、電池温度調整システム及び車両に関する。 The present disclosure relates to cooling devices, battery temperature control systems and vehicles.

ハイブリッド車や電気自動車には、駆動源であるモータに電力を供給する車載電池が搭載されている。車載電池の温度上昇を抑制するために、冷媒と冷却水の二つを同時に供給するハイブリッド熱交換器が知られている(特許文献1参照)。 Hybrid vehicles and electric vehicles are equipped with in-vehicle batteries that supply electric power to the motor that is the drive source. A hybrid heat exchanger that simultaneously supplies both a refrigerant and cooling water in order to suppress a temperature rise of an in-vehicle battery is known (see Patent Document 1).

特開2010-50000号公報Japanese Unexamined Patent Publication No. 2010-50000

ところで、車載電池の温度上昇を抑制する冷却装置等では、薄型化、即冷性の向上、及び温度の均一性の向上等が、求められている。 By the way, in a cooling device or the like that suppresses a temperature rise of an in-vehicle battery, it is required to reduce the thickness, improve the immediate cooling property, and improve the temperature uniformity.

本開示の冷却装置は、第1面と、前記第1面と反対の第2面を備える第1面状部材と、前記第2面と対向する第3面と、前記第3面と反対の第4面を備える第2面状部材と、前記第2面と前記第3面との間に設けられ、冷却液を流す第1冷却液通路と、前記第2面と前記第3面との間に設けられ、前記第1冷却液通路と隣接し、冷媒を流す第1冷媒通路と、前記第2面と前記第3面との間に設けられ、前記第1冷媒通路と隣接し、冷却液を流す第2冷却液通路と、前記第2面と前記第3面との間に設けられ、前記第2冷却液通路と隣接し、冷媒を流す第2冷媒通路と、前記第2面及び前記第3面に接続され、前記第1冷却液通路と前記第1冷媒通路を隔てる第1壁部と、前記第2面及び前記第3面に接続され、前記第1冷媒通路と前記第2冷却液通路を隔てる第2壁部と、前記第2面及び前記第3面に接続され、前記第2冷却液通路と前記第2冷媒通路を隔てる第3壁部と、を少なくとも備え、前記第1壁部、前記第2壁部、及び前記第3壁部は、前記第2面に平行な所定の方向に沿って配置され、少なくとも前記第1面に沿って配置された複数の二次電池セルを冷却可能である。 The cooling device of the present disclosure includes a first surface, a first surface-like member having a second surface opposite to the first surface, a third surface facing the second surface, and the opposite to the third surface. A second planar member provided with a fourth surface, a first coolant passage provided between the second surface and the third surface for flowing a coolant, and the second surface and the third surface. It is provided between the first refrigerant passage, which is adjacent to the first coolant passage and allows the refrigerant to flow, and is provided between the second surface and the third surface, and is adjacent to the first refrigerant passage for cooling. A second refrigerant passage provided between the second surface and the third surface, adjacent to the second coolant passage, and a second refrigerant passage through which the refrigerant flows, the second surface, and the second surface and the third surface. A first wall portion connected to the third surface and separating the first coolant passage and the first refrigerant passage, and connected to the second surface and the third surface, the first refrigerant passage and the second refrigerant passage. The second wall portion that separates the coolant passage and the third wall portion that is connected to the second surface and the third surface and separates the second coolant passage and the second refrigerant passage are provided at least. The one wall portion, the second wall portion, and the third wall portion are arranged along a predetermined direction parallel to the second surface, and at least a plurality of secondary batteries arranged along the first surface. The cell can be cooled.

本開示の電池温度調整システムは、前記冷却装置と、前記冷却装置の前記第1面に沿って配置された複数の二次電池セルと、を備える。 The battery temperature control system of the present disclosure includes the cooling device and a plurality of secondary battery cells arranged along the first surface of the cooling device.

本開示の車両は、前記冷却装置と、進行方向に沿って回転する車輪と、車室と、を備える車両であって、前記冷却装置の前記第1面状部材及び前記第2面状部材を前記車室の床面に沿って配置し、前記冷却装置の前記第1壁部、前記第2壁部、及び前記第3壁部は、前記進行方向に沿って配置される。 The vehicle of the present disclosure is a vehicle including the cooling device, wheels rotating along the traveling direction, and a passenger compartment, and includes the first planar member and the second planar member of the cooling device. The first wall portion, the second wall portion, and the third wall portion of the cooling device are arranged along the floor surface of the vehicle interior, and are arranged along the traveling direction.

本開示の車両は、冷却装置と、進行方向に沿って回転する車輪と、車室と、を備える車両であって、前記冷却装置の前記第1面状部材及び前記第2面状部材を前記車室の床面に沿って配置し、前記冷却装置の前記第1壁部、前記第2壁部、及び前記第3壁部は、前記進行方向と直交方向に沿って配置される。 The vehicle of the present disclosure is a vehicle including a cooling device, wheels rotating along a traveling direction, and a passenger compartment, and the first-plane member and the second-plane member of the cooling device are described above. The first wall portion, the second wall portion, and the third wall portion of the cooling device are arranged along the floor surface of the vehicle interior, and are arranged along the direction orthogonal to the traveling direction.

本開示によれば、冷媒通路と冷却液通路が交互に配列できるため、冷媒と熱交換した冷却液の循環による温度均一性を維持し、冷却装置の薄型化による二次電池セルの搭載性を向上させ、冷媒と車載電池の直接熱交換を併用することで即冷性を向上させることができる。搭載性向上は、車載電池パックの体積エネルギー密度の向上に繋がり、即冷性向上は許容充放電の電流値の向上に繋がる。 According to the present disclosure, since the refrigerant passage and the coolant passage can be arranged alternately, the temperature uniformity is maintained by circulating the coolant that has exchanged heat with the refrigerant, and the mountability of the secondary battery cell is improved by making the cooling device thinner. Immediate cooling can be improved by improving and using the direct heat exchange of the refrigerant and the in-vehicle battery together. Improving mountability leads to an improvement in the volumetric energy density of the in-vehicle battery pack, and improvement in immediate cooling leads to an improvement in the allowable charge / discharge current value.

本開示の電池温度調整システムの一例を示す正面斜視図である。It is a front perspective view which shows an example of the battery temperature adjustment system of this disclosure. 図1に基づき冷却装置の第1実施形態を示し、(a)正面斜視図、(b)(a)のA-A断面図、(c)(a)のB-B断面簡略図、(d)(a)のC-C断面簡略図である。A first embodiment of the cooling device is shown with reference to FIG. 1, in which (a) a front perspective view, (b) (a) a sectional view taken along the line AA, (c) and (a) a simplified sectional view taken along the line BB, (d). ) Is a simplified cross-sectional view taken along the line CC of (a). 図1に基づく冷却液及び冷媒の流れの実施例1の一例を示す模式図で、(a)冷却液の流れ、(b)冷媒の流れである。It is a schematic diagram which shows an example of Example 1 of the flow of the coolant and the refrigerant based on FIG. 1, and is (a) the flow of the coolant, (b) the flow of the refrigerant. 冷却液通路と冷媒通路の一例を示し、(a)電池温度調整システムの斜視図、(b)(a)のA-A断面図である。An example of a coolant passage and a refrigerant passage is shown, and is a perspective view of (a) a battery temperature adjusting system, and (b) a cross-sectional view taken along the line AA of (a). 図4に続き、図4(a)のA-A断面図であり、(a)角度定義、(b)距離定義、(c)面積定義である。Following FIG. 4, it is a cross-sectional view taken along the line AA of FIG. 4A, which is (a) an angle definition, (b) a distance definition, and (c) an area definition. 冷却装置の第2実施形態を示す図4(a)のA-A断面図である。FIG. 6 is a cross-sectional view taken along the line AA of FIG. 4A showing a second embodiment of the cooling device. 冷却装置の第3実施形態を示し、(a)第3面状部材の正面斜視図、(b)(a)のA-A断面図、(c)(a)のB-B断面図、(d)(a)のC-C断面図である。A third embodiment of the cooling device is shown, (a) a front perspective view of a third planar member, (b) (a) a cross-sectional view taken along the line AA, (c) (a) a cross-sectional view taken along the line BB, (a). d) FIG. 2 is a cross-sectional view taken along the line CC of (a). 本開示の電池温度調整システムの一例を示すブロック図である。It is a block diagram which shows an example of the battery temperature adjustment system of this disclosure. 図3の冷却液及び冷媒の流れの実施例2の一例を示し、(a)流れを説明した正面斜視図、(b)流れの模式図、(c)(a)のA-A断面簡略図、(d)(a)のB-B断面簡略図である。An example of Example 2 of the flow of the coolant and the refrigerant of FIG. 3 is shown, (a) a front perspective view explaining the flow, (b) a schematic view of the flow, and (c) a simplified sectional view taken along the line AA of (a). , (D) is a simplified cross-sectional view taken along the line BB of (a). 図3の冷却液及び冷媒の流れの実施例3の一例を示し、(a)流れを説明した正面斜視図、(b)流れの模式図、(c)(a)のA-A断面簡略図、(d)(a)のB-B断面簡略図である。An example of Example 3 of the flow of the coolant and the refrigerant of FIG. 3 is shown, (a) a front perspective view explaining the flow, (b) a schematic view of the flow, and (c) a simplified sectional view taken along the line AA of (a). , (D) is a simplified cross-sectional view taken along the line BB of (a). 冷却装置の第4実施形態を示し、(a)正面斜視図、(b)(a)のA-A断面簡略図、(c)(a)のB-B断面簡略図である。A fourth embodiment of the cooling device is shown, which is (a) a front perspective view, (b) (a) a simplified sectional view taken along the line AA, and (c) (a) a simplified sectional view taken along the line BB. 第4実施形態の組み立ての一例を示し、(a)タンクの組み立て模式図、(b)タンクとの接合模式図である。An example of the assembly of the fourth embodiment is shown, and is (a) a schematic assembly diagram of a tank and (b) a schematic diagram of joining with a tank. 冷却装置20の第5実施形態を示し、(a)正面斜視図、(b)分解斜視図である。A fifth embodiment of the cooling device 20 is shown, which is (a) a front perspective view and (b) an exploded perspective view. 第5実施形態の冷却液通路と冷媒通路とを示し、(a)部分斜視図、(b)(a)のA部拡大図である。The cooling liquid passage and the refrigerant passage of the 5th Embodiment are shown, and it is (a) partial perspective view, (b) (a) part A enlarged view. 第5実施形態の冷却液通路と冷媒通路とを示し、(a)冷却装置の正面斜視図、(b)(a)のA-A断面斜視図、(c)(a)のB-B断面斜視図である。The coolant passage and the refrigerant passage of the fifth embodiment are shown, (a) a front perspective view of a cooling device, (b) (a) a cross-sectional perspective view of AA, and (c) (a) a cross-sectional view of BB. It is a perspective view. 第5実施形態の冷却装置を電池温度調整システムに適用したことを示し、(a)正面斜視図、(b)(a)のA-A断面図、(c)(a)のB-B断面図である。It is shown that the cooling device of the fifth embodiment was applied to the battery temperature adjustment system, (a) a front perspective view, (b) (a) a cross-sectional view taken along the line AA, and (c) (a) a cross-sectional view taken along the line BB. It is a figure. 冷却装置の第6の実施形態を示し、(a)冷却装置の正面斜視図、(b)冷媒通路の(a)のA-A断面簡略図、(c)冷媒通路の(a)のB-B断面簡略図、(d)冷却液通路の(a)のC-C断面簡略図、(e)冷却液通路の(a)のD-D断面簡略図である。A sixth embodiment of the cooling device is shown, (a) a front perspective view of the cooling device, (b) a simplified view of the AA cross section of the refrigerant passage (a), and (c) the B- of the refrigerant passage (a). B is a simplified view of the cross section, (d) a simplified view of the CC cross section of the coolant passage (a), and (e) a simplified view of the DD cross section of the coolant passage. 冷却装置の第7実施形態を示し、(a)図16(a)のA-A断面簡略図、(b)図16(a)のB-B断面簡略図である。FIG. 7 shows a seventh embodiment of the cooling device, (a) a simplified cross-sectional view taken along the line AA of FIG. 16 (a), and (b) a simplified cross-sectional view taken along the line BB of FIG. 16 (a). 車両に本開示の冷却装置を搭載した状態を説明する模式図で、(a)車両の側面図、(b)車両の背面図である。It is a schematic diagram explaining the state which the cooling device of this disclosure is mounted on a vehicle, (a) a side view of a vehicle, (b) a rear view of a vehicle.

以下、適宜図面を参照しながら、本開示に係る冷却装置、電池温度調整システム及び車両を具体的に開示した実施形態(以下、「本実施形態」という)を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。なお、添付図面および以下の説明は、当業者が本開示を十分に理解するために提供されるのであって、これらにより特許請求の範囲に記載の主題を限定することは意図されていない。 Hereinafter, an embodiment (hereinafter, referred to as “the present embodiment”) specifically disclosing the cooling device, the battery temperature adjusting system, and the vehicle according to the present disclosure will be described in detail with reference to the drawings as appropriate. However, more detailed explanation than necessary may be omitted. For example, detailed explanations of already well-known matters and duplicate explanations for substantially the same configuration may be omitted. This is to avoid unnecessary redundancy of the following description and to facilitate the understanding of those skilled in the art. It should be noted that the accompanying drawings and the following description are provided for those skilled in the art to fully understand the present disclosure, and are not intended to limit the subject matter described in the claims.

以下、本開示を実施するための好適な本実施形態について、図面を参照して詳細に説明する。 Hereinafter, a preferred embodiment for carrying out the present disclosure will be described in detail with reference to the drawings.

