JP7033246B2 - Stress measuring device for transported objects - Google Patents

Stress measuring device for transported objects Download PDF

Info

Publication number
JP7033246B2
JP7033246B2 JP2018012484A JP2018012484A JP7033246B2 JP 7033246 B2 JP7033246 B2 JP 7033246B2 JP 2018012484 A JP2018012484 A JP 2018012484A JP 2018012484 A JP2018012484 A JP 2018012484A JP 7033246 B2 JP7033246 B2 JP 7033246B2
Authority
JP
Japan
Prior art keywords
rays
ray
shape
diffracted
residual stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018012484A
Other languages
Japanese (ja)
Other versions
JP2019132599A (en
Inventor
俊一郎 田中
洋一 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Pulstec Industrial Co Ltd
Original Assignee
Tohoku University NUC
Pulstec Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Pulstec Industrial Co Ltd filed Critical Tohoku University NUC
Priority to JP2018012484A priority Critical patent/JP7033246B2/en
Publication of JP2019132599A publication Critical patent/JP2019132599A/en
Application granted granted Critical
Publication of JP7033246B2 publication Critical patent/JP7033246B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Description

本発明は、搬送物の応力測定装置に関する。 The present invention relates to a stress measuring device for a transported object.

従来、鉄鋼材料連続鋳造工程や熱間圧延工程、冷間圧延工程、鍛造工程、線引き工程など、連続的に材料が生産されている現場では、生産された材料の品質を管理するために、搬送されている材料の中から所定の割合で測定用の材料を取り出し、X線回折を用いた応力測定装置により、材料の各部の平面残留応力を測定することが行われている。引張残留応力が材料の降伏強度を超過すると塑性変形やき裂が発生し、残留応力値が低くてもクリープ変形などで加工後の寸法変化や形状変化が起こるからである。このような応力測定装置には、特許文献1に示されるようにsinψ法による応力測定装置がある。この装置は、材料に対するX線の入射角を変更し、それぞれの入射角において回折角2θを検出することで平面残留応力を測定するものである。 Conventionally, in the field where materials are continuously produced such as steel material continuous casting process, hot rolling process, cold rolling process, forging process, drawing process, etc., in order to control the quality of the produced material, it is transported. A material for measurement is taken out at a predetermined ratio from the materials, and the plane residual stress of each part of the material is measured by a stress measuring device using X-ray diffraction. This is because when the tensile residual stress exceeds the yield strength of the material, plastic deformation and cracks occur, and even if the residual stress value is low, dimensional change and shape change after machining occur due to creep deformation and the like. As shown in Patent Document 1, such a stress measuring device includes a stress measuring device by the sin 2 ψ method. This device measures the plane residual stress by changing the incident angle of X-rays with respect to the material and detecting the diffraction angle 2θ at each incident angle.

sinψ法による応力測定装置は、材料に対するX線の入射角を変更して測定する必要があるため、装置が大型化し測定に時間がかかるという問題がある。これに対し、材料に対するX線の入射角を固定して測定するX線回折を用いた応力測定装置として、特許文献2に示されるようにcosα法による応力測定装置がある。この装置は、材料からの回折X線により撮像面に回折環を形成し、この回折環の形状から平面残留応力を測定するものである。この装置は、装置を小型化でき測定時間を短くすることができるというメリットがある。なお、回折環を形成する撮像面には、特許文献2に示されるようにイメージングプレートの他、特許文献3に示されるように2次元に固体撮像素子を並べたものがある。 Since the stress measuring device by the sin 2 ψ method needs to change the angle of incidence of X-rays on the material for measurement, there is a problem that the device becomes large and it takes time to measure. On the other hand, as a stress measuring device using X-ray diffraction for measuring by fixing the incident angle of X-rays to a material, there is a stress measuring device by the cosα method as shown in Patent Document 2. This device forms a diffractive ring on the image pickup surface by diffracted X-rays from the material, and measures the plane residual stress from the shape of the diffractive ring. This device has an advantage that the device can be miniaturized and the measurement time can be shortened. As the imaging surface forming the diffraction ring, in addition to the imaging plate as shown in Patent Document 2, there is one in which solid-state imaging elements are arranged two-dimensionally as shown in Patent Document 3.

また、特許文献4に示されるように、移動する対象物に対してX線回折測定を行う装置が本発明者により開発されている。この装置は、X線を連続して対象物に照射し、対象物の移動に同期させてイメージングプレートを回転させ、スリットを介して回折X線の像をイメージングプレートに形成している。そして、回折X線の像の形成と並行して形成した像の半価幅を測定し、該半価幅により対象物の異常箇所を検出している。 Further, as shown in Patent Document 4, an apparatus for performing X-ray diffraction measurement on a moving object has been developed by the present inventor. This device continuously irradiates an object with X-rays, rotates the imaging plate in synchronization with the movement of the object, and forms an image of diffracted X-rays on the imaging plate through a slit. Then, the half width of the image formed in parallel with the formation of the image of the diffracted X-ray is measured, and the abnormal portion of the object is detected by the half width.

特開2013-36861号公報Japanese Unexamined Patent Publication No. 2013-36861 特許第5505361号公報Japanese Patent No. 5505361 特開2015-78934号公報JP-A-2015-78934 特許第5920593号公報Japanese Patent No. 5920593

特許文献2及び特許文献3に示されるX線回折を用いた応力測定装置は、材料を固定した状態でX線を照射して測定を行う場合を前提にした装置であり、搬送されている材料の応力をそのまま測定することはできない。また、特許文献4に示されるX線回折測定装置は、移動する対象物の回折X線の像の半価幅を測定する装置であり、残留応力を測定することを目的とした装置ではない。このように、これまでのX線回折を用いた応力測定装置には搬送されている材料の残留応力を精度よく測定する装置はなかった。 The stress measuring device using X-ray diffraction shown in Patent Document 2 and Patent Document 3 is a device premised on the case of irradiating X-rays with the material fixed and performing measurement, and the material being conveyed. The stress of is not measured as it is. Further, the X-ray diffraction measuring device shown in Patent Document 4 is a device for measuring the half-value width of the image of the diffracted X-ray of a moving object, and is not a device for measuring residual stress. As described above, the conventional stress measuring device using X-ray diffraction does not have a device for accurately measuring the residual stress of the conveyed material.

このため、搬送されている材料の残留応力を測定するには、搬送されている材料の中から所定の割合で測定用の材料を取り出す必要があり、測定用の材料を取り出してから残留応力の測定結果を得るまでには時間がかかり、得られた測定結果を搬送されている材料にフィードバックするのが困難であるという課題がある。また、材料を全数検査することができないため、異常がある材料を確実に検出することができないという課題がある。 Therefore, in order to measure the residual stress of the material being conveyed, it is necessary to take out the material for measurement at a predetermined ratio from the material being conveyed, and after taking out the material for measurement, the residual stress It takes time to obtain the measurement result, and there is a problem that it is difficult to feed back the obtained measurement result to the material to be conveyed. Further, since it is not possible to inspect all the materials, there is a problem that it is not possible to reliably detect the abnormal material.

本発明は、このような課題に着目してなされたもので、搬送されている全ての搬送物の残留応力をリアルタイムで精度よく測定することができ、検査結果を搬送物の生産工程に即座に反映させることができる応力測定装置を提供することを目的とする。 The present invention has been made by paying attention to such a problem, and it is possible to accurately measure the residual stress of all the conveyed objects in real time, and the inspection results are immediately applied to the production process of the conveyed objects. It is an object of the present invention to provide a stress measuring device that can be reflected.

上記目的を達成するために、本発明に係る搬送物の応力測定装置は、一定の速度で搬送される1 または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、X線照射手段からX線が照射されたとき、搬送物で発生する回折X線を撮像面にて受光し、撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、受光手段にて検出された回折X線の像の形状に基づいて、搬送物の残留応力を計算する残留応力取得手段とを有し、受光手段は、回折X線の像の形状として回折環の形状を検出するものであり、残留応力取得手段は、受光手段で検出された回折環の形状に基づいて、cosα法により残留応力を計算するものであり、受光手段は、イメージングプレートと、 イメージングプレートにレーザ光を走査し、走査の位置及びレーザ光の照射点から発生する蛍光の強度を同じタイミングで検出することで回折環の形状を検出する回折環検出手段と、イメージングプレートに形成された回折環を消去するための消去光を照射するとともに消去光を走査する回折環消去手段とから構成され、イメージングプレートは2組あり、それぞれの組のイメージングプレートを、交互に回折X線が入射する位置まで移動させる移動手段と、一方の組のイメージングプレートに回折環が形成されている間、回折環検出手段及び回折環消去手段を制御して、別の組のイメージングプレートに形成された回折環の形状検出及び消去を行う測定制御手段とを有することを特徴とする。
In order to achieve the above object, the conveyed object stress measuring device according to the present invention is a conveyed object stress measuring device for measuring the residual stress of one or a plurality of conveyed objects conveyed at a constant speed. , The X-ray irradiation means that intermittently irradiates the conveyed object with X-rays of a predetermined intensity, and the diffracted X-rays generated by the conveyed object when X-rays are irradiated from the X-ray irradiation means are received on the imaging surface. Then, a light receiving means for forming a diffracted X-ray image on the imaging surface and detecting the shape of the diffracted X-ray image, and a residue of the conveyed object based on the shape of the diffracted X-ray image detected by the light receiving means. It has a residual stress acquisition means for calculating stress , the light receiving means detects the shape of the diffractive ring as the shape of the image of the diffracted X-ray, and the residual stress acquiring means is the diffractive ring detected by the light receiving means. The residual stress is calculated by the cosα method based on the shape of, and the light receiving means scans the imaging plate and the laser beam on the imaging plate, and the intensity of the diffraction generated from the scanning position and the irradiation point of the laser beam. A diffractive ring detecting means for detecting the shape of the diffractive ring by detecting the same timing, and a diffractive ring erasing means for irradiating the erasing light for erasing the diffractive ring formed on the imaging plate and scanning the erasing light. There are two sets of imaging plates, each set of imaging plates is alternately moved to a position where diffracted X-rays are incident, and while one set of imaging plates is formed with a diffractive ring. It is characterized by having a diffractive ring detecting means and a diffractive ring erasing means, and having a measuring control means for detecting and erasing the shape of the diffractive ring formed on another set of imaging plates.

本装置によれば、X線照射手段により短時間で撮像面に回折X線の像が形成される強度のX線を短時間照射し、次のX線照射手段によるX線照射の前に受光手段により撮像面に形成された回折X線の像の形状を検出し、回折X線の像の形状が得られるごとに残留応力取得手段が残留応力を計算すれば、搬送物の残留応力を短い時間間隔でリアルタイムに測定することができる。すなわち、搬送物の残留応力を所定長さの間隔でリアルタイムに測定することができる。そして、測定される残留応力は、回折X線の像全体の形状に基づいて計算されるので高精度である。また、複数の搬送物が順次搬送されている場合は、それぞれの搬送物ごとに残留応力をリアルタイムで測定することができる。 According to this device, the X-ray irradiation means irradiates the image pickup surface with X-rays having an intensity that forms a diffracted X-ray image in a short time, and receives light before the X-ray irradiation by the next X-ray irradiation means. If the shape of the diffracted X-ray image formed on the image pickup surface is detected by the means and the residual stress acquisition means calculates the residual stress each time the shape of the diffracted X-ray image is obtained, the residual stress of the conveyed object is shortened. It can be measured in real time at time intervals. That is, the residual stress of the transported object can be measured in real time at intervals of a predetermined length. The measured residual stress is highly accurate because it is calculated based on the shape of the entire image of the diffracted X-ray. Further, when a plurality of conveyed objects are sequentially conveyed, the residual stress can be measured in real time for each conveyed object.

