JP7031535B2 - Method for producing nickel-containing hydroxide - Google Patents

Method for producing nickel-containing hydroxide Download PDF

Info

Publication number
JP7031535B2
JP7031535B2 JP2018164713A JP2018164713A JP7031535B2 JP 7031535 B2 JP7031535 B2 JP 7031535B2 JP 2018164713 A JP2018164713 A JP 2018164713A JP 2018164713 A JP2018164713 A JP 2018164713A JP 7031535 B2 JP7031535 B2 JP 7031535B2
Authority
JP
Japan
Prior art keywords
nickel
containing hydroxide
aqueous solution
particles
hydroxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018164713A
Other languages
Japanese (ja)
Other versions
JP2020037496A (en
Inventor
和彦 土岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018164713A priority Critical patent/JP7031535B2/en
Publication of JP2020037496A publication Critical patent/JP2020037496A/en
Application granted granted Critical
Publication of JP7031535B2 publication Critical patent/JP7031535B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ニッケル含有水酸化物の製造方法に関する。 The present invention relates to a method for producing a nickel-containing hydroxide.

携帯電話、スマートフォン、タブレットPC又はノート型PC等の携帯情報端末の電池として、高いエネルギー密度を有する小型で軽量な非水系電解質二次電池の開発が進んでいる。また、ハイブリッド電気自動車(HEV)、及び電気自動車(EV)やプラグインハイブリッド電気自動車(PHEV)等のクリーンエネルギー自動車の普及拡大に伴い、より高容量及び高出力の非水系電解質二次電池の開発も進んでいる。 As batteries for mobile information terminals such as mobile phones, smartphones, tablet PCs, and notebook PCs, small and lightweight non-aqueous electrolyte secondary batteries having high energy density are being developed. In addition, with the spread of hybrid electric vehicles (HEV) and clean energy vehicles such as electric vehicles (EV) and plug-in hybrid electric vehicles (PHEV), the development of higher capacity and higher output non-aqueous electrolyte secondary batteries. Is also progressing.

このような要求を満たす非水系電解質二次電池として、リチウムイオン二次電池がある。リチウムイオン二次電池は、正極、負極及び電解質等を備えている。正極及び負極には、正極材料及び負極材料として正極活物質及び負極活物質が用いられる。正極活物質及び負極活物質には、リチウムを脱離及び挿入することが可能な材料が用いられている。 As a non-aqueous electrolyte secondary battery satisfying such a requirement, there is a lithium ion secondary battery. The lithium ion secondary battery includes a positive electrode, a negative electrode, an electrolyte and the like. For the positive electrode and the negative electrode, a positive electrode active material and a negative electrode active material are used as the positive electrode material and the negative electrode material. Materials capable of desorbing and inserting lithium are used for the positive electrode active material and the negative electrode active material.

リチウムイオン二次電池の性能の向上を図る方法の一つとして、リチウムイオン二次電池の正極活物質の改良が検討されており、正極活物質として、層状又はスピネル型のリチウム金属複合酸化物を用いる方法がある。リチウム金属複合酸化物を正極活物質に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有するリチウムイオン二次電池として実用化が進んでいる。 As one of the methods for improving the performance of the lithium ion secondary battery, improvement of the positive electrode active material of the lithium ion secondary battery is being studied, and as the positive electrode active material, a layered or spinel type lithium metal composite oxide is used. There is a method to use. Since a lithium ion secondary battery using a lithium metal composite oxide as a positive electrode active material can obtain a high voltage of 4V class, it is being put into practical use as a lithium ion secondary battery having a high energy density.

リチウム金属複合酸化物としては、リチウムマンガン複合酸化物(LiMn)、リチウムコバルト複合酸化物(LiCoO)又はリチウムニッケル複合酸化物(LiNiO)等が一般的に知られている。これらの中でも、リチウムニッケル複合酸化物は、リチウムイオン二次電池を高容量化できる材料として注目されており、リチウムニッケル複合酸化物のニッケルの一部をコバルト、アルミニウム又はマンガン等で置換したリチウムニッケル複合酸化物の開発が進んでいる。 As the lithium metal composite oxide, a lithium manganese composite oxide (LiMn 2 O 4 ), a lithium cobalt composite oxide (LiCoO 2 ), a lithium nickel composite oxide (LiNiO 2 ) and the like are generally known. Among these, lithium nickel composite oxide is attracting attention as a material capable of increasing the capacity of lithium ion secondary batteries, and lithium nickel in which a part of nickel in the lithium nickel composite oxide is replaced with cobalt, aluminum, manganese, or the like. Development of composite oxides is in progress.

リチウムニッケル複合酸化物は、一般的に、中和晶析法によりリチウムニッケル複合酸化物の前駆体であるニッケル含有水酸化物(ニッケル以外の金属を含むニッケル含有水酸化物をニッケル複合水酸化物という)の粒子を作製し、ニッケル含有水酸化物の粒子をリチウム化合物と混合して焼成することで製造される。ニッケル含有水酸化物の粒子は、ニッケル含有水酸化物の原料となる原料液を含む槽内に中和晶析法で核を発生させ、複数の核からなる凝集体を形成した後、凝集体の外周に外殻を形成することで得られる。 Lithium-nickel composite oxides are generally nickel-containing hydroxides that are precursors of lithium-nickel composite oxides by neutralization crystallization method (nickel-containing hydroxides containing metals other than nickel are nickel composite hydroxides. It is produced by producing particles of), mixing nickel-containing hydroxide particles with a lithium compound, and firing them. The nickel-containing hydroxide particles are subjected to nucleation by a neutralization crystallization method in a tank containing a raw material liquid that is a raw material for nickel-containing hydroxide to form an agglomerate composed of a plurality of nuclei, and then the agglomerate. It is obtained by forming an outer shell on the outer circumference of the shell.

例えば、特許文献1には、撹拌槽内の水溶液中で中和晶析によってニッケル含有水酸化物の粒子の核を生成させる核生成工程と、核を成長させる粒子成長工程とを含むニッケル含有水酸化物の製造方法が開示されている。粒子成長工程では、複数の成長した核からなる凝集体を形成した後、凝集体の周りに外殻を形成している。これにより、凝集体とその周りに形成された外殻とで構成されたニッケル含有水酸化物の粒子を製造している。 For example, Patent Document 1 describes nickel-containing water including a nucleation generation step of forming nuclei of nickel-containing hydroxide particles by neutralization crystallization in an aqueous solution in a stirring tank and a particle growth step of growing nuclei. A method for producing an oxide is disclosed. In the particle growth step, after forming an agglomerate composed of a plurality of grown nuclei, an outer shell is formed around the agglomerate. As a result, particles of a nickel-containing hydroxide composed of an agglomerate and an outer shell formed around the agglomerate are produced.

国際公開第2017/217365International Publication No. 2017/217365

ところで、今後、正極活物質にリチウムニッケル複合酸化物を使用する上で、リチウムニッケル複合酸化物を所定の大きさに調整して製造できる方法が必要である。 By the way, in order to use a lithium nickel composite oxide as a positive electrode active material in the future, there is a need for a method capable of adjusting the lithium nickel composite oxide to a predetermined size for production.

リチウムニッケル複合酸化物は、その前駆体であるニッケル含有水酸化物にリチウム化合物を混合して焼成したものであるため、リチウムニッケル複合酸化物の大きさは、ニッケル含有水酸化物の大きさに依存する傾向にある。ニッケル含有水酸化物は、その製造時に中和晶析法により発生した複数の核の凝集体と外殻とを含む粒子であり、ニッケル含有水酸化物の大きさは、凝集体の大きさに応じて決まる。そのため、ニッケル含有水酸化物の大きさを制御するためには、ニッケル含有水酸化物の製造過程において生じる凝集体の大きさを調整することが重要である。 Since the lithium nickel composite oxide is obtained by mixing a lithium compound with its precursor nickel-containing hydroxide and firing it, the size of the lithium nickel composite oxide is the size of the nickel-containing hydroxide. Tends to depend. The nickel-containing hydroxide is a particle containing a plurality of nuclear aggregates and an outer shell generated by the neutralization crystallization method at the time of its production, and the size of the nickel-containing hydroxide is the size of the aggregate. It depends on. Therefore, in order to control the size of the nickel-containing hydroxide, it is important to adjust the size of the agglomerates generated in the process of producing the nickel-containing hydroxide.

本発明の一態様は、ニッケル含有水酸化物の製造時に生成する凝集体の粒径を高精度に調整できるニッケル含有水酸化物の製造方法を提供することを目的とする。 One aspect of the present invention is to provide a method for producing a nickel-containing hydroxide capable of adjusting the particle size of agglomerates produced during the production of the nickel-containing hydroxide with high accuracy.

本発明の一態様に係るニッケル含有水酸化物の製造方法は、少なくともニッケル塩を含む金属塩を含有する原料液と、前記金属塩の金属イオンと結合して錯体を形成する錯化剤と、前記金属塩及び前記錯体と反応して金属水酸化物を生成する中和剤とを含む反応水溶液の中で、中和晶析によりニッケル含有水酸化物を得るニッケル含有水酸化物の製造方法であって、
前記反応水溶液の中で、中和晶析によって発生した、前記ニッケル含有水酸化物の核を成長させて、種晶を生成する種晶生成工程を含み、
前記種晶生成工程は、前記反応水溶液の中に中和晶析によって前記ニッケル含有水酸化物の前記核を発生させ、複数の前記核が凝集した凝集体を生成する第1種晶生成工程を含み、
前記第1種晶生成工程を、下記式(I)に基づいて設定した条件で行うニッケル含有水酸化物の製造方法。

Figure 0007031535000001
(但し、式(I)中、Rは凝集体の半径であり、Aはモデル係数であり、rは核の半径であり、Cは過飽和度であり、Cは過飽和度Cの閾値であり、Nは原料液の添加口の数であり、ΔVは過飽和度Cがcからc+Δcまでの領域の体積であり、uは過飽和度Cがcからc+Δcまでの領域を通過する流体の平均流速であり、Kは過飽和度Cがcからc+Δcまでの領域を通過する流体の流れの乱流拡散係数であり、Bはモデル係数であり、ωは撹拌翼の回転数であり、Lは撹拌翼の翼径である。) The method for producing a nickel-containing hydroxide according to one aspect of the present invention comprises a raw material solution containing at least a metal salt containing a nickel salt, a complexing agent that binds to a metal ion of the metal salt to form a complex, and the like. A method for producing a nickel-containing hydroxide in which a nickel-containing hydroxide is obtained by neutralization crystallization in a reaction aqueous solution containing the metal salt and a neutralizing agent that reacts with the complex to produce a metal hydroxide. There,
In the reaction aqueous solution, a seed crystal generation step of growing the nucleus of the nickel-containing hydroxide generated by neutralization crystallization to generate a seed crystal is included.
The seed crystal forming step is a first kind crystal forming step in which the nuclei of the nickel-containing hydroxide are generated by neutralization crystallization in the reaction aqueous solution to form an aggregate in which a plurality of the nuclei are aggregated. Including,
A method for producing a nickel-containing hydroxide, wherein the first-class crystal forming step is carried out under the conditions set based on the following formula (I).
Figure 0007031535000001
(However, in equation (I), R is the radius of the aggregate, A is the model coefficient, r is the radius of the nucleus, C is the degree of supersaturation, and CT is the threshold of the degree of supersaturation C. , N is the number of addition ports of the raw material liquid, ΔV is the volume of the region where the supersaturation degree C is from c to c + Δc, and u is the average flow velocity of the fluid passing through the region where the supersaturation degree C is from c to c + Δc. Yes, K is the turbulent diffusion coefficient of the flow of fluid passing through the region where the supersaturation degree C passes from c to c + Δc, B is the model coefficient, ω is the rotation speed of the stirring blade, and L p is the stirring blade. The wing diameter of.)

本発明の一態様に係るニッケル含有水酸化物の製造方法は、ニッケル含有水酸化物の製造時に生成する凝集体の粒径を高精度に調整できる。 The method for producing a nickel-containing hydroxide according to one aspect of the present invention can adjust the particle size of the aggregates produced during the production of the nickel-containing hydroxide with high accuracy.

一実施形態によるニッケル含有水酸化物の製造方法のフローチャートである。It is a flowchart of the manufacturing method of the nickel-containing hydroxide according to one Embodiment. 第1種晶生成工程において生成する凝集体の一例を模式的に示す図である。It is a figure which shows an example of the aggregate generated in the 1st kind crystal formation process schematically. 第2種晶生成工程で形成される種晶粒子の一例を模式的に示す断面図である。It is sectional drawing which shows typically an example of the seed crystal particle formed in the 2nd kind crystal generation step. 成長晶析工程で生成されるニッケル含有水酸化物の粒子を模式的に示す断面図である。It is sectional drawing which shows typically the particle of the nickel-containing hydroxide produced in the growth crystallization step. 一実施形態によるニッケル含有水酸化物の製造方法に用いられる化学反応装置を示す上面図である。It is a top view which shows the chemical reaction apparatus used in the manufacturing method of the nickel-containing hydroxide by one Embodiment. 図5のI-I線に沿った化学反応装置の断面図である。It is sectional drawing of the chemical reaction apparatus along the line I-I of FIG. 凝集体に核粒子が凝集した状態のモデルの一例を示す説明図である。It is explanatory drawing which shows an example of the model of the state in which the nuclear particle is aggregated in the aggregate. 原料液の添加口付近に形成される高過飽和領域を示す図である。It is a figure which shows the highly supersaturated region formed in the vicinity of the addition port of a raw material liquid. 凝集体の平均粒径の計算値と実測値との関係を示す図である。It is a figure which shows the relationship between the calculated value and the measured value of the average particle diameter of an aggregate.

以下、本発明を実施するための形態について図面を参照して説明する。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.

一実施形態によるニッケル含有水酸化物の製造方法を説明するに当たり、まず、一実施形態によるニッケル含有水酸化物の製造方法を用いて得られるニッケル含有水酸化物について説明する。 In explaining the method for producing a nickel-containing hydroxide according to the embodiment, first, the nickel-containing hydroxide obtained by using the method for producing the nickel-containing hydroxide according to the embodiment will be described.

<ニッケル含有水酸化物>
ニッケル含有水酸化物は、リチウムイオン二次電池の正極活物質の前駆体として用いられる。ニッケル含有水酸化物は、ニッケル含有水酸化物の微細な核が成長して形成された粒子である。
<Nickel-containing hydroxide>
Nickel-containing hydroxides are used as precursors for positive electrode active materials in lithium-ion secondary batteries. Nickel-containing hydroxides are particles formed by the growth of fine nuclei of nickel-containing hydroxides.