図1は、本開示の電池温度調整システムの一例を示す正面斜視図である。図2は、図1に基づき、(a)は正面斜視図、(b)は(a)のA-A断面図、(c)は(a)のB-B断面簡略図、(d)は(a)のC-C断面簡略図である。断面簡略図とは断面線を実線で簡略化してある図のことである。図1及び図2に基づいて本開示の電池温度調整システムを詳述する。なお、本開示の電池温度調整システムを、車載電池パックと捉えることも可能である。 FIG. 1 is a front perspective view showing an example of the battery temperature adjusting system of the present disclosure. 2A and 2B are based on FIG. 1, in which FIG. 2A is a front perspective view, FIG. 2B is a sectional view taken along the line AA of FIG. It is a simplified cross-sectional view of CC of (a). The cross-section simplified diagram is a diagram in which the cross-sectional line is simplified by a solid line. The battery temperature control system of the present disclosure will be described in detail with reference to FIGS. 1 and 2. The battery temperature control system disclosed in the present disclosure can also be regarded as an in-vehicle battery pack.

電池温度調整システム1は、複数の電池モジュール10と、載置された複数の電池モジュール10を冷却する冷却装置20とを備える。電池モジュール10は、複数の二次電池セル11を内部に備える。二次電池セル11は、図1に示す様に直方体形状である場合もあるし、円柱形状(図示せず)である場合もある。 The battery temperature adjusting system 1 includes a plurality of battery modules 10 and a cooling device 20 for cooling the plurality of mounted battery modules 10. The battery module 10 includes a plurality of secondary battery cells 11 inside. The secondary battery cell 11 may have a rectangular parallelepiped shape as shown in FIG. 1 or a cylindrical shape (not shown).

二次電池セル11は、例えば、ハイブリット車または電気自動車における走行用モータの駆動源となる電気エネルギーを蓄積する電池セルであり、冷却など温度調節を要する部品である。各電池モジュール10は、左右方向よりも前後方向に長い箱形形状を有し、本実施形態では冷却装置20上に前後左右方向に複数配列されている。電池モジュール10は、図面上に示された箱形形状の所定のケースに、前述の通り二次電池セル11が複数並べられた状態で収納されて形成される。なお、電池モジュール10は所定のケースは有しない場合もあり、単に複数の二次電池セル11が束ねられただけのものを、電池モジュール10とする場合もある。また、電池モジュール10と言う単位は必須ではなく、冷却装置20は、単に複数の二次電池セル11のそれぞれを冷却するようにしても良い。 The secondary battery cell 11 is, for example, a battery cell that stores electric energy that is a drive source for a traveling motor in a hybrid vehicle or an electric vehicle, and is a component that requires temperature control such as cooling. Each battery module 10 has a box shape that is longer in the front-rear direction than in the left-right direction, and in the present embodiment, a plurality of battery modules 10 are arranged in the front-rear and left-right directions on the cooling device 20. The battery module 10 is formed by accommodating a plurality of secondary battery cells 11 in a predetermined box-shaped case shown in the drawing in a state of being arranged side by side as described above. The battery module 10 may not have a predetermined case, and a battery module 10 may be simply a bundle of a plurality of secondary battery cells 11. Further, the unit called the battery module 10 is not indispensable, and the cooling device 20 may simply cool each of the plurality of secondary battery cells 11.

冷却装置20は、二次電池セル11を冷却するための装置であり、冷却プレートと呼ばれることもある。冷却装置20の高さは、前後方向および左右方向の長さよりも短く、本実施形態の冷却装置20は高さの低い板形形状を呈している。尚、平面視については、本実施形態の形状に限らず、左右方向よりも前後方向に短い箱形形状、正方形状、あるいは円筒形状であってもよい。 The cooling device 20 is a device for cooling the secondary battery cell 11, and is sometimes called a cooling plate. The height of the cooling device 20 is shorter than the length in the front-rear direction and the left-right direction, and the cooling device 20 of the present embodiment has a plate shape having a low height. The plan view is not limited to the shape of the present embodiment, and may be a box shape, a square shape, or a cylindrical shape that is shorter in the front-rear direction than in the left-right direction.

ここで、図面に対して直交座標を導入する。図中において、用紙を縦にしたときに、左上から右下に斜めに描く線をx軸と定義する(図面が斜視図であるため斜線となる)。左下から右上に斜めに描く線をy軸と定義し、縦方向に描く線をz軸と定義する。x軸とz軸とで仮想的に画定される面を第1の仮想面S1とし、z軸とy軸とで仮想的に画定される面を第2の仮想面S2と定義する。そして、第1の仮想面S1と第2の仮想面S2は直交する。尚、x軸、y軸、z軸の取り方は本例のものには限定されない。 Here, Cartesian coordinates are introduced for the drawing. In the drawing, the line drawn diagonally from the upper left to the lower right when the paper is placed vertically is defined as the x-axis (because the drawing is a perspective view, it is a diagonal line). A line drawn diagonally from the lower left to the upper right is defined as the y-axis, and a line drawn in the vertical direction is defined as the z-axis. The surface virtually defined on the x-axis and the z-axis is defined as the first virtual surface S1, and the surface virtually defined on the z-axis and the y-axis is defined as the second virtual surface S2. Then, the first virtual surface S1 and the second virtual surface S2 are orthogonal to each other. The method of taking the x-axis, y-axis, and z-axis is not limited to that of this example.

冷却装置20は、電池モジュール10のケースと接する第1面状部材30と、第1面状部材30に対向して配置される第2面状部材40と、第1面状部材30と第2面状部材40との間に配置される第3面状部材50とを備える。電池モジュール10の内部に備えらえた複数の二次電池セル11は、第1面状部材30に沿って配置されている。これらの二次電池セル11の熱は、電池モジュール10のケース等を介して、冷却装置20の第1面状部材30へ移動することが可能である。また、電池モジュール10がケースを有しない場合は、これら二次電池セル11の熱は、ケースを介さず、冷却装置20の第1面状部材30へ移動することが可能である。 The cooling device 20 includes a first planar member 30 in contact with the case of the battery module 10, a second planar member 40 arranged to face the first planar member 30, a first planar member 30, and a second surface member 30. It includes a third planar member 50 arranged between the planar member 40 and the planar member 40. A plurality of secondary battery cells 11 provided inside the battery module 10 are arranged along the first planar member 30. The heat of these secondary battery cells 11 can be transferred to the first planar member 30 of the cooling device 20 via the case of the battery module 10 or the like. Further, when the battery module 10 does not have a case, the heat of these secondary battery cells 11 can be transferred to the first planar member 30 of the cooling device 20 without going through the case.

第1面状部材30及び第2面状部材40は、平坦状に形成される。第3面状部材50は、平面を有する第1平面部51と、第1平面部51と対向する平面を有する第2平面部52と、第1平面部51と第2平面部52とを接続し傾斜面を有する壁部60とを備え、第1平面部51、壁部60、第2平面部52及び壁部60とが連続して配置され、当該配置が繰り返される断面波形形状を呈している。 The first planar member 30 and the second planar member 40 are formed in a flat shape. The third plane member 50 connects the first plane portion 51 having a plane, the second plane portion 52 having a plane facing the first plane portion 51, and the first plane portion 51 and the second plane portion 52. A wall portion 60 having an inclined surface is provided, and the first flat surface portion 51, the wall portion 60, the second flat surface portion 52, and the wall portion 60 are continuously arranged, and exhibit a cross-sectional waveform shape in which the arrangement is repeated. There is.

第1面状部材30は、複数の電池モジュール10と接する第1面31と、第1面31と反対の第2面32とを備え、第2面状部材40は、第3面41と、第3面41と反対の第4面42とを備え、第2面32と第3面41は対向している。 The first surface member 30 includes a first surface 31 in contact with a plurality of battery modules 10 and a second surface 32 opposite to the first surface 31, and the second surface member 40 includes a third surface 41. A fourth surface 42 opposite to the third surface 41 is provided, and the second surface 32 and the third surface 41 face each other.

本実施形態では、第1平面部51と第1面状部材30の第2面32とが接合し、第2平面部52と第2面状部材40の第3面41とが接合し、第1面状部材30の上部に電池モジュール10が配置されている。 In the present embodiment, the first flat surface portion 51 and the second surface 32 of the first planar member 30 are joined, and the second flat surface portion 52 and the third surface 41 of the second planar member 40 are joined to each other. The battery module 10 is arranged on the upper part of the one-sided member 30.

冷却装置20の第1面状部材30と第2面状部材40とは離間しており、第1面状部材30と第2面状部材40との間には、冷却液を流す複数の冷却液通路70と、冷媒を流す複数の冷媒通路80とが、y軸に沿って交互に並ぶように配置されている。冷却液通路70は、第1平面部51と、第1平面部51の両側に連続する一対の壁部60と、第2面状部材40とで形成され、冷媒通路80は、第1面状部材30と、一対の壁部60と、壁部60と連続する第2平面部52とで形成されている。 The first planar member 30 and the second planar member 40 of the cooling device 20 are separated from each other, and a plurality of cooling liquids are flowed between the first planar member 30 and the second planar member 40. The liquid passage 70 and the plurality of refrigerant passages 80 through which the refrigerant flows are arranged so as to be alternately arranged along the y-axis. The coolant passage 70 is formed by a first flat surface portion 51, a pair of wall portions 60 continuous on both sides of the first flat surface portion 51, and a second planar member 40, and the refrigerant passage 80 has a first planar shape. It is formed of a member 30, a pair of wall portions 60, and a second plane portion 52 continuous with the wall portions 60.

冷却液通路70が、第1面状部材30と、一対の壁部60と、壁部60と連続する第2平面部52とで形成され、冷媒通路80が、第1平面部51と、第1平面部51の両側に連続する壁部60と、第2面状部材40とで形成されていてもよい。また、冷却液通路70は、冷媒通路80に比較して大きく形成されていることが望ましい。尚、図1から図5までが冷却装置20の第1実施形態である。 The coolant passage 70 is formed by a first planar member 30, a pair of wall portions 60, and a second flat surface portion 52 continuous with the wall portion 60, and the refrigerant passage 80 is formed by the first flat surface portion 51 and the first flat surface portion 52. It may be formed by the wall portion 60 which is continuous on both sides of one plane portion 51 and the second planar member 40. Further, it is desirable that the coolant passage 70 is formed larger than the refrigerant passage 80. 1 to 5 are the first embodiments of the cooling device 20.

冷却装置20の両側面には、側面から突出する冷却液通路70と連通する冷却液パイプ21と、冷却液パイプ21に隣接し冷媒通路80と連通する冷媒パイプ22が設けられている。本実施形態では、冷却液パイプ21と冷媒パイプ22は、z軸に沿って上下に配列され、冷却液パイプ21は冷媒パイプ22の下方に配置されている。冷媒の一例は、HFC(Hydrofluorocarbon)であり、冷却液の一例は、エチレングリコールを含む不凍液である。 On both side surfaces of the cooling device 20, a coolant pipe 21 communicating with the coolant passage 70 protruding from the side surface and a refrigerant pipe 22 adjacent to the coolant pipe 21 and communicating with the refrigerant passage 80 are provided. In the present embodiment, the coolant pipe 21 and the refrigerant pipe 22 are arranged vertically along the z-axis, and the coolant pipe 21 is arranged below the refrigerant pipe 22. An example of a refrigerant is HFC (Hydrofluorocarbon), and an example of a coolant is an antifreeze liquid containing ethylene glycol.

冷却液パイプ21及び冷媒パイプ22は、冷却装置20の両側にy軸に沿って配置される第1タンク23及び第2タンク24と連通し、冷却液通路70及び冷媒通路80は第1タンク23及び第2タンク24と連通している。本実施形態では、冷却液パイプ21及び冷媒パイプ22と第1タンク23及び第2タンク24は、冷却装置20の両側でy軸に沿って配置され、冷却液通路70と冷媒通路80は、y軸に沿って交互に配列されている。 The coolant pipe 21 and the refrigerant pipe 22 communicate with the first tank 23 and the second tank 24 arranged along the y-axis on both sides of the cooling device 20, and the coolant passage 70 and the refrigerant passage 80 are the first tank 23. And communicate with the second tank 24. In the present embodiment, the coolant pipe 21, the refrigerant pipe 22, the first tank 23, and the second tank 24 are arranged along the y-axis on both sides of the cooling device 20, and the coolant passage 70 and the refrigerant passage 80 are y. They are arranged alternately along the axis.

冷却液パイプ21において、第1タンク23側が第1冷却液パイプ21aであり、第2タンク24側が第2冷却液パイプ21bである。冷媒パイプ22において、第1タンク23側が第1冷媒パイプ22aであり、第2タンク24側が第2冷媒パイプ22bである。また、第1タンク23及び第2タンク24は、冷却液用と冷媒用に分かれており、第1上部タンク23a、第1下部タンク23b、第2上部タンク24a、第2下部タンク24bを有している。 In the coolant pipe 21, the first tank 23 side is the first coolant pipe 21a, and the second tank 24 side is the second coolant pipe 21b. In the refrigerant pipe 22, the first tank 23 side is the first refrigerant pipe 22a, and the second tank 24 side is the second refrigerant pipe 22b. Further, the first tank 23 and the second tank 24 are separated for a coolant and a refrigerant, and have a first upper tank 23a, a first lower tank 23b, a second upper tank 24a, and a second lower tank 24b. ing.

本実施形態では、第1上部タンク23a及び第2上部タンク24aが冷媒用であり、第1下部タンク23b及び第2下部タンク24bが冷却液用である。上部タンク23a、24aは、第1面状部材30の側部を立ち上げて形成し、下部タンク23b、24bは、第2面状部材40と第3面状部材50との立壁で形成している(図2(c)(d)参照)。 In the present embodiment, the first upper tank 23a and the second upper tank 24a are for the refrigerant, and the first lower tank 23b and the second lower tank 24b are for the coolant. The upper tanks 23a and 24a are formed by raising the side portion of the first planar member 30, and the lower tanks 23b and 24b are formed by a vertical wall of the second planar member 40 and the third planar member 50. (See FIGS. 2 (c) and 2 (d)).

