JP7032060B2 - Air conditioning system - Google Patents

Air conditioning system Download PDF

Info

Publication number
JP7032060B2
JP7032060B2 JP2017107257A JP2017107257A JP7032060B2 JP 7032060 B2 JP7032060 B2 JP 7032060B2 JP 2017107257 A JP2017107257 A JP 2017107257A JP 2017107257 A JP2017107257 A JP 2017107257A JP 7032060 B2 JP7032060 B2 JP 7032060B2
Authority
JP
Japan
Prior art keywords
air
air conditioning
ceiling panel
conditioning system
conditioning duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017107257A
Other languages
Japanese (ja)
Other versions
JP2018204804A (en
Inventor
諭 小澤
一宏 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikken Sekkei Ltd
Original Assignee
Nikken Sekkei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikken Sekkei Ltd filed Critical Nikken Sekkei Ltd
Priority to JP2017107257A priority Critical patent/JP7032060B2/en
Publication of JP2018204804A publication Critical patent/JP2018204804A/en
Application granted granted Critical
Publication of JP7032060B2 publication Critical patent/JP7032060B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Landscapes

  • Duct Arrangements (AREA)

Description

特許法第30条第2項適用 J-STAGEのウェブサイトの日本建築学会環境系論文集において、平成28年11月30日に、日本建築学会環境系論文集,Vol.81(2016)No.729,p.1017-1024「パッケージ型空気調和機を用いた対流・輻射併用型空調システムの計画手法と性能検証」として掲載されることによって本発明を公開。Application of Article 30, Paragraph 2 of the Patent Act In the Architectural Institute of Japan Environmental Papers on the J-STAGE website, on November 30, 2016, the Architectural Institute of Japan Environmental Papers, Vol. 81 (2016) No. 729, p. The present invention is disclosed by being published as 1017-1024 "Planning method and performance verification of convection / radiation combined air conditioning system using package type air conditioner".

本発明は、オフィスビル、商業施設等の室内空間における暖房又は冷房を効率的に実施することができる空調システムに関する。 The present invention relates to an air conditioning system capable of efficiently heating or cooling an indoor space such as an office building or a commercial facility.

従来、オフィスビル、商業施設等の室内空間を暖房又は冷房するには、天井面の適宜位置に吹出口を形成し、その吹出口から室内空間へと適宜温度の暖気又は冷気を供給し、室内空間で空気を対流させて、室内空間を適宜温度に調整するようにしていた。 Conventionally, in order to heat or cool an indoor space such as an office building or a commercial facility, an air outlet is formed at an appropriate position on the ceiling surface, and warm or cold air having an appropriate temperature is supplied from the air outlet to the indoor space to indoor the room. Air was convected in the space to adjust the temperature of the interior space appropriately.

しかし、室内空間で空気を対流させる空調方式では、温度センサ等によって室内空間の温度を検出して制御しても、暖気は上方に、冷気は下方に移動し易いために、室内空間を均一な温度に保持することはできなかった。
又、吹出口の直下に近い位置にいる者は、吹出口から吹出す暖気又は冷気を身体に直接受け易く、通常よりも暑く又は寒く感じたり、暖気又は冷気が身体に強く当たって、不快感を抱く場合もあった。
However, in the air-conditioning system in which air is convected in the indoor space, even if the temperature of the indoor space is detected and controlled by a temperature sensor or the like, warm air tends to move upward and cold air tends to move downward, so that the indoor space is uniform. It could not be kept at temperature.
In addition, a person who is near the air outlet is likely to receive the warm air or cold air blown out from the air outlet directly to the body, and feels hotter or colder than usual, or the warm air or cold air strongly hits the body, resulting in discomfort. In some cases, I embraced.

かかる従来の問題点を解決するために、天井面を構成する天井パネルの裏面に暖気又は冷気を流通させ、天井パネルから輻射される温熱又は冷熱によって室内空間を暖房又は冷房する空調方式、又は、室内空間で空気を対流させると共に、天井パネルから熱を輻射する空調方式を採用することも提案されている(特許文献1及び2参照)。 In order to solve the conventional problems, an air conditioning system in which warm air or cold air is circulated on the back surface of the ceiling panel constituting the ceiling surface and the indoor space is heated or cooled by the hot or cold heat radiated from the ceiling panel, or It has also been proposed to adopt an air-conditioning system in which air is convected in an indoor space and heat is radiated from a ceiling panel (see Patent Documents 1 and 2).

特開平06-174261号公報Japanese Unexamined Patent Publication No. 06-174261 特開2015-064129号公報Japanese Unexamined Patent Publication No. 2015-064129

しかし、上記特許文献1及び2に記載された空調システムは、何れも、室内空間の天井裏の一端部に設置した空調機又はその吹出口から天井裏に暖気又は冷気を吹出させ、天井裏の他端部へと流通させ、その間に天井パネルに穿設した通気孔から室内空間へと暖気又は冷気を流出させるものであった。
又、特許文献1及び2に記載された空調システムでは、天井パネルに穿設した通気孔の孔径は天井パネル全面に亘って同一であり、又、通気孔の間隔も天井パネル全面に亘って同一であった。
However, in each of the air conditioning systems described in Patent Documents 1 and 2, warm or cold air is blown out from the air conditioner installed at one end of the ceiling of the interior space or the outlet thereof to the ceiling, and the ceiling is covered. It was circulated to the other end, and warm or cold air was allowed to flow out to the indoor space from the ventilation holes formed in the ceiling panel during that time.
Further, in the air conditioning system described in Patent Documents 1 and 2, the hole diameters of the ventilation holes formed in the ceiling panel are the same over the entire surface of the ceiling panel, and the intervals between the ventilation holes are also the same over the entire surface of the ceiling panel. Met.