ニッケル含有水酸化物は、ニッケル(Ni)を含有し、好ましくはNi以外の金属を含有する。Ni以外の金属として、Co、Mn、Al、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta及びWからなる群から選択される1種以上の元素を用いることができる。Ni以外の金属をさらに含有するニッケル含有水酸化物を、ニッケル複合水酸化物と呼ぶ。 The nickel-containing hydroxide contains nickel (Ni), and preferably contains a metal other than Ni. As the metal other than Ni, one or more elements selected from the group consisting of Co, Mn, Al, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta and W can be used. A nickel-containing hydroxide further containing a metal other than Ni is called a nickel composite hydroxide.

ニッケル含有水酸化物として、好ましくはニッケルコバルトマンガン複合水酸化物やニッケルコバルトアルミニウム複合水酸化物などのニッケル複合水酸化物を用いることができる。 As the nickel-containing hydroxide, a nickel composite hydroxide such as a nickel cobalt manganese composite hydroxide or a nickel cobalt aluminum composite hydroxide can be preferably used.

ニッケル複合水酸化物として、例えば、(1)ニッケル(Ni)とコバルト(Co)とマンガン(Mn)とM(Mは、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta及びWから選択される1種以上の添加元素)とを、物質量比(mol比)がNi:Co:Mn:M=x:y:z:t(ただし、x+y+z+t=1、0.1≦x≦0.7、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02)となるように含むニッケルコバルトマンガン複合水酸化物、又は(2)ニッケル(Ni)とコバルト(Co)とアルミニウム(Al)とを、物質量比(mol比)がNi:Co:Al=1-x-y:x:y(ただし、0≦x≦0.3、0.005≦y≦0.15)となるように含むニッケルコバルトアルミニウム複合水酸化物を用いることができる。 Nickel composite hydroxides include, for example, (1) nickel (Ni), cobalt (Co), manganese (Mn), and M (M is from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W. One or more added elements to be selected) and the substance amount ratio (mol ratio) is Ni: Co: Mn: M = x: y: z: t (however, x + y + z + t = 1, 0.1 ≦ x ≦ 0). .7, 0.1 ≤ y ≤ 0.5, 0.1 ≤ z ≤ 0.8, 0 ≤ t ≤ 0.02) Nickel cobalt-cobalt-manganese composite hydroxide, or (2) nickel (2) Ni), cobalt (Co) and aluminum (Al) have a substance amount ratio (mol ratio) of Ni: Co: Al = 1-xy: x: y (however, 0 ≦ x ≦ 0.3, 0). A nickel-cobalt-aluminum composite hydroxide containing .005 ≦ y ≦ 0.15) can be used.

ニッケル含有水酸化物に含まれる水酸化物イオンの量は、通常、化学量論比を持つが、本実施形態に影響のない程度で過剰でもよいし、欠損していてもよい。また、本実施形態に影響のない程度で水酸化物イオンの一部は、アニオン(例えば、炭酸イオンや硫酸イオン等)に置き換わっていてもよい。 The amount of hydroxide ion contained in the nickel-containing hydroxide usually has a stoichiometric ratio, but it may be excessive or deficient to the extent that it does not affect the present embodiment. Further, a part of the hydroxide ion may be replaced with an anion (for example, carbonate ion, sulfate ion, etc.) to the extent that it does not affect the present embodiment.

なお、ニッケル含有水酸化物は、X線回折(XRD)測定によって、ニッケル含有水酸化物の単相(又は、主成分がニッケル含有水酸化物)であればよい。 The nickel-containing hydroxide may be a single phase of the nickel-containing hydroxide (or a nickel-containing hydroxide whose main component is nickel-containing hydroxide) as measured by X-ray diffraction (XRD).

ニッケル複合水酸化物を原料として正極活物質を得た場合、ニッケル複合水酸化物の金属の組成比(例えば、Ni:Co:AlやNi:Co:Mn:M)は、得られる正極活物質においても維持される。よって、ニッケル複合水酸化物の組成は、正極活物質に要求される金属の組成比と一致するように調整される。 When a positive electrode active material is obtained from a nickel composite hydroxide as a raw material, the metal composition ratio of the nickel composite hydroxide (for example, Ni: Co: Al or Ni: Co: Mn: M) is the obtained positive electrode active material. It is also maintained in. Therefore, the composition of the nickel composite hydroxide is adjusted to match the composition ratio of the metal required for the positive electrode active material.

<ニッケル含有水酸化物の製造方法>
次に、一実施形態によるニッケル含有水酸化物の製造方法について説明する。一実施形態によるニッケル含有水酸化物の製造方法は、中和晶析によりニッケル含有水酸化物の粒子を得る方法である。図1は、一実施形態によるニッケル含有水酸化物の製造方法のフローチャートである。図1に示すように、一実施形態によるニッケル含有水酸化物の製造方法は、反応水溶液中に発生させたニッケル含有水酸化物の核を成長させて、粒子状の種晶を生成する種晶生成工程S11と、種晶の表面に外殻部を形成する成長晶析工程S12とを含む。
<Manufacturing method of nickel-containing hydroxide>
Next, a method for producing a nickel-containing hydroxide according to one embodiment will be described. The method for producing a nickel-containing hydroxide according to one embodiment is a method for obtaining particles of the nickel-containing hydroxide by neutralization crystallization. FIG. 1 is a flowchart of a method for producing a nickel-containing hydroxide according to an embodiment. As shown in FIG. 1, in the method for producing a nickel-containing hydroxide according to an embodiment, a seed crystal that grows a nucleus of a nickel-containing hydroxide generated in a reaction aqueous solution to generate a granular seed crystal. The production step S11 and the growth crystallization step S12 for forming an outer shell portion on the surface of the seed crystal are included.

本実施形態では、種晶生成工程S11及び成長晶析工程S12のいずれも、バッチ式の撹拌槽を用いる。以下、各工程について説明する。 In this embodiment, a batch type stirring tank is used for both the seed crystal generation step S11 and the growth crystallization step S12. Hereinafter, each step will be described.

[種晶生成工程]
種晶生成工程S11について説明する。種晶生成工程S11では、中和晶析によって、反応水溶液中にニッケル含有水酸化物の微細な核(核粒子)を発生させる(核発生)。そして、発生した核粒子を成長(粒子成長)させて、粒子状の種晶(種晶粒子)を生成する。
[Seed crystal generation process]
The seed crystal generation step S11 will be described. In the seed crystal generation step S11, fine nuclei (nuclear particles) of nickel-containing hydroxide are generated in the reaction aqueous solution by neutralization crystallization (nuclear generation). Then, the generated nuclear particles are grown (particle growth) to generate particulate seed crystals (seed crystal particles).

種晶生成工程S11は、核の発生と凝集体の生成とが生じる第1種晶生成工程S111と、凝集体の表面に外殻を形成し、種晶粒子を生成する第2種晶生成工程S112とを含む。本実施形態では、撹拌槽内の反応水溶液のpH値等を制御することで、第1種晶生成工程S111と第2種晶生成工程S112とを分けて実施できる。 The seed crystal generation step S11 includes a first seed crystal generation step S111 in which the generation of nuclei and the formation of aggregates occur, and a second seed crystal generation step in which an outer shell is formed on the surface of the aggregates to generate seed crystal particles. Includes S112. In the present embodiment, by controlling the pH value and the like of the reaction aqueous solution in the stirring tank, the first kind crystal generation step S111 and the second kind crystal generation step S112 can be carried out separately.

以下、第1種晶生成工程S111及び第2種晶生成工程S112について説明する。 Hereinafter, the first type crystal generation step S111 and the second type crystal generation step S112 will be described.

(第1種晶生成工程S111)
攪拌槽内で原料液、錯化剤及び中和剤を混合して、反応水溶液を調製する。
(Type 1 crystal generation step S111)
A raw material solution, a complexing agent and a neutralizing agent are mixed in a stirring tank to prepare a reaction aqueous solution.

まず、原料液を調製する。原料液は、少なくともニッケル塩を含む金属塩を含有する。ニッケル塩としては、Niを含む、硫酸塩、硝酸塩又は塩酸塩等が用いられる。ニッケル塩以外の金属塩としては、Co、Al、Mn、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta又はW等を含む、硫酸塩、硝酸塩又は塩酸塩等が用いられる。ニッケル塩以外の金属塩は、上記のNi以外の各種金属を含む塩を1種単独で用いてもよいし、2種以上を用いてもよい。 First, a raw material liquid is prepared. The raw material liquid contains at least a metal salt containing a nickel salt. As the nickel salt, a sulfate, a nitrate, a hydrochloride or the like containing Ni is used. As the metal salt other than the nickel salt, a sulfate, a nitrate, a hydrochloride or the like containing Co, Al, Mn, Ti, V, Cr, Zr, Nb, Mo, Hf, Ta or W and the like is used. As the metal salt other than the nickel salt, one kind of salt containing various metals other than Ni mentioned above may be used alone, or two or more kinds may be used.

ニッケル含有水酸化物がNi以外の金属をさらに含有するニッケル複合水酸化物であるとする。この場合、原料液の金属の組成比(例えば、Ni:Co:AlやNi:Co:Mn:M)は、得られるニッケル複合水酸化物においても維持されるので、ニッケル複合水酸化物に要求される組成比と一致するように調整される。 It is assumed that the nickel-containing hydroxide is a nickel composite hydroxide further containing a metal other than Ni. In this case, the metal composition ratio of the raw material liquid (for example, Ni: Co: Al or Ni: Co: Mn: M) is maintained even in the obtained nickel composite hydroxide, and thus is required for the nickel composite hydroxide. It is adjusted to match the composition ratio to be made.

撹拌槽内には、錯化剤、中和剤及び水を供給して、これらを混合する。これらを混合した水溶液を、以下、「反応前水溶液」と呼ぶ。 A complexing agent, a neutralizing agent and water are supplied into the stirring tank and mixed. The aqueous solution in which these are mixed is hereinafter referred to as "pre-reaction aqueous solution".

錯化剤は、撹拌槽内の水溶液中でニッケルイオン等の金属イオンと結合してニッケルアンミン錯体等の錯体を形成するアンモニウムイオン供給体を含む水溶液を用いることができる。錯化剤としては、アンモニウムイオン供給体としてアンモニアを含む水溶液(アンモニア水)等を用いることができる。 As the complexing agent, an aqueous solution containing an ammonium ion feeder that combines with a metal ion such as nickel ion to form a complex such as a nickel ammine complex in the aqueous solution in the stirring tank can be used. As the complexing agent, an aqueous solution containing ammonia (ammonia water) or the like can be used as the ammonium ion feeder.

中和剤は、金属塩又は金属塩から生成される錯体と反応して金属水酸化物を生成するものであればよい。また、中和剤は、水溶液のpHを調整するpH調整剤としても用いられる。中和剤としては、水酸化ナトリウム、水酸化カリウム等を含むアルカリ水溶液が用いられる。 The neutralizing agent may be any one that reacts with a metal salt or a complex formed from the metal salt to form a metal hydroxide. The neutralizer is also used as a pH adjuster for adjusting the pH of the aqueous solution. As the neutralizing agent, an alkaline aqueous solution containing sodium hydroxide, potassium hydroxide and the like is used.

反応前水溶液のpH値は、液温25℃基準で、12.0~14.0に調整することが好ましく、12.3~13.5に調整することがより好ましく、12.6~13.1に調整することがさらに好ましい。なお、反応前水溶液のpH値は、公知のpH計により測定できる。 The pH value of the pre-reaction aqueous solution is preferably adjusted to 12.0 to 14.0, more preferably 12.3 to 13.5, and 12.6 to 13. It is more preferable to adjust to 1. The pH value of the pre-reaction aqueous solution can be measured with a known pH meter.

撹拌槽内の反応前水溶液のpH値の調節後、反応前水溶液を撹拌しながら原料液を撹拌槽内に供給する。これにより、撹拌槽内には、反応前水溶液と原料液とが混合した反応水溶液が形成される。 After adjusting the pH value of the pre-reaction aqueous solution in the stirring tank, the raw material liquid is supplied into the stirring tank while stirring the pre-reaction aqueous solution. As a result, a reaction aqueous solution in which the pre-reaction aqueous solution and the raw material solution are mixed is formed in the stirring tank.

反応水溶液中で原料液と錯化剤及び中和剤とを反応させると、中和晶析により、反応水溶液中にはニッケル含有水酸化物の溶質成分(分子)が生成される。 When the raw material solution is reacted with the complexing agent and the neutralizing agent in the reaction aqueous solution, solute components (molecules) of nickel-containing hydroxide are generated in the reaction aqueous solution by neutralization crystallization.

第1種晶生成工程S111では、中和晶析によって生成されたニッケル含有水酸化物の溶質成分が反応水溶液中に固体成分として析出する際には、ニッケル含有水酸化物からなる核粒子として発生し、反応水溶液中には複数の核粒子からなる凝集体が生成される。 In the first kind crystal generation step S111, when the solute component of the nickel-containing hydroxide produced by neutralization crystallization precipitates as a solid component in the reaction aqueous solution, it is generated as nuclear particles composed of nickel-containing hydroxide. However, agglomerates composed of a plurality of nuclear particles are generated in the reaction aqueous solution.

図2は、第1種晶生成工程S111において生成する凝集体の一例を模式的に示す図である。図2に示すように、第1種晶生成工程S111では、反応水溶液中に、中和晶析によって生成されたニッケル含有水酸化物の溶質成分がニッケル含有水酸化物からなる核粒子110として発生する。核粒子110の表面に反応水溶液中に生成したニッケル含有水酸化物の溶質成分が固体成分として析出することで、核粒子110は成長する。核粒子110が成長してある程度大きくなると、一次粒子111になり、一次粒子111同士が衝突するようになる。複数の一次粒子111が衝突することで、一次粒子111同士は付着して凝集する。複数の一次粒子111が凝集することで、凝集体112を生成する。 FIG. 2 is a diagram schematically showing an example of aggregates produced in the first kind crystal generation step S111. As shown in FIG. 2, in the first kind crystal generation step S111, the solute component of the nickel-containing hydroxide produced by neutralization crystallization is generated as the nuclear particles 110 made of nickel-containing hydroxide in the reaction aqueous solution. do. The solute component of the nickel-containing hydroxide generated in the reaction aqueous solution is deposited on the surface of the nuclear particle 110 as a solid component, so that the nuclear particle 110 grows. When the nuclear particles 110 grow and become large to some extent, they become primary particles 111, and the primary particles 111 collide with each other. When a plurality of primary particles 111 collide with each other, the primary particles 111 adhere to each other and aggregate. The aggregate 112 is generated by aggregating the plurality of primary particles 111.

なお、凝集体112が生成されると、凝集体112の表面にニッケル含有水酸化物の溶質成分が析出し、析出層が形成される。これにより、凝集体112を構成する一次粒子111同士が化学結合して、一次粒子111同士の結合力を強める。 When the agglomerate 112 is generated, the solute component of the nickel-containing hydroxide is precipitated on the surface of the agglomerate 112, and a precipitation layer is formed. As a result, the primary particles 111 constituting the aggregate 112 are chemically bonded to each other, and the bonding force between the primary particles 111 is strengthened.