図2(c)(d)では、第1タンク23側の断面を説明しているが、第2タンク24側でも同様である。但し、流れの向きは逆になる。 2 (c) and 2 (d) explain the cross section of the first tank 23 side, but the same applies to the second tank 24 side. However, the direction of flow is reversed.

図3は、冷却液及び冷媒の流れの一例を示す模式図で、(a)は冷却液の流れ、(b)は冷媒の流れである。図3に基づいて、冷却液及び冷媒の基本的な流れを説明する。基本的な流れを流れの実施例1とする。尚、以降の図では冷却液の流れを黒塗りの矢印F1、冷媒の流れを白抜きの矢印F2で示す。 3A and 3B are schematic views showing an example of the flow of the coolant and the refrigerant, where FIG. 3A is the flow of the coolant and FIG. 3B is the flow of the refrigerant. The basic flow of the coolant and the refrigerant will be described with reference to FIG. Let the basic flow be the first embodiment of the flow. In the following figures, the flow of the coolant is indicated by the black arrow F1, and the flow of the refrigerant is indicated by the white arrow F2.

冷却液は、第1冷却液パイプ21aから第1下部タンク23bに流入し、x軸に沿って配列される複数の冷却液通路70を通って第2下部タンク24bに流れ、第2冷却液パイプ21bを通って冷却装置20から外部へ流出する。冷媒は、第2冷媒パイプ22bから第2上部タンク24aに流入し、x軸に沿って配列される複数の冷媒通路80を通って第1上部タンク23aに流れ、第1冷媒パイプ22aを通って冷却装置20から外部へ流出する。実施例1では冷却液と冷媒は逆方向に流れていることを説明しているが、同一方向に流れてもよい。また、冷却液及び冷媒の全体の流れが逆であってもよい。 The coolant flows from the first coolant pipe 21a into the first lower tank 23b, flows through the plurality of coolant passages 70 arranged along the x-axis to the second lower tank 24b, and flows into the second lower tank 24b. It flows out from the cooling device 20 through 21b. The refrigerant flows from the second refrigerant pipe 22b into the second upper tank 24a, flows through the plurality of refrigerant passages 80 arranged along the x-axis to the first upper tank 23a, and passes through the first refrigerant pipe 22a. It flows out from the cooling device 20 to the outside. Although it has been described that the coolant and the refrigerant flow in the opposite directions in the first embodiment, they may flow in the same direction. Further, the overall flow of the coolant and the refrigerant may be reversed.

冷却液通路70と冷媒通路80とが交互に配列されるため、冷媒と冷却液との熱交換が確実に行われる。また、傾斜した壁部60を介して熱交換が行われるため、冷媒と冷却液との接触面積が増加し、効率の良い熱交換が実現できる。また、交互の配列は、冷却装置20の高さを低く抑えることができ、コンパクトが可能であり、二次電池セル11の配置を容易にしている。 Since the coolant passages 70 and the refrigerant passages 80 are arranged alternately, heat exchange between the refrigerant and the coolant is reliably performed. Further, since heat exchange is performed via the inclined wall portion 60, the contact area between the refrigerant and the coolant is increased, and efficient heat exchange can be realized. Further, the alternating arrangement can keep the height of the cooling device 20 low, can be compact, and facilitates the arrangement of the secondary battery cells 11.

図4は、冷却液通路70と冷媒通路80の一例を示し、(a)は電池温度調整システムの斜視図、(b)は(a)の断面図である。図5は、図4(a)のA-A断面図で、(a)は角度定義、(b)は距離定義、(c)は面積定義である。図4及び図5に基づいて、冷却装置20のy軸に沿って、通路、壁部、方向、角度、位置、距離、面積を定義しながら、冷却液及び冷媒の役割を詳述する。 4A and 4B show an example of a coolant passage 70 and a refrigerant passage 80, where FIG. 4A is a perspective view of a battery temperature adjusting system, and FIG. 4B is a sectional view taken along the line (a). 5A and 5B are cross-sectional views taken along the line AA of FIG. 4A, where FIG. 5A is an angle definition, FIG. 5B is a distance definition, and FIG. 5C is an area definition. Based on FIGS. 4 and 5, the roles of the coolant and the refrigerant will be described in detail while defining the passage, the wall, the direction, the angle, the position, the distance, and the area along the y-axis of the cooling device 20.

第2面32と第3面41との間に設けられる複数の冷却液通路70の一つを第1冷却液通路71と定義する。また、第2面32と第3面41との間に設けられ第1冷却液通路71の隣接する冷媒通路80を、第1冷媒通路81と定義する。同様に、第1冷媒通路81に隣接する冷却液通路70を第2冷却液通路72、第2冷却液通路72に隣接する冷媒通路80を第2冷媒通路82と定義する。 One of the plurality of coolant passages 70 provided between the second surface 32 and the third surface 41 is defined as the first coolant passage 71. Further, the refrigerant passage 80 provided between the second surface 32 and the third surface 41 and adjacent to the first coolant passage 71 is defined as the first refrigerant passage 81. Similarly, the coolant passage 70 adjacent to the first refrigerant passage 81 is defined as the second coolant passage 72, and the refrigerant passage 80 adjacent to the second coolant passage 72 is defined as the second refrigerant passage 82.

第2面32及び第3面41に接続され、第1冷却液通路71と第1冷媒通路81を隔てる壁部60を第1壁部61と定義する。同様に、第2面32及び第3面41に接続され、第1冷媒通路81と第2冷却液通路72を隔てる壁部60を第2壁部62、第2面32及び第3面41に接続され、第2冷却液通路72と第2冷媒通路82を隔てる壁部60を第3壁部63と定義する。 The wall portion 60 connected to the second surface 32 and the third surface 41 and separating the first coolant passage 71 and the first refrigerant passage 81 is defined as the first wall portion 61. Similarly, the wall portion 60 connected to the second surface 32 and the third surface 41 and separating the first refrigerant passage 81 and the second coolant passage 72 is connected to the second wall portion 62, the second surface 32, and the third surface 41. The wall portion 60 that is connected and separates the second coolant passage 72 and the second refrigerant passage 82 is defined as the third wall portion 63.

第1面状部材30の第1面31に配置される電池モジュール10の内部に配置された二次電池セル11は、冷媒及び冷却液によって冷却される。特に冷媒が冷却の機能を担うが、冷却液通路70及び冷媒通路80を構成する壁部60を介して冷媒と冷却液の間で熱交換が行われることにより、冷媒による冷却機能が特定の領域に集中せず、冷媒による温度分布の偏在を冷却液により二次元的に均等化することが可能となる。即ち、第1壁部61、第2壁部62、及び第3壁部63は、第2面32に平行な所定の方向(本実施形態ではx軸)に沿って配置され、これら壁部の間を流れる冷媒及び冷却液が、少なくとも第1面31に接する電池モジュール10を冷却可能である。 The secondary battery cell 11 arranged inside the battery module 10 arranged on the first surface 31 of the first surface member 30 is cooled by the refrigerant and the coolant. In particular, the refrigerant plays a cooling function, but the cooling function by the refrigerant is a specific region due to heat exchange between the refrigerant and the coolant via the wall portion 60 constituting the coolant passage 70 and the refrigerant passage 80. It is possible to two-dimensionally equalize the uneven distribution of the temperature distribution due to the refrigerant with the coolant without concentrating on. That is, the first wall portion 61, the second wall portion 62, and the third wall portion 63 are arranged along a predetermined direction (x-axis in the present embodiment) parallel to the second surface 32, and the wall portions of these wall portions. The refrigerant and the coolant flowing between them can cool the battery module 10 in contact with at least the first surface 31.

また、第1面状部材30、第1壁部61、第2壁部62、及び第3壁部63は、所定の以上の熱伝導性を有する。尚、第2面状部材40、第3面状部材50も同様である。 Further, the first planar member 30, the first wall portion 61, the second wall portion 62, and the third wall portion 63 have a predetermined or higher thermal conductivity. The same applies to the second planar member 40 and the third planar member 50.

熱伝導値は、100W/m・K以上が好ましい。 The heat conduction value is preferably 100 W / m · K or more.

そして、第1面状部材30、第1壁部61、第2壁部62、及び第3壁部63は、アルミ合金で構成されている。尚、第2面状部材40、第3面状部材50も同様である。 The first planar member 30, the first wall portion 61, the second wall portion 62, and the third wall portion 63 are made of an aluminum alloy. The same applies to the second planar member 40 and the third planar member 50.

また、第1面状部材30、第1壁部61、第2壁部62、第3壁部63、第2面状部材40、及び第3面状部材50は、アルミ合金に限らず、銅合金、ステンレス、チタン等でもよい。 Further, the first planar member 30, the first wall portion 61, the second wall portion 62, the third wall portion 63, the second planar member 40, and the third planar member 50 are not limited to aluminum alloys, but copper. It may be alloy, stainless steel, titanium or the like.

冷却液及び冷媒の流れを上記定義で説明すると、実施例1の流れにおいて、第1冷媒通路81において冷媒が流れる向きは、第2冷却液通路72において冷却液が流れる向きと反対である。冷却液及び冷媒の流れの向きは逆であるが、それぞれが同一方向である。即ち、第1冷却液通路71において冷却液が流れる向きは、第2冷却液通路72において冷却液が流れる向きと同じであり、第1冷媒通路81において冷媒が流れる向きは、第2冷媒通路82において冷媒が流れる向きと同じである。これにより、冷却液ポンプで僅かに暖められた冷却液が、低温側の冷媒と熱交換して十分に冷却され、冷媒で冷やされ続けながら、電池からは熱を奪いながら流れていくことができる。 Explaining the flow of the coolant and the refrigerant by the above definition, in the flow of the first embodiment, the direction in which the refrigerant flows in the first refrigerant passage 81 is opposite to the direction in which the coolant flows in the second coolant passage 72. The directions of the flow of the coolant and the refrigerant are opposite, but they are in the same direction. That is, the direction in which the coolant flows in the first coolant passage 71 is the same as the direction in which the coolant flows in the second coolant passage 72, and the direction in which the refrigerant flows in the first refrigerant passage 81 is the second refrigerant passage 82. Is the same as the direction in which the refrigerant flows. As a result, the coolant slightly warmed by the coolant pump exchanges heat with the refrigerant on the low temperature side to be sufficiently cooled, and while being continuously cooled by the refrigerant, it can flow while taking heat from the battery. ..

また、第1冷媒通路81において冷媒が流れる向きは、第2冷却液通路72において冷却液が流れる向きと同じであってもよい。これにより、冷媒と冷却液の熱交換が維持できる。 Further, the direction in which the refrigerant flows in the first refrigerant passage 81 may be the same as the direction in which the coolant flows in the second coolant passage 72. As a result, heat exchange between the refrigerant and the coolant can be maintained.

図5(a)に示すように、壁部60は、第2面32及び第3面41に対して傾斜しているが、第1の仮想面S1を基準に、所定の向きに、所定の角度だけ斜めになっている。第1壁部61の所定の向きを第1の向きT1とし、所定の角度を第1の角度θ1と定義する。第1壁部61の向きと反対である第2壁部62の向きを第2の向きT2とし、所定の角度を第2の角度θ2と定義する。第3壁部63は、第1壁部61の第1の向きT1と第1の角度θ1と同じである。 As shown in FIG. 5A, the wall portion 60 is inclined with respect to the second surface 32 and the third surface 41, but the wall portion 60 is determined in a predetermined direction with respect to the first virtual surface S1. It is slanted only by the angle. The predetermined direction of the first wall portion 61 is defined as the first direction T1, and the predetermined angle is defined as the first angle θ1. The direction of the second wall portion 62, which is opposite to the direction of the first wall portion 61, is defined as the second direction T2, and the predetermined angle is defined as the second angle θ2. The third wall portion 63 has the same first orientation T1 and first angle θ1 of the first wall portion 61.

第1の角度θ1は、40度から60度の間にあることが望ましい。また、第2の角度θ2は、40度から60度の間にあることが望ましい。これにより、冷媒と冷却液との接する面積が増大し、冷媒と冷却液の熱交換が促進され冷却装置20の温度均一性が維持でき、冷却装置20の薄型化による電池モジュール10(または二次電池セル11)の搭載性を向上させることができる。 The first angle θ1 is preferably between 40 and 60 degrees. Further, it is desirable that the second angle θ2 is between 40 degrees and 60 degrees. As a result, the area of contact between the refrigerant and the coolant is increased, heat exchange between the refrigerant and the coolant is promoted, the temperature uniformity of the cooling device 20 can be maintained, and the battery module 10 (or secondary) due to the thinning of the cooling device 20 can be maintained. The mountability of the battery cell 11) can be improved.

図5(b)において、第2面32に平行な所定の方向(本実施形態ではx軸)を第1方向X1と定義し、第2面32に沿いつつ第1方向X1に垂直な方向を第2方向Y1と定義する。 In FIG. 5B, a predetermined direction parallel to the second surface 32 (x-axis in the present embodiment) is defined as the first direction X1, and the direction perpendicular to the first direction X1 along the second surface 32 is defined. It is defined as the second direction Y1.

第2方向Y1について、第2面32と第1壁部61が交差する線を第1交差線L1、第2面32と第2壁部62が交差する線を第2交差線L2、第2面32と第3壁部63が交差する線を第3交差線L3と定義する。 Regarding the second direction Y1, the line where the second surface 32 and the first wall portion 61 intersect is the first intersection line L1, and the line where the second surface 32 and the second wall portion 62 intersect is the second intersection line L2, the second. The line where the surface 32 and the third wall portion 63 intersect is defined as the third intersection line L3.

また、第2方向Y1について、第3面41と第1壁部61が交差する線を第4交差線L4、第3面41と第2壁部62が交差する線を第5交差線L5、第3面41と第3壁部63が交差する線を第6交差線L6と定義する。 Further, in the second direction Y1, the line where the third surface 41 and the first wall portion 61 intersect is the fourth intersection line L4, and the line where the third surface 41 and the second wall portion 62 intersect is the fifth intersection line L5. The line where the third surface 41 and the third wall portion 63 intersect is defined as the sixth intersection line L6.