そのため、天井裏の他端部へと流通する間に、暖気又は冷気の流速が低下していき、他端部に行くに従って、通気孔から吹出す暖気又は冷気の流量は少なくなる。
又、天井裏の他端部へと流通する間に、暖気又は冷気はその熱量を放出して、他端部に行くに従って、通気孔から吹出す暖気又は冷気の温度は低下又は上昇する。
Therefore, the flow velocity of warm or cold air decreases while flowing to the other end of the ceiling, and the flow rate of warm or cold air blown out from the ventilation holes decreases toward the other end.
Further, while flowing to the other end of the ceiling, the warm or cold air releases its heat amount, and the temperature of the warm or cold air blown out from the ventilation hole decreases or rises as it goes to the other end.

よって、特許文献1及び2に記載された空調システムでは、室内空間を未だ迅速に暖房又は冷房することができないと共に、室内空間の水平方向及び垂直方向の何れにも、均一に暖房又は冷房することはできなかった。
又、吹出口の直下に近い位置にいる者は、依然として、吹出口から吹出す暖気又は冷気を身体に直接受け易く、通常よりも暑く又は寒く感じたり、暖気又は冷気が身体に強く当たって、不快感を抱く場合もあった。
Therefore, in the air conditioning system described in Patent Documents 1 and 2, the indoor space cannot be quickly heated or cooled, and the indoor space is uniformly heated or cooled in both the horizontal direction and the vertical direction. I couldn't.
In addition, a person who is near the air outlet is still likely to receive the warm air or cold air blown out from the air outlet directly to the body, and feels hotter or colder than usual, or the warm air or cold air hits the body strongly. Sometimes I felt uncomfortable.

本発明は、かかる従来の問題点に鑑みて為されたものであって、室内空間で空気を対流させると共に、天井パネルから熱を輻射する空調方式において、室内空間を迅速に暖房又は冷房することができると共に、室内空間の水平方向及び垂直方向の何れにも、均一に暖房又は冷房することができ、しかも、暖気又は冷気が身体に当たって、通常よりも暑く又は寒く感じたり、不快感を抱くこともない空調システムを提供することを目的とする。 The present invention has been made in view of the above-mentioned conventional problems, and in an air-conditioning system in which air is convected in an indoor space and heat is radiated from a ceiling panel, the indoor space is quickly heated or cooled. It is possible to heat or cool the room uniformly in both the horizontal and vertical directions, and the warm or cold air hits the body, making it feel hotter or colder than usual, or causing discomfort. The purpose is to provide a non-existent air conditioning system.

上記目的を達成するために、本発明の空調システムは、室内空間の天井面を形成し、多数の通気孔を穿設した天井パネルと、この天井パネルの上方空間に配設し、下面に吹出口を形成した空調ダクトと、この空調ダクトに暖気又は冷気を送風する空調機と、から構成され、
前記天井パネルは、熱伝導性の高い金属材料から成形し、前記空調ダクトの吹出口の直下部から周辺部にいくに従って、前記通気孔の開口率を漸次高めると共に、
前記空調ダクトは、その下面を前記天井パネルの上面に近接させて配設し、その基端部から先端部にいくに従って、前記吹出口の間隔を漸次広くしたことを特徴とする。
In order to achieve the above object, the air conditioning system of the present invention forms a ceiling surface of an indoor space, is arranged in a ceiling panel in which a large number of ventilation holes are bored, and in the space above the ceiling panel, and blows on the lower surface. It is composed of an air conditioning duct that forms an outlet and an air conditioner that blows warm or cold air to this air conditioning duct.
The ceiling panel is formed from a metal material having high thermal conductivity, and the opening ratio of the ventilation holes is gradually increased from directly below the air outlet of the air conditioning duct to the peripheral portion, and the ceiling panel is gradually increased.
The air conditioning duct is characterized in that its lower surface is arranged close to the upper surface of the ceiling panel, and the distance between the air outlets is gradually widened from the base end portion to the tip end portion thereof.

前記天井パネルを成形する金属材料は、アルミニウム又はアルミニウム合金であるのが好ましい。 The metal material for molding the ceiling panel is preferably aluminum or an aluminum alloy.

又、前記通気孔の孔径は、10~40mmであることが好ましく、前記通気孔の開口率は、前記空調ダクトの吹出口の直下部から周辺部にいくに従って、10~60%に遷移させるのが好ましい。 Further, the hole diameter of the ventilation hole is preferably 10 to 40 mm, and the opening ratio of the ventilation hole is changed to 10 to 60% from immediately below the air outlet of the air conditioning duct toward the peripheral portion. Is preferable.

さらに、前記天井パネルの上方空間に送風機を配設し、前記空調機から供給する暖気又は冷気に、この送風機から供給する乾燥空気を混合させて、前記空調ダクトに供給するのが好ましい。 Further, it is preferable to dispose a blower in the space above the ceiling panel, mix the warm air or cold air supplied from the air conditioner with the dry air supplied from the blower, and supply the air conditioner to the air conditioning duct.

本発明の空調システムによれば、室内空間を迅速に暖房又は冷房することができると共に、室内空間の水平方向及び垂直方向の何れにも、均一に暖房又は冷房することができ、しかも、暖気又は冷気が身体に当たって、通常よりも暑く又は寒く感じたり、不快感を抱くこともない。 According to the air conditioning system of the present invention, the indoor space can be quickly heated or cooled, and the indoor space can be uniformly heated or cooled in both the horizontal and vertical directions, and the warm air or the air can be cooled. The cold air does not hit the body and makes it feel hotter or colder than usual, and does not cause discomfort.

さらに、空調機から供給する暖気又は冷気に送風機から供給する乾燥空気を混合させて空調ダクトに供給するようにすれば、より迅速に暖房又は冷房することができると共に、冷房時には、天井パネルの上面における結露を効果的に防止することができる。 Further, if the warm air supplied from the air conditioner or the dry air supplied from the blower is mixed and supplied to the air conditioning duct, the heating or cooling can be performed more quickly, and at the time of cooling, the upper surface of the ceiling panel can be heated or cooled. It is possible to effectively prevent dew condensation in the air conditioner.