凝集体の粒径は、後述する、式(I)を用いることにより算出される凝集体の半径から求めることができる。詳細については後述する。 The particle size of the aggregate can be obtained from the radius of the aggregate calculated by using the formula (I) described later. Details will be described later.

反応水溶液のpH値は、反応前水溶液のpH値と同じ範囲内に維持されるように調整する。 The pH value of the reaction aqueous solution is adjusted so as to be maintained within the same range as the pH value of the pre-reaction aqueous solution.

第1種晶生成工程S111において、反応水溶液のpH値が12.0以上であれば、核の発生と凝集体の生成とが、ニッケル含有水酸化物の溶質成分の凝集体の表面への析出よりも支配的になり、核の発生と凝集体の生成とが主として生じる。第1種晶生成工程S111において、反応水溶液のpH値が14.0以下であれば、核粒子が微細化し過ぎることを防止でき、反応水溶液のゲル化を防止できる。第1種晶生成工程S111において、反応水溶液のpH値の変動幅(最大値と最小値の幅)は、0.4以下であることが好ましい。 When the pH value of the reaction aqueous solution is 12.0 or more in the first kind crystal formation step S111, the generation of nuclei and the formation of aggregates are the precipitation of the solute component of the nickel-containing hydroxide on the surface of the aggregates. It becomes more dominant, and the generation of nuclei and the formation of aggregates mainly occur. When the pH value of the reaction aqueous solution is 14.0 or less in the first kind crystal generation step S111, it is possible to prevent the nuclear particles from becoming too fine and to prevent the reaction aqueous solution from gelling. In the first kind crystal generation step S111, the fluctuation range (the range between the maximum value and the minimum value) of the pH value of the reaction aqueous solution is preferably 0.4 or less.

第1種晶生成工程S111では、反応水溶液のpH値が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、錯化剤又は中和剤を供給する。これにより、反応水溶液のpH値は上記範囲内に維持されるため、反応水溶液中で核の発生及び凝集体の生成が継続される。 In the first kind crystal generation step S111, a complexing agent or a neutralizing agent is supplied into the stirring tank in addition to the raw material liquid so that the pH value of the reaction aqueous solution is maintained within the above range. As a result, the pH value of the reaction aqueous solution is maintained within the above range, so that the generation of nuclei and the formation of aggregates are continued in the reaction aqueous solution.

第1種晶生成工程S111における撹拌槽内の雰囲気は、酸化性雰囲気又は非酸化性雰囲気のどちらでもよい。撹拌槽内の雰囲気を酸化性雰囲気とする場合、攪拌槽内の酸化性雰囲気の酸素濃度は、酸素ガスや空気等を反応水溶液中に供給することにより制御する。撹拌槽内の雰囲気を非酸化性雰囲気とする場合、非酸化性雰囲気の酸素濃度は、窒素やアルゴン等の不活性ガスを反応水溶液中に混合することにより制御できる。 The atmosphere in the stirring tank in the first kind crystal generation step S111 may be either an oxidizing atmosphere or a non-oxidizing atmosphere. When the atmosphere in the stirring tank is an oxidizing atmosphere, the oxygen concentration in the oxidizing atmosphere in the stirring tank is controlled by supplying oxygen gas, air, or the like to the reaction aqueous solution. When the atmosphere in the stirring tank is a non-oxidizing atmosphere, the oxygen concentration in the non-oxidizing atmosphere can be controlled by mixing an inert gas such as nitrogen or argon into the reaction aqueous solution.

第1種晶生成工程S111は、所定の量の凝集体が生成されたら、終了する。所定量の凝集体が生成したか否かは、金属塩の供給量によって推定できる。 The first kind crystal generation step S111 ends when a predetermined amount of agglomerates are generated. Whether or not a predetermined amount of agglomerates are produced can be estimated from the supply amount of the metal salt.

(第2種晶生成工程S112)
第2種晶生成工程S112では、撹拌槽内の反応水溶液のpH値を、第1種晶生成工程S111におけるpH値よりも低く調整する。反応水溶液のpH値の調整は、撹拌槽内への錯化剤又は中和剤の供給を停止すること、又は金属塩の金属を水素と置換した無機酸(例えば、硫酸塩の場合、硫酸)を撹拌槽内へ供給すること等で行うことができる。
(Type 2 crystal generation step S112)
In the second kind crystal generation step S112, the pH value of the reaction aqueous solution in the stirring tank is adjusted to be lower than the pH value in the first kind crystal generation step S111. To adjust the pH value of the reaction aqueous solution, stop the supply of the complexing agent or neutralizing agent into the stirring tank, or use an inorganic acid in which the metal of the metal salt is replaced with hydrogen (for example, sulfuric acid in the case of sulfate). Can be carried out by supplying the above into a stirring tank or the like.

反応水溶液のpH値の調節後、反応水溶液を撹拌しながら原料液を撹拌槽内に供給する。図3は、第2種晶生成工程S112で形成される種晶粒子の一例を模式的に示す断面図である。図3に示すように、第2種晶生成工程S112では、中和晶析によって反応水溶液中に生成したニッケル含有水酸化物の溶質成分が固体成分として凝集体112の表面に析出する(ニッケル含有水酸化物の溶質成分の表面析出)。これにより、凝集体112の表面に外殻113が形成される。その結果、凝集体112と外殻113とで構成される種晶粒子11が得られる。 After adjusting the pH value of the reaction aqueous solution, the raw material liquid is supplied into the stirring tank while stirring the reaction aqueous solution. FIG. 3 is a cross-sectional view schematically showing an example of seed crystal particles formed in the second seed crystal generation step S112. As shown in FIG. 3, in the second kind crystal generation step S112, the solute component of the nickel-containing hydroxide generated in the reaction aqueous solution by neutralization crystallization precipitates on the surface of the aggregate 112 as a solid component (nickel-containing). Surface precipitation of solute components of hydroxides). As a result, the outer shell 113 is formed on the surface of the aggregate 112. As a result, the seed crystal particles 11 composed of the aggregate 112 and the outer shell 113 are obtained.

撹拌槽内の反応水溶液のpH値は、液温25℃基準で、10.5~12.0に調整することが好ましく、10.7~11.7に調整することがより好ましく、11.0~11.5に調整することがさらに好ましい。 The pH value of the reaction aqueous solution in the stirring tank is preferably adjusted to 10.5 to 12.0, more preferably 10.7 to 11.7, based on the liquid temperature of 25 ° C., 11.0. It is more preferable to adjust to ~ 11.5.

第2種晶生成工程S112において、反応水溶液のpH値が12.0以下であり、第1種晶生成工程S111における反応水溶液のpH値よりも低ければ、核の発生及び凝集体の生成よりもニッケル含有水酸化物の溶質成分の表面析出が優先して生じ、新たな核の発生及び凝集体の生成はほとんど生じない。 If the pH value of the reaction aqueous solution is 12.0 or less in the second kind crystal formation step S112 and lower than the pH value of the reaction aqueous solution in the first kind crystal formation step S111, it is more than the generation of nuclei and the formation of aggregates. The surface precipitation of the solute component of the nickel-containing hydroxide is preferentially generated, and the generation of new nuclei and the formation of aggregates hardly occur.

第2種晶生成工程S112において、反応水溶液のpH値が10.5以上であれば、ニッケル塩と錯化剤とが反応して生成されるニッケルアンミン錯体の安定度が低いため、ニッケル含有水酸化物が生成されずに液中に残る金属イオンが減り、生産効率が向上する。 In the second type crystal formation step S112, if the pH value of the reaction aqueous solution is 10.5 or more, the stability of the nickel ammine complex produced by the reaction between the nickel salt and the complexing agent is low, so that nickel-containing water is used. Metal ions that remain in the liquid without forming oxides are reduced, improving production efficiency.

核の発生及び凝集体の生成と、ニッケル含有水酸化物の溶質成分の表面析出とを明確に分離するためには、第2種晶生成工程S112における反応水溶液のpH値を第1種晶生成工程S111における反応水溶液のpH値より0.5以上低くすることが好ましく、1.0以上低くすることがより好ましい。 In order to clearly separate the generation of nuclei and the formation of aggregates from the surface precipitation of solute components of nickel-containing hydroxides, the pH value of the reaction aqueous solution in the second kind crystal formation step S112 is used to generate the first kind crystal. It is preferably 0.5 or more lower than the pH value of the reaction aqueous solution in step S111, and more preferably 1.0 or more.

なお、反応水溶液のpH値が12.0の場合は、核の発生及び凝集体の生成と、ニッケル含有水酸化物の溶質成分の表面析出との境界条件である。そのため、反応水溶液中に存在する核や凝集体の有無により、優先順位が変わる。 When the pH value of the reaction aqueous solution is 12.0, it is a boundary condition between the generation of nuclei and the formation of aggregates and the surface precipitation of the solute component of the nickel-containing hydroxide. Therefore, the priority order changes depending on the presence or absence of nuclei and aggregates present in the reaction aqueous solution.

例えば、第1種晶生成工程S111で反応水溶液のpH値を12.0より高くして、反応水溶液中に多量に核を発生させ、凝集体を生成した後、第2種晶生成工程S112で反応水溶液のpH値を12.0に調整したとする。この場合、反応水溶液中に多量の核及び凝集体が存在するため、第2種晶生成工程S112では、ニッケル含有水酸化物の溶質成分の表面析出が優先する。 For example, in the first kind crystal generation step S111, the pH value of the reaction aqueous solution is made higher than 12.0, a large amount of nuclei are generated in the reaction aqueous solution to generate aggregates, and then in the second kind crystal generation step S112. It is assumed that the pH value of the reaction aqueous solution is adjusted to 12.0. In this case, since a large amount of nuclei and aggregates are present in the reaction aqueous solution, surface precipitation of the solute component of the nickel-containing hydroxide is prioritized in the second kind crystal generation step S112.

一方、反応水溶液中に核や凝集体が存在しない状態、すなわち、第1種晶生成工程S111で反応水溶液のpH値を12.0とした場合、反応水溶液中にはニッケル含有水酸化物の溶質成分が析出する凝集体が存在しない。そのため、この場合には、核の発生及び凝集体の生成が、ニッケル含有水酸化物の溶質成分の表面析出よりも優先して生じる。その後、第2種晶生成工程S112で反応水溶液のpH値を12.0より小さくすれば、生成した凝集体の表面にニッケル含有水酸化物の溶質成分が析出して、外殻が成長する。 On the other hand, when the reaction aqueous solution does not have nuclei or aggregates, that is, when the pH value of the reaction aqueous solution is set to 12.0 in the first type crystal formation step S111, the solute of the nickel-containing hydroxide in the reaction aqueous solution. There are no aggregates from which the components precipitate. Therefore, in this case, the generation of nuclei and the formation of aggregates take precedence over the surface precipitation of the solute component of the nickel-containing hydroxide. After that, if the pH value of the reaction aqueous solution is made smaller than 12.0 in the second kind crystal generation step S112, the solute component of the nickel-containing hydroxide is precipitated on the surface of the produced aggregate, and the outer shell grows.

第2種晶生成工程S112では、反応水溶液のpH値が上記範囲内に維持されるように、撹拌槽内に、原料液の他に、錯化剤又は中和剤を供給する。これにより、反応水溶液中で、反応水溶液中に存在するニッケル含有水酸化物の溶質成分が凝集体の表面に析出して、外殻が成長する。 In the second kind crystal generation step S112, a complexing agent or a neutralizing agent is supplied into the stirring tank in addition to the raw material liquid so that the pH value of the reaction aqueous solution is maintained within the above range. As a result, in the reaction aqueous solution, the solute component of the nickel-containing hydroxide present in the reaction aqueous solution is deposited on the surface of the aggregate, and the outer shell grows.

第2種晶生成工程S112における撹拌槽内の反応水溶液は、第1種晶生成工程S111における撹拌槽内の反応水溶液とpH値の範囲が異なるが、その他の条件等は実質的に同じでよい。その他の条件として、例えば、第2種晶生成工程S112における撹拌槽内の雰囲気は、第1種晶生成工程S111と同様、酸化性雰囲気又は非酸化性雰囲気のどちらでもよい。 The pH value range of the reaction aqueous solution in the stirring tank in the second kind crystal generation step S112 is different from that in the reaction aqueous solution in the stirring tank in the first kind crystal forming step S111, but other conditions and the like may be substantially the same. .. As another condition, for example, the atmosphere in the stirring tank in the second kind crystal forming step S112 may be either an oxidizing atmosphere or a non-oxidizing atmosphere as in the first kind crystal forming step S111.

種晶粒子が所定の粒径まで成長したら、第2種晶生成工程S112を終了させる。種晶粒子の粒径は、第1種晶生成工程S111と第2種晶生成工程S112とのそれぞれにおける金属塩の供給量から推測できる。 When the seed crystal particles have grown to a predetermined particle size, the second seed crystal generation step S112 is terminated. The particle size of the seed crystal particles can be estimated from the supply amount of the metal salt in each of the first seed crystal generation step S111 and the second seed crystal generation step S112.

なお、第2種晶生成工程S112の途中で、原料液等の供給を停止すると共に反応水溶液の撹拌を停止して、種晶粒子を沈降させた後、上澄み液を排出してもよい。これにより、中和晶析によって減少した反応水溶液中の金属イオン濃度を高めることができる。 In the middle of the second kind crystal generation step S112, the supply of the raw material liquid and the like may be stopped, the stirring of the reaction aqueous solution may be stopped, the seed crystal particles may be settled, and then the supernatant liquid may be discharged. As a result, the metal ion concentration in the reaction aqueous solution reduced by neutralization crystallization can be increased.

種晶生成工程S11では、第1種晶生成工程S111と第2種晶生成工程S112とを分けて実施することで、粒度分布の範囲が狭い種晶粒子を生成できる。 In the seed crystal generation step S11, by separately performing the first seed crystal generation step S111 and the second seed crystal generation step S112, it is possible to generate seed crystal particles having a narrow particle size distribution range.

なお、本実施形態では、第1種晶生成工程S111と第2種晶生成工程S112とを、同一の撹拌槽で行うが、異なる撹拌槽で行ってもよい。 In this embodiment, the first type crystal generation step S111 and the second type crystal generation step S112 are performed in the same stirring tank, but may be performed in different stirring tanks.