そして、第1交差線L1と第2交差線L2との距離を第1距離D1、第2交差線L2と第3交差線L3との距離を第2距離D2、第4交差線L4と第5交差線L5との距離を第3距離D3、第5交差線L5と第6交差線L6との距離を第4距離D4と定義する。 Then, the distance between the first crossing line L1 and the second crossing line L2 is the first distance D1, the distance between the second crossing line L2 and the third crossing line L3 is the second distance D2, and the fourth crossing line L4 and the fifth. The distance from the intersection line L5 is defined as the third distance D3, and the distance between the fifth intersection line L5 and the sixth intersection line L6 is defined as the fourth distance D4.

本実施形態の冷却装置20では、第1距離D1は第2距離D2より短い関係にある(D1<D2)。これにより、冷媒通路80よりも冷却液通路70の幅を大きく取ることができ、冷媒による温度分布の偏在を冷却液により均等化し、冷却装置20を所定の温度に均一的に維持することができる。 In the cooling device 20 of the present embodiment, the first distance D1 has a shorter relationship than the second distance D2 (D1 <D2). As a result, the width of the coolant passage 70 can be made larger than that of the refrigerant passage 80, the uneven distribution of the temperature distribution due to the refrigerant can be equalized by the coolant, and the cooling device 20 can be uniformly maintained at a predetermined temperature. ..

また、冷却装置20では、第1距離D1は、第3距離D3より長く(D1>D3)、第2距離D2は、第4距離D4より短い(D2<D4)の関係にある。 Further, in the cooling device 20, the first distance D1 is longer than the third distance D3 (D1> D3), and the second distance D2 is shorter than the fourth distance D4 (D2 <D4).

冷媒通路80を構成する第1距離D1及び第3距離D3の関係は、二次電池セル11側が長い断面逆台形形状を呈して、冷却効果を上げるため二次電池セル11側の冷媒接触面積を大きくしている。また、冷却液通路70を構成する第2距離D2及び第4距離D4の関係は、二次電池セル11側が短い断面正台形形状を呈して、冷媒との熱交換率を高めている。 The relationship between the first distance D1 and the third distance D3 constituting the refrigerant passage 80 is that the secondary battery cell 11 side has a long inverted trapezoidal shape in cross section, and the refrigerant contact area on the secondary battery cell 11 side is increased in order to improve the cooling effect. It's getting bigger. Further, regarding the relationship between the second distance D2 and the fourth distance D4 constituting the coolant passage 70, the secondary battery cell 11 side has a short vertical cross-section trapezoidal shape, and the heat exchange rate with the refrigerant is increased.

図5(c)において、第1冷媒通路81は、第2面32に直交する第2の仮想面S2において第1断面積V1を有し、第2冷却液通路72は、第2の仮想面S2において第2断面積V2を有しており、第1断面積V1は、第2断面積V2より小さい関係にある(V1>V2)。第2の仮想面S2における断面積を比較した場合、第1冷媒通路81よりも第2冷却液通路72の方を大きくすることにより、冷却液の流量をより大きくし、冷媒との熱交換量を高めている。 In FIG. 5C, the first refrigerant passage 81 has a first cross-sectional area V1 on the second virtual surface S2 orthogonal to the second surface 32, and the second coolant passage 72 is the second virtual surface. S2 has a second cross-sectional area V2, and the first cross-sectional area V1 is smaller than the second cross-sectional area V2 (V1> V2). When comparing the cross-sectional areas of the second virtual surface S2, the flow rate of the coolant is made larger by making the second coolant passage 72 larger than the first refrigerant passage 81, and the amount of heat exchange with the refrigerant is increased. Is increasing.

図6は冷却装置20の第2実施形態を示す図4(a)のA-A断面図である。図6に基づいて、冷却装置20の第2実施形態を説明する。 FIG. 6 is a sectional view taken along the line AA of FIG. 4A showing a second embodiment of the cooling device 20. A second embodiment of the cooling device 20 will be described with reference to FIG.

第2の実施形態において第1実施形態と異なる構成は、第2面32と第3面41との間に補強部材53が設けられていることである。補強部材53は、第1平面部51と第3面41とを接続しているが、第2平面部52と第2面32とを接続してもよく、第2面32と第3面41を直接接続していてもよい。補強部材53は、冷却液通路70に設けられていることが望ましい。冷却液通路70は冷媒通路80よりも大きく形成されているため、第2面32と第3面41との間の強度を取ることができる。 The configuration different from the first embodiment in the second embodiment is that the reinforcing member 53 is provided between the second surface 32 and the third surface 41. Although the reinforcing member 53 connects the first plane portion 51 and the third surface 41, the second plane portion 52 and the second surface 32 may be connected, and the second surface 32 and the third surface 41 may be connected. May be directly connected. It is desirable that the reinforcing member 53 is provided in the coolant passage 70. Since the coolant passage 70 is formed larger than the refrigerant passage 80, the strength between the second surface 32 and the third surface 41 can be obtained.

また、補強部材53は、第1冷却液通路71及び第2冷却液通路72のすくなくともいずれかの内部に設けられていることが望ましい。冷却液通路70すべてに補強部材53が設ける必要はなく、冷却装置20の強度が維持できればよい。そして、補強部材53は壁状でもよく、柱状でもよく、第2面32と第3面41の間の抗力が発生する構造であることが好ましい。 Further, it is desirable that the reinforcing member 53 is provided inside at least one of the first coolant passage 71 and the second coolant passage 72. It is not necessary to provide the reinforcing member 53 in all the coolant passages 70, and it is sufficient that the strength of the cooling device 20 can be maintained. The reinforcing member 53 may be wall-shaped or columnar, and preferably has a structure in which a drag force is generated between the second surface 32 and the third surface 41.

図7は冷却装置20の第3実施形態を示し、(a)は第3面状部材の正面部分斜視図、(b)は(a)のA-A断面図、(c)は(a)のB-B断面図、(d)はC-C断面図である。図7に基づいて、冷却装置20の第3実施形態を説明する。尚、図7(b)~(d)において、第1面状部材30及び第2面状部材40は破線で示している。 7A and 7B show a third embodiment of the cooling device 20, where FIG. 7A is a front partial perspective view of the third planar member, FIG. 7B is a sectional view taken along the line AA of FIG. BB sectional view, (d) is a CC sectional view. A third embodiment of the cooling device 20 will be described with reference to FIG. 7. In FIGS. 7 (b) to 7 (d), the first planar member 30 and the second planar member 40 are shown by broken lines.

第3の実施形態において第1実施形態と異なる構成は、第1面状部材30の第2面32に接する第3面状部材50の第1平面部51に、複数の貫通孔54が設けていることである。貫通孔54は、第2壁部62と第3壁部63の間において、第1面状部材30と接する領域に形成され、第2冷却液通路72の冷却液は、貫通孔54を通って第1面状部材30と接している。貫通孔54は、冷却液の流れる方向に沿って複数設けられ、また、各冷却液通路70に対応して設けられていてもよく、貫通孔54が設けられている冷却液通路70と設けられていない冷却液通路70があってもよい。これにより、冷却液は直接第1面状部材30に接することができ、冷却効果が増大する。 In the third embodiment, the configuration different from that of the first embodiment is that a plurality of through holes 54 are provided in the first plane portion 51 of the third planar member 50 in contact with the second surface 32 of the first planar member 30. It is that you are. The through hole 54 is formed in a region between the second wall portion 62 and the third wall portion 63 in contact with the first planar member 30, and the coolant in the second coolant passage 72 passes through the through hole 54. It is in contact with the first planar member 30. A plurality of through holes 54 may be provided along the direction in which the coolant flows, and may be provided corresponding to each coolant passage 70, and may be provided with the coolant passage 70 in which the through holes 54 are provided. There may be a coolant passage 70 that is not. As a result, the cooling liquid can come into direct contact with the first planar member 30, and the cooling effect is increased.

図8は、電池温度調整システム1のブロック図である。図8に基づいて、電池温度調整システム1のブロック構成について説明する。 FIG. 8 is a block diagram of the battery temperature adjusting system 1. The block configuration of the battery temperature adjustment system 1 will be described with reference to FIG.

本実施例の電池温度調整システム1は、電池モジュール10(または二次電池セル11)の温度制御を行う電池温調装置100と車両空調システム(特に冷媒回路)とを共用するシステムである。電池温度調整システム1は、電池温調装置100と、電池温調装置100と冷却液回路を介して接続されるヒータ101及びポンプ102と、電池温調装置に接続される第1膨張弁(XV1)103と、HVAC(Heating, Ventilation, and Air Conditioning)104と、HVAC104と接続するコンデンサ105、コンプレッサ106及び第2膨張弁107とを備える。尚、電池モジュール10、二次電池セル11は省略してある。 The battery temperature adjustment system 1 of this embodiment is a system that shares a battery temperature control device 100 that controls the temperature of the battery module 10 (or a secondary battery cell 11) and a vehicle air conditioning system (particularly a refrigerant circuit). The battery temperature control system 1 includes a battery temperature control device 100, a heater 101 and a pump 102 connected to the battery temperature control device 100 via a coolant circuit, and a first expansion valve (XV1) connected to the battery temperature control device. ) 103, an HVAC (Heating, Ventilation, and Air Conditioning) 104, a capacitor 105 connected to the HVAC 104, a compressor 106, and a second expansion valve 107. The battery module 10 and the secondary battery cell 11 are omitted.

ヒータ101は、水加熱ヒータ、PTCヒータ等であり、ポンプ102は、水圧送用ポンプ、電動ウォーターポンプなどである。第1膨張弁103は、車両用空調装置用膨張弁であり、TXV(Thermal Expansion Valve)またはEXV(Electric Expansion Valve)である。 The heater 101 is a water heater, a PTC heater, or the like, and the pump 102 is a water pressure feeding pump, an electric water pump, or the like. The first expansion valve 103 is an expansion valve for a vehicle air conditioner, and is a TXV (Thermal Expansion Valve) or an EXV (Electric Expansion Valve).

ヒータ101及びポンプ102が、冷却液回路に含まれ、第1膨張弁103、コンデンサ105、コンプレッサ106及び第2膨張弁107が冷媒回路に含まれる。また、HVAC104、コンデンサ105、コンプレッサ106及び第2膨張弁107が、車両空調システムの冷媒回路を構成している。 The heater 101 and the pump 102 are included in the coolant circuit, and the first expansion valve 103, the condenser 105, the compressor 106 and the second expansion valve 107 are included in the refrigerant circuit. Further, the HVAC 104, the condenser 105, the compressor 106 and the second expansion valve 107 form a refrigerant circuit of the vehicle air conditioning system.

冷媒回路では、電池温調装置100に冷媒を供給し、この冷媒の気化熱で電池温調装置100を冷却する。なお、電池温調装置100は、電池冷却時には、前述の冷却装置20に相当する。また、冷媒回路は、HVAC104に冷媒を供給し、この冷媒の気化熱で車室内に送風する空気を冷却する。冷媒回路において、コンプレッサ106は、気化された冷媒を加圧し、コンデンサ105に供給する。コンデンサ105は、コンプレッサ106で加圧された冷媒を冷却して液化させ、第1膨張弁103または第2膨張弁107に供給する。 In the refrigerant circuit, a refrigerant is supplied to the battery temperature control device 100, and the battery temperature control device 100 is cooled by the heat of vaporization of the refrigerant. The battery temperature control device 100 corresponds to the above-mentioned cooling device 20 when the battery is cooled. Further, the refrigerant circuit supplies the refrigerant to the HVAC 104, and the heat of vaporization of the refrigerant cools the air blown into the vehicle interior. In the refrigerant circuit, the compressor 106 pressurizes the vaporized refrigerant and supplies it to the capacitor 105. The condenser 105 cools and liquefies the refrigerant pressurized by the compressor 106, and supplies the refrigerant to the first expansion valve 103 or the second expansion valve 107.

第1膨張弁103に冷媒が供給される場合、第1膨張弁103は、液化した冷媒を減圧して電池温調装置100に供給する。供給された冷媒は電池温調装置100内で気化する。気化した冷媒は、第1膨張弁103を介してコンプレッサ106に供給される。第2膨張弁107に冷媒が供給される場合、第2膨張弁107は、液化した冷媒を減圧してHVAC104に供給する。供給された冷媒はHVAC104内で気化する。気化した冷媒は、第2膨張弁107を介してコンプレッサ106に供給される。ここで、第1膨張弁103および第2膨張弁107は、冷媒温度に応じて冷媒の流量を制御できる調整弁であるTXVである。 When the refrigerant is supplied to the first expansion valve 103, the first expansion valve 103 decompresses the liquefied refrigerant and supplies it to the battery temperature control device 100. The supplied refrigerant is vaporized in the battery temperature control device 100. The vaporized refrigerant is supplied to the compressor 106 via the first expansion valve 103. When the refrigerant is supplied to the second expansion valve 107, the second expansion valve 107 decompresses the liquefied refrigerant and supplies it to the HVAC 104. The supplied refrigerant vaporizes in the HVAC 104. The vaporized refrigerant is supplied to the compressor 106 via the second expansion valve 107. Here, the first expansion valve 103 and the second expansion valve 107 are TXVs that are regulating valves that can control the flow rate of the refrigerant according to the refrigerant temperature.

冷却液回路では、電池温調装置100に冷却液を供給し、電池冷却時には電池温調装置100内の冷媒と二次電池セル11との間で冷却液を介して熱交換を行い、電池加温時には電池温調装置100内の加熱された冷却液と二次電池セル11との間で熱交換を行う。冷却液回路において、ポンプ102は、冷却液回路内の冷却液を循環させる。ヒータ101は、二次電池セル11が低温時に充電するもしくは駆動モータに電力を供給する際に冷却液を加温する。 In the coolant circuit, the coolant is supplied to the battery temperature control device 100, and when the battery is cooled, heat is exchanged between the refrigerant in the battery temperature control device 100 and the secondary battery cell 11 via the coolant to add the battery. When the temperature is high, heat is exchanged between the heated coolant in the battery temperature control device 100 and the secondary battery cell 11. In the coolant circuit, the pump 102 circulates the coolant in the coolant circuit. The heater 101 heats the coolant when the secondary battery cell 11 charges at a low temperature or supplies electric power to the drive motor.