本発明の空調システムの構成図である。It is a block diagram of the air conditioning system of this invention. 本発明の空調システムにおける(A)は空調ダクト直下部に配置する天井パネル部材の平面図、(B)は周辺部に配置する天井パネル部材の平面図である。In the air conditioning system of the present invention, (A) is a plan view of the ceiling panel member arranged immediately below the air conditioning duct, and (B) is a plan view of the ceiling panel member arranged in the peripheral portion. 本発明の空調システムにおける空調ダクトの(A)は平面図、(B)は断面図である。(A) is a plan view and (B) is a sectional view of the air conditioning duct in the air conditioning system of the present invention. 本発明の空調システムの概念図である。It is a conceptual diagram of the air conditioning system of this invention. 本発明の空調システムを設置してその性能試験を実施した建築物のフロアの平面図である。It is a top view of the floor of the building which installed the air-conditioning system of this invention and carried out the performance test. 本発明の空調システムの性能試験を実施した室内空間及び装置構成を示す(A)は平面図、(B)は断面図である。(A) is a plan view and (B) is a sectional view showing an indoor space and an apparatus configuration in which a performance test of the air conditioning system of the present invention has been carried out. 冷房時における性能試験の実施条件を示す表である。It is a table which shows the carrying-out condition of the performance test at the time of cooling. 冷房時における性能試験の温度変化を示す図である。It is a figure which shows the temperature change of the performance test at the time of cooling. 冷房時における室内空間の垂直方向の温度分布を示す図である。It is a figure which shows the temperature distribution in the vertical direction of the room space at the time of cooling. 冷房時における室内空間の水平方向の(A)は床上3000mmにおける分布図、(B)は床上1200mmにおける分布図である。(A) in the horizontal direction of the indoor space at the time of cooling is a distribution map at 3000 mm above the floor, and (B) is a distribution map at 1200 mm above the floor. 暖房時における性能試験の実施条件を示す表である。It is a table which shows the implementation condition of the performance test at the time of heating. 暖房時における性能試験の温度変化を示す図である。It is a figure which shows the temperature change of the performance test at the time of heating. 暖房時における室内空間の垂直方向の温度分布を示す図である。It is a figure which shows the temperature distribution in the vertical direction of the room space at the time of heating. 暖房時における室内空間の水平方向の(A)は床上3000mmにおける分布図、(B)は床上1200mmにおける分布図である。(A) in the horizontal direction of the indoor space at the time of heating is a distribution map at 3000 mm above the floor, and (B) is a distribution map at 1200 mm above the floor.

本発明の空調システムの好適な実施形態について、以下、図面を参照して説明する。 A preferred embodiment of the air conditioning system of the present invention will be described below with reference to the drawings.

本発明の空調システム1は、図1乃至4に示すように、室内空間の天井面Cを形成し、多数の通気孔21aを穿設した天井パネル2と、この天井パネル2の上方空間に配設し、下面に吹出口3aを形成した空調ダクト3と、この空調ダクト3に暖気又は冷気を供給する空調機4と、から構成してある。 As shown in FIGS. 1 to 4, the air conditioning system 1 of the present invention forms a ceiling surface C in an indoor space, and is arranged in a ceiling panel 2 having a large number of ventilation holes 21a and an upper space of the ceiling panel 2. It is composed of an air conditioning duct 3 having an air outlet 3a formed on the lower surface thereof, and an air conditioner 4 for supplying warm or cold air to the air conditioning duct 3.

天井パネル2は、図1、2及び4に示すように、複数のパネル部材21を縦横に水平方向に連結したものである。そして、パネル部材21は、熱伝導性の高い金属材料から矩形状に成形してある。
ここで、熱伝導性の高い金属材料としては、アルミニウム、アルミニウム合金、ステンレス鋼、銅、銅合金等を採用することができるが、軽量性、防錆性等を考慮すると、アルミニウム又はアルミニウム合金を採用するのが好ましい。
As shown in FIGS. 1, 2 and 4, the ceiling panel 2 is formed by connecting a plurality of panel members 21 in the vertical and horizontal directions. The panel member 21 is formed into a rectangular shape from a metal material having high thermal conductivity.
Here, aluminum, aluminum alloy, stainless steel, copper, copper alloy, etc. can be adopted as the metal material having high thermal conductivity, but in consideration of light weight, rust resistance, etc., aluminum or aluminum alloy is used. It is preferable to adopt it.

パネル部材21としては、図2に示すように、素材に打ち抜き加工を施したパンチングメタルを採用してあり、例えば、縦(A)×横(B)を800×800mm、肉厚(T)を2.0mmに成形してある。
パネル部材21には、図2に示すように、多数の通気孔21aを穿設してあるが、この通気孔21aの孔径(D)は、10~40mm、特には、15~30mmであることが好ましい。例えば、孔径(D)を21mmとしてある。
As shown in FIG. 2, as the panel member 21, punching metal obtained by punching the material is adopted. For example, the vertical (A) × horizontal (B) is 800 × 800 mm, and the wall thickness (T) is It is molded to 2.0 mm.
As shown in FIG. 2, the panel member 21 is provided with a large number of ventilation holes 21a, and the hole diameter (D) of the ventilation holes 21a is 10 to 40 mm, particularly 15 to 30 mm. Is preferable. For example, the hole diameter (D) is set to 21 mm.

さらに、空調ダクト3の吹出口3aの直下部に配設するパネル部材21Aにあっては、図2(A)に示すように、横方向において、中央部から周辺部にいくに従って、通気孔21aの間隔(P0)が漸次小さくなるように形成してある。
又、空調ダクト3の吹出口3aの横方向周辺部に配設する、すなわち、パネル部材21Aより外方に配設するパネル部材21Bにあっては、図2(B)に示すように、内側部から外側部にいくに従って、通気孔21aの間隔(P1,P2)が漸次小さくなるように形成してある。
Further, in the panel member 21A arranged immediately below the air outlet 3a of the air conditioning duct 3, as shown in FIG. 2A, the ventilation holes 21a are arranged in the lateral direction from the central portion to the peripheral portion. The interval (P0) is formed so as to gradually decrease.
Further, in the panel member 21B arranged in the lateral peripheral portion of the air outlet 3a of the air conditioning duct 3, that is, arranged outside the panel member 21A, as shown in FIG. 2B, the inside The intervals (P1, P2) of the ventilation holes 21a are formed so as to gradually decrease from the portion to the outer portion.

