JP7030531B2 - Road surface condition determination method and road surface condition determination device - Google Patents

Road surface condition determination method and road surface condition determination device Download PDF

Info

Publication number
JP7030531B2
JP7030531B2 JP2018003944A JP2018003944A JP7030531B2 JP 7030531 B2 JP7030531 B2 JP 7030531B2 JP 2018003944 A JP2018003944 A JP 2018003944A JP 2018003944 A JP2018003944 A JP 2018003944A JP 7030531 B2 JP7030531 B2 JP 7030531B2
Authority
JP
Japan
Prior art keywords
road surface
feature amount
front wheel
rear wheel
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003944A
Other languages
Japanese (ja)
Other versions
JP2019123293A (en
Inventor
剛 真砂
啓太 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2018003944A priority Critical patent/JP7030531B2/en
Priority to PCT/JP2018/045974 priority patent/WO2019138774A1/en
Publication of JP2019123293A publication Critical patent/JP2019123293A/en
Application granted granted Critical
Publication of JP7030531B2 publication Critical patent/JP7030531B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C19/00Tyre parts or constructions not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • B60W40/06Road conditions

Description

本発明は、車両の走行する路面の状態を判別する方法とその装置に関する。 The present invention relates to a method for determining a state of a road surface on which a vehicle travels and a device thereof.

従来、走行中のタイヤ振動の時系列波形のデータのみを用いて路面状態を判別する方法として、タイヤの振動の時系列波形に窓関数をかけて抽出した時系列波形から算出される時間窓毎の特徴ベクトルである特定周波数帯域の振動レベルと、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の路面特徴量とから算出したGAカーネルなどの関数を用いて、路面状態がDRY/WET/SNOW/ICEのいずれかであるかを判別する方法が提案されている(例えば、特許文献1参照)。 Conventionally, as a method of discriminating the road surface condition using only the data of the time-series waveform of the tire vibration during running, each time window calculated from the time-series waveform extracted by applying the window function to the time-series waveform of the tire vibration. Using a function such as a GA kernel calculated from the vibration level of a specific frequency band, which is the feature vector of, and the road surface feature amount for each time window calculated from the time-series waveform of tire vibration obtained in advance for each road surface condition. Therefore, a method for determining whether the road surface condition is DRY / WET / SNOW / ICE has been proposed (see, for example, Patent Document 1).

特開2014-35279号公報Japanese Unexamined Patent Publication No. 2014-35279

ところで、従来の路面状態判別方法では、路面の判別に、DRY路面とDRY路面以外の路面との判別等の「1対他」の判別を行っているため、他種の路面を1度に判別しようとすると、単純にその路面数分だけ演算が多くなることになる。このことが、計算の小型化を図る際には障害となる。
一方、他種の路面判別には、DRY路面とWET路面との判別等の「1対1」の判別方法がある。この「1対1」の判別方法は、上記の「1対他」の判別方法に比較して判別精度が高いものの、演算量が「1対他」の判別方法よりも多くなってしまう、といった問題点があった。
By the way, in the conventional road surface condition discrimination method, "one-to-other" discrimination such as discrimination between a DRY road surface and a road surface other than the DRY road surface is performed for discrimination of the road surface, so that other types of road surfaces are discriminated at once. If you try, the number of operations will simply increase by the number of road surfaces. This becomes an obstacle when trying to reduce the size of the calculation.
On the other hand, for other types of road surface discrimination, there is a "one-to-one" discrimination method such as discrimination between a DRY road surface and a WET road surface. This "one-to-one" discrimination method has higher discrimination accuracy than the above-mentioned "one-to-other" discrimination method, but the amount of calculation is larger than that of the "one-to-other" discrimination method. There was a problem.

本発明は、従来の問題点に鑑みてなされたもので、少ない演算量で、路面判別を精度よくかつ確実に行うことのできる方法とその装置を提供することを目的とする。 The present invention has been made in view of the conventional problems, and an object of the present invention is to provide a method and an apparatus thereof capable of accurately and surely performing road surface discrimination with a small amount of calculation.