図9は、図3の冷却液及び冷媒の流れの実施例2の一例を示し、(a)は流れを説明した正面斜視図、(b)は流れの模式図、(c)は(a)のA-A断面簡略図、(d)は(a)のB-B断面簡略図である。図10は、図3の冷却液及び冷媒の流れの実施例3の一例を示し、(a)は流れを説明した正面斜視図、(b)は流れの模式図、(c)は(a)のA-A断面簡略図、(d)は(a)のB-B断面簡略図である。図9及び図10に基づいて冷却液及び冷媒の流れの実施例2及び実施例3を説明する。 9 shows an example of Example 2 of the flow of the coolant and the refrigerant of FIG. 3, (a) is a front perspective view explaining the flow, (b) is a schematic view of the flow, and (c) is (a). A is a simplified cross-sectional view of AA, and (d) is a simplified cross-sectional view of BB of (a). 10A and 10B show an example of Example 3 of the flow of the coolant and the refrigerant of FIG. 3, where FIG. 10A is a front perspective view illustrating the flow, FIG. 10B is a schematic view of the flow, and FIG. 10C is FIG. A is a simplified cross-sectional view of AA, and (d) is a simplified cross-sectional view of BB of (a). Examples 2 and 3 of the flow of the coolant and the refrigerant will be described with reference to FIGS. 9 and 10.

図9は、冷却液及び冷媒の流れの実施例2であり、冷却液を中心に説明する。 FIG. 9 is a second embodiment of the flow of the coolant and the refrigerant, and the coolant will be mainly described.

図3(a)で示した実施例1では、冷却液が第1下部タンク23bから冷却液通路70を通って第2下部タンク24bに流れ、かつ冷却液通路70内において同一方向の流れを有している。一方、実施例2では、冷却液が、第2下部タンク24bの第2冷却液パイプ21bが設けられている反対側の他端まで流れ、第1冷却液通路71を第1下部タンク23bまで流れ、第1下部タンク23bで折り返す。そして、隣接する第2冷却液通路72を通過して第2下部タンク24bまで流れ、再び折り返す繰り返す流れを形成している。繰り返しの流れを経た後、冷却液は、第1冷却液パイプ21aから外部へ流出する。 In the first embodiment shown in FIG. 3A, the coolant flows from the first lower tank 23b to the second lower tank 24b through the coolant passage 70, and has a flow in the same direction in the coolant passage 70. is doing. On the other hand, in the second embodiment, the coolant flows to the other end of the second lower tank 24b on the opposite side where the second coolant pipe 21b is provided, and flows through the first coolant passage 71 to the first lower tank 23b. , Fold back at the first lower tank 23b. Then, it passes through the adjacent second coolant passage 72, flows to the second lower tank 24b, and forms a repeated flow of turning back again. After the repeated flow, the coolant flows out from the first coolant pipe 21a.

すなわち、冷却液通路70の定義に基づくと、実施例1では第1冷却液通路71において冷却液が流れる向きと、第2冷却液通路72において冷却液が流れる向きとは同一である。一方、実施例2では第1冷却液通路71において冷却液が流れる向きは、第2冷却液通路72において冷却液が流れる向きと反対となる。実施例では冷却液について説明したが冷媒の流れも同様であり、第1冷媒通路81において冷媒が流れる向きは、第2冷媒通路82において冷媒が流れる向きと反対となる。尚、実施例1では冷却液の入口が第1冷却液パイプ21aであって出口が第2冷却液パイプ21bである例を示しているが、入口と出口の関係は逆でもよく、第2冷却液パイプ21bが入口であって第1冷却液パイプ21aが出口でもよい。同様に、実施例2では冷却液の入口が第2冷却液パイプ21bであって出口が第1冷却液パイプ21aである例を示しているが、入口と出口の関係は逆でもよく、第1冷却液パイプ21aが入口であって第2冷却液パイプ21bが出口でもよい。 That is, based on the definition of the coolant passage 70, in the first embodiment, the direction in which the coolant flows in the first coolant passage 71 and the direction in which the coolant flows in the second coolant passage 72 are the same. On the other hand, in the second embodiment, the direction in which the coolant flows in the first coolant passage 71 is opposite to the direction in which the coolant flows in the second coolant passage 72. Although the coolant has been described in the embodiment, the flow of the refrigerant is the same, and the direction in which the refrigerant flows in the first refrigerant passage 81 is opposite to the direction in which the refrigerant flows in the second refrigerant passage 82. Although the first embodiment shows an example in which the inlet of the coolant is the first coolant pipe 21a and the outlet is the second coolant pipe 21b, the relationship between the inlet and the outlet may be reversed, and the second cooling The liquid pipe 21b may be an inlet and the first coolant pipe 21a may be an outlet. Similarly, in the second embodiment, an example is shown in which the inlet of the coolant is the second coolant pipe 21b and the outlet is the first coolant pipe 21a, but the relationship between the inlet and the outlet may be reversed, and the first The coolant pipe 21a may be an inlet and the second coolant pipe 21b may be an outlet.

図10は、冷却液及び冷媒の流れの実施例3であり、冷媒を中心に説明する。 FIG. 10 is a third embodiment of the flow of the coolant and the refrigerant, and the refrigerant will be mainly described.

実施例1では、冷媒が第1冷媒パイプ22aと第2冷媒パイプ22bとが冷媒通路80を介して反対側に設置されていたが、実施例3では、同一側に設置されている。冷媒は複数の冷媒通路80の内、半分の冷媒通路80を通って、第2タンク24から第1タンク23に流れ、残りの半分の冷媒通路80を通って第2タンク24に流れ、第2冷媒パイプ22bから外部へ流出する。 In the first embodiment, the first refrigerant pipe 22a and the second refrigerant pipe 22b are installed on opposite sides via the refrigerant passage 80, but in the third embodiment, they are installed on the same side. Of the plurality of refrigerant passages 80, the refrigerant flows from the second tank 24 to the first tank 23 through half of the refrigerant passages 80, flows to the second tank 24 through the other half of the refrigerant passages 80, and is second. It flows out from the refrigerant pipe 22b to the outside.

冷媒通路80の定義に基づくと、例えば第1冷媒通路81と第2冷媒通路82において冷媒が流れる向きは、同一方向であるが、第3冷媒通路83及び第4冷媒通路84を流れる冷媒の向きは、第1冷媒通路81及び第2冷媒通路82の向きと逆である。 Based on the definition of the refrigerant passage 80, for example, the directions in which the refrigerant flows in the first refrigerant passage 81 and the second refrigerant passage 82 are the same, but the directions of the refrigerant flowing in the third refrigerant passage 83 and the fourth refrigerant passage 84. Is opposite to the direction of the first refrigerant passage 81 and the second refrigerant passage 82.

冷媒の流れについて説明したが、冷却液の流れも実施例3と同様であってもよい。また、冷却液と冷媒の流れは、種々のパターンがあり、冷却する電池モジュール10(または二次電池セル11)の大きさ、形状などにより選択可能である。 Although the flow of the refrigerant has been described, the flow of the coolant may be the same as in the third embodiment. Further, the flow of the coolant and the refrigerant has various patterns and can be selected depending on the size and shape of the battery module 10 (or the secondary battery cell 11) to be cooled.

図11は、冷却装置20の第4実施形態を示し、(a)は正面斜視図、(b)は(a)のA-A断面簡略図、(c)は(a)のB-B断面簡略図である。図12は、冷却装置20の組み立ての一例を示し、(a)はタンクの組み立て模式図、(b)はタンクとの接合模式図である。図11及び図12に基づいて第4実施形態を説明する。 11A and 11B show a fourth embodiment of the cooling device 20, where FIG. 11A is a front perspective view, FIG. 11B is a simplified sectional view taken along the line AA of FIG. 11A, and FIG. 11C is a sectional view taken along the line BB of FIG. It is a simplified diagram. 12A and 12B show an example of assembling the cooling device 20, where FIG. 12A is a schematic assembly diagram of a tank, and FIG. 12B is a schematic diagram of joining with a tank. A fourth embodiment will be described with reference to FIGS. 11 and 12.

第1面状部材30、第2面状部材40及び第3面状部材50は、別体であることを説明したが、第4実施形態は、3つの面状部材30、40、50を一体成型している。一体成型は、例えば金属の押し出し加工等により行われるが、熱伝導率の高い樹脂による樹脂成型でもよい。また、押し出し材による加工の場合、少なくとも、第1面状部材30、第2面状部材40、第1壁部61、第2壁部62、及び第3壁部63は、一体成型される。一体成型では、第3面状部材50の第1平面部51が第1面状部材30の第2面32と一体化し、第2平面部52が第2面状部材40の第3面41と一体化する。 It has been explained that the first planar member 30, the second planar member 40, and the third planar member 50 are separate bodies, but in the fourth embodiment, the three planar members 30, 40, and 50 are integrated. It is molded. The integral molding is performed, for example, by extruding a metal, but resin molding using a resin having a high thermal conductivity may also be used. Further, in the case of processing with an extruded material, at least the first planar member 30, the second planar member 40, the first wall portion 61, the second wall portion 62, and the third wall portion 63 are integrally molded. In the integral molding, the first flat surface portion 51 of the third planar member 50 is integrated with the second surface 32 of the first planar member 30, and the second flat surface portion 52 is integrated with the third surface 41 of the second planar member 40. Integrate.

一体成型された冷却液通路70と冷媒通路80は、一つの筐体25となり、タンク23、24と接合される。上部タンク23a、24aは、冷媒通路80と接合され、下部タンク23b、24bは冷却液通路70と接合される。 The integrally molded coolant passage 70 and the refrigerant passage 80 form one housing 25 and are joined to the tanks 23 and 24. The upper tanks 23a and 24a are joined to the refrigerant passage 80, and the lower tanks 23b and 24b are joined to the coolant passage 70.

第1タンク23及び第2タンク24は、各面状部材30、40、50により形成されていたが、一体成型の場合、独立して形成される。第1上部タンク23aは、第1面状部材30の第1面31に固定され、第1面状部材30の側方に開口された開口部33を介して第1上部タンク23aと冷媒通路80が連通している(図11(b)参照)。第1下部タンク23bは、第1面状部材30と第2面状部材40とを繋ぐ側壁34に固定され、側壁34に開口された開口部35を介して第1下部タンク23bと冷却液通路70が連通している(図11(c)参照)。尚、本実施形態では、第1タンク23側の結合を示しているが、第2タンク24側での結合も同様である。 The first tank 23 and the second tank 24 were formed by the planar members 30, 40, and 50, but in the case of integral molding, they are formed independently. The first upper tank 23a is fixed to the first surface 31 of the first planar member 30, and the first upper tank 23a and the refrigerant passage 80 pass through an opening 33 opened to the side of the first planar member 30. (See FIG. 11 (b)). The first lower tank 23b is fixed to the side wall 34 connecting the first planar member 30 and the second planar member 40, and the first lower tank 23b and the coolant passage pass through the opening 35 opened in the side wall 34. 70 communicates (see FIG. 11 (c)). In this embodiment, the connection on the first tank 23 side is shown, but the connection on the second tank 24 side is also the same.

外枠26と、通路を形成する複数の開口部33を有する内枠27とを接合して、第1上部タンク23aを形成する(図12(a)参照)。第1下部タンク23b、第2タンク24も同様にして形成可能である。形成された第1上部タンク23aを一体成型された筐体25と接合する。第1下部タンク23bも筐体25に接合させる(図12(b)参照)。第1タンク23側を説明した第2タンク24側も同様に組み立てることができる。尚、一体成型におけるタンク23、24と通路70、80の接合について説明したが、タンク23、24を独立に形成して、一体成型でない実施形態においても同様な結合を行うことが可能である。 The outer frame 26 and the inner frame 27 having a plurality of openings 33 forming a passage are joined to form a first upper tank 23a (see FIG. 12A). The first lower tank 23b and the second tank 24 can be formed in the same manner. The formed first upper tank 23a is joined to the integrally molded housing 25. The first lower tank 23b is also joined to the housing 25 (see FIG. 12B). The second tank 24 side described for the first tank 23 side can be assembled in the same manner. Although the joining of the tanks 23 and 24 and the passages 70 and 80 in the integral molding has been described, it is possible to form the tanks 23 and 24 independently and perform the same bonding in the embodiment not integrally molded.

図13は、冷却装置20の第5実施形態を示し、(a)は正面斜視図、(b)は分解斜視図である。図14は、第5実施形態の冷却液通路70と冷媒通路80とを示し、(a)は部分斜視図、(b)は(a)のA部拡大図である。図15は、図14と同様に冷却液通路70と冷媒通路80とを示し、(a)は冷却装置20の正面斜視図、(b)は(a)のA-A断面斜視図、(c)は(a)のB-B断面斜視図である。図13~図15に基づいて、冷却装置20の第5実施形態を説明する。 13 shows a fifth embodiment of the cooling device 20, where FIG. 13A is a front perspective view and FIG. 13B is an exploded perspective view. 14A and 14B show a coolant passage 70 and a refrigerant passage 80 according to a fifth embodiment, FIG. 14A is a partial perspective view, and FIG. 14B is an enlarged view of part A of FIG. 14A. 15 shows a coolant passage 70 and a refrigerant passage 80 as in FIG. 14, FIG. 15A is a front perspective view of the cooling device 20, and FIG. 15B is a sectional perspective view taken along the line AA of FIG. ) Is a sectional perspective view taken along the line BB of (a). A fifth embodiment of the cooling device 20 will be described with reference to FIGS. 13 to 15.