よって、複数のパネル部材21A,21Bを縦横に水平方向に連結して天井パネル2を構成した場合には、図4に示すように、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、通気孔21aの間隔(P)は漸次小さくなる。
天井パネル2において、開口率を以下の通り、

開口率=所定範囲内の通気孔21aの面積/パネル部材の所定範囲内の表面積

と定義すれば、天井パネル2における通気孔21aの開口率は、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、漸次高くなるように設定してある。
そして、天井パネル2における通気孔21aの開口率は、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、10~60%、特には、20~50%に遷移させるのが好ましい。
Therefore, when a plurality of panel members 21A and 21B are connected vertically and horizontally in the horizontal direction to form the ceiling panel 2, as shown in FIG. 4, the air conditioning duct 3 goes from directly below the outlet 3a to the peripheral portion. Therefore, the distance (P) between the ventilation holes 21a gradually decreases.
In the ceiling panel 2, the aperture ratio is as follows.

Aperture ratio = Area of ventilation hole 21a within a predetermined range / Surface area within a predetermined range of a panel member

By definition, the opening ratio of the ventilation holes 21a in the ceiling panel 2 is set so as to gradually increase from immediately below the air outlet 3a of the air conditioning duct 3 toward the peripheral portion.
The opening ratio of the ventilation holes 21a in the ceiling panel 2 is preferably 10 to 60%, particularly preferably 20 to 50%, from immediately below the air outlet 3a of the air conditioning duct 3 toward the peripheral portion.

開口率を20~50%に遷移させるために、通気孔21aの孔径(D)を同一とし、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、通気孔21aの間隔(P)を漸次小さくする代わりに、通気孔21aの間隔(P)を同一とし、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、通気孔21aの孔径(D)を漸次大きくするようにしてもよい。 In order to make the opening ratio change from 20 to 50%, the hole diameters (D) of the ventilation holes 21a are made the same, and the intervals (P) of the ventilation holes 21a are set from immediately below the air outlet 3a of the air conditioning duct 3 to the peripheral portion. Instead of gradually reducing the size, the spacing (P) of the ventilation holes 21a is made the same, and the hole diameter (D) of the ventilation holes 21a is gradually increased from immediately below the air outlet 3a of the air conditioning duct 3 to the peripheral portion. You may.

空調ダクト3は、図1、3及び4に示すように、天井パネル2の上方空間に、天井パネル2に近接して、所定間隔で2基配設してある。そして、空調ダクト3は、断熱性の高い材料から構成してある。
ここで、断熱性の高い材料としては、吸音性、軽量性も考慮して、グラスウールを採用するのが好ましい。
空調ダクト3の下面と天井パネル2との上面との間隔(H)は、100~500mm、特には、200~400mmとするのが好ましい。
As shown in FIGS. 1, 3 and 4, two air conditioning ducts 3 are arranged in the space above the ceiling panel 2 in the vicinity of the ceiling panel 2 at predetermined intervals. The air conditioning duct 3 is made of a material having high heat insulating properties.
Here, as a material having high heat insulating properties, it is preferable to use glass wool in consideration of sound absorption and light weight.
The distance (H) between the lower surface of the air conditioning duct 3 and the upper surface of the ceiling panel 2 is preferably 100 to 500 mm, particularly preferably 200 to 400 mm.

空調ダクト3の下面には、図3及び4に示すように、幅方向に長い矩形状の吹出口3aを形成してあり、例えば、長さ(L)450mm、幅(W)75mmとしてある。
そして、空調ダクト3の基端部から先端部にいくに従って、吹出口3aの間隔(Q)を漸次広くしてある。例えば、基端部における吹出口3aの間隔(Q1)を450mm、先端部における吹出口3aの間隔(Q2)を900mmとしてある。
ここで、基端部から先端部にいくに従って、吹出口3aの間隔(Q)を漸次広くしてあるのは、先端部にいくに従って空調ダクト3内を流通する暖気又は冷気の速度(m/s)が速くなるので、空調ダクト3の長さ方向に亘って、極力均一速度で吹出口3aから暖気又は冷気を吹出させるためである。
As shown in FIGS. 3 and 4, a rectangular outlet 3a long in the width direction is formed on the lower surface of the air conditioning duct 3, and the length (L) is 450 mm and the width (W) is 75 mm, for example.
Then, the distance (Q) between the outlets 3a is gradually widened from the base end portion to the tip end portion of the air conditioning duct 3. For example, the distance (Q1) between the outlets 3a at the base end is 450 mm, and the distance (Q2) between the outlets 3a at the tip is 900 mm.
Here, the reason why the interval (Q) of the outlets 3a is gradually widened from the base end to the tip is the speed (m / m /) of the warm air or cold air flowing in the air conditioning duct 3 as it goes to the tip. Since s) becomes faster, warm air or cold air is blown out from the outlet 3a at a uniform speed as much as possible over the length direction of the air conditioning duct 3.

空調機4は、図1に示すように、天井パネル2の上方空間に配設してあり、給気供給管5,連結ダクト6を介して、2基の空調ダクト3,3に暖気又は冷気を供給するようになっている。
又、空調機4は、外気導入管7によって外気を導入すると共に、還気吸引管8によって室内空間の空気を吸引、回収し、空気を冷却又は加熱する。
尚、空調機4としては、風量1,500m/hの天井隠蔽型パッケージ空調機の屋内機を採用することができる。
As shown in FIG. 1, the air conditioner 4 is arranged in the space above the ceiling panel 2, and warm or cold air is provided to the two air conditioning ducts 3 and 3 via the supply air supply pipe 5 and the connecting duct 6. Is to be supplied.
Further, the air conditioner 4 introduces the outside air by the outside air introduction pipe 7, and sucks and collects the air in the indoor space by the return air suction pipe 8, and cools or heats the air.
As the air conditioner 4, an indoor unit of a ceiling-concealed package air conditioner having an air volume of 1,500 m 3 / h can be adopted.