本発明者らは、鋭意検討の結果、図9に示すように、DRY路面とWET路面とを比較すると、WET路面では、前輪のタイヤと水膜の衝突が大きいが、後輪のタイヤは、前輪のタイヤにより水膜がかき分けられるため、水膜との衝突が小さくなるため、DRY路面とWET路面との判別については、前輪で行うことが好ましいこと、及び、ICE路面では前輪のタイヤにより氷の上の水膜がかき分けられ、SNOW路面では前輪のタイヤにより雪が踏み固められるため、DRY路面とICE路面やSNOW路面との判別については
、後輪で行うことが好ましいことを見出し、本発明に到ったものである。
すなわち、本発明は、タイヤに装着された振動検出手段により検出した走行中のタイヤの振動の時間変化波形からタイヤの接している路面の状態を路面状態判別装置により判別する方法であって、前記タイヤの前輪に装着された振動検出手段と前記タイヤの後輪に装着された振動検出手段とにより前記前輪の振動の時間変化波形である前輪加速度波形と前記後輪の振動の時間変化波形である後輪加速度波形とを検出するステップと、前記前輪加速度波形と前記後輪加速度波形とから、それぞれ、前輪の特徴量と後輪の特徴量とを算出するステップと、前記算出された前輪の特徴量と後輪の特徴量と、予め路面状態毎に求めておいた路面特徴量とから、前記前輪と後輪の接している路面の状態をそれぞれ判別するステップとを備え、前記特徴量が、経験的モード分解のアルゴリズムを用いて取得された固有振動モードにヒルベルト変換を行って抽出した、瞬時周波数と瞬時振幅のいずれか一方または両方のデータの分布の統計量であり、前記路面の状態を判別するステップでは、前記前輪特徴量と前記路面特徴量とを用いて前記前輪の特徴量を含むカーネル関数を算出した後、前記算出された前記前輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とWET路面との判別を行い、前記後輪特徴量と前記路面特徴量とを用いて前記後輪の特徴量を含むカーネル関数を算出した後、前記算出された前記後輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とICE路面との判別とDRY路面とSNOW路面との判別、もしくは、DRY路面とICE・SNOW路面との判別を行うことを特徴とする。
なお、ICE・SNOW路面とは、ICE路面、もしくは、SNOW路面、もしくは、氷雪路面のいずれかを指すものとする。
これにより、「1対他」の判別方法に比較して判別精度が高い「1対1」の判別方法を用いても、少ない演算量で、路面判別を精度よくかつ確実に行うことができる。
また、タイヤの振動の時間変化波形から抽出する特徴量を、時間に依存しない統計量とすることで、演算量を大幅に削減することができるようにしたので、路面状態を速やかにかつ精度よく判別することができる。
なお、上記の路面状態毎の特徴量は、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量を学習データとした、機械学習(サポートベクターマシーン)により求められる。
As a result of diligent studies, the present inventors compared the DRY road surface and the WET road surface, and found that the front wheel tires and the water film collide with each other on the WET road surface, but the rear wheel tires Since the water film is separated by the tires of the front wheels, the collision with the water film is reduced. Since the water film on the surface is scraped off and the snow is compacted by the tires of the front wheels on the SNOW road surface, it is preferable to distinguish the DRY road surface from the ICE road surface or the SNOW road surface by the rear wheels. It has arrived.
That is, the present invention is a method for discriminating the state of the road surface in contact with the tire by the road surface condition discriminating device from the time change waveform of the vibration of the running tire detected by the vibration detecting means mounted on the tire. It is a front wheel acceleration waveform which is a time change waveform of the vibration of the front wheel and a time change waveform of the vibration of the rear wheel by the vibration detecting means mounted on the front wheel of the tire and the vibration detecting means mounted on the rear wheel of the tire. A step of detecting the rear wheel acceleration waveform, a step of calculating the front wheel feature amount and the rear wheel feature amount from the front wheel acceleration waveform and the rear wheel acceleration waveform, respectively, and the calculated front wheel feature. The feature amount is provided with a step of discriminating the state of the road surface in which the front wheel and the rear wheel are in contact from the amount, the feature amount of the rear wheel, and the road surface feature amount obtained in advance for each road surface condition . It is a statistic of the distribution of one or both of the instantaneous frequency and the instantaneous amplitude, which is extracted by performing the Hilbert conversion to the natural vibration mode acquired by using the empirical mode decomposition algorithm, and the state of the road surface is described. In the discriminating step, after the kernel function including the feature amount of the front wheel is calculated using the feature amount of the front wheel and the road surface feature amount, the identification using the kernel function including the calculated feature amount of the front wheel is used. The DRY road surface and the WET road surface are discriminated from the value of the function, a kernel function including the rear wheel feature amount is calculated using the rear wheel feature amount and the road surface feature amount, and then the calculated above is performed . Discrimination between DRY road surface and ICE road surface and DRY road surface and SNOW road surface, or DRY road surface and ICE / SNOW road surface is performed from the value of the discrimination function using the kernel function including the features of the rear wheels. It is characterized by.
The ICE / SNOW road surface refers to any of the ICE road surface, the SNOW road surface, and the ice-snow road surface.
As a result, even if a "one-to-one" discrimination method having a higher discrimination accuracy than the "one-to-other" discrimination method is used, the road surface discrimination can be performed accurately and reliably with a small amount of calculation.
In addition, the feature amount extracted from the time-varying waveform of tire vibration is a statistic that does not depend on time, so that the amount of calculation can be significantly reduced, so the road surface condition can be quickly and accurately adjusted. It can be determined.
The above-mentioned feature amount for each road surface condition is machine learning (support vector machine) using the feature amount for each time window calculated from the time-series waveform of tire vibration obtained in advance for each road surface condition as training data. Demanded by.