これによれば、検査のために、所定の割合で搬送物をサンプリングしたり、応力測定のための試料を搬送物から切り出したりする必要がなく、経済的である。また、受光手段が回折X線の像の形状を検出した後、残留応力取得手段がすぐに残留応力の計算を行えば、各搬送物の残留応力を各搬送物へのX線照射後の比較的早い段階で得ることができる。これにより、各搬送物の検査結果を、搬送物の生産工程に即座に反映させることができ、搬送物の応力不足などの品質低下を迅速に是正することができる。また、応力不足の箇所や応力不足の搬送物自体を、次の工程に行く前の段階で取り除くことができ、無駄な工程が発生するのを防ぐこともできる。よって、この搬送物の応力測定装置は、鉄鋼材料連続鋳造工程や熱間圧延工程、冷間圧延工程、鍛造工程、線引き工程など、連続的に材料が生産されて搬送される現場等で好適に使用することができる。他にはアルミニウム合金や銅合金などの非鉄材料の加工工程はもちろんのこと、セラミックスや複合材料、デバイスの量産ラインでの検査など、応用範囲は多岐にわたる。 According to this, it is not necessary to sample the transported object at a predetermined ratio for inspection or to cut out the sample for stress measurement from the transported object, which is economical. Further, if the residual stress acquisition means immediately calculates the residual stress after the light receiving means detects the shape of the image of the diffracted X-ray, the residual stress of each conveyed object is compared after the X-ray irradiation to each conveyed object. It can be obtained at an early stage. As a result, the inspection result of each transported object can be immediately reflected in the production process of the transported object, and quality deterioration such as insufficient stress of the transported object can be quickly corrected. In addition, the stress-deficient portion and the stress-deficient transported object itself can be removed at a stage before going to the next process, and it is possible to prevent unnecessary processes from occurring. Therefore, this stress measuring device for the transported object is suitable for sites where materials are continuously produced and transported, such as a steel material continuous casting process, a hot rolling process, a cold rolling process, a forging process, and a wire drawing process. Can be used. In addition to the processing process for non-iron materials such as aluminum alloys and copper alloys, it has a wide range of applications such as inspection of ceramics, composite materials, and devices on mass production lines.

X線照射手段は、短時間で撮像面に回折X線の像が形成される強度のX線を短時間照射することができれば、どのようなものでもよく、例えば、チョッパ制御等により断続的にパルスX線を照射するものでもよいし、連続的に照射されるX線をシャッタの開閉制御で短時間通過させるものでもよい。また、受光手段は、撮像面に回折X線の像が形成され、形成された回折X線の像の形状を検出することができればどのようなものでも用いることができ、例えば、X線CCDやX線CMOS等の撮像素子を2次元に並べたイメージセンサ、2次元のマイクロギャップ方式、X線強度を検出する微小開口のセンサ(シンチレーションカウンタ等)を2次元で走査する手段、又はイメージングプレートと該イメージングプレートにレーザ光を走査して走査位置と蛍光強度を検出する手段等がある。 The X-ray irradiation means may be any type as long as it can irradiate the imaging surface with X-rays having an intensity that forms an image of diffracted X-rays in a short time, for example, intermittently by chopper control or the like. It may be one that irradiates pulsed X-rays, or one that allows continuously irradiated X-rays to pass for a short time by controlling the opening and closing of the shutter. Further, any light receiving means can be used as long as an image of diffracted X-rays is formed on the imaging surface and the shape of the formed diffracted X-ray image can be detected. For example, an X-ray CCD or An image sensor in which imaging elements such as X-ray CMOS are arranged in two dimensions, a two-dimensional microgap method, a means for scanning a sensor with a small opening for detecting X-ray intensity (such as a scintillation counter) in two dimensions, or an imaging plate. The imaging plate has means for scanning a laser beam to detect a scanning position and fluorescence intensity.

また、回折X線の像の形状から残留応力を計算する残留応力取得手段は、背景技術で説明したようにsinψ法とcosα法があり、どちらの方法も用いることができるが、sinψ法は、搬送物に対するX線の入射角を変更してそれぞれの入射角ごとに回折X線の像を得る必要があるため、装置が大型化し測定に時間がかかるという問題があり、cosα法の方が望ましい。なお、cosα法における回折X線の像は回折環である。 Further, as the residual stress acquisition means for calculating the residual stress from the shape of the image of the diffracted X-ray, there are the sin 2 ψ method and the cos α method as described in the background technique, and either method can be used, but the sin 2 method can be used. The ψ method has a problem that the device becomes large and it takes time to measure because it is necessary to change the incident angle of the X-ray to the conveyed object and obtain an image of the diffracted X-ray for each incident angle. Is preferable. The image of the diffracted X-ray in the cosα method is a diffractive ring.

残留応力取得手段をcosα法によるものにし、受光手段をイメージングプレートと該イメージングプレートにレーザ光を走査して走査位置と蛍光強度を検出する回折環検出手段にすれば、装置を小型化でき、残留応力測定は周囲の温度の影響を大きく受けることはないという利点がある。そして、イメージングプレートは2組あり、それぞれの組のイメージングプレートを、交互に回折X線が入射する位置まで移動させる移動手段と、一方の組のイメージングプレートに回折環が形成されている間、回折環検出手段及び回折環消去手段を制御して、別の組のイメージングプレートに形成された回折環の形状検出及び消去を行う測定制御手段とを有するようにすれば、回折環の形成と回折環の検出、消去の2つを並行して行うことができるため、1つのX線照射手段及び受光手段の組でX線照射と次のX線照射との間の時間を短くし、搬送物の残留応力を測定する位置の間隔を短くすることができる。If the residual stress acquisition means is based on the cosα method and the light receiving means is an imaging plate and a diffractive ring detecting means for detecting the scanning position and fluorescence intensity by scanning laser light on the imaging plate, the device can be miniaturized and residual stress can be obtained. The stress measurement has the advantage that it is not significantly affected by the ambient temperature. There are two sets of imaging plates, a moving means for alternately moving each set of imaging plates to a position where diffracted X-rays are incident, and diffraction while a diffraction ring is formed on one set of imaging plates. By controlling the ring detection means and the diffractive ring erasing means to have a measurement control means for detecting and erasing the shape of the diffractive ring formed on another set of imaging plates, the diffractive ring can be formed and the diffractive ring can be erased. Since it is possible to perform both detection and erasing in parallel, the time between X-ray irradiation and the next X-ray irradiation can be shortened by one pair of X-ray irradiation means and light receiving means, and the conveyed object can be detected and erased. The interval between the positions where the residual stress is measured can be shortened.

また、イメージングプレートは3組あり、それぞれの組のイメージングプレートを、順に回折X線が入射する位置まで移動させる移動手段と、1つの組のイメージングプレートに回折環が形成されている間、回折環検出手段を制御して別の1つの組のイメージングプレートに形成された回折環の形状検出を行うとともに、回折環消去手段を制御して、別のもう1つの組のイメージングプレートに形成された回折環の消去を行う測定制御手段とを有するようにしてもよい。In addition, there are three sets of imaging plates, a moving means for moving each set of imaging plates to a position where diffracted X-rays are incident in order, and a diffractive ring while a diffractive ring is formed on one set of imaging plates. The detection means is controlled to detect the shape of the diffractive ring formed on another set of imaging plates, and the diffractive ring erasing means is controlled to detect the diffraction formed on another set of imaging plates. It may have a measurement control means for erasing the ring.

これによれば、回折環の形成、回折環の検出及び回折環の消去の3つを並行して行うことができるため、1つのX線照射手段及び受光手段の組でX線照射と次のX線照射との間の時間をさらに短くし、搬送物の残留応力を測定する位置の間隔をさらに短くすることができる。According to this, since the formation of the diffractive ring, the detection of the diffractive ring, and the elimination of the diffractive ring can be performed in parallel, the X-ray irradiation and the next pair of the X-ray irradiation means and the light receiving means can be performed. The time between X-ray irradiation can be further shortened, and the distance between the positions where the residual stress of the conveyed material is measured can be further shortened.

受光手段をイメージングプレートと該イメージングプレートにレーザ光を走査して走査位置と蛍光強度を検出する手段にした場合、受光手段を撮像素子を2次元に並べたイメージセンサにした場合に比べ、回折X線の像の形状を得るまでの時間は長くなり、X線照射と次のX線照射との間の時間が長くなる。すなわち、搬送物の残留応力を測定する位置の間隔が長くなる。When the light receiving means is a means for detecting the scanning position and the fluorescence intensity by scanning the imaging plate and the laser beam on the imaging plate, the light receiving means is diffracted X as compared with the case where the image sensor is arranged in two dimensions. The time required to obtain the shape of the line image becomes longer, and the time between the X-ray irradiation and the next X-ray irradiation becomes longer. That is, the interval between the positions where the residual stress of the conveyed object is measured becomes long.

搬送物の残留応力を測定する位置の間隔を限界値以上に短くするには、X線照射手段及び受光手段は複数組設けられるとともに、それぞれのX線照射手段は搬送物の搬送方向の異なる位置にX線が照射され、それぞれのX線照射手段を制御して、それぞれのX線照射手段から照射されるX線が、搬送物の異なる位置に照射されるようにする照射制御手段を有し、残留応力取得手段は、それぞれの受光手段で検出された回折X線の像の形状に基づいて、各X線が照射された位置での残留応力を求めるよう構成されているようにすればよい。In order to shorten the interval between the positions for measuring the residual stress of the transported object to the limit value or more, a plurality of sets of X-ray irradiation means and light receiving means are provided, and each X-ray irradiation means is located at a position different in the transport direction of the transported object. Has an irradiation control means that is irradiated with X-rays and controls each X-ray irradiation means so that the X-rays emitted from each X-ray irradiation means are irradiated to different positions of the conveyed object. The residual stress acquisition means may be configured to obtain the residual stress at the position where each X-ray is irradiated based on the shape of the image of the diffracted X-rays detected by each light receiving means. ..

この場合、X線照射手段及び受光手段のそれぞれの組の間隔を長くして、それぞれの組からX線が搬送物に照射されるタイミングが異なるようにしてもよいし、該間隔を狭くして、それぞれの組からX線が搬送物に照射されるタイミングが同時になるようにしてもよい。いずれの場合も照射制御手段が、それぞれのX線照射手段から照射されるX線が、搬送物の異なる位置に照射されるように制御すればよい。In this case, the interval between each set of the X-ray irradiating means and the light receiving means may be lengthened so that the timing at which the X-rays are irradiated to the conveyed object from each set may be different, or the interval may be narrowed. , The timing at which the X-rays from each set are irradiated to the conveyed object may be the same. In either case, the irradiation control means may control the X-rays emitted from the respective X-ray irradiation means so as to be irradiated to different positions of the conveyed object.

また、搬送物を3軸残留応力で検査したい場合は、受光手段は、回折X線の像の形状として回折環の形状を検出するものであり、X線照射手段及び受光手段は複数組設けられるとともに、X線照射手段及び受光手段のそれぞれの組は、搬送物の搬送方向に沿って配置され、それぞれのX線照射手段から照射されるX線は、搬送物に対してそれぞれ異なった方向から照射され、それぞれのX線照射手段を制御して、それぞれのX線照射手段から照射されるX線が、異なったタイミングで搬送物の同一の位置に照射されるようにする照射制御手段を有し、残留応力取得手段は、それぞれの受光手段で検出された回折環の形状に基づいて、X線が照射された位置での3軸残留応力を求めるよう構成されているようにすればよい。
Further, when it is desired to inspect the conveyed object with triaxial residual stress, the light receiving means detects the shape of the diffractive ring as the shape of the image of the diffracted X-rays, and a plurality of sets of X-ray irradiation means and light receiving means are provided. At the same time, each set of the X-ray irradiation means and the light receiving means is arranged along the transport direction of the transported object, and the X-rays emitted from the respective X-ray irradiation means are from different directions with respect to the transported object. There is an irradiation control means that controls each X-ray irradiation means to be irradiated so that the X-rays emitted from each X-ray irradiation means are irradiated to the same position of the conveyed object at different timings. However, the residual stress acquisition means may be configured to obtain the triaxial residual stress at the position irradiated with X-rays based on the shape of the diffractive ring detected by each light receiving means.

これによれば、それぞれのX線照射手段から照射されるX線を、同一位置に照射されるようにし、照射制御手段はそれぞれのX線照射手段を同時に照射するよう制御した場合に比べ、それぞれのX 線照射手段及び受光手段の組をコンパクトにしなければならないという制約を受けることはなくなる。According to this, the X-rays emitted from the respective X-ray irradiation means are irradiated to the same position, and the irradiation control means is controlled to irradiate the respective X-ray irradiation means at the same time. There is no longer the restriction that the set of X-ray irradiation means and light receiving means must be compact.

このように本発明による搬送物の応力測定装置によれば、搬送されている全ての搬送物の平面残留応力を短い間隔でリアルタイムで精度よく測定することができる。また、搬送物を3軸残留応力で検査したい場合でも、3軸残留応力をリアルタイムで精度よく測定することができる。これにより、検査結果を搬送物の生産工程に即座に反映させることができる。 As described above, according to the stress measuring device for the transported object according to the present invention, the planar residual stress of all the transported objects can be accurately measured in real time at short intervals. Further, even when it is desired to inspect the transported object with the triaxial residual stress, the triaxial residual stress can be measured accurately in real time. As a result, the inspection result can be immediately reflected in the production process of the transported object.