第5実施形態の冷却装置20は、天板200と、中板210と、底板220を備えている。天板200は、少なくとも第1面状部材30を構成し、中板210は、一枚の板を折り曲げる折り曲げ加工により形成され、少なくとも第3面状部材50を構成すると共に第1壁部61、第2壁部62、及び第3壁部63を構成し、底板220は、少なくとも第2面状部材40を構成している。 The cooling device 20 of the fifth embodiment includes a top plate 200, a middle plate 210, and a bottom plate 220. The top plate 200 constitutes at least the first planar member 30, and the middle plate 210 is formed by bending a single plate to form at least the third planar member 50 and the first wall portion 61. The second wall portion 62 and the third wall portion 63 are formed, and the bottom plate 220 constitutes at least the second planar member 40.

図7の第3実施形態を例とすると、中板210は、第2壁部62と第3壁部63の間において、天板200と接する領域を備え、中板210は、当該領域において貫通孔54を備え、第2冷却液通路72の冷却液は、貫通孔54を通って天板200と接していると説明が可能である。 Taking the third embodiment of FIG. 7 as an example, the middle plate 210 includes a region in contact with the top plate 200 between the second wall portion 62 and the third wall portion 63, and the middle plate 210 penetrates in the region. It can be explained that the cooling liquid of the second cooling liquid passage 72 provided with the hole 54 is in contact with the top plate 200 through the through hole 54.

天板200は、平坦状を呈する天板本体201と、両側に上方に立ち上がる天板立壁202と、さらに外方に突出する天板平板部203とを備える。中板210は、平坦状を呈する中板本体211と、両側に上方に立ち上がる中板立壁212と、さらに外方に突出する中板平板部213とを備える。底板220は、平坦状を呈する底板本体221と、両側に上方に立ち上がる底板立壁222と、さらに外方に突出する底板平板部223とを備える。 The top plate 200 includes a top plate main body 201 that exhibits a flat shape, a top plate standing wall 202 that rises upward on both sides, and a top plate flat plate portion 203 that further protrudes outward. The middle plate 210 includes a middle plate main body 211 that exhibits a flat shape, a middle plate standing wall 212 that rises upward on both sides, and a middle plate flat plate portion 213 that further protrudes outward. The bottom plate 220 includes a bottom plate main body 221 that exhibits a flat shape, a bottom plate standing wall 222 that rises upward on both sides, and a bottom plate flat plate portion 223 that further protrudes outward.

冷却液通路70及び冷媒通路80は、天板本体201と中板本体211及び底板本体221とで形成され、タンク23、24は、立壁202、212、222及び平板部203、213、223とで形成されている。冷却液と冷媒との境界は、天板立壁202と底板立壁222との間に中板立壁212を介することで形成させることができる。 The coolant passage 70 and the refrigerant passage 80 are formed of a top plate main body 201, a middle plate main body 211, and a bottom plate main body 221. It is formed. The boundary between the coolant and the refrigerant can be formed by interposing the middle plate standing wall 212 between the top plate standing wall 202 and the bottom plate standing wall 222.

図16は、第5実施形態の冷却装置20を電池温度調整システム1に適用したことを示し、(a)は正面斜視図、(b)は(a)のA-A断面図、(c)は(a)のB-B断面図である。 16A and 16B show that the cooling device 20 of the fifth embodiment is applied to the battery temperature adjusting system 1, where FIG. 16A is a front perspective view, FIG. 16B is a sectional view taken along the line AA of FIG. Is a cross-sectional view taken along the line BB of (a).

天板200、中板210及び底板220から構成される冷却装置20は、天板200上部に複数の電池モジュール10を搭載する。これにより、冷却装置20は、電池モジュール10の内部に配置された二次電池セル11を冷却することができる。また、冷却装置20は、二次電池セル11を冷却するための冷却液通路70及び冷媒通路80を設けている。 The cooling device 20 including the top plate 200, the middle plate 210, and the bottom plate 220 mounts a plurality of battery modules 10 on the top plate 200. As a result, the cooling device 20 can cool the secondary battery cell 11 arranged inside the battery module 10. Further, the cooling device 20 is provided with a coolant passage 70 and a refrigerant passage 80 for cooling the secondary battery cell 11.

図17は、冷却装置20の第6実施形態を示し、(a)は冷却装置20の正面斜視図、(b)は冷媒通路80の(a)のA-A断面簡略図、(c)は冷媒通路80の(a)のB-B断面簡略図、(d)は冷却液通路70の(a)のC-C断面簡略図、(e)は冷却液通路70の(a)のD-D断面簡略図である。 17 shows a sixth embodiment of the cooling device 20, where FIG. 17A is a front perspective view of the cooling device 20, FIG. 17B is a simplified view of the AA cross section of the refrigerant passage 80 (a), and FIG. A simplified view of the BB section of the refrigerant passage 80 (a), (d) a simplified view of the CC section of the coolant passage 70 (a), and (e) a simplified view of the coolant passage 70 (a) D-. D is a simplified cross-sectional view.

冷却液及び冷媒の流れは、流れの実施例1から実施例3を採用することが可能である。実施例3の冷媒の流れでの第2タンク24は、天板200に天板切曲部204を設けることで第2タンク24内の対向する流れ用の冷媒通路を容易に設けることができる(図17(b)参照)。また、実施例2の冷却液の流れでの第2タンク24は、底板220に底板切曲部224を設けることで第2タンク24内の対向する流れ用の冷却液通路を容易に設けることができる(図17(d)参照)。 As the flow of the coolant and the refrigerant, it is possible to adopt Examples 1 to 3 of the flow. In the second tank 24 in the flow of the refrigerant of the third embodiment, the refrigerant passage for the opposite flow in the second tank 24 can be easily provided by providing the top plate cut portion 204 on the top plate 200 (the second tank 24). See FIG. 17 (b)). Further, in the second tank 24 in the flow of the coolant of the second embodiment, the bottom plate 220 is provided with the bottom plate cut portion 224, so that the coolant passage for the opposite flow in the second tank 24 can be easily provided. Yes (see FIG. 17 (d)).

図18は、冷却装置20の第7実施形態を示し、(a)は図16(a)のA-A断面簡略図、(b)は図16(a)のB-B断面簡略図である。 18 shows a seventh embodiment of the cooling device 20, where FIG. 18A is a simplified cross-sectional view taken along the line AA of FIG. 16A, and FIG. 18B is a simplified cross-sectional view taken along the line BB of FIG. 16A. ..

第7実施形態は、タンク23、24を独立して形成した冷却装置20であり、第4実施形態と同様な構成である。第1上部タンク23aは、天板200の上面に固定され、天板200の側方に開口された開口部33を介して第1上部タンク23aと冷媒通路80が連通している(図18(a)参照)。第1下部タンク23bは、天板200と底板220とを繋ぐ側壁34に固定され、側壁34に開口された開口部35を介して第1下部タンク23bと冷却液通路70が連通している(図11(b)参照)。また、第1上部タンク23aと第1下部タンク23bの高さは同一である。天板200、中板210及び底板220が第4実施形態と同様一体成型で形成されている場合、第7実施形態のタンク23、24構造を適用することが好ましい。 The seventh embodiment is a cooling device 20 in which the tanks 23 and 24 are independently formed, and has the same configuration as the fourth embodiment. The first upper tank 23a is fixed to the upper surface of the top plate 200, and the first upper tank 23a and the refrigerant passage 80 communicate with each other through an opening 33 opened to the side of the top plate 200 (FIG. 18 (FIG. 18). a) See). The first lower tank 23b is fixed to the side wall 34 connecting the top plate 200 and the bottom plate 220, and the first lower tank 23b and the coolant passage 70 communicate with each other through the opening 35 opened in the side wall 34 (the first lower tank 23b and the coolant passage 70 communicate with each other. See FIG. 11 (b)). Further, the heights of the first upper tank 23a and the first lower tank 23b are the same. When the top plate 200, the middle plate 210 and the bottom plate 220 are integrally molded as in the fourth embodiment, it is preferable to apply the tank 23, 24 structures of the seventh embodiment.

図19は、車両に本実施形態の冷却装置20を搭載した状態を説明する模式図で、(a)は車両の側面図、(b)は車両の背面図である。 19A and 19B are schematic views illustrating a state in which the cooling device 20 of the present embodiment is mounted on a vehicle, where FIG. 19A is a side view of the vehicle and FIG. 19B is a rear view of the vehicle.

電池温度調整システム1を搭載する車両300は、進行方向Uに沿って回転する車輪301と、車室302と、車室302の床面303とを備える。 The vehicle 300 equipped with the battery temperature adjusting system 1 includes wheels 301 that rotate along the traveling direction U, a vehicle interior 302, and a floor surface 303 of the vehicle interior 302.

図19(a)では、冷却装置20の第1面状部材30及び第2面状部材40を車室302の床面303に沿って配置し、冷却装置20の第1壁部61、第2壁部62、及び第3壁部63は、進行方向Vに沿って配置している。これにより、冷却装置20を車両300の車体と一体になるように固定することで、進行方向Uに沿って配置される、第1壁部61、第2壁部62、第3壁部63等の剛性により、電池パックの剛性が向上し、これにより進行方向Uについての車体の剛性向上に寄与することが可能である。 In FIG. 19A, the first planar member 30 and the second planar member 40 of the cooling device 20 are arranged along the floor surface 303 of the vehicle interior 302, and the first wall portion 61 and the second of the cooling device 20 are arranged. The wall portion 62 and the third wall portion 63 are arranged along the traveling direction V. As a result, by fixing the cooling device 20 so as to be integrated with the vehicle body of the vehicle 300, the first wall portion 61, the second wall portion 62, the third wall portion 63, etc. are arranged along the traveling direction U. The rigidity of the battery pack improves the rigidity of the battery pack, which can contribute to the improvement of the rigidity of the vehicle body in the traveling direction U.

図19(b)では、冷却装置20の第1面状部材30及び第2面状部材40を車室302の床面303に沿って配置し、冷却装置20の第1壁部61、第2壁部62、及び第3壁部63は、進行方向Uと直交方向Wに沿って配置している。これにより、冷却装置20を車両300の車体と一体になるように固定することで、進行方向Uと直交する方向Wに沿って配置される、第1壁部61、第2壁部62、第3壁部63等の剛性により、電池パックの剛性が向上し、これにより直交方向Wについての車体の剛性向上に寄与することが可能である。 In FIG. 19B, the first planar member 30 and the second planar member 40 of the cooling device 20 are arranged along the floor surface 303 of the vehicle interior 302, and the first wall portion 61 and the second of the cooling device 20 are arranged. The wall portion 62 and the third wall portion 63 are arranged along the traveling direction U and the orthogonal direction W. As a result, by fixing the cooling device 20 so as to be integrated with the vehicle body of the vehicle 300, the first wall portion 61, the second wall portion 62, and the second wall portion 62 are arranged along the direction W orthogonal to the traveling direction U. The rigidity of the three wall portions 63 and the like improves the rigidity of the battery pack, which can contribute to the improvement of the rigidity of the vehicle body in the orthogonal direction W.

以上、図面を参照して本開示に係る冷却装置、電池温度調整システム及び車両の実施形態について説明したが、本開示はかかる例に限定されない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例、修正例、置換例、付加例、削除例、均等例に想到し得ることは明らかであり、それらについても当然に本開示の技術的範囲に属するものと了解される。 Although the cooling device, the battery temperature adjusting system, and the embodiment of the vehicle according to the present disclosure have been described above with reference to the drawings, the present disclosure is not limited to such an example. It is clear that a person skilled in the art can come up with various modifications, modifications, substitutions, additions, deletions, and even examples within the scope of the claims. It is naturally understood that it belongs to the technical scope of the present disclosure.

本開示の冷却装置、電池温度調整システム及び車両は、冷却装置の温度均一性を維持し、薄型化による二次電池セルの搭載性を向上させることを望む分野に有用である。 The cooling device, battery temperature control system and vehicle of the present disclosure are useful in a field where it is desired to maintain the temperature uniformity of the cooling device and improve the mountability of the secondary battery cell by reducing the thickness.