本実施形態では、種晶生成工程S11はバッチ式の撹拌槽を用いるが、連続式の撹拌槽を用いてもよい。この場合、第1種晶生成工程S111と第2種晶生成工程S112とは同時に実施される。そのため、撹拌槽内の水溶液のpH値の範囲は同じになるため、撹拌槽内の水溶液のpH値は、例えば、12.0の近傍に設定する。 In the present embodiment, the seed crystal generation step S11 uses a batch type stirring tank, but a continuous type stirring tank may be used. In this case, the first kind crystal generation step S111 and the second kind crystal generation step S112 are carried out at the same time. Therefore, since the range of the pH value of the aqueous solution in the stirring tank is the same, the pH value of the aqueous solution in the stirring tank is set to, for example, in the vicinity of 12.0.

本実施形態では、種晶生成工程S11で得られる種晶粒子の構造は、図3に示す構造に限定されない。例えば、第1種晶生成工程S111と第2種晶生成工程S112とが同時に実施される場合、種晶生成工程S11の完了時に得られる種晶粒子の構造は、図3に示す種晶粒子の構造とは異なる。その構造は、例えば、一次粒子111に相当するものと外殻113に相当するものとが混じり合い、容易にその境界が分からない一様な構造となる。 In the present embodiment, the structure of the seed crystal particles obtained in the seed crystal generation step S11 is not limited to the structure shown in FIG. For example, when the first seed crystal generation step S111 and the second seed crystal generation step S112 are carried out at the same time, the structure of the seed crystal particles obtained at the completion of the seed crystal generation step S11 is that of the seed crystal particles shown in FIG. It is different from the structure. The structure is, for example, a mixture of those corresponding to the primary particles 111 and those corresponding to the outer shell 113, and becomes a uniform structure in which the boundary is not easily known.

[成長晶析工程S12]
図1に示すように、種晶生成工程S11の終了後、成長晶析工程S12を行う。成長晶析工程S12は、上述の第2種晶生成工程S112の条件と同様にして行うことができる。すなわち、成長晶析工程S12では、撹拌槽内の反応水溶液のpH値は、上述の第2種晶生成工程S112と同様である。
[Growth crystallization step S12]
As shown in FIG. 1, after the seed crystal generation step S11 is completed, the growth crystallization step S12 is performed. The growth crystallization step S12 can be performed in the same manner as the conditions of the above-mentioned second type crystal generation step S112. That is, in the growth crystallization step S12, the pH value of the reaction aqueous solution in the stirring tank is the same as that of the above-mentioned type 2 crystal generation step S112.

成長晶析工程S12では、撹拌槽内の雰囲気は、第1種晶生成工程S111及び第2種晶生成工程S112と同様、酸化性雰囲気又は非酸化性雰囲気のどちらでもよい。 In the growth crystallization step S12, the atmosphere in the stirring tank may be either an oxidizing atmosphere or a non-oxidizing atmosphere, as in the first type crystal forming step S111 and the second kind crystal forming step S112.

成長晶析工程S12では、種晶生成工程S11で生じた種晶粒子の表面に、ニッケル含有水酸化物の溶質成分が析出する。図4は、成長晶析工程S12で生成されるニッケル含有水酸化物の粒子を模式的に示す断面図である。図4に示すように、成長晶析工程S12では、ニッケル含有水酸化物の溶質成分が種晶粒子11の表面に析出して外殻部12が形成される。これにより、種晶粒子11と外殻部12とで構成される、ニッケル含有水酸化物の粒子10が得られる。 In the growth crystallization step S12, the solute component of the nickel-containing hydroxide is deposited on the surface of the seed crystal particles generated in the seed crystal generation step S11. FIG. 4 is a cross-sectional view schematically showing the particles of the nickel-containing hydroxide produced in the growth crystallization step S12. As shown in FIG. 4, in the growth crystallization step S12, the solute component of the nickel-containing hydroxide is deposited on the surface of the seed crystal particles 11 to form the outer shell portion 12. As a result, the nickel-containing hydroxide particles 10 composed of the seed crystal particles 11 and the outer shell portion 12 are obtained.

成長晶析工程S12は、ニッケル含有水酸化物の粒子が所定の粒径まで成長したら終了する。ニッケル含有水酸化物の粒子の粒径は、種晶生成工程S11と成長晶析工程S12とのそれぞれにおける金属塩の供給量から推測できる。 The growth crystallization step S12 ends when the nickel-containing hydroxide particles grow to a predetermined particle size. The particle size of the nickel-containing hydroxide particles can be estimated from the supply amount of the metal salt in each of the seed crystal forming step S11 and the growth crystallization step S12.

成長晶析工程S12の終了後、得られたニッケル含有水酸化物の粒子は、撹拌槽の反応水溶液をオーバーフローさせるか撹拌槽の底部から排出することで、回収される。 After the completion of the growth crystallization step S12, the obtained nickel-containing hydroxide particles are recovered by overflowing the reaction aqueous solution of the stirring tank or discharging it from the bottom of the stirring tank.

成長晶析工程S12は、上述の種晶生成工程S11で使用していた撹拌槽内でそのまま継続して行ってもよいし、上述の種晶生成工程S11の終了後、撹拌槽内の反応水溶液を別の攪拌槽に移して(移液)、行ってもよい。成長晶析工程S12を上述の種晶生成工程S11で使用していた撹拌槽内とは別の攪拌槽で行う場合、成長晶析工程S12で使用する攪拌槽の大きさは、種晶生成工程S11で使用していた撹拌槽と同じ大きさでもよいし、種晶生成工程S11で使用していた撹拌槽よりも大きくてもよい。 The growth crystallization step S12 may be continued as it is in the stirring tank used in the above-mentioned seed crystal forming step S11, or after the completion of the above-mentioned seed crystal forming step S11, the reaction aqueous solution in the stirring tank may be continued. May be transferred to another stirring tank (liquid transfer). When the growth crystallization step S12 is performed in a stirring tank different from the stirring tank used in the above-mentioned seed crystal generation step S11, the size of the stirring tank used in the growth crystallization step S12 is the seed crystal generation step. It may be the same size as the stirring tank used in S11, or may be larger than the stirring tank used in the seed crystal generation step S11.

なお、成長晶析工程S12の途中で、原料液等の供給を停止すると共に反応水溶液の撹拌を停止して、ニッケル含有水酸化物の粒子を沈降させた後、上澄み液を排出してもよい。これにより、中和晶析によって減少した反応水溶液中の金属イオン濃度を高めることができる。また、成長晶析工程S12を上述の種晶生成工程S11で使用していた撹拌槽内とは別の攪拌槽で行うとする。この場合、第2種晶生成工程S112において、原料液等の供給を停止すると共に反応水溶液の撹拌を停止して、第2種晶生成工程S112を終了する。その後、攪拌槽内の反応水溶液を別の攪拌槽に移す前に、ニッケル含有水酸化物の粒子を沈降させた後、上澄み液を排出してもよい。 In the middle of the growth crystallization step S12, the supply of the raw material liquid or the like may be stopped and the stirring of the reaction aqueous solution may be stopped to settle the nickel-containing hydroxide particles, and then the supernatant liquid may be discharged. .. As a result, the metal ion concentration in the reaction aqueous solution reduced by neutralization crystallization can be increased. Further, it is assumed that the growth crystallization step S12 is performed in a stirring tank different from the stirring tank used in the above-mentioned seed crystal generation step S11. In this case, in the second kind crystal generation step S112, the supply of the raw material liquid and the like is stopped and the stirring of the reaction aqueous solution is stopped, and the second kind crystal generation step S112 is terminated. Then, before transferring the reaction aqueous solution in the stirring tank to another stirring tank, the particles of the nickel-containing hydroxide may be settled and then the supernatant liquid may be discharged.

本実施形態では、成長晶析工程S12を行い、種晶粒子11の表面にニッケル含有水酸化物の溶質成分を析出させて外殻部を形成しているが、種晶粒子11の平均粒径で十分である場合には、成長晶析工程S12は必ずしも行う必要はない。この場合、種晶生成工程S11で得られる種晶粒子をニッケル含有水酸化物の粒子として用いる。 In the present embodiment, the growth crystallization step S12 is performed to precipitate the solute component of the nickel-containing hydroxide on the surface of the seed crystal particles 11 to form the outer shell portion, but the average particle size of the seed crystal particles 11 is formed. If is sufficient, the growth crystallization step S12 does not necessarily have to be performed. In this case, the seed crystal particles obtained in the seed crystal generation step S11 are used as nickel-containing hydroxide particles.

(化学反応装置)
一実施形態によるニッケル含有水酸化物の製造方法に用いられる化学反応装置の一例について説明する。図5は、一実施形態によるニッケル含有水酸化物の製造方法に用いられる化学反応装置を示す上面図である。図6は、図5のI-I線に沿った化学反応装置の断面図である。図5及び図6に示すように、化学反応装置20は、撹拌槽21と、撹拌軸22と、撹拌翼(ディスクタービン翼(DT翼))23と、バッフル(邪魔板)24と、原料液供給管25と、中和剤供給管26と、錯化剤供給管27とを有する。
(Chemical reactor)
An example of a chemical reaction apparatus used in the method for producing a nickel-containing hydroxide according to an embodiment will be described. FIG. 5 is a top view showing a chemical reaction apparatus used in the method for producing a nickel-containing hydroxide according to an embodiment. FIG. 6 is a cross-sectional view of the chemical reaction apparatus along the line I-I of FIG. As shown in FIGS. 5 and 6, the chemical reaction apparatus 20 includes a stirring tank 21, a stirring shaft 22, a stirring blade (disk turbine blade (DT blade)) 23, a baffle (obstacle plate) 24, and a raw material liquid. It has a supply pipe 25, a neutralizing agent supply pipe 26, and a complexing agent supply pipe 27.

撹拌槽21は、円柱状の内部空間に反応水溶液を収容する。撹拌軸22は、撹拌槽21の上部から撹拌槽21内に挿入され、撹拌軸22の上端は、攪拌槽10の上方に設けられたモータ等の駆動装置に回転可能に支持されている。撹拌軸22の下端には撹拌翼23が取付けられている。モータ等が撹拌軸22を回転させることで、撹拌翼23が回転し、撹拌槽21内の反応水溶液が撹拌翼23により撹拌される。なお、撹拌槽21の中心線、撹拌軸22の中心線及び撹拌翼23の中心線は、一致していてよいし、鉛直でもよい。 The stirring tank 21 accommodates the reaction aqueous solution in a columnar internal space. The stirring shaft 22 is inserted into the stirring tank 21 from the upper part of the stirring tank 21, and the upper end of the stirring shaft 22 is rotatably supported by a drive device such as a motor provided above the stirring tank 10. A stirring blade 23 is attached to the lower end of the stirring shaft 22. When the motor or the like rotates the stirring shaft 22, the stirring blade 23 is rotated, and the reaction aqueous solution in the stirring tank 21 is stirred by the stirring blade 23. The center line of the stirring tank 21, the center line of the stirring shaft 22, and the center line of the stirring blade 23 may be the same or may be vertical.

バッフル24は、撹拌槽21の内周面から突き出している。バッフル24により、撹拌槽21内の反応水溶液の回転流を邪魔することで、撹拌槽21内に上昇流や下降流を生じさせ、反応水溶液の撹拌効率を向上させる。 The baffle 24 protrudes from the inner peripheral surface of the stirring tank 21. The baffle 24 interferes with the rotational flow of the reaction aqueous solution in the stirring tank 21 to generate an ascending flow and a descending flow in the stirring tank 21 to improve the stirring efficiency of the reaction aqueous solution.

原料液供給管25は、添加口251から撹拌槽21内に原料液を供給する。中和剤供給管26は、添加口261から撹拌槽21内に中和剤を供給する。錯化剤供給管27は、撹拌槽21内に錯化剤を供給する。種晶生成工程S11及び成長晶析工程S12において、原料液供給管25の添加口251から原料液が反応水溶液中に添加されると、金属塩と反応水溶液中に添加される中和剤及び錯化剤とが反応する。これにより、反応水溶液中にニッケル含有水酸化物の溶質成分が生成される。 The raw material liquid supply pipe 25 supplies the raw material liquid into the stirring tank 21 from the addition port 251. The neutralizing agent supply pipe 26 supplies the neutralizing agent into the stirring tank 21 from the addition port 261. The complexing agent supply pipe 27 supplies the complexing agent into the stirring tank 21. In the seed crystal generation step S11 and the growth crystallization step S12, when the raw material liquid is added to the reaction aqueous solution from the addition port 251 of the raw material liquid supply pipe 25, the metal salt and the neutralizing agent and the complexion added to the reaction aqueous solution are added. Reacts with the agent. As a result, a solute component of the nickel-containing hydroxide is generated in the reaction aqueous solution.

(第1種晶生成工程S111における凝集体の平均粒径の算出)
ところで、最終的に得られるニッケル含有水酸化物の粒子の大きさは、第1種晶生成工程S111において生成される凝集体の大きさに依存する傾向にある。凝集体の表面に第2種晶生成工程S112において外殻が生成することで種晶粒子が得られ、種晶粒子の表面に成長晶析工程S12において外殻部が生成することでニッケル含有水酸化物の粒子が得られる。第1種晶生成工程S111では、第1種晶生成工程S111における原料液の供給量と、凝集体の大きさとから、反応水溶液に含まれる凝集体の数密度が決まる。凝集体の大きさと数密度とから、凝集体の比表面積を特定できる。第2種晶生成工程S112及び成長晶析工程S12における原料液の供給量を決めれば、第1種晶生成工程S111で生成された凝集体の表面に析出する、外殻及び外殻部の厚みが決まる。本発明者は、凝集体の大きさを調整することで、第2種晶生成工程S112において生成する種晶粒子の大きさを調整でき、最終的にニッケル含有水酸化物の粒子の大きさを調整できることに注目した。そこで、第1種晶生成工程S111において生成する凝集体の平均粒径を予め算出して、第1種晶生成工程S111の条件を設定する。第1種晶生成工程S111で設定した条件に基づいて、凝集体の粒径を調整し、所定の平均粒径を有する凝集体を生成することで、第2種晶生成工程S112において、所定の平均粒径を有する種晶粒子を生成できることを見出した。
(Calculation of average particle size of aggregates in type 1 crystal generation step S111)
By the way, the size of the particles of the nickel-containing hydroxide finally obtained tends to depend on the size of the agglomerates produced in the first kind crystal forming step S111. Seed crystal particles are obtained by forming an outer shell on the surface of the agglomerate in the second seed crystal forming step S112, and nickel-containing water is obtained by forming an outer shell portion on the surface of the seed crystal particles in the growth crystallization step S12. Oxide particles are obtained. In the first kind crystal forming step S111, the number density of the agglomerates contained in the reaction aqueous solution is determined from the supply amount of the raw material liquid in the first kind crystal forming step S111 and the size of the agglomerates. The specific surface area of the aggregate can be specified from the size and number density of the aggregate. If the supply amount of the raw material liquid in the second kind crystal generation step S112 and the growth crystallization step S12 is determined, the thickness of the outer shell and the outer shell portion deposited on the surface of the agglomerate generated in the first kind crystal generation step S111. Is decided. The present inventor can adjust the size of the seed crystal particles produced in the second seed crystal generation step S112 by adjusting the size of the aggregate, and finally adjust the size of the nickel-containing hydroxide particles. I noticed that it can be adjusted. Therefore, the average particle size of the aggregates produced in the first type crystal generation step S111 is calculated in advance, and the conditions for the first type crystal generation step S111 are set. By adjusting the particle size of the agglomerates based on the conditions set in the first type crystal generation step S111 and producing an agglomerate having a predetermined average particle size, a predetermined type 2 crystal generation step S112 is performed. It has been found that seed crystal particles having an average particle size can be produced.