本発明の第1実施形態における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of a conveyed object in 1st Embodiment of this invention. 本発明の第2実施形態における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of a conveyed object in 2nd Embodiment of this invention. 本発明の第3実施形態における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of a conveyed object in 3rd Embodiment of this invention. 本発明の第3実施形態の変形例における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of the conveyed object in the modification of the 3rd Embodiment of this invention. 本発明の第4実施形態における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of a conveyed object in 4th Embodiment of this invention. 本発明の第5実施形態における搬送物の応力測定装置のX線回折装置を示す全体外略図である。It is an overall schematic diagram which shows the X-ray diffractometer of the stress measuring apparatus of a conveyed object in 5th Embodiment of this invention. 本発明の第6実施形態における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of a conveyed object in 6th Embodiment of this invention. 本発明の第6実施形態の変形例における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of the conveyed object in the modification of the 6th Embodiment of this invention. 本発明の第6実施形態の別の変形例における搬送物の応力測定装置を示す全体外略図である。It is an overall schematic diagram which shows the stress measuring apparatus of a conveyed object in another modification of 6th Embodiment of this invention.

(第1実施形態)
図1は本発明の第1実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置は、X線回折装置10及びコンピュータ装置30から構成され、X線回折装置10は、搬送物1を一定方向に一定速度で搬送する搬送装置2の移動ステージの上方に搬送物1に対して適切な位置になるよう固定具16で固定されている。搬送物1の搬送速度は、具体的な例では0.5cm/秒~10m/秒である。また、コンピュータ装置30はX線回折装置10と電力線及び信号線等でX線回折装置10と接続され、X線回折装置10の近傍に設置されている。なお、図1では省略されているが、コンピュータ装置30の近傍には、X線回折装置10に高電圧の電力を供給する高電圧電源が設置されており、X線回折装置10と電力線で接続されている。
(First Embodiment)
FIG. 1 is an overall schematic view showing a stress measuring device for a transported object according to the first embodiment of the present invention. This stress measuring device is composed of an X-ray diffractometer 10 and a computer device 30, and the X-ray diffractometer 10 transports the transported object 1 above the moving stage of the transport device 2 that transports the transported object 1 in a constant direction at a constant speed. It is fixed by the fixture 16 so as to be in an appropriate position with respect to the object. The transport speed of the transport object 1 is, in a specific example, 0.5 cm / sec to 10 m / sec. Further, the computer device 30 is connected to the X-ray diffractometer 10 by a power line, a signal line, or the like, and is installed in the vicinity of the X-ray diffractometer 10. Although omitted in FIG. 1, a high-voltage power supply that supplies high-voltage power to the X-ray diffractometer 10 is installed in the vicinity of the computer device 30 and is connected to the X-ray diffractometer 10 by a power line. Has been done.

X線回折装置10は、筐体内に長尺の円柱状の形状を有するX線出射器11を備えており、X線出射器11は、X線制御回路20により制御され、高電圧電源から高電圧が供給されると、X線を出射口から出射する。X線制御回路20はコンピュータ装置30から指令が入力すると、X線出射器11が設定された強度のX線を出射するように、高電圧電源から供給される電力を制御する。この設定された強度は、搬送物1に照射されると搬送物1にて発生する回折X線により後述する2次元撮像素子12に極短時間(例えば1秒以内)で回折環が形成される強度である。正確な表現をすると、2次元撮像素子12に回折X線が入射してから、2次元撮像素子12が回折環の形状を高精度に計算することができる信号を出力するまでの時間を、極短時間にすることができる強度である。 The X-ray diffractometer 10 includes an X-ray emitter 11 having a long columnar shape in the housing, and the X-ray emitter 11 is controlled by an X-ray control circuit 20 and is high from a high voltage power source. When the voltage is supplied, X-rays are emitted from the exit port. When a command is input from the computer device 30, the X-ray control circuit 20 controls the electric power supplied from the high-voltage power source so that the X-ray emitter 11 emits X-rays having a set intensity. With this set intensity, a diffraction ring is formed in the two-dimensional image pickup element 12, which will be described later, in an extremely short time (for example, within 1 second) by the diffracted X-rays generated in the conveyed object 1 when the conveyed object 1 is irradiated. It is strength. To express it accurately, the time from when the diffracted X-rays are incident on the two-dimensional image sensor 12 until the two-dimensional image sensor 12 outputs a signal capable of calculating the shape of the diffraction ring with high accuracy is the pole. It is a strength that can be shortened.

X線出射器11の出射口の近傍にはシャッタ15が固定されており、X線出射器11からX線が照射されたとき、シャッタ15が開状態になるとX線は後述する円筒状パイプ14を通過して搬送物1に照射される。シャッタ15は開閉制御回路21により制御され、開閉制御回路21はコンピュータ装置30から「開」および「閉」の指令が入力する度に、シャッタ15の駆動部に電力を供給してシャッタ15の開閉を行う。コンピュータ装置30が「開」の指令を出力してから「閉」の指令を出力するまでの時間は極短時間(例えば1秒以内)であり、X線は搬送物1に極短時間照射される。また、コンピュータ装置30が「閉」の指令を出力してから次の「開」の指令を出力するまでの時間は、搬送物1の搬送速度と搬送物1の測定位置の間隔とから適宜設定される。 A shutter 15 is fixed in the vicinity of the emission port of the X-ray emitter 11, and when the shutter 15 is in the open state when the X-ray is irradiated from the X-ray emitter 11, the X-ray is emitted from the cylindrical pipe 14 described later. Is irradiated to the conveyed object 1 through the above. The shutter 15 is controlled by the open / close control circuit 21, and the open / close control circuit 21 supplies electric power to the drive unit of the shutter 15 to open / close the shutter 15 each time a command of “open” and “close” is input from the computer device 30. I do. The time from when the computer device 30 outputs the "open" command to when the "closed" command is output is an extremely short time (for example, within 1 second), and X-rays are applied to the conveyed object 1 for an extremely short time. To. Further, the time from the output of the "closed" command to the output of the next "open" command by the computer device 30 is appropriately set from the transfer speed of the conveyed object 1 and the interval between the measurement positions of the conveyed object 1. Will be done.

X線出射器11からX線が出射され、シャッタ15が開状態であると、X線は円盤状のテーブル13の中心部分に固定されている円筒状パイプ14に入射し、円筒状パイプ14内部を通過して円筒状パイプ14の先端から出射される。円筒状パイプ14のそれぞれの端の内部には内径をそれ以外の箇所の内径より小さくする通路部材が固定されており、X線出射器11から出射されるX線は進行方向に拡がるX線であるが、円筒状パイプ14の内部を通過することで略平行なX線になる。 When X-rays are emitted from the X-ray emitter 11 and the shutter 15 is in the open state, the X-rays enter the cylindrical pipe 14 fixed to the central portion of the disk-shaped table 13 and inside the cylindrical pipe 14. Is emitted from the tip of the cylindrical pipe 14. A passage member whose inner diameter is smaller than the inner diameter of other parts is fixed inside each end of the cylindrical pipe 14, and the X-rays emitted from the X-ray emitter 11 are X-rays spreading in the traveling direction. However, by passing through the inside of the cylindrical pipe 14, X-rays become substantially parallel.

テーブル13の表面には2次元撮像素子12が固定されている。2次元撮像素子12は例えばX線CCDやX線CMOS等の撮像素子を2次元に配置したイメージセンサであり、それぞれの撮像素子は入射したX線強度に相当する強度の信号を、設定された時間間隔でデータ取出回路22に出力する。データ取出回路22は入力したそれぞれの撮像素子の信号を処理することで、2次元撮像素子12に入射したX線から形成される像のデータを作成する。X線が搬送物1に照射されると照射箇所では回折X線が発生するが、ブラッグの条件を満たす箇所では回折X線の強度が大きくなり、2次元撮像素子12に回折X線が入射すると、X線の像として回折環が形成される。よって、X線が搬送物1に照射されると、データ取出回路22では回折環の形状のデータが作成される。データ取出回路22はコンピュータ装置22から作動開始の指令が入力すると、回折環の形状のデータを設定された時間間隔で出力することを開始し、コンピュータ装置30は「開」の指令の後「閉」の指令を開閉制御回路21に出力した直後に、データ取出回路22から入力したデータをメモリに記憶することで、回折環の形状のデータを取得する。 A two-dimensional image sensor 12 is fixed to the surface of the table 13. The two-dimensional image sensor 12 is an image sensor in which an image sensor such as an X-ray CCD or an X-ray CMOS is arranged in two dimensions, and each image sensor is set with a signal having an intensity corresponding to the incident X-ray intensity. It is output to the data extraction circuit 22 at time intervals. The data extraction circuit 22 processes the input signal of each image sensor to create data of an image formed from X-rays incident on the two-dimensional image sensor 12. When the carrier 1 is irradiated with X-rays, diffracted X-rays are generated at the irradiated portion, but the intensity of the diffracted X-rays increases at the locations where the Bragg condition is satisfied, and when the diffracted X-rays are incident on the two-dimensional image pickup element 12. , A diffractive ring is formed as an X-ray image. Therefore, when the conveyed object 1 is irradiated with X-rays, the data extraction circuit 22 creates data on the shape of the diffractive ring. When the operation start command is input from the computer device 22, the data extraction circuit 22 starts to output the data of the shape of the diffraction ring at the set time interval, and the computer device 30 is "closed" after the command of "open". Immediately after the command of "" is output to the open / close control circuit 21, the data input from the data extraction circuit 22 is stored in the memory to acquire the data of the shape of the diffractive ring.

なお、上述したX線制御回路20、開閉制御回路21及びデータ取出回路22は図1では、X線回折装置10の筐体外にあるように描かれているが、実際はX線回折装置10の筐体内に納められている。 Although the X-ray control circuit 20, the open / close control circuit 21, and the data extraction circuit 22 described above are drawn so as to be outside the housing of the X-ray diffractometer 10 in FIG. 1, they are actually the casing of the X-ray diffractometer 10. It is stored in the body.

搬送装置2の移動ステージの側面近傍には、移動する搬送物1の先端及び後端を検出するための端検出センサ3が固定されている。端検出センサ3は移動ステージの反対側の側面近傍にあるレーザ光の受光の有無から、測定対象物OBの先端及び後端を検出するもの等を用いることができる。端検出センサ3は搬送物1の先端及び後端を検出するごとに、コンピュータ装置30に「先端検出」及び「後端検出」を意味する信号を出力する。 An end detection sensor 3 for detecting the front end and the rear end of the moving object 1 is fixed in the vicinity of the side surface of the moving stage of the transfer device 2. As the end detection sensor 3, a sensor that detects the front end and the rear end of the object to be measured OB can be used from the presence or absence of light reception of the laser beam near the side surface on the opposite side of the moving stage. Each time the end detection sensor 3 detects the front end and the rear end of the conveyed object 1, it outputs a signal meaning "tip detection" and "rear end detection" to the computer device 30.

コンピュータ装置30は、CPU、ROM、RAM、大容量記憶装置などを備えたマイクロコンピュータを主要部とした電子制御装置であり、端検出センサ3からの信号を入力するとともに、上述したX線制御回路20、開閉制御回路21及びデータ取出回路22に指令を出力することでX線回折装置10を制御する制御部32と、データ取出回路22から入力した回折環の形状のデータを処理することで残留応力を計算する計算部31がある。これらは、コンピュータ装置30にインストールされたプログラムである。 The computer device 30 is an electronic control device mainly composed of a microcomputer equipped with a CPU, ROM, RAM, a large-capacity storage device, etc., and receives a signal from the end detection sensor 3 and the above-mentioned X-ray control circuit. 20. The control unit 32 that controls the X-ray diffraction device 10 by outputting commands to the open / close control circuit 21 and the data extraction circuit 22, and the data of the shape of the diffraction ring input from the data extraction circuit 22 remain. There is a calculation unit 31 that calculates the stress. These are the programs installed in the computer device 30.