さらに、天井パネル2の上方空間には、図1に示すように、空調機4と対向する位置に送風機9を配設してあり、給気供給管5,連結ダクト6を介して、2基の空調ダクト3,3に乾燥した空気を供給する。
又、送風機9は、外気導入管10によって外気を導入すると共に、還気吸引管11によって室内空間の空気を吸引、回収し、空気に含まれる水分を除去し、乾燥させる。
尚、送風機9としては、風量1,800m/hの消音ストレートシロッコファンから成る還気送風機を採用することができる。
Further, in the space above the ceiling panel 2, as shown in FIG. 1, a blower 9 is arranged at a position facing the air conditioner 4, and two units are provided via the air supply pipe 5 and the connecting duct 6. Dry air is supplied to the air conditioning ducts 3 and 3 of the above.
Further, the blower 9 introduces the outside air by the outside air introduction pipe 10 and sucks and collects the air in the indoor space by the return air suction pipe 11, removes the moisture contained in the air, and dries the air.
As the blower 9, a return air blower composed of a muffling straight sirocco fan with an air volume of 1,800 m 3 / h can be adopted.

空調機4から供給する暖気又は冷気に送風機9から供給する乾燥空気を混合させて空調ダクトに供給することによって、給気される空気の風量が大きくなって、室内空間を迅速に暖房又は冷房することができる。
又、冷房時には、天井パネル2の上面に沿って多量の空気が流通することによって、天井パネル2の上面に水分が付着するのを阻止して、結露をより効果的に防止することができる。
By mixing the warm air or cold air supplied from the air conditioner 4 with the dry air supplied from the blower 9 and supplying the air to the air conditioning duct, the air volume of the supplied air increases, and the indoor space is quickly heated or cooled. be able to.
Further, during cooling, a large amount of air flows along the upper surface of the ceiling panel 2, so that moisture can be prevented from adhering to the upper surface of the ceiling panel 2 and dew condensation can be prevented more effectively.

次に、本発明の空調システム1の作用、効果について、以下、図4を参照して、詳細に説明する。 Next, the operation and effect of the air conditioning system 1 of the present invention will be described in detail with reference to FIG. 4 below.

先ず、空調機4から吹出された暖気又は冷気は、給気供給管5,連結ダクト6を通過して、2基の空調ダクト3,3に供給される。 First, the warm or cold air blown out from the air conditioner 4 passes through the supply air supply pipe 5 and the connecting duct 6 and is supplied to the two air conditioning ducts 3 and 3.

次に、空調ダクト3を流通する暖気又は冷気は、基端部から先端部に至る間に、図4に示すように、吹出口3aから下方に吹出され、天井パネル2の上面に衝突する。 Next, as shown in FIG. 4, the warm or cold air flowing through the air conditioning duct 3 is blown downward from the outlet 3a and collides with the upper surface of the ceiling panel 2 from the base end to the tip end.

空調ダクト3の吹出口3aの直下部における天井パネル2の通気孔21aの開口率は低いから、天井パネル2の上面に衝突した暖気又は冷気の殆どは、天井パネル2の上面に沿ってその周辺部へと流動していく。 Since the opening ratio of the ventilation hole 21a of the ceiling panel 2 just below the air outlet 3a of the air conditioning duct 3 is low, most of the warm or cold air that collides with the upper surface of the ceiling panel 2 is along the upper surface of the ceiling panel 2 and its periphery. It flows to the department.

よって、吹出口3aの直下部における天井パネル2の通気孔21aからは殆ど暖気又は冷気が下方に流出されず、専ら天井パネル2を加熱又は冷却することになる。
従って、図4に示すように、吹出口3aの直下部における天井パネル2の下面からは輻射によって室内が加熱又は冷却されることになる。
Therefore, almost no warm air or cold air flows downward from the ventilation holes 21a of the ceiling panel 2 immediately below the air outlet 3a, and the ceiling panel 2 is exclusively heated or cooled.
Therefore, as shown in FIG. 4, the room is heated or cooled by radiation from the lower surface of the ceiling panel 2 immediately below the outlet 3a.

一方、空調ダクト3の吹出口3aの周辺部における天井パネル2の通気孔21aの開口率は高いから、天井パネル2の上面に沿って流動していく暖気又は冷気は、周辺部にいくに従って通気孔21aから下方に流出される。 On the other hand, since the opening ratio of the ventilation hole 21a of the ceiling panel 2 in the peripheral portion of the air outlet 3a of the air conditioning duct 3 is high, the warm air or cold air flowing along the upper surface of the ceiling panel 2 passes through the peripheral portion. It flows downward from the pores 21a.

よって、吹出口3aの周辺部における天井パネル2の通気孔21aからは殆どの暖気又は冷気が下方に流出され、対流によって室内が加熱又は冷却されることになる。 Therefore, most of the warm or cold air flows downward from the ventilation holes 21a of the ceiling panel 2 in the peripheral portion of the air outlet 3a, and the room is heated or cooled by convection.

以上のように、本発明の空調システム1は、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、天井パネル2の通気孔21aの開口率を漸次高めてあるから、空気の対流と熱の輻射とを適切に調和することができて、室内空間の水平方向及び垂直方向の何れにも、均一に暖房又は冷房することができる。 As described above, in the air conditioning system 1 of the present invention, the opening ratio of the ventilation hole 21a of the ceiling panel 2 is gradually increased from directly below the air outlet 3a of the air conditioning duct 3 to the peripheral portion, so that air convection And the radiation of heat can be properly harmonized, and heating or cooling can be performed uniformly in both the horizontal direction and the vertical direction of the indoor space.

さらに、空調機4から供給する暖気又は冷気に送風機9から供給する乾燥空気を混合させて空調ダクト3に供給すれば、給気される空気の風量が大きくなって、室内空間をより迅速に暖房又は冷房することができる。 Further, if the warm air or cold air supplied from the air conditioner 4 is mixed and the dry air supplied from the blower 9 is mixed and supplied to the air conditioning duct 3, the air volume of the supplied air becomes large and the indoor space is heated more quickly. Or it can be cooled.