なお、平均粒径としては、例えば、体積平均粒径を用いることができる。体積平均粒径は、下記式(i)の通り、粒子の集合において、個々の粒子の直径にその粒子の体積を乗じたものの総和を粒子の総体積で除したものである。体積平均粒径は、例えば、レーザ回折式粒度分布計を用いてレーザ回折散乱法等によって測定することができる。
体積平均粒径MV=Σ(Vn×dn)/Σ(Vn) ・・・(i)
(ただし、式(I)中、Vは粒子の体積、dは粒子の粒径、nは1以上の整数である。)
As the average particle size, for example, a volume average particle size can be used. As shown in the following formula (i), the volume average particle size is the sum of the diameters of individual particles multiplied by the volume of the particles divided by the total volume of the particles in the set of particles. The volume average particle size can be measured by, for example, a laser diffraction scattering method using a laser diffraction type particle size distribution meter.
Volume average particle size MV = Σ (Vn × dn) / Σ (Vn) ・ ・ ・ (i)
(However, in formula (I), V is the volume of the particle, d is the particle size of the particle, and n is an integer of 1 or more.)

凝集体の平均粒径は、凝集体を形成する粒子(例えば、核粒子や凝集体)同士を結合する結合エネルギーと、粒子(例えば、核粒子や凝集体)同士の結合を分断する分断エネルギーとのバランスによって決まるといえる。 The average particle size of the agglomerates is the binding energy for binding the particles forming the agglomerates (for example, nuclear particles or agglomerates) and the binding energy for breaking the bonds between the particles (for example, nuclei particles or agglomerates). It can be said that it is determined by the balance of.

なお、結合エネルギーとは、高過飽和領域において、互いに接触した一対の粒子(例えば、核粒子と凝集体)が、一対の粒子の表面にニッケル含有水酸化物の溶質成分が析出して形成される析出層で結合することによって生ずるエネルギーをいう。 The binding energy is formed by forming a pair of particles (for example, nuclear particles and aggregates) in contact with each other in a highly supersaturated region by precipitating a solute component of a nickel-containing hydroxide on the surface of the pair of particles. It refers to the energy generated by binding in the precipitation layer.

分断エネルギーとは、粒子が攪拌槽の撹拌翼を通過する時に、粒子(例えば、凝集体)の一部が分断されて複数の粒子(例えば、凝集体)に分断されるのに要するエネルギーである。 The breaking energy is the energy required for a part of the particles (for example, an agglomerate) to be divided into a plurality of particles (for example, an agglomerate) when the particles pass through the stirring blade of the stirring tank. ..

凝集体を形成する粒子(例えば、核粒子や凝集体)同士を結合する結合エネルギーと、粒子(例えば、核粒子や凝集体)同士の結合を分断する分断エネルギーとについて説明する。 The binding energy for binding particles (for example, nuclear particles and aggregates) forming aggregates and the binding energy for dividing the bonds between particles (for example, nuclear particles and aggregates) will be described.

まず、粒子(例えば、核粒子や凝集体)の結合エネルギーについて説明する。粒子の結合エネルギーは、以下に示す(A)~(D)の4つの現象をそれぞれ定式化して整理することで求められる。 First, the binding energy of particles (for example, nuclear particles and aggregates) will be described. The binding energy of particles is obtained by formulating and organizing each of the following four phenomena (A) to (D).

(A) 粒子の結合エネルギーは、図7に表す、凝集体(半径R[単位:μm])と核粒子(半径r[単位:μm])とが互いに接触した粒子対の結合部分の断面積S(単位:μm2)に比例する。 (A) The binding energy of the particles is the cross-sectional area of the bonding portion of the particle pair in which the aggregate (radius R [unit: μm]) and the nuclear particle (radius r [unit: μm]) are in contact with each other, as shown in FIG. It is proportional to S (unit: μm 2 ).

図7は、凝集体に核粒子が凝集した状態のモデルの一例を示す説明図である。図7に示すように、凝集体(半径R[単位:μm])と、核粒子(半径r[単位:μm])が互いに接触しているとする。凝集体と核粒子とは、これらの表面にニッケル含有水酸化物の溶質成分が析出して形成された析出層(厚さΔh[単位:μm])で化学結合すると考える。核粒子と凝集体との粒子対の結合ネック部分が分断されると、これらの結合部分に2つの新生面(断面積S)が現れる。粒子の結合エネルギーは、この新生面によって表面エネルギーが増加する分に相当すると考えられるため、粒子の結合エネルギーは、断面積Sに比例する。 FIG. 7 is an explanatory diagram showing an example of a model in which nuclear particles are aggregated in an aggregate. As shown in FIG. 7, it is assumed that the aggregate (radius R [unit: μm]) and the nuclear particle (radius r [unit: μm]) are in contact with each other. The aggregates and nuclear particles are considered to be chemically bonded in a precipitation layer (thickness Δh [unit: μm]) formed by precipitating solute components of nickel-containing hydroxide on their surfaces. When the bonding neck portion of the particle pair of the nuclear particle and the aggregate is divided, two new planes (cross-sectional area S) appear in these bonding portions. Since the binding energy of the particles is considered to correspond to the increase in the surface energy due to this new surface, the binding energy of the particles is proportional to the cross-sectional area S.

(B) 断面積Sは、過飽和度C(単位:mol/m3)がcからc+Δcまでの領域において凝集体と核粒子との表面にニッケル含有水酸化物の溶質成分が析出して形成された析出層の厚さΔhと、核粒子の半径rとに比例する。なお、cとは過飽和度Cの所定の値をいい、Δcとはcの変化量をいう。 (B) The cross-sectional area S is formed by precipitating solute components of nickel-containing hydroxide on the surface of aggregates and nuclear particles in a region where the degree of supersaturation C (unit: mol / m 3 ) is from c to c + Δc. It is proportional to the thickness Δh of the deposited layer and the radius r of the nuclear particles. In addition, c means a predetermined value of supersaturation degree C, and Δc means the amount of change of c.

(C) 析出層の厚さΔhは、粒子(例えば、凝集体)が過飽和度Cがcからc+Δcまでの領域を通過する時間(通過時間)Δt(単位:s)と、粒子(例えば、凝集体)1個当たりのニッケル含有水酸化物の溶質成分の表面析出による成長速度κ(単位:μm/s)とに比例する。なお、通過時間Δtは反応時間ともいい、成長速度κは析出速度ともいう。 (C) The thickness Δh of the precipitation layer is the time (passing time) Δt (unit: s) for the particles (for example, aggregates) to pass through the region where the supersaturation degree C is from c to c + Δc, and the particles (for example, coagulation). Aggregate) It is proportional to the growth rate κ (unit: μm / s) due to the surface precipitation of the solute component of the nickel-containing hydroxide per particle. The transit time Δt is also referred to as reaction time, and the growth rate κ is also referred to as precipitation rate.

ここで、通過時間Δtは、下記式(1)で表すことができる。 Here, the transit time Δt can be expressed by the following equation (1).

Figure 0007031535000002
Figure 0007031535000002

なお、ニッケル含有水酸化物の溶質成分が所定の濃度まで乱流分散するときの時間スケールをtd(単位:s)とした時、乱流分散の時間スケールtが√(ΔV/(uK))に近似することを表す下記式(2)を用いることで、上記式(1)は求められる。 When the time scale for turbulent dispersion of the solute component of the nickel-containing hydroxide to a predetermined concentration is t d (unit: s), the time scale t d for turbulent dispersion is √ (ΔV / (uK). ) The above equation (1) can be obtained by using the following equation (2), which represents an approximation to C ).

Figure 0007031535000003
Figure 0007031535000003

但し、ΔV(単位:m3)は、過飽和度Cがcからc+Δcまでの領域の体積であり、(uK)は、過飽和度Cがcからc+Δcまでの領域を通過する流体の平均流速u(単位:m/s)とその流体の流れの乱流拡散係数K(単位:m2/s)との積の体積平均(単位:m3/s2)である。体積平均は、uKを過飽和度Cがcからc+Δcまでの領域で体積積分して求めた積分値を、過飽和度Cがcからc+Δcまでの領域の体積で割った値である。 However, ΔV (unit: m 3 ) is the volume of the region where the hypersaturation degree C is from c to c + Δc, and (uK) C is the average flow velocity u of the fluid passing through the region where the hypersaturation degree C is from c to c + Δc. It is a volume average (unit: m 3 / s 2 ) of the product of (unit: m / s) and the turbulent flow diffusion coefficient K (unit: m 2 / s) of the fluid flow. The volume average is a value obtained by dividing the integrated value obtained by volume-integrating uK in the region where the supersaturation degree C is from c to c + Δc by the volume in the region where the supersaturation degree C is from c to c + Δc.

上記式(2)を用いることで上記式(1)が求められる理由は、粒子(核及び凝集体)の慣性力が非常に小さいため、粒子は過飽和度Cがcからc+Δcまでの領域で乱流の流れにほとんど追随して運動するとみなせることによる。 The reason why the above formula (1) is obtained by using the above formula (2) is that the inertial force of the particles (nuclear and aggregate) is very small, so that the particles are disturbed in the region where the supersaturation degree C is from c to c + Δc. This is because it can be regarded as exercising almost following the flow of the flow.

上記式(2)の乱流分散の時間スケールtでは、N本(N:2以上の整数)の原料液供給管25(図5参照)を用いて原料液を反応水溶液中に添加すると、過飽和度Cがcからc+Δcまでの領域がN個に分割される。そのため、過飽和度Cがcからc+Δcまでの領域の体積の通過時間Δtは、上記式(1)で表せる。 In the turbulent flow dispersion time scale dt of the above formula (2), when the raw material liquid is added to the reaction aqueous solution using N raw material liquid supply pipes 25 (see FIG. 5) of N lines (N: an integer of 2 or more), The region where the degree of supersaturation C is from c to c + Δc is divided into N pieces. Therefore, the transit time Δt of the volume in the region where the supersaturation degree C is from c to c + Δc can be expressed by the above equation (1).

(D) 成長速度κは、ニッケル含有水酸化物の溶質成分の分子拡散が律速である。 (D) The growth rate κ is controlled by the molecular diffusion of the solute component of the nickel-containing hydroxide.

粒子(例えば、凝集体)1個当たりのニッケル含有水酸化物の溶質成分の表面析出による成長速度κは、反応水溶液中に存在するニッケル含有水酸化物の溶質成分が凝集体の表面に析出する析出反応モデルを参照できる。この析出反応モデルにおいて表面析出反応の律速過程は、ニッケル含有水酸化物の溶質成分の分子拡散であることから、析出層の成長速度κは、下記式(3)に示すように、ニッケル含有水酸化物の溶質成分の分子拡散係数D(単位:m2/s)に過飽和度Cを乗じて、ニッケル含有水酸化物の溶質成分の拡散流束を析出層の見かけ密度ρpと凝集体の半径Rで除することにより、求めることができる。 The growth rate κ due to surface precipitation of the solute component of the nickel-containing hydroxide per particle (for example, agglomerate) is that the solute component of the nickel-containing hydroxide present in the reaction aqueous solution precipitates on the surface of the agglomerate. You can refer to the precipitation reaction model. In this precipitation reaction model, the rate-determining process of the surface precipitation reaction is the molecular diffusion of the solute component of the nickel-containing hydroxide. Therefore, the growth rate κ of the precipitation layer is as shown in the following formula (3). Multiply the molecular diffusion coefficient D (unit: m 2 / s) of the solute component of the oxide by the degree of supersaturation C to obtain the diffusion flux of the solute component of the nickel-containing hydroxide with the apparent density ρ p of the precipitation layer and the aggregate. It can be obtained by dividing by the radius R.

Figure 0007031535000004
Figure 0007031535000004

式(1)~式(3)を用いて、上記の(A)~(D)の4つの現象を整理することにより、粒子の結合エネルギーEb(単位:J)は、下記式(4)のように表される。 By arranging the above four phenomena (A) to (D) using the formulas (1) to (3), the binding energy E b (unit: J) of the particles is the following formula (4). It is expressed as.

Figure 0007031535000005
Figure 0007031535000005

但し、Aは物性値等の定数をまとめて表記した、結合エネルギーに関するモデル係数であり、Nは原料液の添加口の数である。CTは過飽和度Cの閾値を表している。この過飽和度Cが閾値CT以上の領域を高過飽和領域という。この高過飽和領域において、ニッケル含有水酸化物の溶質成分の表面析出により析出層が出現するものと考える。 However, A is a model coefficient related to binding energy in which constants such as physical property values are collectively expressed, and N is the number of addition ports of the raw material liquid. C T represents the threshold value of the degree of supersaturation C. A region in which the degree of supersaturation C is equal to or higher than the threshold value C T is referred to as a high supersaturation region. In this highly supersaturated region, it is considered that a precipitation layer appears due to the surface precipitation of the solute component of the nickel-containing hydroxide.

ここで、高過飽和領域CTについて説明する。図8は、原料液の添加口付近に形成される高過飽和領域CTを示す図である。図8中、矢印方向は、図6に示す化学反応装置20の原料液供給管25の添加口251付近における反応水溶液の流れの方向を表す。図8に示すように、図6に示す原料液供給管25の添加口251から原料液が反応水溶液中に添加される。添加口251付近で原料液中の金属塩が中和剤及び錯化剤と中和反応して、ニッケル含有水酸化物の溶質成分が生成され、添加口251付近の反応水溶液中には、ニッケル含有水酸化物のモル濃度が高い高過飽和領域31が形成される。 Here, the highly supersaturated region C T will be described. FIG. 8 is a diagram showing a highly supersaturated region CT formed in the vicinity of the addition port of the raw material liquid. In FIG. 8, the arrow direction indicates the direction of the flow of the reaction aqueous solution in the vicinity of the addition port 251 of the raw material liquid supply pipe 25 of the chemical reaction apparatus 20 shown in FIG. As shown in FIG. 8, the raw material liquid is added to the reaction aqueous solution from the addition port 251 of the raw material liquid supply pipe 25 shown in FIG. The metal salt in the raw material solution neutralizes with the neutralizing agent and the complexing agent near the addition port 251 to generate a solute component of the nickel-containing hydroxide, and nickel is contained in the reaction aqueous solution near the addition port 251. A highly hypersaturated region 31 having a high molar concentration of the contained hydroxide is formed.