測定制御部32は端検出センサ3から「先端検出」の信号を入力すると、X線制御回路20とデータ取出回路22に作動開始の指令を出力し、設定された時間が経過した後、設定された時間間隔で開閉制御回路21に「開」と「閉」の指令を出力することを繰り返す。そして、「閉」の指令を出力した直後ごとに、データ取出回路22から入力するデータをメモリに記憶する。そして、端検出センサ3から「後端検出」の信号を入力すると、X線制御回路20とデータ取出回路22に作動停止の指令を出力する。 When the measurement control unit 32 inputs the "tip detection" signal from the end detection sensor 3, it outputs an operation start command to the X-ray control circuit 20 and the data extraction circuit 22, and is set after the set time has elapsed. It repeats outputting "open" and "closed" commands to the open / close control circuit 21 at regular time intervals. Then, every time immediately after the "close" command is output, the data input from the data extraction circuit 22 is stored in the memory. Then, when the signal of "rear end detection" is input from the end detection sensor 3, the operation stop command is output to the X-ray control circuit 20 and the data extraction circuit 22.

計算部31は、回折環の像のデータがメモリに記憶されると残留応力を算出する演算処理を行う。この演算方法は公知技術であるcosα法によるものであり、例えば特開2005-241308号公報等に示されている。得られる残留応力は、図1の横方向(搬送物1の搬送方向)をX方向とし図1の紙面垂直方向をY方向とすると、X方向の残留垂直応力σx、Y方向の残留垂直応力σy、及び残留せん断応力τxyであり、平面残留応力である。計算部31は残留応力が得られると予め設定されている閾値と比較することで合否判定を行う。 The calculation unit 31 performs arithmetic processing for calculating the residual stress when the data of the image of the diffraction ring is stored in the memory. This calculation method is based on the cosα method, which is a known technique, and is shown in, for example, Japanese Patent Application Laid-Open No. 2005-241308. The obtained residual stress is the residual normal stress σx in the X direction and the residual normal stress σy in the Y direction, where the lateral direction (transport direction of the transported object 1) in FIG. 1 is the X direction and the paper vertical direction in FIG. 1 is the Y direction. , And the residual shear stress τxy, which is the plane residual stress. When the residual stress is obtained, the calculation unit 31 makes a pass / fail judgment by comparing it with a preset threshold value.

コンピュータ装置30にはキーボードやタッチパネル等の入力装置とディスプレイ等の表示装置があり、コンピュータ装置30は得られた残留応力の値と合否判定結果を、搬送物1の識別情報とともに表示装置に表示する。また、応力測定装置に残留応力の測定を開始させる場合及び終了させる場合は、入力装置から測定開始及び測定停止の指令を入力することにより行う。さらに、コンピュータ装置30に設定される、閉制御回路21に出力する指令の時間間隔といった測定条件、X線の入射角、X線照射点から2次元撮像素子12までの距離といった残留応力の計算に必要なパラメータ値、及び合否判定を行う際の閾値といった判定条件は、入力装置から作業者が入力することで設定される。 The computer device 30 includes an input device such as a keyboard and a touch panel and a display device such as a display, and the computer device 30 displays the obtained residual stress value and the pass / fail judgment result on the display device together with the identification information of the conveyed object 1. .. Further, when starting and ending the measurement of the residual stress in the stress measuring device, the measurement start and measurement stop commands are input from the input device. Further, for calculation of measurement conditions such as the time interval of a command output to the closed control circuit 21 set in the computer device 30, the incident angle of X-rays, and the residual stress such as the distance from the X-ray irradiation point to the two-dimensional image pickup element 12. Judgment conditions such as necessary parameter values and thresholds for performing pass / fail judgment are set by the operator inputting from the input device.

このように構成された第1実施形態の搬送物の応力測定装置によれば、搬送物1の平面残留応力を短い時間間隔で、すなわち搬送物1の搬送方向に短い間隔で精度よく測定することができる。また、リアルタイムで平面残留応力の測定結果と合否判定を表示することができる。 According to the stress measuring device for the transported object configured in this way, the planar residual stress of the transported object 1 is accurately measured at short time intervals, that is, at short intervals in the transport direction of the transported object 1. Can be done. In addition, the measurement result of the plane residual stress and the pass / fail judgment can be displayed in real time.

(第2実施形態)
上述した第1実施形態の搬送物の応力測定装置は、上述した効果を得ることはできるが、2次元撮像素子12は温度の影響を強く受けるため、温度変動が大きい環境下では平面残留応力を精度よく測定することが困難である。これに対し、本発明の第2実施形態における搬送物の応力測定装置は、温度の影響を強く受けることはないものである。
(Second Embodiment)
Although the stress measuring device for the conveyed object of the first embodiment described above can obtain the above-mentioned effect, the two-dimensional image pickup element 12 is strongly affected by the temperature, so that the plane residual stress is generated in an environment where the temperature fluctuation is large. It is difficult to measure accurately. On the other hand, the stress measuring device for the transported object according to the second embodiment of the present invention is not strongly affected by the temperature.

図2は本発明の第2実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置のX線回折装置40が、先行技術文献の特許文献2に示されるX線回折装置と異なっている点は、装置が固定具16で固定されている点とシャッタ15が設けられている点であり、他は同じである。そして、固定具16とシャッタ15は第1実施形態のものと同一である。 FIG. 2 is an overall schematic view showing a stress measuring device for a transported object according to the second embodiment of the present invention. The X-ray diffractometer 40 of this stress measuring device is different from the X-ray diffractometer shown in Patent Document 2 of the prior art document in that the device is fixed by the fixture 16 and the shutter 15 is provided. The other points are the same. The fixture 16 and the shutter 15 are the same as those in the first embodiment.

第2実施形態における搬送物の応力測定装置は、2次元撮像素子12の替わりにイメージングプレート46に回折X線が入射し、イメージングプレート46に回折環が形成される。そして、イメージングプレート46に形成された回折環は移動機構41の移動により光ヘッド47の位置まで移動され、回折環の形状が検出される。この検出は、移動機構41の移動及びイメージングプレート46が取り付けられたテーブル44に連結しているモータ42の回転とともに光ヘッド47からレーザ光が照射され、イメージングプレート46で発生する蛍光の強度データを、モータ42の回転角度データ及び移動機構41の移動位置データとともにコンピュータ装置30が取得することで行われる。また、回折環の形状検出の後、光ヘッド47から消去用のLED光が照射されて回折環が消去され、イメージングプレート46は回折X線が入射する位置である元の位置まで移動する。 In the stress measuring device for the conveyed object in the second embodiment, diffracted X-rays are incident on the imaging plate 46 instead of the two-dimensional imaging element 12, and a diffractive ring is formed on the imaging plate 46. Then, the diffractive ring formed on the imaging plate 46 is moved to the position of the optical head 47 by the movement of the moving mechanism 41, and the shape of the diffractive ring is detected. In this detection, laser light is irradiated from the optical head 47 with the movement of the moving mechanism 41 and the rotation of the motor 42 connected to the table 44 to which the imaging plate 46 is attached, and the intensity data of the fluorescence generated in the imaging plate 46 is obtained. , The computer device 30 acquires the rotation angle data of the motor 42 and the moving position data of the moving mechanism 41. Further, after the shape of the diffractive ring is detected, the LED light for erasing is irradiated from the optical head 47 to erase the diffractive ring, and the imaging plate 46 moves to the original position where the diffracted X-rays are incident.

第2実施形態における搬送物の応力測定装置は、データ取出回路22の替わりに移動制御回路43と光ヘッド制御回路48があり、コンピュータ装置30からの指令により、モータ42の回転、移動機構41の移動及び光ヘッド47からのレーザ光照射と消去用のLED光照射を制御するとともに、上述したモータ42の回転角度データ、移動機構41の移動位置データ及びイメージングプレート46で発生する蛍光の強度データをコンピュータ装置30に送信する。 The stress measuring device for the conveyed object in the second embodiment includes a movement control circuit 43 and an optical head control circuit 48 instead of the data extraction circuit 22, and the rotation and movement mechanism 41 of the motor 42 is instructed by the computer device 30. In addition to controlling the laser light irradiation from the moving and optical head 47 and the LED light irradiation for erasing, the rotation angle data of the motor 42, the moving position data of the moving mechanism 41, and the intensity data of the fluorescence generated by the imaging plate 46 are obtained. It is transmitted to the computer device 30.

第2実施形態におけるコンピュータ装置30の制御部32は、開閉制御回路21に「閉」の指令を出力した後、移動制御回路43及び光ヘッド制御回路48へ様々な指令を出力して上述した作動を行わせるとともに、回折環の形状データである上述したデータを入力することを行う。それ以外は、第1実施形態のコンピュータ装置30と同じである。 The control unit 32 of the computer device 30 in the second embodiment outputs a “closed” command to the open / close control circuit 21, and then outputs various commands to the movement control circuit 43 and the optical head control circuit 48 to perform the above-described operation. And input the above-mentioned data which is the shape data of the diffractive ring. Other than that, it is the same as the computer device 30 of the first embodiment.

このように構成された第2実施形態の搬送物の応力測定装置によれば、第1実施形態と同様の効果を得ることができ、温度変動が大きい環境下でも平面残留応力を精度よく測定することができるという効果がある。なお、第2実施形態の搬送物の応力測定装置は第1実施形態のものに比べ、X線を照射した後、回折X線の像の形状を検出するまでの時間が長くなり、搬送物1の測定位置の間隔を短くするのが困難である。この問題は、イメージングプレート46へのレーザ光照射及び消去用のLED光照射を、回折環が形成されている位置のみに限定して行うようにすれば、ある程度改善することができる。 According to the stress measuring device for the conveyed object of the second embodiment configured in this way, the same effect as that of the first embodiment can be obtained, and the plane residual stress is accurately measured even in an environment where the temperature fluctuation is large. It has the effect of being able to. Compared to the device of the first embodiment, the stress measuring device of the conveyed object of the second embodiment takes longer time to detect the shape of the image of the diffracted X-ray after the irradiation of the X-ray, and the conveyed object 1 It is difficult to shorten the interval between the measurement positions of. This problem can be improved to some extent by limiting the irradiation of the imaging plate 46 with the laser beam and the irradiation of the LED light for erasing only to the position where the diffraction ring is formed.

(第3実施形態)
上述した第1実施形態および第2実施形態の搬送物の応力測定装置は、回折X線の像の形状を検出する機能、残留応力を計算する機能の特性及び搬送物1の搬送速度により、搬送物1の測定位置の間隔を小さくしていくと限界値があり、特に第2実施形態の搬送物の応力測定装置においては、この限界値が大きい。本発明の第3実施形態は、搬送物1の測定位置の間隔をこの限界値よりも小さくすることができるものである。
(Third Embodiment)
The stress measuring device for the transported object according to the first embodiment and the second embodiment described above has the characteristics of the function of detecting the shape of the image of the diffracted X-ray, the function of calculating the residual stress, and the transport speed of the transported object 1. There is a limit value when the interval between the measurement positions of the object 1 is reduced, and this limit value is particularly large in the stress measuring device for the conveyed object of the second embodiment. In the third embodiment of the present invention, the interval between the measurement positions of the conveyed object 1 can be made smaller than this limit value.

図3は本発明の第3実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置は図2のX線回折装置40を搬送物1の搬送方向に複数台、図2と同様に配置したものである。なお、X線回折装置40は図1のX線回折装置10であってもよく、X線回折装置40は搬送物1の測定位置の間隔により別の台数を配置してもよい。 FIG. 3 is an overall schematic view showing a stress measuring device for a transported object according to the third embodiment of the present invention. In this stress measuring device, a plurality of X-ray diffractometers 40 of FIG. 2 are arranged in the transport direction of the transported object 1 in the same manner as in FIG. The X-ray diffractometer 40 may be the X-ray diffractometer 10 shown in FIG. 1, and another X-ray diffractometer 40 may be arranged depending on the interval between the measurement positions of the conveyed object 1.

コンピュータ装置30には、それぞれのX線回折装置40を独立して制御する、個別制御部32-1,32-2,32-3とそれぞれの個別制御部32-1,32-2,32-3を制御する統括制御部33がある。個別制御部32-1,32-2,32-3は、第2実施形態の制御部32と同一の制御を、X線回折装置40-1,40-2,40-3に対してそれぞれ独立して行う。統括制御部33はX線回折装置40-1,40-2,40-3による搬送物1の測定位置が等しい間隔になるよう、個別制御部32-1,32-2,32-3のそれぞれに作動を指令する。 The computer device 30 has individual control units 32-1, 32-2, 32-3 and individual control units 32-1, 32-2, 32-3 that independently control each X-ray diffractometer 40. There is a general control unit 33 that controls 3. The individual control units 32-1, 32-2, and 32-3 perform the same control as the control unit 32 of the second embodiment independently of the X-ray diffractometers 40-1, 40-2, and 40-3, respectively. And do it. The integrated control unit 33 has individual control units 32-1, 32-2, and 32-3 so that the measurement positions of the conveyed objects 1 by the X-ray diffractometers 40-1, 40-2, and 40-3 are at equal intervals. Command the operation.