又、冷房時には、天井パネル2の上面に沿って多量の空気が流通するので、天井パネル2の上面に水分が付着するのを阻止することができ、結露をより効果的に防止することができる。 Further, since a large amount of air flows along the upper surface of the ceiling panel 2 during cooling, it is possible to prevent moisture from adhering to the upper surface of the ceiling panel 2, and it is possible to prevent dew condensation more effectively. ..

次に、本発明の空調システム1を建築物のフロアの一部に模擬的に設置して、性能試験を実施したので、以下、その実施方法及び結果について説明する。 Next, since the air conditioning system 1 of the present invention was simulatedly installed on a part of the floor of a building and a performance test was carried out, the method and result of the performance test will be described below.

性能試験を実施した建築物のフロアの概要は、図5に示す通りであって、一点鎖線で囲んだ斜線の空間領域に本発明の空調システム1を設置した。
図6に示すように、空調システム1を構成する各装置を配設し、天井パネル2、空調ダクト3は、上階の床スラブS2から吊下部材によって吊下し、所定高さに配置した。
The outline of the floor of the building in which the performance test was carried out is as shown in FIG. 5, and the air conditioning system 1 of the present invention was installed in the diagonal space area surrounded by the alternate long and short dash line.
As shown in FIG. 6, each device constituting the air conditioning system 1 is arranged, and the ceiling panel 2 and the air conditioning duct 3 are suspended from the floor slab S2 on the upper floor by a hanging member and arranged at a predetermined height. ..

天井パネル2は、図6に示すように、複数のパネル部材21を縦横に水平方向に連結したものであって、パネル部材21としては、アルミニウム製の縦(A)×横(B)を800×800mm、肉厚(T)を2.0mmとしたパンチングメタルを使用した。
パネル部材21には、孔径(D)を21mmとした通気孔21aを多数穿設してあり、天井パネル2における通気孔21aの開口率は、空調ダクト3の吹出口3aの直下部から周辺部にいくに従って、20~50%に遷移させた。
As shown in FIG. 6, the ceiling panel 2 is formed by connecting a plurality of panel members 21 in the vertical and horizontal horizontal directions, and the panel member 21 is 800 vertical (A) × horizontal (B) made of aluminum. A punching metal having a thickness of 800 mm and a wall thickness (T) of 2.0 mm was used.
The panel member 21 is provided with a large number of ventilation holes 21a having a hole diameter (D) of 21 mm, and the opening ratio of the ventilation holes 21a in the ceiling panel 2 is from directly below the air outlet 3a of the air conditioning duct 3 to the peripheral portion. The transition was made to 20 to 50% as it went to.

空調ダクト3は、図6に示すように、天井パネル2の上方空間に、天井パネル2に近接して、所定間隔で2基配設した。そして、空調ダクト3としては、グラスウール製の矩形断面状を呈するものを使用した。
そして、空調ダクト3の下面には、長さ(L)450mm、幅(W)75mmの矩形状の吹出口3aを形成し、空調ダクト3の基端部から先端部にいくに従って、吹出口3aの間隔(Q)を450~900mmへと漸次広くさせた。
As shown in FIG. 6, two air conditioning ducts 3 are arranged in the space above the ceiling panel 2 in the vicinity of the ceiling panel 2 at predetermined intervals. As the air conditioning duct 3, a glass wool duct having a rectangular cross section was used.
A rectangular outlet 3a having a length (L) of 450 mm and a width of 75 mm is formed on the lower surface of the air conditioning duct 3, and the outlet 3a is formed from the base end to the tip of the air conditioning duct 3. The interval (Q) was gradually widened to 450 to 900 mm.

一点鎖線で囲んだ斜線の空間領域の周囲は、断熱材料から成る壁部材によって、下階の床スラブS1から上階の床スラブS2まで完全に包囲し、空気及び熱量がこの空間領域外に流出しない状態に保持した。
尚、図6に示される4本の支柱P,P,・・・は、建築物のフロアに既に設置されているものである。
The space area of the diagonal line surrounded by the alternate long and short dash line is completely surrounded from the floor slab S1 on the lower floor to the floor slab S2 on the upper floor by a wall member made of a heat insulating material, and air and heat flow out of this space area. I kept it in a non-existent state.
The four columns P, P, ... Shown in FIG. 6 are already installed on the floor of the building.

又、図6に示すように、室内空間及び天井空間の適宜位置(●の位置)に熱電対を配置して、その位置における温度を測定できるようにした。
ここで、床上100mm(以下、FL100と記載)は人間の足元の位置、FL800はテーブル上面の位置、FL1200は着席した時の人間の頭部の位置、FL1800は直立した時の人間の頭部の位置、FL2500は天井パネル直下の位置、FL2700は天井パネル上面の位置、FL3000は空調ダクト直下の位置を示している。
さらに、室内空間の中央部に、熱線式風速計を配置して、その位置における風速を測定できるようにした。
Further, as shown in FIG. 6, a thermocouple was arranged at an appropriate position (position of ●) in the indoor space and the ceiling space so that the temperature at that position could be measured.
Here, 100 mm above the floor (hereinafter referred to as FL100) is the position of the human foot, FL800 is the position of the upper surface of the table, FL1200 is the position of the human head when seated, and FL1800 is the position of the human head when standing upright. The position, FL2500 indicates the position directly under the ceiling panel, FL2700 indicates the position on the upper surface of the ceiling panel, and FL3000 indicates the position directly under the air conditioning duct.
Furthermore, a heat ray type anemometer was placed in the center of the interior space so that the wind speed at that position could be measured.

[性能試験1]
先ず、冷房時における空調システム1の性能試験を実施した。冷房開始時における外気温度は25.0°C、室内温度は27.5°C(FL1200にて)であった。
そして、図7に示すように、空調機4の室内設定温度を24.0°Cに設定して、9:00に冷房動作を開始した。
[Performance test 1]
First, a performance test of the air conditioning system 1 during cooling was carried out. The outside air temperature at the start of cooling was 25.0 ° C, and the room temperature was 27.5 ° C (at FL1200).
Then, as shown in FIG. 7, the indoor set temperature of the air conditioner 4 was set to 24.0 ° C., and the cooling operation was started at 9:00.