1:電池温度調整システム(車載電池パック)
10:電池モジュール
11:二次電池セル
20:冷却装置
23:第1タンク
24:第2タンク
30:第1面状部材
31:第1面
32:第2面
40:第2面状部材
41:第3面
42:第4面
50:第3面状部材
51:第1平面部
52:第2平面部
53:補強部材
54:貫通孔
60:壁部
61:第1壁部
62:第2壁部
63:第3壁部
70:冷却液通路
71:第1冷却液通路
72:第2冷却液通路
80:冷媒通路
81:第1冷媒通路
82:第2冷媒通路
83:第3冷媒通路
84:第4冷媒通路
100:電池温調装置
104:HVAC
200:天板
210:中板
220:底板
300:車両
301:車輪
302:車室
303:床面
D1:第1距離
D2:第2距離
D3:第3距離
D4:第4距離
L1:第1交差線
L2:第2交差線
L3:第3交差線
L4:第4交差線
L5:第5交差線
L6:第6交差線
S1:第1の仮想面
S2:第2の仮想面
T1:第1の向き
T2:第2の向き
V1:第1断面積
V2:第2断面積
Y1:第2方向
X1:第1方向
θ1:第1の角度(所定の角度)
θ2:第2の角度(所定の角度)
1: Battery temperature adjustment system (vehicle-mounted battery pack)
10: Battery module 11: Secondary battery cell 20: Cooling device 23: First tank 24: Second tank 30: First planar member 31: First surface 32: Second surface 40: Second planar member 41: Third surface 42: Fourth surface 50: Third surface member 51: First plane portion 52: Second plane portion 53: Reinforcing member 54: Through hole 60: Wall portion 61: First wall portion 62: Second wall Part 63: Third wall part 70: Coolant passage 71: First coolant passage 72: Second coolant passage 80: Refrigerant passage 81: First refrigerant passage 82: Second refrigerant passage 83: Third refrigerant passage 84: 4th refrigerant passage 100: Battery temperature control device 104: HVAC
200: Top plate 210: Middle plate 220: Bottom plate 300: Vehicle 301: Wheel 302: Vehicle interior 303: Floor surface D1: First distance D2: Second distance D3: Third distance D4: Fourth distance L1: First intersection Line L2: 2nd crossing line L3: 3rd crossing line L4: 4th crossing line L5: 5th crossing line L6: 6th crossing line S1: 1st virtual plane S2: 2nd virtual plane T1: 1st Direction T2: Second direction V1: First cross-sectional area V2: Second cross-sectional area Y1: Second direction X1: First direction θ1: First angle (predetermined angle)
θ2: Second angle (predetermined angle)

Claims (23)

第1面と、前記第1面と反対の第2面を備える第1面状部材と、
前記第2面と対向する第3面と、前記第3面と反対の第4面を備える第2面状部材と、
前記第2面と前記第3面との間に設けられ、冷却液を流す第1冷却液通路と、
前記第2面と前記第3面との間に設けられ、前記第1冷却液通路と隣接し、冷媒を流す第1冷媒通路と、
前記第2面と前記第3面との間に設けられ、前記第1冷媒通路と隣接し、冷却液を流す第2冷却液通路と、
前記第2面と前記第3面との間に設けられ、前記第2冷却液通路と隣接し、冷媒を流す第2冷媒通路と、
前記第2面及び前記第3面に接続され、前記第1冷却液通路と前記第1冷媒通路を隔てる第1壁部と、
前記第2面及び前記第3面に接続され、前記第1冷媒通路と前記第2冷却液通路を隔てる第2壁部と、
前記第2面及び前記第3面に接続され、前記第2冷却液通路と前記第2冷媒通路を隔てる第3壁部と、を少なくとも備え、
前記第1壁部、前記第2壁部、及び前記第3壁部は、前記第2面に平行な所定の方向に沿って配置され、
前記所定の方向を第1方向とし、
前記第2面に沿いつつ前記第1方向に垂直な第2方向について、前記第2面と前記第1壁部が交差する第1交差線と、前記第2面と前記第2壁部が交差する第2交差線との第1距離は、
前記第2方向について、前記第2面と前記第2壁部が交差する第2交差線と、前記第2面と前記第3壁部が交差する第3交差線との第2距離より、短く、
少なくとも前記第1面に沿って配置された複数の二次電池セルを冷却可能である、
冷却装置。
A first surface, a first surface-shaped member having a second surface opposite to the first surface, and
A third surface facing the second surface, and a second surface-shaped member having a fourth surface opposite to the third surface.
A first coolant passage provided between the second surface and the third surface and through which the coolant flows,
A first refrigerant passage provided between the second surface and the third surface, adjacent to the first coolant passage, and flowing a refrigerant.
A second coolant passage provided between the second surface and the third surface, adjacent to the first refrigerant passage, and through which the coolant flows.
A second refrigerant passage provided between the second surface and the third surface, adjacent to the second coolant passage, and through which the refrigerant flows.
A first wall portion connected to the second surface and the third surface and separating the first coolant passage and the first refrigerant passage.
A second wall portion connected to the second surface and the third surface and separating the first refrigerant passage and the second coolant passage,
At least a third wall portion connected to the second surface and the third surface and separating the second coolant passage and the second refrigerant passage is provided.
The first wall portion, the second wall portion, and the third wall portion are arranged along a predetermined direction parallel to the second surface.
The predetermined direction is set as the first direction.
In the second direction perpendicular to the first direction along the second surface, the first crossing line where the second surface and the first wall portion intersect, and the second surface and the second wall portion intersect. The first distance to the second crossing line is
In the second direction, it is shorter than the second distance between the second intersection line where the second surface and the second wall portion intersect and the third intersection line where the second surface and the third wall portion intersect. ,
It is possible to cool at least a plurality of secondary battery cells arranged along the first surface.
Cooling system.
第1面と、前記第1面と反対の第2面を備える第1面状部材と、A first surface, a first surface-shaped member having a second surface opposite to the first surface, and
前記第2面と対向する第3面と、前記第3面と反対の第4面を備える第2面状部材と、A third surface facing the second surface, and a second surface-shaped member having a fourth surface opposite to the third surface.
前記第2面と前記第3面との間に設けられ、冷却液を流す第1冷却液通路と、A first coolant passage provided between the second surface and the third surface and through which the coolant flows,
前記第2面と前記第3面との間に設けられ、前記第1冷却液通路と隣接し、冷媒を流す第1冷媒通路と、A first refrigerant passage provided between the second surface and the third surface, adjacent to the first coolant passage, and flowing a refrigerant.
前記第2面と前記第3面との間に設けられ、前記第1冷媒通路と隣接し、冷却液を流す第2冷却液通路と、A second coolant passage provided between the second surface and the third surface, adjacent to the first refrigerant passage, and through which the coolant flows.
前記第2面と前記第3面との間に設けられ、前記第2冷却液通路と隣接し、冷媒を流す第2冷媒通路と、A second refrigerant passage provided between the second surface and the third surface, adjacent to the second coolant passage, and through which the refrigerant flows.
前記第2面及び前記第3面に接続され、前記第1冷却液通路と前記第1冷媒通路を隔てる第1壁部と、A first wall portion connected to the second surface and the third surface and separating the first coolant passage and the first refrigerant passage.
前記第2面及び前記第3面に接続され、前記第1冷媒通路と前記第2冷却液通路を隔てる第2壁部と、A second wall portion connected to the second surface and the third surface and separating the first refrigerant passage and the second coolant passage,
前記第2面及び前記第3面に接続され、前記第2冷却液通路と前記第2冷媒通路を隔てる第3壁部と、を少なくとも備え、At least a third wall portion connected to the second surface and the third surface and separating the second coolant passage and the second refrigerant passage is provided.
前記第1壁部、前記第2壁部、及び前記第3壁部は、前記第2面に平行な所定の方向に沿って配置され、The first wall portion, the second wall portion, and the third wall portion are arranged along a predetermined direction parallel to the second surface.
前記第1冷媒通路は、前記第2面に直交するとともに前記所定の方向と交わるように仮想的に画定される第2の仮想面において第1断面積を有し、The first refrigerant passage has a first cross-sectional area in a second virtual plane orthogonal to the second plane and virtually defined to intersect the predetermined direction.
前記第2冷却液通路は、前記第2の仮想面において第2断面積を有し、The second coolant passage has a second cross-sectional area in the second virtual surface.
前記第1断面積は、前記第2断面積より小さく、The first cross-sectional area is smaller than the second cross-sectional area.
少なくとも前記第1面に沿って配置された複数の二次電池セルを冷却可能である、It is possible to cool at least a plurality of secondary battery cells arranged along the first surface.
冷却装置。Cooling system.
第1面と、前記第1面と反対の第2面を備える第1面状部材と、A first surface, a first surface-shaped member having a second surface opposite to the first surface, and
前記第2面と対向する第3面と、前記第3面と反対の第4面を備える第2面状部材と、A third surface facing the second surface, and a second surface-shaped member having a fourth surface opposite to the third surface.
前記第2面と前記第3面との間に設けられ、冷却液を流す第1冷却液通路と、A first coolant passage provided between the second surface and the third surface and through which the coolant flows,
前記第2面と前記第3面との間に設けられ、前記第1冷却液通路と隣接し、冷媒を流す第1冷媒通路と、A first refrigerant passage provided between the second surface and the third surface, adjacent to the first coolant passage, and flowing a refrigerant.
前記第2面と前記第3面との間に設けられ、前記第1冷媒通路と隣接し、冷却液を流す第2冷却液通路と、A second coolant passage provided between the second surface and the third surface, adjacent to the first refrigerant passage, and through which the coolant flows.
前記第2面と前記第3面との間に設けられ、前記第2冷却液通路と隣接し、冷媒を流す第2冷媒通路と、A second refrigerant passage provided between the second surface and the third surface, adjacent to the second coolant passage, and through which the refrigerant flows.
前記第2面及び前記第3面に接続され、前記第1冷却液通路と前記第1冷媒通路を隔てる第1壁部と、A first wall portion connected to the second surface and the third surface and separating the first coolant passage and the first refrigerant passage.
前記第2面及び前記第3面に接続され、前記第1冷媒通路と前記第2冷却液通路を隔てる第2壁部と、A second wall portion connected to the second surface and the third surface and separating the first refrigerant passage and the second coolant passage,
前記第2面及び前記第3面に接続され、前記第2冷却液通路と前記第2冷媒通路を隔てる第3壁部と、を少なくとも備え、At least a third wall portion connected to the second surface and the third surface and separating the second coolant passage and the second refrigerant passage is provided.
前記第1壁部、前記第2壁部、及び前記第3壁部は、前記第2面に平行な所定の方向に沿って配置された冷却装置であって、The first wall portion, the second wall portion, and the third wall portion are cooling devices arranged along a predetermined direction parallel to the second surface.
少なくとも前記第1面状部材を構成する天板と、At least the top plate constituting the first planar member and
少なくとも前記第1壁部、前記第2壁部、及び前記第3壁部を構成する中板と、At least the first wall portion, the second wall portion, and the middle plate constituting the third wall portion.
少なくとも前記第2面状部材を構成する底板と、を備え、At least a bottom plate constituting the second planar member is provided.
前記中板において、少なくとも前記第1壁部、前記第2壁部、及び前記第3壁部が一枚の板から成形され、In the middle plate, at least the first wall portion, the second wall portion, and the third wall portion are formed from one plate.
前記中板は、前記第2壁部と前記第3壁部の間において、前記天板と接する領域を備え、The middle plate includes a region in contact with the top plate between the second wall portion and the third wall portion.
前記中板は、前記領域において貫通孔を備え、The middle plate has through holes in the area and
前記第2冷却液通路の前記冷却液は、前記貫通孔を通って前記天板と接し、The coolant in the second coolant passage passes through the through hole and comes into contact with the top plate.
少なくとも前記第1面に沿って配置された複数の二次電池セルを冷却可能である、It is possible to cool at least a plurality of secondary battery cells arranged along the first surface.
冷却装置。Cooling system.
請求項1から請求項3いずれか1項に記載の冷却装置であって、
少なくとも前記第1面状部材、前記第1壁部、前記第2壁部、及び前記第3壁部は、所定以上の熱伝導性を有する、
冷却装置。
The cooling device according to any one of claims 1 to 3 .
At least the first planar member, the first wall portion, the second wall portion, and the third wall portion have a predetermined or higher thermal conductivity.
Cooling system.
請求項に記載の冷却装置であって、
少なくとも前記第1面状部材、前記第1壁部、前記第2壁部、及び前記第3壁部は、アルミ合金で構成されている、
冷却装置。
The cooling device according to claim 4 .
At least the first planar member, the first wall portion, the second wall portion, and the third wall portion are made of an aluminum alloy.
Cooling system.
請求項1から請求項のいずれか1項に記載の冷却装置であって、
少なくとも前記第1壁部と前記第3壁部は、前記第2面に直交するとともに前記所定の方向に沿って仮想的に画定される第1の仮想面を基準に、所定の向きに、所定の角度だけ斜めになっている、
冷却装置。
The cooling device according to any one of claims 1 to 5 .
At least the first wall portion and the third wall portion are predetermined in a predetermined direction with respect to a first virtual surface orthogonal to the second surface and virtually defined along the predetermined direction. Is slanted by the angle of
Cooling system.
請求項6に記載の冷却装置であって、
前記所定の角度は、40度から60度の間にある、
冷却装置。
The cooling device according to claim 6 .
The predetermined angle is between 40 and 60 degrees.
Cooling system.
請求項又は請求項に記載の冷却装置であって、
前記所定の向きを第1の向きとし、
前記所定の角度を第1の角度とし、
前記第2壁部は、前記第1の仮想面を基準に、前記第1の向きと反対の第2の向きに、第2の角度だけ斜めになっている、
冷却装置。
The cooling device according to claim 6 or 7 .
The predetermined orientation is set as the first orientation.
The predetermined angle is set as the first angle.
The second wall portion is inclined by a second angle in a second direction opposite to the first direction with respect to the first virtual surface.
Cooling system.
請求項に記載の冷却装置であって、
前記第2の角度は、40度から60度の間にある、
冷却装置。
The cooling device according to claim 8 .
The second angle is between 40 and 60 degrees.
Cooling system.
請求項1から請求項のいずれか1項に記載の冷却装置であって、
前記所定の方向を第1方向とし、
前記第2面に沿いつつ前記第1方向に垂直な第2方向について、前記第2面と前記第1壁部が交差する第1交差線と、前記第2面と前記第2壁部が交差する第2交差線との第1距離は、
前記第2方向について、前記第3面と前記第1壁部が交差する第4交差線と、前記第3面と前記第2壁部が交差する第5交差線との第3距離より、長い、
冷却装置。
The cooling device according to any one of claims 1 to 9 .
The predetermined direction is set as the first direction.
In the second direction perpendicular to the first direction along the second surface, the first crossing line where the second surface and the first wall portion intersect, and the second surface and the second wall portion intersect. The first distance to the second crossing line is
In the second direction, it is longer than the third distance between the fourth intersection line where the third surface and the first wall portion intersect and the fifth intersection line where the third surface and the second wall portion intersect. ,
Cooling system.
請求項1から請求項10のいずれか1項に記載の冷却装置であって、
前記所定の方向を第1方向とし、
前記第2面に沿いつつ前記第1方向に垂直な第2方向について、前記第2面と前記第2壁部が交差する第2交差線と、前記第2面と前記第3壁部が交差する第3交差線との第2距離は、
前記第2方向について、前記第3面と前記第2壁部が交差する第5交差線と、前記第3面と前記第3壁部が交差する第6交差線との第4距離より、短い、
冷却装置。
The cooling device according to any one of claims 1 to 10 .
The predetermined direction is set as the first direction.
In the second direction perpendicular to the first direction along the second surface, the second intersection line where the second surface and the second wall portion intersect, and the second surface and the third wall portion intersect. The second distance to the third crossing line is
The second direction is shorter than the fourth distance between the fifth intersection line where the third surface and the second wall portion intersect and the sixth intersection line where the third surface and the third wall portion intersect. ,
Cooling system.
請求項1から請求項11のいずれか1項に記載の冷却装置であって、
前記第1冷却液通路及び前記第2冷却液通路の少なくともいずれかの内部において、前記第2面と前記第3面を接続する補強部材が設けられている、
冷却装置。
The cooling device according to any one of claims 1 to 11.
A reinforcing member connecting the second surface and the third surface is provided inside at least one of the first coolant passage and the second coolant passage.
Cooling system.
請求項1から請求項12のいずれか1項に記載の冷却装置であって、
前記第1冷却液通路において冷却液が流れる向きは、
前記第2冷却液通路において冷却液が流れる向きと同じである、
冷却装置。
The cooling device according to any one of claims 1 to 12.
The direction in which the coolant flows in the first coolant passage is
It is the same as the direction in which the coolant flows in the second coolant passage.
Cooling system.
請求項1から請求項12のいずれか1項に記載の冷却装置であって、
前記第1冷却液通路において冷却液が流れる向きは、
前記第2冷却液通路において冷却液が流れる向きと反対である、
冷却装置。
The cooling device according to any one of claims 1 to 12.
The direction in which the coolant flows in the first coolant passage is
It is opposite to the direction in which the coolant flows in the second coolant passage.
Cooling system.
請求項1から請求項14のいずれか1項に記載の冷却装置であって、
前記第1冷媒通路において冷媒が流れる向きは、
前記第2冷媒通路において冷媒が流れる向きと同じである、
冷却装置。
The cooling device according to any one of claims 1 to 14.
The direction in which the refrigerant flows in the first refrigerant passage is
The direction in which the refrigerant flows in the second refrigerant passage is the same.
Cooling system.
請求項1から請求項14のいずれか1項に記載の冷却装置であって、
前記第1冷媒通路において冷媒が流れる向きは、
前記第2冷媒通路において冷媒が流れる向きと反対である、
冷却装置。
The cooling device according to any one of claims 1 to 14.
The direction in which the refrigerant flows in the first refrigerant passage is
The direction in which the refrigerant flows in the second refrigerant passage is opposite to that of the flow.
Cooling system.
請求項1から請求項16のいずれか1項に記載の冷却装置であって、
前記第1冷媒通路において冷媒が流れる向きは、
前記第2冷却液通路において冷却液が流れる向きと同じである、
冷却装置。
The cooling device according to any one of claims 1 to 16.
The direction in which the refrigerant flows in the first refrigerant passage is
It is the same as the direction in which the coolant flows in the second coolant passage.
Cooling system.
請求項1から請求項16のいずれか1項に記載の冷却装置であって、
前記第1冷媒通路において冷媒が流れる向きは、
前記第2冷却液通路において冷却液が流れる向きと反対である、
冷却装置。
The cooling device according to any one of claims 1 to 16.
The direction in which the refrigerant flows in the first refrigerant passage is
It is opposite to the direction in which the coolant flows in the second coolant passage.
Cooling system.
請求項1又は請求項2に記載の冷却装置であって、
少なくとも、前記第1面状部材、前記第2面状部材、前記第1壁部、前記第2壁部、及び前記第3壁部は、
押し出し材により一体成型された、
冷却装置。
The cooling device according to claim 1 or 2 .
At least, the first planar member, the second planar member, the first wall portion, the second wall portion, and the third wall portion are
Integrally molded with extruded material,
Cooling system.
請求項1から請求項19のいずれか1項に記載の冷却装置と、
前記冷却装置の前記第1面に沿って配置された複数の二次電池セルと、
を備える、
電池温度調整システム。
The cooling device according to any one of claims 1 to 19 .
A plurality of secondary battery cells arranged along the first surface of the cooling device, and
To prepare
Battery temperature control system.
請求項2に記載の電池温度調整システムであって、
前記複数の二次電池セルは、電池モジュールを構成する、
電池温度調整システム。
The battery temperature adjusting system according to claim 20.
The plurality of secondary battery cells constitute a battery module.
Battery temperature control system.
請求項1から請求項19のいずれか1項に記載の冷却装置と、
進行方向に沿って回転する車輪と、
車室と、を備える車両であって、
前記冷却装置の前記第1面状部材及び前記第2面状部材を前記車室の床面に沿って配置し、
前記冷却装置の前記第1壁部、前記第2壁部、及び前記第3壁部は、前記進行方向に沿って配置される、
車両。
The cooling device according to any one of claims 1 to 19 .
Wheels that rotate along the direction of travel,
A vehicle equipped with a passenger compartment
The first planar member and the second planar member of the cooling device are arranged along the floor surface of the passenger compartment.
The first wall portion, the second wall portion, and the third wall portion of the cooling device are arranged along the traveling direction.
vehicle.
請求項1から請求項19のいずれか1項に記載の冷却装置と、
進行方向に沿って回転する車輪と、
車室と、を備える車両であって、
前記冷却装置の前記第1面状部材及び前記第2面状部材を前記車室の床面に沿って配置し、
前記冷却装置の前記第1壁部、前記第2壁部、及び前記第3壁部は、前記進行方向と直交方向に沿って配置される、
車両。
The cooling device according to any one of claims 1 to 19 .
Wheels that rotate along the direction of travel,
A vehicle equipped with a passenger compartment
The first planar member and the second planar member of the cooling device are arranged along the floor surface of the passenger compartment.
The first wall portion, the second wall portion, and the third wall portion of the cooling device are arranged along the direction orthogonal to the traveling direction.
vehicle.
JP2018131669A 2018-07-11 2018-07-11 Cooling device, battery temperature control system and vehicle Active JP7033730B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018131669A JP7033730B2 (en) 2018-07-11 2018-07-11 Cooling device, battery temperature control system and vehicle
DE102019118356.1A DE102019118356A1 (en) 2018-07-11 2019-07-08 Cooler, battery temperature control system and vehicle
CN201910611221.5A CN110718724A (en) 2018-07-11 2019-07-08 Cooling device, battery temperature control system, and vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018131669A JP7033730B2 (en) 2018-07-11 2018-07-11 Cooling device, battery temperature control system and vehicle