第1実施形態および第2実施形態の端検出センサ3は、第3実施形態においてはX線回折装置40-1,40-2,40-3に対してそれぞれ設けられており、コンピュータ装置30の統括制御部33は、それぞれの端検出センサ3からの信号を識別して、個別制御部32-1,32-2,32-3のそれぞれに作動を指令する。端検出センサ3から信号が入力してから個別制御部32-1,32-2,32-3のそれぞれが作動する時間を適切に設定することで、搬送物1の測定位置は等しい間隔になる。 The edge detection sensors 3 of the first embodiment and the second embodiment are provided for the X-ray diffractometers 40-1, 40-2, and 40-3 in the third embodiment, respectively, and are provided in the computer device 30. The integrated control unit 33 identifies the signals from the respective end detection sensors 3 and commands the individual control units 32-1, 32-2, and 32-3 to operate. By appropriately setting the time for each of the individual control units 32-1, 32-2, and 32-3 to operate after the signal is input from the end detection sensor 3, the measurement positions of the conveyed objects 1 become equal intervals. ..

図3は、X線回折装置40-1,40-2,40-3をそれぞれ異なる搬送物1にX線が照射されるよう配置した場合であるが、図4に示すように、X線回折装置40-1,40-2を同一の搬送物1の互いに微小距離離れた位置にX線が照射するように配置し、同時にX線を照射して残留応力を測定するようにしてもよい。この場合、互いに微小距離離れた位置にX線を照射し、搬送物1に対するX線の入射角を所定の角度にするには、図4に示すように、図2のX線回折装置40の長尺方向を紙面垂直方向にし、該長尺方向周りにX線回折装置40を傾けてX線を照射するようにすればよい。 FIG. 3 shows a case where the X-ray diffractometers 40-1, 40-2, and 40-3 are arranged so that different carriers 1 are irradiated with X-rays. As shown in FIG. 4, X-ray diffraction is performed. The devices 40-1 and 40-2 may be arranged so that the X-rays irradiate the same conveyed object 1 at a position slightly separated from each other, and at the same time, the X-rays may be irradiated to measure the residual stress. In this case, in order to irradiate X-rays at positions separated from each other by a small distance and set the incident angle of the X-rays with respect to the conveyed object 1 to a predetermined angle, as shown in FIG. 4, the X-ray diffractometer 40 of FIG. The long direction may be set to the direction perpendicular to the paper surface, and the X-ray diffractometer 40 may be tilted around the long direction to irradiate X-rays.

そして、この場合のX線回折装置40-1,40-2の筐体の形状は、搬送物1に接触せず、互いのX線回折装置40-1,40-2を近づけることができるような形状にすればよい。この筐体の形状は特許第5967394号公報に詳細に示されている。なお、X線の照射方向を搬送物1の表面に投影した方向が、残留垂直応力を精度よく測定したい方向にする必要があるので、X線回折装置40を非常にコンパクトにしない限り、同一の搬送物1の互いに微小距離離れた位置にX線が照射する場合の照射点数は、図4に示すように2点が限度である。 The shape of the housing of the X-ray diffractometers 40-1 and 40-2 in this case is such that the X-ray diffractometers 40-1 and 40-2 can be brought close to each other without contacting the conveyed object 1. It should be shaped like this. The shape of this housing is shown in detail in Japanese Patent No. 5967394. Since the direction in which the X-ray irradiation direction is projected onto the surface of the conveyed object 1 needs to be the direction in which the residual normal stress is to be measured accurately, the same is true unless the X-ray diffractometer 40 is made very compact. As shown in FIG. 4, the number of irradiation points when the X-rays irradiate the conveyed objects 1 at positions separated from each other by a small distance is limited to two points.

このように構成された第3実施形態の搬送物の応力測定装置によれば、第1実施形態と同様の効果を得ることができ、搬送物1の測定位置の間隔をX線回折装置が1台のときの限界値よりも小さくすることができるという効果がある。 According to the stress measuring device of the conveyed object of the third embodiment configured in this way, the same effect as that of the first embodiment can be obtained, and the X-ray diffractometer sets the interval between the measurement positions of the conveyed object 1 by 1. There is an effect that it can be made smaller than the limit value at the time of the stand.

(第4実施形態)
上述した第3実施形態は、X線回折装置の台数を増やすため、搬送物の応力測定装置のコストがUPする。本発明の第4実施形態は、第2実施形態の方式のX線回折装置1台におけるX線照射と次のX線照射との時間間隔を小さくして、搬送物の応力測定装置のコストUPを抑制することができるものである。
(Fourth Embodiment)
In the third embodiment described above, since the number of X-ray diffractometers is increased, the cost of the stress measuring device for the conveyed object is increased. In the fourth embodiment of the present invention, the time interval between the X-ray irradiation and the next X-ray irradiation in one X-ray diffractometer according to the second embodiment is reduced, and the cost of the stress measuring device for the conveyed object is increased. Can be suppressed.

図5は本発明の第4実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置のX線回折装置50は、イメージングプレート46-1,46-2を2組備え、イメージングプレート46-1,46-2を交互に回折X線が入射する位置(回折環が形成される位置)まで移動する移動機構41を備えている。そして、イメージングプレート46-1,46-2に形成された回折環の形状を検出する機能と回折環を消去する機能も2組備え、片方のイメージングプレートに回折X線が入射しているとき(回折環を形成しているとき)、もう片方のイメージングプレートに形成された回折環の形状を検出し、次いでその回折環を消去するようになっている。 FIG. 5 is an overall schematic view showing a stress measuring device for a transported object according to the fourth embodiment of the present invention. The X-ray diffractometer 50 of this stress measuring device is provided with two sets of imaging plates 46-1 and 46-2, and the imaging plates 46-1 and 46-2 are alternately at positions where diffracted X-rays are incident (a diffraction ring is formed). It is provided with a moving mechanism 41 that moves to a position). It also has two sets of a function to detect the shape of the diffractive ring formed on the imaging plates 46-1 and 46-2 and a function to erase the diffractive ring, and when the diffracted X-ray is incident on one of the imaging plates ( (When forming a diffractive ring), the shape of the diffractive ring formed on the other imaging plate is detected, and then the diffractive ring is erased.

回折環の形状検出機能及び消去機能は、イメージングプレート46-1,46-2を取り付けたテーブル44-1,44-2に連結されているモータ42-1,42-2、光ヘッド47-1,47-2及び光ヘッド移動機構51-1,51-2と、これらの作動を制御し、回折環の形状データを得る、移動制御回路43、光ヘッド制御回路48-1,48-2及び光ヘッド移動制御回路52-1,52-2である。第2実施形態と異なっているのは、移動制御回路43以外は2組ある点と、回折環の形状を検出する際、移動機構41による移動に替えて、光ヘッド移動機構51-1,51-2により光ヘッド47-1,47-2を移動させる点である。 The shape detection function and the erasing function of the diffractive ring are the motors 42-1 and 42-2 and the optical head 47-1 connected to the tables 44-1 and 44-2 to which the imaging plates 46-1 and 46-2 are attached. , 47-2 and the optical head movement mechanisms 51-1 and 51-2, the movement control circuit 43, the optical head control circuits 48-1, 48-2, and the optical head control circuits 48-1, 48-2, which control the operation of these and obtain the shape data of the diffractive ring. Optical head movement control circuits 52-1 and 52-2. The difference from the second embodiment is that there are two sets other than the movement control circuit 43, and when detecting the shape of the diffractive ring, the optical head movement mechanism 51-1, 51 is replaced with the movement by the movement mechanism 41. This is a point where the optical heads 47-1 and 47-2 are moved by -2.

すなわち、回折環の形状を検出する際、第2実施形態では移動機構41によるイメージングプレート46の移動で、レーザ光照射点をイメージングプレート46の半径方向に移動させたが、第4実施形態では、光ヘッド移動機構51-1,51-2による光ヘッド47-1,47-2の移動で、レーザ光照射点をイメージングプレート46-1,46-2の半径方向に移動させている。 That is, when detecting the shape of the diffraction ring, in the second embodiment, the laser light irradiation point is moved in the radial direction of the imaging plate 46 by the movement of the imaging plate 46 by the moving mechanism 41, but in the fourth embodiment, The laser light irradiation point is moved in the radial direction of the imaging plates 46-1 and 46-2 by the movement of the optical heads 47-1 and 47-2 by the optical head moving mechanisms 51-1 and 51-2.

なお、図5では、X線回折装置50の長尺方向と搬送物1の搬送方向は同一であるように描かれているが、実際は、X線回折装置50の長尺方向は紙面垂直方向であり、該長尺方向周りに、X線回折装置50は傾けられており、X線は搬送物1に所定の入射角度で入射するようになっている。 In FIG. 5, the long direction of the X-ray diffractometer 50 and the transport direction of the conveyed object 1 are drawn to be the same, but in reality, the long direction of the X-ray diffractometer 50 is the direction perpendicular to the paper surface. The X-ray diffractometer 50 is tilted around the long direction, so that the X-rays are incident on the conveyed object 1 at a predetermined incident angle.

このように構成された第4実施形態の搬送物の応力測定装置によれば、第2実施形態と同様の効果を得ることができ、搬送物1の測定位置の間隔を第2実施形態より小さくすることができるという効果がある。そして、第3実施形態のようにX線回折装置を複数台設ける場合は、その台数を減らして搬送物の応力測定装置のコストUPを抑制することができる。 According to the stress measuring device for the conveyed object of the fourth embodiment configured in this way, the same effect as that of the second embodiment can be obtained, and the interval between the measurement positions of the conveyed object 1 is smaller than that of the second embodiment. It has the effect of being able to. When a plurality of X-ray diffractometers are provided as in the third embodiment, the number of X-ray diffractometers can be reduced to suppress the cost increase of the stress measuring device for the conveyed object.

(第5実施形態)
上述した第4実施形態は、イメージングプレート46と回折環の形状検出機能、消去機能とを2組にしたが、イメージングプレート46を3組にし、回折環の形状検出機能及び消去機能を別々にして、第2実施形態の方式のX線回折装置1台におけるX線照射と次のX線照射との時間間隔をさらに小さくしたものが、本発明の第5実施形態である。
(Fifth Embodiment)
In the above-mentioned fourth embodiment, the imaging plate 46 and the diffraction ring shape detection function and the erasing function are set to two sets, but the imaging plate 46 is set to three sets and the diffraction ring shape detection function and the erasing function are separated. In the fifth embodiment of the present invention, the time interval between the X-ray irradiation and the next X-ray irradiation in one X-ray diffractometer of the second embodiment is further reduced.

図6は本発明の第5実施形態における搬送物の応力測定装置のX線回折装置60の構成を示す概略図であり、X線回折装置60を上方から見た図である。このX線回折装置60は、イメージングプレートを3組備え、それぞれのイメージングプレートを順に回折X線が入射する位置(回折環が形成される位置)まで移動する移動機構を備えている。図6ではイメージングプレートはテーブル44-1,44-2,44-3の裏側に取り付けられている。移動機構はモータ61及びテーブル44-1,44-2,44-3と連結しているモータ42-1,42-2,42-3を取り付けているプレート62からなり、モータ61を所定角度回転させることで、それぞれのイメージングプレートを順に回折X線が入射する位置にする。 FIG. 6 is a schematic view showing the configuration of the X-ray diffractometer 60 of the stress measuring device for the conveyed object according to the fifth embodiment of the present invention, and is a view of the X-ray diffractometer 60 viewed from above. The X-ray diffractometer 60 includes three sets of imaging plates, and has a moving mechanism for moving each imaging plate to a position where diffracted X-rays are incident (a position where a diffraction ring is formed) in order. In FIG. 6, the imaging plate is attached to the back side of the tables 44-1, 44-2, 44-3. The moving mechanism consists of a motor 61 and a plate 62 to which the motors 42-1, 42-2, 42-3 connected to the tables 44-1, 44-2, 44-3 are attached, and the motor 61 is rotated by a predetermined angle. By doing so, each imaging plate is sequentially positioned at the position where the diffracted X-rays are incident.