性能試験は、8:00から18:00に亘って実施したが、その間における外気、天井パネル上面、露点温度、室内空間の所定高さ位置の温度は、図8に示す通りであった。
尚、図7に示すように、13:00、15:00の時刻には、それぞれ、室内設定温度を28.0°C、26.0°Cに変更して、冷房動作を継続した。
The performance test was carried out from 8:00 to 18:00, and the outside air, the upper surface of the ceiling panel, the dew point temperature, and the temperature at the predetermined height position of the indoor space during that period were as shown in FIG.
As shown in FIG. 7, at the time of 13:00 and 15:00, the indoor set temperature was changed to 28.0 ° C and 26.0 ° C, respectively, and the cooling operation was continued.

図8に示すように、冷房動作を開始して30分後には、室内温度は24.0°C(FL1200にて)に低下した。 As shown in FIG. 8, 30 minutes after the start of the cooling operation, the room temperature dropped to 24.0 ° C (at FL1200).

又、図9に示すように、FL1800とFL100における温度差は、1.0°C程度に過ぎず、室内空間の垂直方向において、均一性のある冷房を行うことができることがわかった。 Further, as shown in FIG. 9, the temperature difference between FL1800 and FL100 is only about 1.0 ° C, and it was found that uniform cooling can be performed in the vertical direction of the indoor space.

又、図10に示すように、FL1200における水平方向の温度差も、1.0°C程度に過ぎず、室内空間の水平方向においても、均一性のある冷房を行うことができることがわかった。 Further, as shown in FIG. 10, the temperature difference in the horizontal direction in FL1200 is only about 1.0 ° C, and it was found that uniform cooling can be performed even in the horizontal direction of the indoor space.

さらに、室内空間の中央部における風速は、0.5m/s以下と小さく、冷気が身体に強く当たって、不快感を抱くほどのものではなかった。 Further, the wind speed in the central part of the indoor space was as small as 0.5 m / s or less, and the cold air strongly hit the body, which did not cause discomfort.

以上の試験結果から、本発明の空調システム1によれば、室内空間を迅速に冷房することができると共に、室内空間の水平方向及び垂直方向の何れにも、均一に冷房することができることがわかった。 From the above test results, it was found that according to the air conditioning system 1 of the present invention, the indoor space can be cooled quickly and uniformly in both the horizontal direction and the vertical direction of the indoor space. rice field.

又、8:00から18:00に亘って、天井パネル上面の温度は露点温度以上にあったから、結露が発生しないこともわかった。 It was also found that dew condensation did not occur because the temperature of the upper surface of the ceiling panel was higher than the dew point temperature from 8:00 to 18:00.

[性能試験2]
次に、暖房時における空調システム1の性能試験を実施した。暖房開始時における外気温度は2.0°C、室内温度は19.2°C(FL1200にて)であった。
そして、図11に示すように、空調機4の室内設定温度を22.0°Cに設定して、8:00に暖房動作を開始した。
[Performance test 2]
Next, a performance test of the air conditioning system 1 during heating was carried out. The outside air temperature at the start of heating was 2.0 ° C, and the room temperature was 19.2 ° C (at FL1200).
Then, as shown in FIG. 11, the indoor set temperature of the air conditioner 4 was set to 22.0 ° C, and the heating operation was started at 8:00.

性能試験は、8:00から18:00に亘って実施したが、その間における外気、天井パネル上面、室内空間の所定高さ位置の温度は、図12に示す通りであった。 The performance test was carried out from 8:00 to 18:00, and the temperatures of the outside air, the upper surface of the ceiling panel, and the predetermined height position of the indoor space during that period were as shown in FIG.

図12に示すように、暖房動作を開始して1時間後には、室内温度は21.4°C(FL1200にて)に上昇した。そして、1時間10分後には、室内温度は22.0°C(FL1200にて)を超えた。 As shown in FIG. 12, one hour after the start of the heating operation, the room temperature rose to 21.4 ° C (at FL1200). Then, after 1 hour and 10 minutes, the room temperature exceeded 22.0 ° C (at FL1200).

又、図13に示すように、FL1800とFL100における温度差は、1.9°C程度に過ぎず、室内空間の垂直方向において、均一性のある暖房を行うことができることがわかった。 Further, as shown in FIG. 13, the temperature difference between FL1800 and FL100 is only about 1.9 ° C, and it was found that uniform heating can be performed in the vertical direction of the indoor space.

又、図14に示すように、FL1200における水平方向の温度差は、0.5°C程度に過ぎず、室内空間の水平方向において、極めて均一性のある暖房を行うことができることがわかった。 Further, as shown in FIG. 14, the temperature difference in the horizontal direction in FL1200 is only about 0.5 ° C, and it was found that extremely uniform heating can be performed in the horizontal direction of the indoor space.

以上の試験結果から、本発明の空調システム1によれば、室内空間を迅速に暖房することができると共に、室内空間の水平方向及び垂直方向の何れにも、均一に暖房することができることがわかった。 From the above test results, it was found that according to the air conditioning system 1 of the present invention, the interior space can be heated quickly and uniformly in both the horizontal direction and the vertical direction of the interior space. rice field.

尚、本発明の空調システム1の構成は、上記実施形態に限定されるものではなく、その要旨を逸脱しない限りにおいて種々変更できること、勿論である。 It should be noted that the configuration of the air conditioning system 1 of the present invention is not limited to the above embodiment, and of course, various changes can be made without departing from the gist thereof.