種晶生成工程S11の第1種晶生成工程S111では、高過飽和領域31において、核の発生及び凝集体の生成が主として生じる。第1種晶生成工程S111では、高過飽和領域31において、反応水溶液中に生成されたニッケル含有水酸化物の溶質成分が反応水溶液中に析出する際には、核粒子として発生する。核粒子は、高過飽和領域31を通りながら成長してある程度大きくなり、一次粒子となる。そして、複数の一次粒子が凝集して凝集体となる。 In the first seed crystal generation step S111 of the seed crystal generation step S11, the generation of nuclei and the formation of aggregates mainly occur in the highly supersaturated region 31. In the first kind crystal generation step S111, in the highly supersaturated region 31, when the solute component of the nickel-containing hydroxide produced in the reaction aqueous solution is precipitated in the reaction aqueous solution, it is generated as nuclear particles. The nuclear particles grow to some extent while passing through the highly supersaturated region 31, and become primary particles. Then, a plurality of primary particles are aggregated to form an aggregate.

なお、図8では、第1種晶生成工程S111において、一つの添加口251から原料液を反応水溶液中に吐出して、高過飽和領域31の数は1つとしているが、複数の添加口251から原料液を分けて反応水溶液中に吐出して、高過飽和領域31の数を複数としてもよい。なお、高過飽和領域31の数が複数である場合、高過飽和領域31の体積とは、複数の領域の合計の体積を意味する。このとき、複数の添加口251から吐出される複数の高過飽和領域31が重ならないように、複数の添加口251の間隔が設定される。 In FIG. 8, in the first kind crystal generation step S111, the raw material liquid is discharged from one addition port 251 into the reaction aqueous solution, and the number of highly supersaturated regions 31 is one, but a plurality of addition ports 251 The raw material liquid may be separated from the above and discharged into the reaction aqueous solution to have a plurality of highly supersaturated regions 31. When the number of the high supersaturation regions 31 is plural, the volume of the high supersaturation regions 31 means the total volume of the plurality of regions. At this time, the intervals between the plurality of addition ports 251 are set so that the plurality of highly supersaturated regions 31 discharged from the plurality of addition ports 251 do not overlap.

次に、粒子(例えば、核粒子や凝集体)の分断エネルギーについて説明する。粒子の分断エネルギーは、以下に示す(a)~(d)の4つの現象をそれぞれ定式化して整理することで求められる。 Next, the breaking energy of particles (for example, nuclear particles and aggregates) will be described. The fragmentation energy of particles is obtained by formulating and arranging each of the following four phenomena (a) to (d).

(a) 粒子の分断エネルギーは、粒子(例えば、凝集体)が撹拌翼を通過する際の加速度(単位:m/s2)と、粒子(例えば、凝集体)が加速される距離を表す代表長さ(単位:m)とに比例する。
(b) 代表長さとしては、撹拌翼径Lp(単位:m)を用いる。
(A) The dividing energy of particles is representative of the acceleration (unit: m / s 2 ) when the particles (for example, aggregates) pass through the stirring blade and the distance at which the particles (for example, aggregates) are accelerated. It is proportional to the length (unit: m).
(B) As the representative length, the stirring blade diameter L p (unit: m) is used.

図6に示す撹拌槽において、撹拌翼で撹拌された反応水溶液の流れは、槽底から側壁を伝って液面に到達し、液面で撹拌軸へと流れの向きを変えた後、撹拌軸の周辺から流下して撹拌翼に飲み込まれる。この循環流において、反応水溶液の流れは、撹拌翼を通過する際に力を受けて加速される。このとき、同時に、粒子(例えば、凝集体)も撹拌翼から力を受けて加速される。この一部が粒子(例えば、凝集体)の結合を分断する力として作用すると考えると、粒子(例えば、凝集体)の分断エネルギーは、粒子の加速度と撹拌翼径Lpとに比例する。 In the stirring tank shown in FIG. 6, the flow of the reaction aqueous solution stirred by the stirring blade reaches the liquid surface from the bottom of the tank along the side wall, changes the direction of the flow to the stirring shaft at the liquid level, and then turns the stirring shaft. It flows down from the periphery of the agitator and is swallowed by the stirring blade. In this circulating flow, the flow of the reaction aqueous solution is accelerated by receiving a force as it passes through the stirring blade. At this time, at the same time, the particles (for example, aggregates) are also accelerated by receiving a force from the stirring blade. Considering that a part of this acts as a force to break the bond of particles (for example, agglomerates), the breaking energy of particles (for example, agglomerates) is proportional to the acceleration of the particles and the stirring blade diameter Lp .

(c) 粒子の加速度は、代表長さである撹拌翼径Lpと、撹拌翼の回転数ω(単位:s-1)とで次元解析する。 (C) The acceleration of the particles is dimensionally analyzed by the stirring blade diameter Lp , which is the representative length, and the rotation speed ω (unit: s -1 ) of the stirring blade.

粒子(例えば、凝集体)が撹拌翼を通過する際に受ける加速度は、撹拌翼の仕様と運転条件に依存する。粒子(例えば、凝集体)が流れ方向に加速される加速度は、撹拌翼径Lpに、撹拌翼の回転数ωの二乗を乗じることにより求められる。 The acceleration that particles (eg, aggregates) receive as they pass through the stirring blade depends on the specifications and operating conditions of the stirring blade. The acceleration at which particles (for example, aggregates) are accelerated in the flow direction is obtained by multiplying the stirring blade diameter Lp by the square of the rotation speed ω of the stirring blade.

(d) 粒子の分断エネルギーは、凝集体の重さに比例する。 (D) The breaking energy of the particles is proportional to the weight of the agglomerates.

凝集体の重さは、凝集体の体積に比例するので、凝集体の半径Rを三乗した値R3に比例する。粒子が凝集体と核粒子との結合した粒子対(図7参照)であるとした時、凝集体の半径Rを三乗した値R3と、核粒子の半径rを三乗した値r3との和(R3+r3)を用いることで、粒子の体積が求められる。このとき、凝集体は、核粒子よりも十分大きいといえるので、R3+r3はR3に近似(R3+r3≒R3)するとみなせる。そのため、粒子の分断エネルギーは、凝集体の重さに比例するものとして扱うことができる。 Since the weight of the aggregate is proportional to the volume of the aggregate, it is proportional to the value R 3 which is the cube of the radius R of the aggregate. Assuming that the particles are a pair of particles in which an aggregate and a nucleus particle are bonded (see FIG. 7), a value R 3 obtained by cubed the radius R of the aggregate and a value r 3 obtained by cubed the radius r of the nucleus particle. By using the sum of and (R 3 + r 3 ), the volume of the particles can be obtained. At this time, since it can be said that the aggregate is sufficiently larger than the nuclear particle, it can be considered that R 3 + r 3 is close to R 3 (R 3 + r 3 ≈ R 3 ). Therefore, the fragmentation energy of the particles can be treated as being proportional to the weight of the aggregate.

上記の(a)~(d)の4つの現象を整理することで、粒子(例えば、凝集体)の分断エネルギーEk(単位:J)は、下記式(5)のように表される。 By arranging the above four phenomena (a) to ( d ), the breaking energy Ek (unit: J) of particles (for example, aggregates) is expressed by the following formula (5).

Figure 0007031535000006
Figure 0007031535000006

但し、Bは、物性値等の定数をまとめて表記した、分断エネルギーに関するモデル係数である。R3は、上述の通り、粒子の重さを表す指標となる。(ω・L2は、粒子の速度の二乗を表す指標となる。 However, B is a model coefficient related to the dividing energy, in which constants such as physical property values are collectively expressed. As described above, R 3 is an index showing the weight of the particles. (Ω ・ L p ) 2 is an index showing the square of the velocity of the particle.

複数の核が凝集して凝集体を生成する粒径成長モデルでは、凝集体の半径Rは、上述の通り、結合エネルギーEbと分断エネルギーEkとのバランスによって決まるといえる。すなわち、結合エネルギーEb及び分断エネルギーEkは、凝集体の粒径に依存するため、凝集体が大きくなるにしたがって、結合エネルギーEbが大きくなり、逆に分断エネルギーEkは小さくなっていくと考えることができる。そのため、凝集体の大きさがある程度の大きさになると、結合エネルギーEb及び分断エネルギーEkとが等しくなり、結合エネルギーEb及び分断エネルギーEkとが釣り合う大きさで凝集体の成長は落ち着いていくことになる。 In the particle size growth model in which a plurality of nuclei aggregate to form an aggregate, it can be said that the radius R of the aggregate is determined by the balance between the binding energy E b and the split energy E k , as described above. That is, since the binding energy E b and the breaking energy E k depend on the particle size of the aggregate, the binding energy E b becomes larger and the breaking energy E k becomes smaller as the aggregate becomes larger. Can be thought of. Therefore, when the size of the agglomerates becomes a certain size, the binding energy E b and the breaking energy E k become equal to each other, and the growth of the agglomerates is settled at a size in which the binding energy E b and the breaking energy E k are balanced. I will go.

そこで、結合エネルギーEbを表す上記式(4)と、分断エネルギーEkを表す上記式(5)とを等式で結んで、凝集体の半径Rについて整理すると、下記式(I)が得られる。 Therefore, if the above equation (4) representing the binding energy E b and the above equation (5) representing the dividing energy E k are connected by an equation and the radius R of the aggregate is arranged, the following equation (I) is obtained. Be done.

Figure 0007031535000007
Figure 0007031535000007

なお、上記式(I)において、核粒子の半径rは、実験結果より、0.3μmとする。また、A及びBは、上述の通り、モデル係数であり、定数として扱う。 In the above formula (I), the radius r of the nuclear particle is 0.3 μm from the experimental result. Further, A and B are model coefficients as described above, and are treated as constants.

高過飽和領域(図8参照)の過飽和度C、過飽和度Cがcからc+Δcまでの領域の体積ΔV、乱流分散パラメータuKは、汎用の流体解析ソフトを用いた流体反応シミュレーションによって求めることができる。なお、uKのu(単位:m/s)は高過飽和領域を通過する流体の平均流速であり、K(単位:m2/s)は高過飽和領域を通過する流体の流れの乱流拡散係数である。流体反応シミュレーションを用いた算出方法は、具体的には、国際公開第2017/217365等に記載されている方法に準じて行うことができる。 The supersaturation degree C in the high supersaturation region (see FIG. 8), the volume ΔV in the region where the supersaturation degree C is from c to c + Δc, and the turbulent flow dispersion parameter uK can be obtained by fluid reaction simulation using general-purpose fluid analysis software. .. The u (unit: m / s) of uK is the average flow velocity of the fluid passing through the highly supersaturated region, and K (unit: m 2 / s) is the turbulent diffusivity of the fluid flowing through the highly supersaturated region. Is. Specifically, the calculation method using the fluid reaction simulation can be performed according to the method described in International Publication No. 2017/217365 and the like.

以上より、流体反応シミュレーションによって高過飽和領域を計算して、高過飽和領域の過飽和度C、過飽和度Cがcからc+Δcまでの領域の体積ΔV、乱流分散パラメータuKを取得する。そして、これらの取得した数値と、多点添加の本数Nと、撹拌翼(DT翼)の翼径Lp及び回転数ωとを、上記式(I)に代入することによって、第1種晶生成工程S111における、凝集体の半径Rを求めることができる。これにより、凝集体の平均粒径を求めることができる。 From the above, the high supersaturation region is calculated by the fluid reaction simulation, and the supersaturation degree C in the high supersaturation region, the volume ΔV in the region where the supersaturation degree C is from c to c + Δc, and the turbulence dispersion parameter uK are acquired. Then, by substituting these acquired numerical values, the number N of multipoint additions, the blade diameter Lp and the rotation speed ω of the stirring blade (DT blade) into the above equation (I), the first type crystal The radius R of the aggregate in the generation step S111 can be obtained. This makes it possible to determine the average particle size of the aggregates.

よって、本実施形態によれば、上記式(I)を用いることで、第1種晶生成工程S111で作製される凝集体の平均粒径を予め求めることができるので、第1種晶生成工程S111の製造条件を所定の平均粒径を有する凝集体が得られるように設定できる。製造条件として、例えば、撹拌槽の容量や形状、撹拌翼の型式、回転数、個数、形状、寸法若しくは設置場所と、撹拌翼の回転数、反応水溶液のpH値若しくは温度、原料液の流量や濃度、又は原料液供給管の添加口の位置、形状、数若しくは配置方法等が挙げられる。第1種晶生成工程S111で設定した製造条件に基づいて第1種晶生成工程S111を行うことで、第1種晶生成工程S111において生成される凝集体の平均粒径を高精度に調整できる。 Therefore, according to the present embodiment, by using the above formula (I), the average particle size of the aggregate produced in the first kind crystal generation step S111 can be obtained in advance, so that the first kind crystal generation step The production conditions of S111 can be set so that an aggregate having a predetermined average particle size can be obtained. The manufacturing conditions include, for example, the capacity and shape of the stirring tank, the model, rotation speed, number, shape, dimensions or installation location of the stirring blade, the rotation speed of the stirring blade, the pH value or temperature of the reaction aqueous solution, the flow rate of the raw material liquid, and the like. The concentration, the position, shape, number, arrangement method, etc. of the addition port of the raw material liquid supply pipe can be mentioned. By performing the first type crystal generation step S111 based on the production conditions set in the first type crystal generation step S111, the average particle size of the agglomerates generated in the first type crystal generation step S111 can be adjusted with high accuracy. ..

第1種晶生成工程で所定の平均粒径を有する凝集体を高精度に生成することで、第2種晶生成工程で作製する所定の平均粒径を有する種晶粒子を高精度に生成できる。種晶生成工程後に成長晶析工程でニッケル含有水酸化物の粒子を製造する際、種晶生成工程で生成した種晶粒子を用いることで、所定の平均粒径を有する凝集体を安定して生成できる。 By generating agglomerates having a predetermined average particle size in the first kind crystal generation step with high accuracy, it is possible to generate seed crystal particles having a predetermined average particle size produced in the second kind crystal generation step with high accuracy. .. When producing nickel-containing hydroxide particles in the growth crystallization step after the seed crystal forming step, by using the seed crystal particles generated in the seed crystal forming step, aggregates having a predetermined average particle size can be stably produced. Can be generated.

ニッケル含有水酸化物の製造方法は、種晶生成工程において凝集体の平均粒径を確認する工程を含んでもよい。この確認は、上述の製造条件を変更する度に行われてよい。また、撹拌槽がバッチ式の場合、製造条件が同じ間、確認は一度行われればよく、毎回の確認は不要である。 The method for producing a nickel-containing hydroxide may include a step of confirming the average particle size of the aggregate in the seed crystal forming step. This confirmation may be performed each time the above-mentioned manufacturing conditions are changed. Further, when the stirring tank is a batch type, the confirmation may be performed once while the manufacturing conditions are the same, and the confirmation does not need to be performed each time.