そして1つのイメージングプレートが回折X線が入射する位置になっているとき、残りの1つのイメージングプレートに形成されている回折環が、光ヘッド47-1の作動と光ヘッド移動機構51-1の作動とモータ42-1,42-2,42-3のいずれか1つの回転により検出される。さらに、残りのもう1つのイメージングプレートに形成されている回折環が、光ヘッド47-2の作動と光ヘッド移動機構51-2の作動とモータ42-1,42-2,42-3のいずれか1つの回転により消去される。 When one imaging plate is in a position where diffracted X-rays are incident, the diffraction ring formed on the remaining one imaging plate is the operation of the optical head 47-1 and the operation of the optical head moving mechanism 51-1. It is detected by the operation and the rotation of any one of the motors 42-1, 42-2, and 42-3. Further, the diffractive ring formed on the remaining another imaging plate is either the operation of the optical head 47-2, the operation of the optical head moving mechanism 51-2, or the motors 42-1, 42-2, 42-3. It is erased by one rotation.

すなわち、第4実施形態が回折環の形成及び回折環の形状検出と消去の2つを並行して行うのに対し、第5実施形態では回折環の形成、回折環の形状検出、及び回折環の消去の3つを並行して行う。そして、回折環の形状検出の時間と回折環の消去の時間は、回折環の形成(X線の照射)の時間よりも長いため、第5実施形態ではX線回折装置1台におけるX線照射と次のX線照射との時間間隔をさらに小さくすることができる。 That is, while the fourth embodiment performs the formation of the diffractive ring and the detection and elimination of the shape of the diffractive ring in parallel, in the fifth embodiment, the formation of the diffractive ring, the shape detection of the diffractive ring, and the diffractive ring are performed. Erase 3 in parallel. Since the time for detecting the shape of the diffractive ring and the time for erasing the diffractive ring are longer than the time for forming the diffractive ring (irradiation of X-rays), in the fifth embodiment, X-ray irradiation in one X-ray diffractometer is performed. The time interval between and the next X-ray irradiation can be further reduced.

なお、図6において、X線回折装置60は搬送物1が載置されている移動ステージの面に対して、X線出射器11の長尺方向周りに傾斜しており、X線は搬送物1に対して所定の入射角度で照射される。傾斜の回転軸はX線出射器11の中心軸付近で、X線回折装置60はモータ42-2,42-3がモータ42-1より上側になるように傾斜している。 In FIG. 6, the X-ray diffractometer 60 is inclined with respect to the surface of the moving stage on which the conveyed object 1 is placed in the longitudinal direction of the X-ray emitter 11, and the X-rays are conveyed. It is irradiated at a predetermined incident angle with respect to 1. The axis of rotation of the inclination is near the central axis of the X-ray emitter 11, and the X-ray diffractometer 60 is inclined so that the motors 42-2 and 42-3 are above the motor 42-1.

また、モータ61は120度ずつ回転し、設定した角度だけ回転すると、反対方向に240度ずつ回転し、プラスマイナスの回転角度が0度になった後、元の方向に120度ずつ回転するようになっている。これは、モータ42-1,42-2,42-3へ接続されている電力線、信号線がねじれるのを防止するためである。 Further, the motor 61 rotates by 120 degrees, and when it rotates by a set angle, it rotates by 240 degrees in the opposite direction, and after the plus or minus rotation angle becomes 0 degrees, it rotates by 120 degrees in the original direction. It has become. This is to prevent the power lines and signal lines connected to the motors 42-1, 42-2, and 42-3 from being twisted.

このように構成された第5実施形態の搬送物の応力測定装置によれば、第2実施形態と同様の効果を得ることができ、搬送物1の測定位置の間隔を第4実施形態より小さくすることができるという効果がある。そして、第3実施形態のようにX線回折装置を複数台設ける場合は、その台数を第4実施形態より減らして搬送物の応力測定装置のコストUPを抑制することができる。 According to the stress measuring device for the conveyed object of the fifth embodiment configured in this way, the same effect as that of the second embodiment can be obtained, and the interval between the measurement positions of the conveyed object 1 is smaller than that of the fourth embodiment. It has the effect of being able to. When a plurality of X-ray diffractometers are provided as in the third embodiment, the number of X-ray diffractometers can be reduced as compared with the fourth embodiment to suppress the cost increase of the stress measuring device for the conveyed object.

(第6実施形態)
上述した第1実施形態乃至第5実施形態は、搬送物1の平面残留応力を測定するものであるが、本発明の第6実施形態は3軸残留応力を測定するものである。
(Sixth Embodiment)
The first to fifth embodiments described above measure the planar residual stress of the transported object 1, while the sixth embodiment of the present invention measures the triaxial residual stress.

図7は本発明の第6実施形態における搬送物の応力測定装置を示す全体外略図である。この応力測定装置は図1のX線回折装置10を搬送物1の搬送方向に複数台、図1と同様に固定したものである。なお、X線回折装置10は図2のX線回折装置40、図5のX線回折装置50又は図6のX線回折装置60であってもよい。 FIG. 7 is an overall schematic view showing a stress measuring device for a transported object according to the sixth embodiment of the present invention. This stress measuring device is a device in which a plurality of X-ray diffractometers 10 of FIG. 1 are fixed in the transport direction of the transported object 1 in the same manner as in FIG. The X-ray diffractometer 10 may be the X-ray diffractometer 40 of FIG. 2, the X-ray diffractometer 50 of FIG. 5, or the X-ray diffractometer 60 of FIG.

X線回折装置10-1はX線光軸を搬送物1の表面に投影すると搬送方向と平行になるようにし、X線を搬送物1に所定の入射角度で照射する。また、X線回折装置10-2はX線光軸を搬送物1の表面に投影すると搬送方向と垂直になるようにし、X線を搬送物1に所定の入射角度で照射する。そして、X線回折装置10-3はX線光軸が搬送物1の表面に垂直になるようX線を照射する。 The X-ray diffractometer 10-1 projects the X-ray optical axis onto the surface of the conveyed object 1 so that it is parallel to the conveyed direction, and irradiates the conveyed object 1 with X-rays at a predetermined incident angle. Further, the X-ray diffractometer 10-2 projects the X-ray optical axis onto the surface of the conveyed object 1 so that it is perpendicular to the conveyed direction, and irradiates the conveyed object 1 with X-rays at a predetermined incident angle. Then, the X-ray diffractometer 10-3 irradiates X-rays so that the X-ray optical axis is perpendicular to the surface of the conveyed object 1.

第3実施形態と同様、コンピュータ装置30には、それぞれのX線回折装置10-1,10-2,10-3を独立して制御する個別制御部32-1,32-2,32-3と、それぞれの個別制御部32-1,32-2,32-3を制御する統括制御部33がある。第6実施形態においては、統括制御部33はX線回折装置10-1,10-2,10-3による搬送物1へのX線照射位置が等しくなるよう、個別制御部32-1,32-2,32-3のそれぞれに作動を指令する。 Similar to the third embodiment, the computer device 30 has individual control units 32-1, 32-2, 32-3 that independently control the X-ray diffractometers 10-1, 10-2, and 10-3, respectively. And the integrated control unit 33 that controls the individual control units 32-1, 32-2, and 32-3, respectively. In the sixth embodiment, the integrated control unit 33 has individual control units 32-1 and 32 so that the X-ray irradiation positions of the conveyed objects 1 by the X-ray diffractometers 10-1, 10-2, and 10-3 are equal. Instruct each of -2 and 32-3 to operate.

それぞれのX線回折装置10-1,10-2,10-3にて得られる回折環の形状から3軸残留応力を計算する方法は既存技術であり、特許5339253号公報に詳細に説明されている。 The method of calculating the triaxial residual stress from the shape of the diffractive ring obtained by each X-ray diffractometer 10-1, 10-2, 10-3 is an existing technique and is described in detail in Japanese Patent No. 5339253. There is.

3軸残留応力を測定するためのX線回折装置の配置の仕方は図7以外にもある。図8は3軸残留応力を計算するためのX線回折装置の別の配置の仕方である。この場合は、X線光軸を搬送物1の表面に投影すると、搬送方向と搬送方向の直角方向に平行で、それぞれにおいて反対側の方向を有し、それぞれのX線の入射角度が所定の入射角度になるようX線回折装置10-1,10-2,10-3,10-4を配置する。この場合のそれぞれのX線回折装置10-1,10-2,10-3,10-4にて得られる回折環の形状から3軸残留応力を計算する方法も、特許5339253号公報に詳細に説明されている。 There are other ways of arranging the X-ray diffractometer for measuring the triaxial residual stress other than FIG. 7. FIG. 8 shows another way of arranging the X-ray diffractometer for calculating the triaxial residual stress. In this case, when the X-ray optical axis is projected onto the surface of the transported object 1, it is parallel to the transport direction and the direction perpendicular to the transport direction, and each has opposite directions, and the incident angle of each X-ray is predetermined. The X-ray diffractometers 10-1, 10-2, 10-3, and 10-4 are arranged so as to have an incident angle. The method of calculating the triaxial residual stress from the shape of the diffractive ring obtained by each X-ray diffractometer 10-1, 10-2, 10-3, 10-4 in this case is also described in detail in Japanese Patent No. 5339253. It is explained.

また、3軸残留応力を計算するためのX線回折装置の別の配置の仕方としては、搬送方向の垂直方向の残留垂直応力の精度を落としてもよい場合は、図7においてX線回折装置10-1,10-3のみにする配置の仕方もある。この場合のそれぞれのX線回折装置10-1,10-3にて得られる回折環の形状から3軸残留応力を計算する方法は、特許6011846号公報に詳細に説明されている。 Further, as another method of arranging the X-ray diffractometer for calculating the triaxial residual stress, if the accuracy of the residual normal stress in the direction perpendicular to the transport direction may be reduced, the X-ray diffractometer in FIG. 7 There is also a way of arranging only 10-1 and 10-3. A method for calculating the triaxial residual stress from the shape of the diffractive ring obtained by the respective X-ray diffractometers 10-1 and 10-3 in this case is described in detail in Japanese Patent No. 6011846.

さらに、3軸残留応力を計算するためのX線回折装置の別の配置の仕方としては、搬送方向の垂直方向の残留応力の精度を落としてもよい場合は、図8においてX線回折装置10-1,10-3のみにし、X線回折装置10-3のX線光軸を搬送物1の表面に投影すると搬送方向と平行になるようにし、X線を搬送物1にX線回折装置10-1と異なる入射角度で照射する配置の仕方もある。この場合のそれぞれのX線回折装置10-1,10-3にて得られる回折環の形状から3軸残留応力を計算する方法は、特許6060474 号公報に詳細に説明されている。 Further, as another method of arranging the X-ray diffractometer for calculating the triaxial residual stress, if the accuracy of the residual stress in the direction perpendicular to the transport direction may be reduced, the X-ray diffractometer 10 is shown in FIG. Only -1 and 10-3 are used, and when the X-ray optical axis of the X-ray diffractometer 10-3 is projected onto the surface of the conveyed object 1, it is parallel to the conveyed direction, and the X-ray diffractometer is applied to the conveyed object 1. There is also a method of irradiating at an incident angle different from 10-1. A method for calculating the triaxial residual stress from the shape of the diffractive ring obtained by the respective X-ray diffractometers 10-1 and 10-3 in this case is described in detail in Japanese Patent No. 6060474.

また、上述した図7、図8及び図7の変形例におけるそれぞれのX線回折装置は、X線が異なる搬送物1に照射されるよう配置し、X線を照射するタイミングを調整して、X線の照射位置が等しくなるようにした。しかし、それぞれのX線回折装置を、X線が同一箇所に照射されるよう配置し、同時にX線を照射するようにしてもよい。この場合、X線回折装置10を非常にコンパクトにしない限り、考えられるX線回折装置10の配置の仕方は、図4に示すようにX線回折装置10を長尺方向周りに傾けてX線が照射されるようにし、上方から見ると図9に示すようにX線回折装置を配置する仕方である。 Further, the X-ray diffractometers in the modified examples of FIGS. 7, 8 and 7 described above are arranged so that the X-rays irradiate the different conveyed objects 1, and the timing of irradiating the X-rays is adjusted. The X-ray irradiation positions were made equal. However, each X-ray diffractometer may be arranged so that the X-rays are irradiated to the same place, and the X-rays may be irradiated at the same time. In this case, unless the X-ray diffractometer 10 is made very compact, the possible arrangement of the X-ray diffractometer 10 is as shown in FIG. 4, in which the X-ray diffractometer 10 is tilted in the longitudinal direction and X-rays are emitted. Is irradiated, and the X-ray diffractometer is arranged as shown in FIG. 9 when viewed from above.

このように構成された第6実施形態の搬送物の応力測定装置によれば、第1実施形態と同様の効果を得ることができ、搬送物1の3軸残留応力をリアルタイムで精度よく測定することができる。 According to the stress measuring device of the conveyed object of the sixth embodiment configured in this way, the same effect as that of the first embodiment can be obtained, and the triaxial residual stress of the conveyed object 1 is accurately measured in real time. be able to.