Publications (2)

Publication Number Publication Date
JP2020009694A JP2020009694A (en) 2020-01-16
JP7033730B2 true JP7033730B2 (en) 2022-03-11

Family

ID=69152241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018131669A Active JP7033730B2 (en) 2018-07-11 2018-07-11 Cooling device, battery temperature control system and vehicle

Country Status (3)

Country Link
JP (1) JP7033730B2 (en)
CN (1) CN110718724A (en)
DE (1) DE102019118356A1 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111439137A (en) * 2020-03-02 2020-07-24 株洲旭阳机电科技开发有限公司 Lithium iron phosphate power battery pack new energy railcar
JP7022935B2 (en) * 2020-03-27 2022-02-21 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
CN111490311B (en) * 2020-04-21 2023-08-25 上海加冷松芝汽车空调股份有限公司 Integrated heat exchange plate and vehicle battery thermal management system
CN111490313B (en) * 2020-06-28 2020-11-13 四川大学 Counter-flow cooling system for power battery pack and power battery pack
JP2022055246A (en) * 2020-09-28 2022-04-07 パナソニックIpマネジメント株式会社 Vehicle, and battery pack
JP7426610B2 (en) * 2020-09-28 2024-02-02 パナソニックIpマネジメント株式会社 Vehicle and battery pack
JP7426609B2 (en) * 2020-09-28 2024-02-02 パナソニックIpマネジメント株式会社 Vehicle and battery pack
JP2022061770A (en) * 2020-10-07 2022-04-19 パナソニックIpマネジメント株式会社 Vehicle and battery pack
DE112021005081T5 (en) * 2020-09-28 2023-07-20 Panasonic Intellectual Property Management Co., Ltd. vehicle and battery pack
FR3114873B1 (en) * 2020-10-07 2022-11-18 Valeo Systemes Thermiques Device for thermal regulation, in particular for cooling, for a motor vehicle
JP2022083521A (en) * 2020-11-25 2022-06-06 トヨタ自動車株式会社 Power storage device
CN114608368A (en) * 2020-12-08 2022-06-10 绍兴三花新能源汽车部件有限公司 Heat exchanger
WO2022176350A1 (en) * 2021-02-19 2022-08-25 パナソニックIpマネジメント株式会社 Vehicle and heat exchange plate
WO2022265018A1 (en) * 2021-06-18 2022-12-22 三井化学株式会社 Case and pack
WO2023058498A1 (en) * 2021-10-05 2023-04-13 株式会社ヴァレオジャパン Battery-cooling heat exchanger
FR3131709B1 (en) * 2022-01-11 2023-11-24 Valeo Systemes Thermiques Thermal regulation device
WO2023164833A1 (en) * 2022-03-02 2023-09-07 威睿电动汽车技术(宁波)有限公司 Liquid cold plate, battery tray, battery holder, and vehicle
CN114583336B (en) * 2022-03-04 2023-12-19 阳光电源股份有限公司 Anti-icing method and device for liquid-cooled battery, cooling system and energy storage system
KR102645896B1 (en) * 2022-03-28 2024-03-11 주식회사화신 Case of battery pack for electric vehicle
EP4254604A1 (en) * 2022-03-29 2023-10-04 Samsung SDI Co., Ltd. Cooling plate arrangement, battery system, electric vehicle and method for assembling
CN114497826B (en) * 2022-04-18 2022-08-26 宁德时代新能源科技股份有限公司 Water cooling plate assembly, water cooling system, battery, box body of battery and power utilization device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007355A (en) 2001-06-19 2003-01-10 Kojima Press Co Ltd Cooling structure of secondary battery
JP2007022139A (en) 2005-07-12 2007-02-01 Toyota Motor Corp Structure of hybrid vehicle
JP2008234870A (en) 2007-03-16 2008-10-02 Toyota Motor Corp Vehicle-mounting structure of battery
JP2009009888A (en) 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Vehicle power source device
JP2014022166A (en) 2012-07-18 2014-02-03 Toshiba Corp Battery device
JP2017050164A (en) 2015-09-02 2017-03-09 株式会社東芝 Battery module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03114146A (en) * 1989-09-28 1991-05-15 Aisin Seiki Co Ltd Fuel cell
JPH09199093A (en) * 1996-01-17 1997-07-31 Matsushita Electric Ind Co Ltd Battery jar for storage battery, and storage battery
KR100951324B1 (en) * 2007-06-14 2010-04-08 주식회사 엘지화학 Middle or Large-sized Battery Pack Case Providing Improved Distribution Uniformity of Coolant Flux
JP2010050000A (en) 2008-08-22 2010-03-04 Sanyo Electric Co Ltd Power source device for vehicle
KR101250841B1 (en) * 2010-10-20 2013-04-04 주식회사 엘지화학 Battery Pack Having Uniform Cooling Efficiency by Deviation of Slop Gradient Position
DE102014001022A1 (en) * 2014-01-27 2015-07-30 Liebherr-Transportation Systems Gmbh & Co. Kg Vehicle cooling circuit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003007355A (en) 2001-06-19 2003-01-10 Kojima Press Co Ltd Cooling structure of secondary battery
JP2007022139A (en) 2005-07-12 2007-02-01 Toyota Motor Corp Structure of hybrid vehicle
JP2008234870A (en) 2007-03-16 2008-10-02 Toyota Motor Corp Vehicle-mounting structure of battery
JP2009009888A (en) 2007-06-29 2009-01-15 Sanyo Electric Co Ltd Vehicle power source device
JP2014022166A (en) 2012-07-18 2014-02-03 Toshiba Corp Battery device
JP2017050164A (en) 2015-09-02 2017-03-09 株式会社東芝 Battery module

Also Published As

Publication number Publication date
DE102019118356A1 (en) 2020-01-16
JP2020009694A (en) 2020-01-16
CN110718724A (en) 2020-01-21

Similar Documents

Publication Publication Date Title
JP7033730B2 (en) Cooling device, battery temperature control system and vehicle
CN105172903B (en) For the bottom board unit of motor vehicles
US10411316B2 (en) Battery pack for vehicle
JP6245789B2 (en) Electric vehicle battery pack temperature control structure
JP5924025B2 (en) Electric vehicle battery pack temperature control structure
JP4979545B2 (en) Cooling structure for high piezoelectric parts
CN105270150B (en) Body bottom unit for motor vehicles
JP7122664B2 (en) Vehicles, heat exchange plates, and battery packs
CN102216100A (en) Vehicle power source unit cooling structure
JPWO2014069270A1 (en) Battery temperature control device
WO2019155810A1 (en) Cooling device and battery temperature control system
JP6295580B2 (en) Battery temperature control device
US20210261202A1 (en) Vehicle lower part structure
WO2014162939A1 (en) Temperature adjustment device
US20200338963A1 (en) Cooling device
WO2020241193A1 (en) Cooler-integrated battery tray for moving body and battery device for moving body
JP6186699B2 (en) Battery temperature control device
KR101858692B1 (en) Electric vehicle
JP2018158595A (en) Fuel cell vehicle
JP2021174662A (en) Heat exchanger of vehicular battery cooling device
CN113678303A (en) Cooling device and housing
WO2022176350A1 (en) Vehicle and heat exchange plate
JP2022127457A (en) Vehicle and heat exchange plate
JP2022138471A (en) Vehicle and heat exchange plate
JP2022138470A (en) Vehicle and heat exchange plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211005

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220210

R150 Certificate of patent or registration of utility model

Ref document number: 7033730

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

SZ03 Written request for cancellation of trust registration

Free format text: JAPANESE INTERMEDIATE CODE: R313Z03