以上の通り、一実施形態によるニッケル含有水酸化物の製造方法を用いて製造されるニッケル含有水酸化物の粒子は、リチウムイオン二次電池の正極活物質として用いられるリチウムニッケル複合酸化物の前駆体として用いることができる。前駆体を用いて製造した正極活物質は、正極の製造に用いることができる。得られた正極は、リチウムイオン二次電池に有効に用いることができる。 As described above, the nickel-containing hydroxide particles produced by using the method for producing a nickel-containing hydroxide according to the embodiment are precursors of a lithium nickel composite oxide used as a positive electrode active material for a lithium ion secondary battery. It can be used as a body. The positive electrode active material produced by using the precursor can be used in the production of the positive electrode. The obtained positive electrode can be effectively used for a lithium ion secondary battery.

リチウムイオン二次電池は、携帯電話、スマートフォン、タブレットPC若しくはノート型PC等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ、医療機器、HEV、又はEV若しくはPHEV等のクリーンエネルギー自動車等の充放電可能な電池として好適に用いることができる。 Lithium-ion secondary batteries can be charged and discharged from mobile information terminals such as mobile phones, smartphones, tablet PCs or notebook PCs, portable music players, digital cameras, medical devices, HEVs, or clean energy vehicles such as EVs or PHEVs. Can be suitably used as a battery.

<予備試験>
上記式(I)を用いて、第1種晶生成工程で得る凝集体の平均粒径を算出するために、まず上記式(I)中のモデル係数A及びBを算出するための予備試験を行った。なお、第1種晶生成工程とは、上記の図1に示す第1種晶生成工程S111をいう。
<Preliminary test>
In order to calculate the average particle size of the aggregates obtained in the type 1 crystal formation step using the above formula (I), first, a preliminary test for calculating the model coefficients A and B in the above formula (I) is performed. went. The type 1 crystal generation step refers to the type 1 crystal generation step S111 shown in FIG. 1 above.

[凝集体の作製]
(予備試験1)
オーバーフロー型の連続式の撹拌槽を用い、中和晶析によって、ニッケル複合水酸化物からなる凝集体を生成する第1種晶生成工程を行った。撹拌槽の容積は50L、撹拌翼のタイプはディスクタービン翼、撹拌翼の羽根の枚数は6枚、撹拌翼の翼径は150mm、撹拌翼の回転数は600rpmとした。反応開始前の撹拌槽の初液量は10Lであり、第1種晶生成工程が終了した時点での撹拌槽の反応水溶液の液量は15Lであった。その後、第2種晶生成工程の反応が終了した時点での撹拌槽の反応水溶液の液量は50Lであった。反応水溶液の温度は、40℃に維持した。攪拌槽内の雰囲気は、酸素雰囲気とした。
[Preparation of aggregates]
(Preliminary test 1)
Using an overflow-type continuous stirring tank, a first-class crystal formation step of forming an agglomerate made of a nickel composite hydroxide was carried out by neutralization crystallization. The volume of the stirring tank was 50 L, the type of the stirring blade was a disc turbine blade, the number of blades of the stirring blade was 6, the blade diameter of the stirring blade was 150 mm, and the rotation speed of the stirring blade was 600 rpm. The initial liquid volume of the stirring tank before the start of the reaction was 10 L, and the liquid volume of the reaction aqueous solution of the stirring tank at the time when the first type crystal formation step was completed was 15 L. After that, the amount of the reaction aqueous solution in the stirring tank at the time when the reaction of the second kind crystal generation step was completed was 50 L. The temperature of the reaction aqueous solution was maintained at 40 ° C. The atmosphere in the stirring tank was an oxygen atmosphere.

原料液は、ニッケル複合水酸化物としてNi0.34Mn0.33Co0.33(OH)2が得られるように調製した。原料液供給管の本数は2本、2本の原料液供給管からの供給量は100mL/分とし、第1種晶生成工程の原料液の流量比を0.77とした。なお、第1種晶生成工程における原料液の流量比とは、基準条件の平均流量を1.0とした時、基準条件における原料液の平均流量に対する原料液の平均流量の比である。基準条件とは、平均粒径が所定の範囲内となる凝集体が得られる時の原料液の流量をいう。 The raw material solution was prepared so that Ni 0.34 Mn 0.33 Co 0.33 (OH) 2 could be obtained as a nickel composite hydroxide. The number of raw material liquid supply pipes was two, the supply amount from the two raw material liquid supply pipes was 100 mL / min, and the flow rate ratio of the raw material liquid in the first type crystal forming step was 0.77. The flow rate ratio of the raw material liquid in the type 1 crystal forming step is the ratio of the average flow rate of the raw material liquid to the average flow rate of the raw material liquid under the reference condition when the average flow rate of the reference condition is 1.0. The reference condition refers to the flow rate of the raw material liquid when an agglomerate having an average particle size within a predetermined range is obtained.

第1種晶生成工程の間、撹拌槽内に、原料液の他に、中和剤として水酸化ナトリウム水溶液及び錯化剤としてアンモニア水を供給して、反応水溶液のpH値等を維持した。 During the first type crystal formation step, in addition to the raw material solution, sodium hydroxide aqueous solution as a neutralizing agent and ammonia water as a complexing agent were supplied into the stirring tank to maintain the pH value of the reaction aqueous solution and the like.

撹拌槽内の反応水溶液をサンプリングし、サンプリングした反応水溶液に含まれる凝集体の平均粒径をレーザ回折式の粒径分布測定装置(マイクロトラック・ベル(株))で計測した。得られた凝集体の平均粒径は約3.20μmであった。 The reaction aqueous solution in the stirring tank was sampled, and the average particle size of the aggregates contained in the sampled reaction solution was measured with a laser diffraction type particle size distribution measuring device (Microtrac Bell Co., Ltd.). The average particle size of the obtained aggregate was about 3.20 μm.

(予備試験2)
予備試験1において、原料液供給管の本数を4本に変更したこと以外、予備試験1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約3.00μmであった。
(Preliminary test 2)
Aggregates were produced in the same manner as in Preliminary Test 1 except that the number of raw material liquid supply pipes was changed to 4 in Preliminary Test 1. The average particle size of the obtained aggregate was about 3.00 μm.

[モデル係数A及びBの算出]
上記予備試験1及び2の試験条件及び試験結果より、得られる凝集体の平均粒径の値(計算値)が予備試験1及び2で得られた値(実験値)となるような上記式(I)中のモデル係数A及びBを算出した。
[Calculation of model coefficients A and B]
Based on the test conditions and test results of the preliminary tests 1 and 2, the above formula (experimental value) is such that the value (calculated value) of the average particle size of the obtained aggregate is the value (experimental value) obtained in the preliminary tests 1 and 2. The model coefficients A and B in I) were calculated.

<実施例1>
(凝集体の平均粒径の算出)
上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程S111で得る凝集体の平均粒径を2.95μmと計算した。
(凝集体の作製)
予備試験1において、撹拌翼の回転数を予備試験1の撹拌翼の回転数に対して1.11倍に変更したこと以外、予備試験1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約2.70μmであった。
<Example 1>
(Calculation of average particle size of aggregates)
Using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the aggregate obtained in the first kind crystal generation step S111 was calculated in advance as 2.95 μm.
(Preparation of aggregate)
In the preliminary test 1, the aggregate was produced in the same manner as in the preliminary test 1 except that the rotation speed of the stirring blade was changed to 1.11 times the rotation speed of the stirring blade in the preliminary test 1. The average particle size of the obtained aggregate was about 2.70 μm.

凝集体の平均粒径の計算値(2.95μm)に対する実験値(2.70μm)の誤差の絶対値は、下記式より、約8.5%であった。
誤差(%)=|(実験値-計算値)/計算値×100|
The absolute value of the error of the experimental value (2.70 μm) with respect to the calculated value (2.95 μm) of the average particle size of the aggregate was about 8.5% from the following formula.
Error (%) = | (Experimental value-Calculated value) / Calculated value x 100 |

<実施例2>
実施例1において、上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程で得る凝集体の平均粒径を3.25μmと計算した。そして、第1種晶生成工程の原料液の流量比を約1.54に変更したこと以外、実施例1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約3.05μmであった。凝集体の平均粒径の計算値(3.25μm)に対する実験値(3.05μm)の誤差の絶対値は、約6.2%であった。
<Example 2>
In Example 1, using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the agglomerates obtained in advance in the type 1 crystal formation step was set to 3.25 μm. Calculated. Then, an aggregate was produced in the same manner as in Example 1 except that the flow rate ratio of the raw material liquid in the first type crystal generation step was changed to about 1.54. The average particle size of the obtained aggregate was about 3.05 μm. The absolute value of the error of the experimental value (3.05 μm) with respect to the calculated value (3.25 μm) of the average particle size of the aggregate was about 6.2%.

<実施例3>
実施例1において、上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程で得る凝集体の平均粒径を4.50μmと計算した。そして、第1種晶生成工程の原料液の流量比を約1.54に変更し、原料液供給管の本数を4本に変更し、撹拌翼の回転数を予備試験1の撹拌翼の回転数に対して約0.68倍に変更したこと以外、実施例1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約4.75μmであった。凝集体の平均粒径の計算値(4.50μm)に対する実験値(4.75μm)の誤差の絶対値は、約5.3%であった。
<Example 3>
In Example 1, using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the agglomerates obtained in advance in the type 1 crystal formation step was set to 4.50 μm. Calculated. Then, the flow ratio of the raw material liquid in the first type crystal generation step was changed to about 1.54, the number of raw material liquid supply pipes was changed to 4, and the rotation speed of the stirring blade was changed to the rotation of the stirring blade in the preliminary test 1. Aggregates were produced in the same manner as in Example 1 except that the number was changed to about 0.68 times. The average particle size of the obtained aggregate was about 4.75 μm. The absolute value of the error of the experimental value (4.75 μm) with respect to the calculated value (4.50 μm) of the average particle size of the aggregate was about 5.3%.

<実施例4>
実施例1において、上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程で得る凝集体の平均粒径を3.35μmと計算した。そして、第1種晶生成工程の原料液の流量比を1.54に変更し、原料液供給管の本数を4本に変更し、撹拌翼の回転数を予備試験1の撹拌翼の回転数に対して1.00倍に変更したこと以外、実施例1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約3.55μmであった。凝集体の平均粒径の計算値(3.30μm)に対する実験値(3.55μm)の誤差の絶対値は、約6.0%であった。
<Example 4>
In Example 1, using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the agglomerates obtained in advance in the type 1 crystal formation step was set to 3.35 μm. Calculated. Then, the flow ratio of the raw material liquid in the first type crystal generation step was changed to 1.54, the number of raw material liquid supply pipes was changed to 4, and the rotation speed of the stirring blade was changed to the rotation speed of the stirring blade in the preliminary test 1. Aggregates were produced in the same manner as in Example 1 except that the amount was changed to 1.00 times. The average particle size of the obtained aggregate was about 3.55 μm. The absolute value of the error of the experimental value (3.55 μm) with respect to the calculated value (3.30 μm) of the average particle size of the aggregate was about 6.0%.

<実施例5>
実施例1において、上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程で得る凝集体の平均粒径を3.10μmと計算した。そして、予備試験1において、第1種晶生成工程の原料液の流量比を2.00に変更し、撹拌翼の回転数を予備試験1の撹拌翼の回転数に対して約1.16倍に変更したこと以外、実施例1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約3.25μmであった。凝集体の平均粒径の計算値(3.10μm)に対する実験値(3.25μm)の誤差の絶対値は、約4.8%であった。
<Example 5>
In Example 1, using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the agglomerates obtained in advance in the type 1 crystal formation step was set to 3.10 μm. Calculated. Then, in the preliminary test 1, the flow rate ratio of the raw material liquid in the first type crystal generation step was changed to 2.00, and the rotation speed of the stirring blade was about 1.16 times the rotation speed of the stirring blade in the preliminary test 1. Aggregates were produced in the same manner as in Example 1 except that the agglomerates were changed to. The average particle size of the obtained aggregate was about 3.25 μm. The absolute value of the error of the experimental value (3.25 μm) with respect to the calculated value (3.10 μm) of the average particle size of the aggregate was about 4.8%.

<実施例6>
実施例1において、上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程で得る凝集体の平均粒径を4.15μmと計算した。そして、第1種晶生成工程の原料液の流量比を1.33倍に変更し、原料液供給管の本数を1本に変更し、撹拌翼の回転数を予備試験1の撹拌翼の回転数に対して約1.67に変更し、攪拌槽の容量を予備試験1で用いた攪拌槽の容量の0.10倍に変更したこと以外、実施例1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約4.05μmであった。凝集体の平均粒径の計算値(4.15μm)に対する実験値(4.05μm)の誤差の絶対値は、約2.4%であった。
<Example 6>
In Example 1, using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the agglomerates obtained in advance in the type 1 crystal formation step was set to 4.15 μm. Calculated. Then, the flow rate ratio of the raw material liquid in the first type crystal generation step was changed to 1.33 times, the number of raw material liquid supply pipes was changed to one, and the rotation speed of the stirring blade was changed to the rotation of the stirring blade in the preliminary test 1. Aggregates were produced in the same manner as in Example 1 except that the number was changed to about 1.67 and the capacity of the stirring tank was changed to 0.10 times the capacity of the stirring tank used in the preliminary test 1. did. The average particle size of the obtained aggregate was about 4.05 μm. The absolute value of the error of the experimental value (4.05 μm) with respect to the calculated value (4.15 μm) of the average particle size of the aggregate was about 2.4%.

<実施例7>
実施例1において、上記式(I)と、予備試験1及び2で算出したモデル係数A及びBとを用いて、予め第1種晶生成工程S111で得る凝集体の平均粒径を3.55μmと計算した。そして、第1種晶生成工程の原料液の流量比を1.33に変更し、撹拌翼の回転数を予備試験1の撹拌翼の回転数に対して約1.67倍に変更し、攪拌槽の容量を予備試験1で用いた攪拌槽の容量の0.10倍に変更したこと以外、実施例1と同様にして、凝集体を製造した。得られた凝集体の平均粒径は、約3.27μmであった。凝集体の平均粒径の計算値(3.55μm)に対する実験値(3.27μm)の誤差の絶対値は、約7.9%であった。
<Example 7>
In Example 1, using the above formula (I) and the model coefficients A and B calculated in the preliminary tests 1 and 2, the average particle size of the aggregate obtained in advance in the first type crystal formation step S111 is 3.55 μm. I calculated. Then, the flow ratio of the raw material liquid in the first type crystal generation step was changed to 1.33, the rotation speed of the stirring blade was changed to about 1.67 times the rotation speed of the stirring blade in the preliminary test 1, and stirring was performed. Aggregates were produced in the same manner as in Example 1 except that the capacity of the tank was changed to 0.10 times the capacity of the stirring tank used in the preliminary test 1. The average particle size of the obtained aggregate was about 3.27 μm. The absolute value of the error of the experimental value (3.27 μm) with respect to the calculated value (3.55 μm) of the average particle size of the aggregate was about 7.9%.