なお、本発明の実施にあたっては、上述した実施形態に限定されるものではなく、本発明の目的を逸脱しない限りにおいて種々の変更が可能である。 The implementation of the present invention is not limited to the above-described embodiment, and various changes can be made as long as the object of the present invention is not deviated.

上述した実施形態においては、残留応力の測定方法はいずれもcosα法によるものであった。しかし、sinΨ法であっても、測定時間を短縮することができるならば、残留応力の測定方法として用いてもよい。 In the above-described embodiment, the method for measuring the residual stress is the cosα method. However, even the sin 2 Ψ method may be used as a method for measuring residual stress if the measurement time can be shortened.

また、上述した実施形態においては、X線出射器11からは連続してX線を出射し、シャッタ15の開閉により短時間X線が搬送物1に照射されるようにした。しかし、短時間で回折X線の像が形成される強度のX線を短時間出射することができるならば、X線照射手段はどのようなものでもよい。例えば、チョッパ制御等により断続的にパルスX線を照射するようにしてもよい。 Further, in the above-described embodiment, the X-ray emitter 11 continuously emits X-rays, and the X-rays are irradiated to the conveyed object 1 for a short time by opening and closing the shutter 15. However, any X-ray irradiation means may be used as long as it is possible to emit X-rays having an intensity at which an image of diffracted X-rays is formed in a short time. For example, pulse X-rays may be irradiated intermittently by chopper control or the like.

また、上述した実施形態においては、回折環を形成し該回折環の形状を検出する手段として、2次元撮像素子12、及びイメージングプレート46と該イメージングプレート46にレーザ光を走査して走査位置と蛍光強度を検出する手段を用いた。しかし、回折環の形状を精度よく時間をかけずに検出できるならば、どのような手段を用いてもよい。例えば、2次元のマイクロギャップ方式の機器を用いてもよいし、微小開口のセンサ(シンチレーションカウンタ等)をテーブル44の半径方向に複数設け、X線が照射される間にテーブル44を1回転させて、半径位置と回転角度ごとにX線強度を検出するようにしてもよい。 Further, in the above-described embodiment, as a means for forming a diffractive ring and detecting the shape of the diffractive ring, the two-dimensional image pickup element 12, the imaging plate 46 and the imaging plate 46 are scanned with a laser beam to obtain a scanning position. A means for detecting the fluorescence intensity was used. However, any means may be used as long as the shape of the diffractive ring can be detected accurately and in a short time. For example, a two-dimensional microgap type device may be used, or a plurality of sensors (scintillation counters, etc.) having a small opening may be provided in the radial direction of the table 44, and the table 44 may be rotated once while being irradiated with X-rays. The X-ray intensity may be detected for each radial position and rotation angle.

また、上述した実施形態においては、コンピュータ装置30がX線回折装置にX線を出射させるタイミングを定めるため、端検出センサ3で搬送物1の端を検出するようにした。しかし、搬送物1の設定した箇所にX線を照射することができるならば、どのような方法を用いてもよい。例えば、X線回折装置からX線の光軸と同じ光軸の可視の平行光を照射し、その反射光の受光強度が閾値を超えることで、搬送物1の端を検出するようにしてもよい。 Further, in the above-described embodiment, in order to determine the timing at which the computer device 30 emits X-rays to the X-ray diffractometer, the end detection sensor 3 detects the end of the conveyed object 1. However, any method may be used as long as it is possible to irradiate the set portion of the conveyed object 1 with X-rays. For example, even if the X-ray diffractometer irradiates visible parallel light on the same optical axis as the X-ray axis and the received intensity of the reflected light exceeds the threshold value, the end of the conveyed object 1 is detected. good.

本発明の第3実施形態の搬送物の応力測定装置により、搬送物1の平面残留応力測定を行った。X線回折装置としてはパルステック工業株式会社製のポータブル型X線残留応力測定装置「μ-X360」を用いた。これは本発明の第2実施形態に示されたX線回折装置40に相当する装置である。測定対象の搬送物1として、冷間圧延工程により搬送されているSS400のH形鋼,断面寸法100mm×200mmを用いた。H形鋼の圧延速度(搬送速度)は1cm/秒であり、X線回折装置40をH形鋼の圧延方向に複数台を配置し、圧延方向を20cmの間隔で測定した。X線回折装置40のX線出射器11におけるX線源を空冷のCr-Kα線源とし、管電圧を30kV、管電流を1.5mAとして、X線を照射した。H形鋼における測定点(X線の照射点)は圧延方向の中心線付近であり、X線の照射点の直径は1mm、X線の入射角は35°でイメージングプレート46に回折環を形成した。また、回折環におけるX線の回折角をα-Fe(211)の2θ=156.4°とし、形成された回折環の形状に基づいて、コンピュータ装置30の計算部31により、cosα法でH形鋼の平面残留応力を求めた。 The plane residual stress of the conveyed object 1 was measured by the stress measuring device of the conveyed object according to the third embodiment of the present invention. As the X-ray diffractometer, a portable X-ray residual stress measuring device "μ-X360" manufactured by Pulstec Industrial Co., Ltd. was used. This is an apparatus corresponding to the X-ray diffractometer 40 shown in the second embodiment of the present invention. As the conveyed object 1 to be measured, SS400 H-shaped steel conveyed by the cold rolling process and a cross-sectional dimension of 100 mm × 200 mm were used. The rolling speed (conveyance speed) of the H-shaped steel was 1 cm / sec, and a plurality of X-ray diffractometers 40 were arranged in the rolling direction of the H-shaped steel, and the rolling direction was measured at intervals of 20 cm. The X-ray source in the X-ray emitter 11 of the X-ray diffractometer 40 was an air-cooled Cr—Kα radiation source, the tube voltage was 30 kV, and the tube current was 1.5 mA, and X-rays were irradiated. The measurement point (X-ray irradiation point) in the H-section steel is near the center line in the rolling direction, the diameter of the X-ray irradiation point is 1 mm, the X-ray incident angle is 35 °, and a diffraction ring is formed on the imaging plate 46. did. Further, the diffraction angle of the X-ray in the diffraction ring is set to 2θ 0 = 156.4 ° of α-Fe (211), and based on the shape of the formed diffraction ring, the calculation unit 31 of the computer device 30 uses the cosα method. The plane residual stress of the H-section steel was determined.

X線出射器11はまだ短時間で回折環が形成される強度のX線を出射するものではなかったため、1回でのX線の照射時間を15秒とし、その間にH形鋼が移動する距離(X線照射点が移動する距離)15cmにおける平均の平面残留応力を求めた。また、求められる平面残留応力は、深さ約10μmまでの平均値である。H形鋼の圧延方向をx、それに垂直な方向をyとしたとき、H形鋼の各点で求められた平面残留応力σx、σyの範囲は、それぞれσx=-35~-69MPa、σy=28~-6MPaであった。 Since the X-ray emitter 11 has not yet emitted X-rays having an intensity that forms a diffractive ring in a short time, the irradiation time of X-rays at one time is set to 15 seconds, during which the H-shaped steel moves. The average plane residual stress at a distance (distance in which the X-ray irradiation point moves) of 15 cm was determined. Further, the obtained planar residual stress is an average value up to a depth of about 10 μm. When the rolling direction of the H-shaped steel is x and the direction perpendicular to it is y, the ranges of the planar residual stress σx and σy obtained at each point of the H-shaped steel are σx = -35 to -69 MPa and σy =, respectively. It was 28 to -6 MPa.

1 搬送物
2 搬送装置
3 端検出センサ
10 X線回折装置
11 X線出射器
12 2次元撮像素子
13 テーブル
14 円柱状パイプ
15 シャッタ
16 固定具
20 X線制御回路
21 開閉制御回路
22 データ取出回路
30 コンピュータ装置
31 計算部
32 制御部
32-1,32-2,32-3 個別制御部
33 統括制御部
40 X線回折装置
41 移動機構
42 モータ
43 移動制御回路
44 テーブル
46 イメージングプレート
47 光ヘッド
48 光ヘッド制御回路
50 X線回折装置
51-1,51-2 光ヘッド移動機構
52-1,52-2 光ヘッド移動制御回路
60 X線回折装置
61 モータ
62 プレート
1 Conveyor 2 Conveyor 3 End detection sensor 10 X-ray diffractometer 11 X-ray emitter 12 Two-dimensional image pickup element 13 Table 14 Cylindrical pipe 15 Shutter 16 Fixture 20 X-ray control circuit 21 Open / close control circuit 22 Data extraction circuit 30 Computer equipment 31 Calculation unit 32 Control unit 32-1, 32-2, 32-3 Individual control unit 33 Central control unit 40 X-ray diffractometer 41 Movement mechanism 42 Motor 43 Movement control circuit 44 Table 46 Imaging plate 47 Optical head 48 Optical Head control circuit 50 X-ray diffractometer 51-1, 51-2 Optical head movement mechanism 52-1, 52-2 Optical head movement control circuit 60 X-ray diffractometer 61 Motor 62 Plate

Claims (4)