1 空調システム
2 天井パネル
21a 通気孔
3 空調ダクト
3a 吹出口
4 空調機
9 送風機
1 Air conditioning system 2 Ceiling panel 21a Vent hole 3 Air conditioning duct 3a Air outlet 4 Air conditioner 9 Blower

Claims (5)

室内空間の天井面を形成し、多数の通気孔を穿設した天井パネルと、この天井パネルの上方空間に配設し、下面に吹出口を形成した空調ダクトと、この空調ダクトに暖気又は冷気を送風する空調機と、から構成され、
前記天井パネルは、熱伝導性の高い金属材料から成形し、前記空調ダクトの吹出口の直下部から周辺部にいくに従って、前記通気孔の開口率を漸次高めると共に、
前記空調ダクトは、その下面を前記天井パネルの上面に近接させて配設し、その基端部から先端部にいくに従って、前記吹出口の間隔を漸次広くしたことを特徴とする空調システム。
A ceiling panel that forms the ceiling surface of the indoor space and has a large number of ventilation holes, an air conditioning duct that is arranged in the space above the ceiling panel and has an air outlet formed on the lower surface, and warm or cold air in this air conditioning duct. Consists of an air conditioner that blows air,
The ceiling panel is formed from a metal material having high thermal conductivity, and the opening ratio of the ventilation holes is gradually increased from directly below the air outlet of the air conditioning duct to the peripheral portion, and the ceiling panel is gradually increased.
The air conditioning duct is characterized in that the lower surface thereof is arranged close to the upper surface of the ceiling panel, and the distance between the air outlets is gradually widened from the base end portion to the tip end portion thereof .
前記天井パネルを成形する金属材料は、アルミニウム又はアルミニウム合金であることを特徴とする請求項1に記載の空調システム。 The air conditioning system according to claim 1, wherein the metal material for forming the ceiling panel is aluminum or an aluminum alloy. 前記通気孔の孔径は、10~40mmであることを特徴とする請求項1又は2に記載の空調システム。 The air conditioning system according to claim 1 or 2, wherein the pore diameter of the ventilation hole is 10 to 40 mm. 前記通気孔の開口率は、前記空調ダクトの吹出口の直下部から周辺部にいくに従って、 10~60%に遷移させることを特徴とする請求項1乃至3の何れか1に記載の空調システム。 The air conditioning system according to any one of claims 1 to 3, wherein the opening ratio of the ventilation holes is changed to 10 to 60% from immediately below the air outlet of the air conditioning duct toward the peripheral portion. .. 前記天井パネルの上方空間に送風機を配設し、前記空調機から供給する暖気又は冷気にこの送風機から供給する乾燥空気を混合させて、前記空調ダクトに供給することを特徴とする請求項1乃至4の何れか1に記載の空調システム。
1. The air conditioning system according to any one of 4.
JP2017107257A 2017-05-30 2017-05-30 Air conditioning system Active JP7032060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017107257A JP7032060B2 (en) 2017-05-30 2017-05-30 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017107257A JP7032060B2 (en) 2017-05-30 2017-05-30 Air conditioning system

Publications (2)

Publication Number Publication Date
JP2018204804A JP2018204804A (en) 2018-12-27
JP7032060B2 true JP7032060B2 (en) 2022-03-08

Family

ID=64955390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017107257A Active JP7032060B2 (en) 2017-05-30 2017-05-30 Air conditioning system

Country Status (1)

Country Link
JP (1) JP7032060B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113975908B (en) * 2020-03-23 2023-08-01 艾感科技(广东)有限公司 Air filtering system and method based on nanofiber membrane
CN111928395A (en) * 2020-09-09 2020-11-13 浙江浙蓝科技有限公司 Novel air heat exchange module for ground air conditioning system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132823A (en) 2004-11-04 2006-05-25 Sanken Setsubi Kogyo Co Ltd Indoor air-conditioning system of building
JP2013190183A (en) 2012-03-15 2013-09-26 Sus Corp Radiation panel unit and radiation air conditioning device
JP2015218947A (en) 2014-05-16 2015-12-07 清水建設株式会社 Air conditioning system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153941U (en) * 1982-04-07 1983-10-14 東洋熱工業株式会社 Air conditioner using ceiling chamber
JPH0512699Y2 (en) * 1987-06-24 1993-04-02
JPH06174261A (en) * 1992-10-05 1994-06-24 Kansai Electric Power Co Inc:The Air heating/cooling method
JPH08159521A (en) * 1994-10-04 1996-06-21 Kansai Electric Power Co Inc:The Air cooling and heating system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006132823A (en) 2004-11-04 2006-05-25 Sanken Setsubi Kogyo Co Ltd Indoor air-conditioning system of building
JP2013190183A (en) 2012-03-15 2013-09-26 Sus Corp Radiation panel unit and radiation air conditioning device
JP2015218947A (en) 2014-05-16 2015-12-07 清水建設株式会社 Air conditioning system

Also Published As

Publication number Publication date
JP2018204804A (en) 2018-12-27

Similar Documents

Publication Publication Date Title
JP7032060B2 (en) Air conditioning system
NL2006421C2 (en) Displacement ventilation system and inlet part for such a system.
JP2000055414A (en) Air conditioning system and air conditioning method
JP3032361B2 (en) Underfloor air conditioning system
JP6811542B2 (en) Radiant heating and cooling system
JP2015218947A (en) Air conditioning system
Zhang et al. Integrated solution in an office room with diffuse ceiling ventilation and thermally activated building constructions
JP6411867B2 (en) Air conditioner indoor unit
Prozuments et al. Indoor air stratification in warm air supply systems
JP2013007548A (en) Air conditioning system
JP2021032443A (en) Floor blowout radiation air conditioning system
JP2005337690A (en) Air jet type radiation air conditioning (cooling/heating) system utilizing incombustible resin film duct
JP7433754B2 (en) air conditioning equipment
JP2019200000A (en) Air conditioning system
JP6654822B2 (en) Air conditioning systems and buildings
JP6071230B2 (en) Radiant heating system
JP6573114B2 (en) Bed air conditioning system
JP2016217581A (en) Air conditioning system
JP2006112764A (en) Entire air type improved radiation air-conditioning system
JP2017083090A (en) Hospital room air-conditioning system
JP2016217541A (en) Air conditioning system
JPH10122588A (en) Fan coil device
JPH02233919A (en) Air-conditioning structure
JP2018194199A (en) Air conditioning system
JP3127058B2 (en) Underfloor air conditioning system

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20170628

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210420

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220224

R150 Certificate of patent or registration of utility model

Ref document number: 7032060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150