上記各予備試験及び実施例において、第1種晶生成工程の原料液の流量比と、原料液の添加口の数と、撹拌翼の回転数比と、撹拌槽の容量比と、予め算出した凝集体の平均粒径の計算値と、作製した凝集体の平均粒径の実測値と、凝集体の平均粒径の計算値に対する実験値の誤差の絶対値とを表1に示す。また、上記各実施例の、凝集体の平均粒径の計算値と実測値とを図9に示す。なお、表中の、撹拌翼の回転数比とは、予備試験1における撹拌翼の回転数に対する撹拌翼の回転数の比である。撹拌槽の容量比とは、予備試験1における撹拌槽の容量に対する撹拌槽の容量の比である。 In each of the above preliminary tests and examples, the flow rate ratio of the raw material liquid in the first type crystal generation step, the number of addition ports of the raw material liquid, the rotation speed ratio of the stirring blade, and the capacity ratio of the stirring tank were calculated in advance. Table 1 shows the calculated value of the average particle size of the aggregate, the measured value of the average particle size of the produced aggregate, and the absolute value of the error of the experimental value with respect to the calculated value of the average particle size of the aggregate. Further, FIG. 9 shows the calculated value and the measured value of the average particle size of the aggregate in each of the above-mentioned examples. The rotation speed ratio of the stirring blade in the table is the ratio of the rotation speed of the stirring blade to the rotation speed of the stirring blade in the preliminary test 1. The capacity ratio of the stirring tank is the ratio of the capacity of the stirring tank to the capacity of the stirring tank in the preliminary test 1.

Figure 0007031535000008
Figure 0007031535000008

表1及び図9に示すように、何れの実施例においても、予め算出した凝集体の平均粒径の大きさは、実際に作製した凝集体の平均粒径の大きさに対して10%以下の誤差であった。 As shown in Table 1 and FIG. 9, in any of the examples, the size of the average particle size of the aggregate calculated in advance is 10% or less with respect to the size of the average particle size of the actually produced aggregate. It was an error.

よって、上記式(I)を用いれば、第1種晶生成工程S111において平均粒径を高い精度に調整して凝集体を製造できることが確認された。第1種晶生成工程で生成される凝集体の平均粒径を高精度に調整することで、第2種晶生成工程で作製する種晶粒子の平均粒径を高精度に調整できる。また、種晶生成工程の後に成長晶析工程で最終的に得られるニッケル含有水酸化物の粒子の平均粒径を高精度に調整できる。 Therefore, it was confirmed that by using the above formula (I), the average particle size can be adjusted with high accuracy in the first kind crystal generation step S111 to produce an aggregate. By adjusting the average particle size of the aggregates produced in the first type crystal generation step with high accuracy, the average particle size of the seed crystal particles produced in the second type crystal generation step can be adjusted with high accuracy. In addition, the average particle size of the nickel-containing hydroxide particles finally obtained in the growth crystallization step after the seed crystal forming step can be adjusted with high accuracy.

以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 As described above, the embodiments have been described, but the above embodiments are presented as examples, and the present invention is not limited to the above embodiments. The above embodiment can be implemented in various other embodiments, and various combinations, omissions, replacements, changes, etc. can be made without departing from the gist of the invention. These embodiments and variations thereof are included in the scope and gist of the invention, and are also included in the scope of the invention described in the claims and the equivalent scope thereof.

10 ニッケル含有水酸化物の粒子
11 種晶粒子
110 核(核粒子)
111 一次粒子
112 凝集体
113 外殻
12 外殻部
20 化学反応装置
21 撹拌槽
23 撹拌翼
25 原料液供給管
251 添加口
31 高過飽和領域
10 Nickel-containing hydroxide particles 11 Seed crystal particles 110 Nuclei (nuclear particles)
111 Primary particles 112 Aggregates 113 Outer shell 12 Outer shell part 20 Chemical reactor 21 Stirring tank 23 Stirring blade 25 Raw material liquid supply pipe 251 Addition port 31 Highly supersaturated region

Claims (4)

少なくともニッケル塩を含む金属塩を含有する原料液と、前記金属塩の金属イオンと結合して錯体を形成する錯化剤と、前記金属塩及び前記錯体と反応して金属水酸化物を生成する中和剤とを含む反応水溶液の中で、中和晶析によりニッケル含有水酸化物を得るニッケル含有水酸化物の製造方法であって、
前記反応水溶液の中で、中和晶析によって発生した、前記ニッケル含有水酸化物の核を成長させて、種晶を生成する種晶生成工程を含み、
前記種晶生成工程は、前記反応水溶液の中に中和晶析によって前記ニッケル含有水酸化物の前記核を発生させ、複数の前記核が凝集した凝集体を生成する第1種晶生成工程を含み、
前記第1種晶生成工程を、下記式(I)に基づいて設定した条件で行うニッケル含有水酸化物の製造方法。
Figure 0007031535000009
(但し、式(I)中、Rは凝集体の半径であり、Aはモデル係数であり、rは核の半径であり、Cは過飽和度であり、Cは過飽和度Cの閾値であり、Nは原料液の添加口の数であり、ΔVは過飽和度Cがcからc+Δcまでの領域の体積であり、uは過飽和度Cがcからc+Δcまでの領域を通過する流体の平均流速であり、Kは過飽和度Cがcからc+Δcまでの領域を通過する流体の流れの乱流拡散係数であり、Bはモデル係数であり、ωは撹拌翼の回転数であり、Lは撹拌翼の翼径である。)
A raw material solution containing a metal salt containing at least a nickel salt, a complexing agent that combines with a metal ion of the metal salt to form a complex, and the metal salt and the complex to form a metal hydroxide. A method for producing a nickel-containing hydroxide, which obtains a nickel-containing hydroxide by neutralization crystallization in a reaction aqueous solution containing a neutralizing agent.
In the reaction aqueous solution, a seed crystal generation step of growing the nucleus of the nickel-containing hydroxide generated by neutralization crystallization to generate a seed crystal is included.
The seed crystal forming step is a first kind crystal forming step in which the nuclei of the nickel-containing hydroxide are generated by neutralization crystallization in the reaction aqueous solution to form an agglomerate in which a plurality of the nuclei are aggregated. Including,
A method for producing a nickel-containing hydroxide, wherein the first-class crystal forming step is carried out under the conditions set based on the following formula (I).
Figure 0007031535000009
(However, in equation (I), R is the radius of the aggregate, A is the model coefficient, r is the radius of the nucleus, C is the degree of supersaturation, and CT is the threshold of the degree of supersaturation C. , N is the number of addition ports of the raw material liquid, ΔV is the volume of the region where the supersaturation degree C is from c to c + Δc, and u is the average flow velocity of the fluid passing through the region where the supersaturation degree C is from c to c + Δc. Yes, K is the turbulent diffusion coefficient of the flow of fluid passing through the region where the supersaturation degree C passes from c to c + Δc, B is the model coefficient, ω is the rotation speed of the stirring blade, and L p is the stirring blade. The wing diameter of.)
前記ニッケル含有水酸化物が、NiとCoとMnとM(Mは、Ti、V、Cr、Zr、Nb、Mo、Hf、Ta及びWから選択される1種以上の添加元素)とを、物質量比がNi:Co:Mn:M=x:y:z:t(ただし、x+y+z+t=1、0.1≦x≦0.9、0.1≦y≦0.5、0.1≦z≦0.8、0≦t≦0.02)となるように含む請求項1に記載のニッケル含有水酸化物の製造方法。 The nickel-containing hydroxide contains Ni, Co, Mn, and M (M is one or more additive elements selected from Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, and W). Material amount ratio is Ni: Co: Mn: M = x: y: z: t (however, x + y + z + t = 1, 0.1 ≦ x ≦ 0.9, 0.1 ≦ y ≦ 0.5, 0.1 ≦ The method for producing a nickel-containing hydroxide according to claim 1, which comprises z ≦ 0.8 and 0 ≦ t ≦ 0.02). 前記ニッケル含有水酸化物が、NiとCoとAlとを、物質量比がNi:Co:Al=1-x-y:x:y(ただし、0≦x≦0.3、0.005≦y≦0.15)となるように含む、請求項1に記載のニッケル含有水酸化物の製造方法。 The nickel-containing hydroxide is Ni, Co, and Al, and the substance amount ratio is Ni: Co: Al = 1-xy: x: y (however, 0 ≦ x ≦ 0.3, 0.005 ≦). The method for producing a nickel-containing hydroxide according to claim 1, which comprises y ≦ 0.15). 請求項1~3の何れか1つの前記ニッケル含有水酸化物を、非水系電解質二次電池の正極活物質の前駆体として用いるニッケル含有水酸化物の製造方法。 A method for producing a nickel-containing hydroxide using the nickel-containing hydroxide according to any one of claims 1 to 3 as a precursor of a positive electrode active material of a non-aqueous electrolyte secondary battery.
JP2018164713A 2018-09-03 2018-09-03 Method for producing nickel-containing hydroxide Active JP7031535B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018164713A JP7031535B2 (en) 2018-09-03 2018-09-03 Method for producing nickel-containing hydroxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018164713A JP7031535B2 (en) 2018-09-03 2018-09-03 Method for producing nickel-containing hydroxide

Publications (2)

Publication Number Publication Date
JP2020037496A JP2020037496A (en) 2020-03-12
JP7031535B2 true JP7031535B2 (en) 2022-03-08

Family

ID=69737500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018164713A Active JP7031535B2 (en) 2018-09-03 2018-09-03 Method for producing nickel-containing hydroxide

Country Status (1)

Country Link
JP (1) JP7031535B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531158B (en) * 2020-12-09 2022-03-11 合肥国轩高科动力能源有限公司 High-nickel ternary single crystal material and preparation method thereof
CN113896251A (en) * 2021-09-02 2022-01-07 荆门市格林美新材料有限公司 Preparation device and preparation method of high-tap-density ternary precursor material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536697A (en) 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Powdered compound, process for its production and its use in lithium secondary batteries
WO2012169274A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP2016155696A (en) 2015-02-23 2016-09-01 戸田工業株式会社 Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery
WO2017217371A1 (en) 2016-06-14 2017-12-21 住友金属鉱山株式会社 Chemical reaction device and particle production method using chemical reaction device
WO2017217365A1 (en) 2016-06-14 2017-12-21 住友金属鉱山株式会社 Production method for nickel-containing hydroxide

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11130441A (en) * 1997-10-23 1999-05-18 Ise Chemicals Corp Production of nickel-containing hydroxide
JP6852316B2 (en) * 2016-09-06 2021-03-31 住友金属鉱山株式会社 A chemical reaction device and a method for producing particles using the chemical reaction device.

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010536697A (en) 2007-08-21 2010-12-02 ハー.ツェー.スタルク ゲゼルシャフト ミット ベシュレンクテル ハフツング Powdered compound, process for its production and its use in lithium secondary batteries
WO2012169274A1 (en) 2011-06-07 2012-12-13 住友金属鉱山株式会社 Nickel composite hydroxide and process for producing same, positive active material for nonaqueous-electrolyte secondary battery and process for producing same, and nonaqueous-electrolyte secondary battery
JP2016155696A (en) 2015-02-23 2016-09-01 戸田工業株式会社 Nickel hydroxide particle powder and manufacturing method therefor, cathode active material particle powder and manufacturing method therefor and nonaqueous electrolyte secondary battery
WO2017217371A1 (en) 2016-06-14 2017-12-21 住友金属鉱山株式会社 Chemical reaction device and particle production method using chemical reaction device
WO2017217365A1 (en) 2016-06-14 2017-12-21 住友金属鉱山株式会社 Production method for nickel-containing hydroxide

Also Published As

Publication number Publication date
JP2020037496A (en) 2020-03-12

Similar Documents

Publication Publication Date Title
JP5316726B2 (en) Nickel composite hydroxide and production method thereof, positive electrode active material for non-aqueous electrolyte secondary battery, production method thereof, and non-aqueous electrolyte secondary battery
CN103354958B (en) Positive pole active material with whole particle concentration gradient for lithium secondary battery, method for preparing same, and lithium secondary battery having same
US10297825B2 (en) Process for producing nickel cobalt aluminum composite hydroxide and process for producing positive electrode active material for non-aqueous electrolyte secondary batteries
JP7188081B2 (en) TRANSITION METAL CONTAINING COMPOSITE HYDROXIDE AND MANUFACTURING METHOD THEREOF, POSITIVE ACTIVE MATERIAL FOR NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY AND MANUFACTURING METHOD THEREOF, AND NON-AQUEOUS ELECTROLYTE SECONDARY BATTERY
US20150010824A1 (en) Positive active material composition for lithium battery, method of preparing the same, and lithium battery including the same
JP6895105B2 (en) A method for producing nickel-manganese composite hydroxide particles and a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery.
JP2011116580A (en) Nickel-cobalt-manganese complex hydroxide particle and method of producing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method of producing the same, and nonaqueous electrolyte secondary battery
JP2014144894A (en) Nickel cobalt composite hydroxide and its manufacturing method
KR20190008420A (en) Core-shell electroactive material
JP7031535B2 (en) Method for producing nickel-containing hydroxide
JP7220849B2 (en) Nickel-containing hydroxide and its production method
JP6911853B2 (en) A chemical reaction device and a method for producing particles using the chemical reaction device.
JP2019116411A (en) Manufacturing method of nickel-containing hydroxide
JP7088006B2 (en) Method for producing nickel-containing hydroxide
WO2017217367A1 (en) Production method for nickel-containing hydroxide
JP6965719B2 (en) Method for producing nickel-containing hydroxide
CN109195919B (en) Method for producing nickel-containing hydroxide
JP6245081B2 (en) Nickel cobalt manganese composite hydroxide and method for producing the same
JP7035497B2 (en) Method for producing nickel-containing hydroxide
JP6852316B2 (en) A chemical reaction device and a method for producing particles using the chemical reaction device.
JP6965718B2 (en) Method for producing nickel-containing hydroxide
TWI682575B (en) Core-shell electroactive materials
JP6958315B2 (en) Method for producing nickel-containing hydroxide
JP5354112B2 (en) Method for producing positive electrode active material for non-aqueous secondary battery
JP2018047408A (en) Chemical reactor, and production method of particle using chemical reactor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210407

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7031535

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150