一定の速度で搬送される1または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、
前記搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、
前記X線照射手段からX線が照射されたとき、前記搬送物で発生する回折X線を撮像面にて受光し、前記撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、
前記受光手段にて検出された回折X線の像の形状に基づいて、前記搬送物の残留応力を計算する残留応力取得手段とを有し、
前記受光手段は、前記回折X線の像の形状として回折環の形状を検出するものであり、
前記残留応力取得手段は、前記受光手段で検出された前記回折環の形状に基づいて、cosα法により残留応力を計算するものであり、
前記受光手段は、
イメージングプレートと、
前記イメージングプレートにレーザ光を走査し、前記走査の位置及び前記レーザ光の照射点から発生する蛍光の強度を同じタイミングで検出することで回折環の形状を検出する回折環検出手段と、
前記イメージングプレートに形成された回折環を消去するための消去光を照射するとともに前記消去光を走査する回折環消去手段とから構成され、
前記イメージングプレートは2組あり、
それぞれの組の前記イメージングプレートを、交互に回折X線が入射する位置まで移動させる移動手段と、
一方の組の前記イメージングプレートに回折環が形成されている間、前記回折環検出手段及び前記回折環消去手段を制御して、別の組の前記イメージングプレートに形成された回折環の形状検出及び消去を行う測定制御手段とを有することを特徴とする搬送物の応力測定装置。
A stress measuring device for a transported object for measuring the residual stress of one or more transported objects transported at a constant speed.
An X-ray irradiation means that intermittently irradiates the transported object with X-rays of a predetermined intensity,
When X-rays are irradiated from the X-ray irradiating means, the diffracted X-rays generated by the conveyed object are received by the image pickup surface to form an image of the diffracted X-rays on the image pickup surface and the image of the diffracted X-rays. Light receiving means for detecting the shape and
It has a residual stress acquisition means for calculating the residual stress of the conveyed object based on the shape of the image of the diffracted X-ray detected by the light receiving means.
The light receiving means detects the shape of the diffractive ring as the shape of the image of the diffracted X-ray.
The residual stress acquisition means calculates the residual stress by the cosα method based on the shape of the diffractive ring detected by the light receiving means.
The light receiving means is
Imaging plate and
A diffractive ring detecting means for detecting the shape of a diffractive ring by scanning a laser beam on the imaging plate and detecting the position of the scanning and the intensity of fluorescence generated from the irradiation point of the laser beam at the same timing.
It is composed of a diffractive ring erasing means for irradiating the erasing light for erasing the diffractive ring formed on the imaging plate and scanning the erasing light.
There are two sets of the imaging plates.
A moving means for alternately moving each set of the imaging plates to a position where diffracted X-rays are incident, and
While the diffractive ring is formed on one set of the imaging plates, the diffractive ring detecting means and the diffractive ring erasing means are controlled to detect the shape of the diffractive ring formed on the other set of the imaging plates and detect the shape of the diffractive ring. A stress measuring device for a conveyed object, which comprises a measuring control means for erasing.
一定の速度で搬送される1または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、
前記搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、
前記X線照射手段からX線が照射されたとき、前記搬送物で発生する回折X線を撮像面にて受光し、前記撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、
前記受光手段にて検出された回折X線の像の形状に基づいて、前記搬送物の残留応力を計算する残留応力取得手段とを有し、
前記受光手段は、前記回折X線の像の形状として回折環の形状を検出するものであり、
前記残留応力取得手段は、前記受光手段で検出された前記回折環の形状に基づいて、cosα法により残留応力を計算するものであり、
前記受光手段は、
イメージングプレートと、
前記イメージングプレートにレーザ光を走査し、前記走査の位置及び前記レーザ光の照射点から発生する蛍光の強度を同じタイミングで検出することで回折環の形状を検出する回折環検出手段と、
前記イメージングプレートに形成された回折環を消去するための消去光を照射するとともに前記消去光を走査する回折環消去手段とから構成され、
前記イメージングプレートは3組あり、
それぞれの組の前記イメージングプレートを、順に回折X線が入射する位置まで移動させる移動手段と、
1つの組の前記イメージングプレートに回折環が形成されている間、前記回折環検出手段を制御して別の1つの組の前記イメージングプレートに形成された回折環の形状検出を行うとともに、前記回折環消去手段を制御して、別のもう1つの組の前記イメージングプレートに形成された回折環の消去を行う測定制御手段とを有することを特徴とする搬送物の応力測定装置。
A stress measuring device for a transported object for measuring the residual stress of one or more transported objects transported at a constant speed.
An X-ray irradiation means that intermittently irradiates the transported object with X-rays of a predetermined intensity,
When X-rays are irradiated from the X-ray irradiating means, the diffracted X-rays generated by the conveyed object are received by the image pickup surface to form an image of the diffracted X-rays on the image pickup surface and the image of the diffracted X-rays. Light receiving means for detecting the shape and
It has a residual stress acquisition means for calculating the residual stress of the conveyed object based on the shape of the image of the diffracted X-ray detected by the light receiving means.
The light receiving means detects the shape of the diffractive ring as the shape of the image of the diffracted X-ray.
The residual stress acquisition means calculates the residual stress by the cosα method based on the shape of the diffractive ring detected by the light receiving means.
The light receiving means is
Imaging plate and
A diffractive ring detecting means for detecting the shape of a diffractive ring by scanning a laser beam on the imaging plate and detecting the position of the scanning and the intensity of fluorescence generated from the irradiation point of the laser beam at the same timing.
It is composed of a diffractive ring erasing means for irradiating the erasing light for erasing the diffractive ring formed on the imaging plate and scanning the erasing light.
There are three sets of the imaging plates.
A moving means for moving each set of the imaging plates to a position where diffracted X-rays are incident in order, and
While the diffraction ring is formed on one set of the imaging plates, the diffraction ring detection means is controlled to detect the shape of the diffraction ring formed on another set of the imaging plates, and the diffraction is performed. A device for measuring stress of a conveyed object, which comprises a measurement control means for controlling a ring erasing means to erase a diffractive ring formed on another set of the imaging plates.
前記X線照射手段及び前記受光手段は複数組設けられるとともに、それぞれの前記X線照射手段は異なる位置にX線が照射され、
それぞれの前記X線照射手段を制御して、それぞれの前記X線照射手段から照射されるX線が、前記搬送物の搬送方向の異なる位置に照射されるようにする照射制御手段を有し、
前記残留応力取得手段は、それぞれの前記受光手段で検出された回折X線の像の形状に基づいて、各X線が照射された位置での残留応力を求めるよう構成されていることを特徴とする請求項1又は請求項2に記載の搬送物の応力測定装置。
A plurality of sets of the X-ray irradiation means and the light receiving means are provided, and each of the X-ray irradiation means is irradiated with X-rays at different positions.
It has an irradiation control means for controlling each of the X-ray irradiation means so that the X-rays emitted from the respective X-ray irradiation means are emitted to different positions in the transport direction of the conveyed object.
The residual stress acquiring means is characterized in that the residual stress at the position where each X-ray is irradiated is obtained based on the shape of the image of the diffracted X-rays detected by each of the light receiving means. The stress measuring device for a transported object according to claim 1 or 2 .
一定の速度で搬送される1または複数の搬送物の残留応力を測定するための搬送物の応力測定装置であって、
前記搬送物に対して所定強度のX線を間欠的に照射するX線照射手段と、
前記X線照射手段からX線が照射されたとき、前記搬送物で発生する回折X線を撮像面にて受光し、前記撮像面に回折X線の像を形成するとともに回折X線の像の形状を検出する受光手段と、
前記受光手段にて検出された回折X線の像の形状に基づいて、前記搬送物の残留応力を計算する残留応力取得手段とを有し、
前記受光手段は、前記回折X線の像の形状として回折環の形状を検出するものであり、
前記X線照射手段及び前記受光手段は複数組設けられるとともに、前記X線照射手段及び前記受光手段のそれぞれの組は、前記搬送物の搬送方向に沿って配置され、それぞれのX線照射手段から照射されるX線は、前記搬送物に対してそれぞれ異なった方向から照射され、
それぞれの前記X線照射手段を制御して、それぞれの前記X線照射手段から照射されるX線が、異なったタイミングで前記搬送物の同一の位置に照射されるようにする照射制御手段を有し、
前記残留応力取得手段は、それぞれの前記受光手段で検出された回折環の形状に基づいて、X線が照射された位置での3軸残留応力を求めるよう構成されていることを特徴とする搬送物の応力測定装置。
A stress measuring device for a transported object for measuring the residual stress of one or more transported objects transported at a constant speed.
An X-ray irradiation means that intermittently irradiates the transported object with X-rays of a predetermined intensity,
When X-rays are irradiated from the X-ray irradiating means, the diffracted X-rays generated by the conveyed object are received by the image pickup surface to form an image of the diffracted X-rays on the image pickup surface and the image of the diffracted X-rays. Light receiving means for detecting the shape and
It has a residual stress acquisition means for calculating the residual stress of the conveyed object based on the shape of the image of the diffracted X-ray detected by the light receiving means.
The light receiving means detects the shape of the diffractive ring as the shape of the image of the diffracted X-ray.
A plurality of sets of the X-ray irradiation means and the light receiving means are provided, and each set of the X-ray irradiation means and the light receiving means is arranged along the transport direction of the conveyed object, and the X-ray irradiation means is provided. The X-rays to be irradiated are applied to the conveyed object from different directions.
There is an irradiation control means that controls each of the X-ray irradiation means so that the X-rays emitted from the respective X-ray irradiation means are irradiated to the same position of the conveyed object at different timings. death,
The transport is characterized in that the residual stress acquisition means is configured to obtain triaxial residual stress at a position irradiated with X-rays based on the shape of the diffractive ring detected by each of the light receiving means. An object stress measuring device.
JP2018012484A 2018-01-29 2018-01-29 Stress measuring device for transported objects Active JP7033246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018012484A JP7033246B2 (en) 2018-01-29 2018-01-29 Stress measuring device for transported objects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018012484A JP7033246B2 (en) 2018-01-29 2018-01-29 Stress measuring device for transported objects

Publications (2)

Publication Number Publication Date
JP2019132599A JP2019132599A (en) 2019-08-08
JP7033246B2 true JP7033246B2 (en) 2022-03-10

Family

ID=67544926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018012484A Active JP7033246B2 (en) 2018-01-29 2018-01-29 Stress measuring device for transported objects

Country Status (1)

Country Link
JP (1) JP7033246B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4394775A1 (en) * 2022-12-27 2024-07-03 Lionel Uzzan Device and method for automated data erasure
WO2024141349A1 (en) * 2022-12-27 2024-07-04 Lionel Uzzan Device and automated method for deleting data

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110542507B (en) * 2019-10-16 2021-07-27 丹东浩元仪器有限公司 Detection method of detection device of X-ray stress determinator
WO2024082185A1 (en) * 2022-10-19 2024-04-25 中车工业研究院有限公司 Measurement device for package stress of chip, and measurement method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282941A (en) 2001-03-21 2002-10-02 Mitsubishi Heavy Ind Ltd Device for rectifying shape, method for rectifying shape, device for evaluation of remaining stress, and method for evaluation of remaining stress
US20030012334A1 (en) 2001-06-19 2003-01-16 Kurtz David S. Method and apparatus for rapid grain size analysis of polycrystalline materials
JP2007501395A (en) 2003-08-04 2007-01-25 エックス−レイ オプティカル システムズ インコーポレーテッド In-situ X-ray diffraction system using X-ray source and X-ray detector with fixed angular position
JP5339253B2 (en) 2009-07-24 2013-11-13 国立大学法人金沢大学 X-ray stress measurement method
JP2014013203A (en) 2012-07-04 2014-01-23 Kanazawa Univ X-ray stress measurement method
JP2014190899A (en) 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X-ray diffraction measurement equipment and x-ray diffraction measurement system
JP2017187352A (en) 2016-04-04 2017-10-12 新日鐵住金株式会社 X-ray residual stress measurement method and x-ray residual stress measurement system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5141661A (en) * 1974-10-07 1976-04-08 Hitachi Ltd Atsuenban no keijoseigyosochi
JPH0371008A (en) * 1989-08-09 1991-03-26 Kawasaki Steel Corp Method and device for detecting curvature of metallic strip
JPH07311164A (en) * 1994-05-17 1995-11-28 Kobe Steel Ltd Method and instrument for measuring diffracted x-ray distribution of metallic plate
JP2005339253A (en) * 2004-05-27 2005-12-08 Nippon Telegr & Teleph Corp <Ntt> Contents display system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002282941A (en) 2001-03-21 2002-10-02 Mitsubishi Heavy Ind Ltd Device for rectifying shape, method for rectifying shape, device for evaluation of remaining stress, and method for evaluation of remaining stress
US20030012334A1 (en) 2001-06-19 2003-01-16 Kurtz David S. Method and apparatus for rapid grain size analysis of polycrystalline materials
JP2007501395A (en) 2003-08-04 2007-01-25 エックス−レイ オプティカル システムズ インコーポレーテッド In-situ X-ray diffraction system using X-ray source and X-ray detector with fixed angular position
JP5339253B2 (en) 2009-07-24 2013-11-13 国立大学法人金沢大学 X-ray stress measurement method
JP2014013203A (en) 2012-07-04 2014-01-23 Kanazawa Univ X-ray stress measurement method
JP2014190899A (en) 2013-03-28 2014-10-06 Pulstec Industrial Co Ltd X-ray diffraction measurement equipment and x-ray diffraction measurement system
JP2017187352A (en) 2016-04-04 2017-10-12 新日鐵住金株式会社 X-ray residual stress measurement method and x-ray residual stress measurement system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4394775A1 (en) * 2022-12-27 2024-07-03 Lionel Uzzan Device and method for automated data erasure
WO2024141349A1 (en) * 2022-12-27 2024-07-04 Lionel Uzzan Device and automated method for deleting data

Also Published As

Publication number Publication date
JP2019132599A (en) 2019-08-08

Similar Documents

Publication Publication Date Title
JP7033246B2 (en) Stress measuring device for transported objects
US7809104B2 (en) Imaging system with long-standoff capability
TR201901095T4 (en) Mobile backscatter imaging vetting apparatus and method.
JP6055970B2 (en) Surface hardness evaluation method using X-ray diffractometer and X-ray diffractometer
JP5713357B2 (en) X-ray stress measurement method and apparatus
US10161913B2 (en) Metal weld inspection device, associated system and method
JP2019078654A (en) Solar slit and device and method for x-ray diffraction device
WO2017115015A1 (en) Method and arrangement for analysing a property of a seam
JP6607127B2 (en) X-ray residual stress measurement method and X-ray residual stress measurement system
US9562867B2 (en) Optical axis adjustment device for X-ray analyzer
US9417195B2 (en) Method and its apparatus for x-ray diffraction
JP6037237B2 (en) X-ray diffractometer and measurement method using X-ray diffractometer
JP2009047440A (en) Nondestructive inspection device and nondestructive inspection method
JP2012063325A (en) Laser ultrasonic inspection device and laser ultrasonic inspection method
US20210063328A1 (en) Apparatus for selecting products on the basis of their composition by x ray fluorescent spectroscopy and corresponding selection method
JP5949704B2 (en) Diffraction ring formation method
JP5880957B2 (en) A device that detects surface changes using laser light
JP7562324B2 (en) X-ray analysis equipment
JP6115597B2 (en) X-ray diffractometer
JP5962737B2 (en) X-ray diffraction measurement apparatus and X-ray diffraction measurement method
KR102113774B1 (en) Portable laser induced breakdown spectroscopy and method for controlling the same
JP2008286735A (en) Eds head protection method and protection mechanism for fluorescence x-ray spectrometer
JP5435527B2 (en) Nondestructive inspection equipment
EP3385705A1 (en) Method and apparatus for extending angular coverage for a scanning two-dimensional x-ray detector
WO2023189135A1 (en) Inspection device and inspection method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180130

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210726

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7033246

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150