また、本発明は、走行中のタイヤの振動を検出してタイヤの接している路面の状態を判別する路面状態判別装置であって、前記タイヤの前輪に装着されて前記前輪の振動の時間変化波形である前輪加速度波形を検出する前輪振動検出手段と、前記タイヤの後輪に装着されて前記後輪の振動の時間変化波形である後輪加速度波形を検出する後輪振動検出手段と、前記前輪加速度波形と前記後輪加速度波形とから、それぞれ、前輪の特徴量と後輪の特徴量とを算出する特徴量算出手段と、予め路面状態毎に求めてられたタイヤ振動の時間変化波形を用いて算出された路面特徴量を記憶する記憶手段と、前記算出された特徴量と前記路面特徴量とから、前記前輪と後輪の接している路面の状態を判別する路面状態判別手段とを備え、前記特徴量が、経験的モード分解のアルゴリズムを用いて取得された固有振動モードにヒルベルト変換を行って抽出した、瞬時周波数と瞬時振幅のいずれか一方または両方のデータの分布の統計量であり、前記路面状態判別手段は、前記前輪特徴量と前記路面特徴量とを用いて前記前輪の特徴量を含むカーネル関数を算出した後、前記算出された前記前輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とWET路面との判別を行い、前記後輪特徴量と前記路面特徴量とを用いて前記後輪の特徴量を含むカーネル関数を算出した後、前記算出された前記後輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とICE路面との判別とDRY路面とSNOW路面との判別、もしくは、DRY路面とICE・SNOW路面との判別を行うことを特徴とする。
上記の構成の路面状態判別装置を用いれば、前輪と後輪とに振動検出手段を取付けて路面判別を行う際の判別精度を高めることができる。
Further, the present invention is a road surface condition discriminating device that detects the vibration of a running tire and discriminates the state of the road surface in contact with the tire, and is mounted on the front wheel of the tire to change the vibration of the front wheel over time. A front wheel vibration detecting means for detecting a front wheel acceleration waveform which is a waveform, a rear wheel vibration detecting means for detecting a rear wheel acceleration waveform which is a time-varying waveform of the vibration of the rear wheel mounted on the rear wheel of the tire, and the above. From the front wheel acceleration waveform and the rear wheel acceleration waveform, the feature amount calculation means for calculating the feature amount of the front wheel and the feature amount of the rear wheel, respectively, and the time change waveform of the tire vibration obtained in advance for each road surface condition are obtained. A storage means for storing the road surface feature amount calculated using the method, and a road surface condition determining means for determining the state of the road surface in which the front wheel and the rear wheel are in contact from the calculated feature amount and the road surface feature amount. The feature quantity is a statistic of the distribution of one or both of the instantaneous frequency and the instantaneous amplitude extracted by performing the Hilbert conversion to the natural vibration mode acquired by using the empirical mode decomposition algorithm. The road surface condition determining means calculates a kernel function including the front wheel feature amount using the front wheel feature amount and the road surface feature amount, and then calculates the kernel function including the calculated front wheel feature amount. After discriminating between the DRY road surface and the WET road surface from the value of the discrimination function using the above, and calculating the kernel function including the feature amount of the rear wheel using the feature amount of the rear wheel and the feature amount of the road surface , the above Discrimination between DRY road surface and ICE road surface and discrimination between DRY road surface and SNOW road surface, or DRY road surface and ICE / SNOW road surface from the value of the discrimination function using the calculated kernel function including the feature amount of the rear wheel. It is characterized by making a discrimination.
By using the road surface condition discriminating device having the above configuration, it is possible to improve the discriminating accuracy when the vibration detecting means is attached to the front wheels and the rear wheels to discriminate the road surface.

なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。 It should be noted that the outline of the present invention does not list all the necessary features of the present invention, and a subcombination of these feature groups can also be an invention.

本実施の形態に係る路面状態判別装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the road surface condition discriminating apparatus which concerns on this embodiment. 加速度センサーの装着位置の一例を示す図である。It is a figure which shows an example of the mounting position of an accelerometer. タイヤ振動の時系列波形の一例を示す図である。It is a figure which shows an example of the time-series waveform of a tire vibration. 固有振動モードの取得方法を示す図である。It is a figure which shows the acquisition method of a natural vibration mode. 特徴データの取得方法を示す図である。It is a figure which shows the acquisition method of a feature data. 特徴量の分布状態を示す模式図である。It is a schematic diagram which shows the distribution state of a feature amount. 入力空間と特徴空間における分離超平面を示す模式図である。It is a schematic diagram which shows the separation hyperplane in an input space and a feature space. 本実施の形態に係る路面状態の判別方法を示すフローチャートである。It is a flowchart which shows the discriminating method of the road surface condition which concerns on this embodiment. 前輪と後輪における、DRY路面の加速度波形とWET路面の加速度波形とを比較した図である。It is a figure which compared the acceleration waveform of the DRY road surface and the acceleration waveform of the WET road surface in the front wheel and the rear wheel.

図1は、路面状態判別装置10の構成を示す機能ブロック図である。
路面状態判別装置10は、タイヤ振動検出手段としての加速度センサー11,21と、前輪加速度波形抽出手段12と、後輪加速度波形抽出手段22と、前輪特徴量算出手段13と、後輪特徴量算出手段23と、前輪識別関数演算手段14と、後輪識別関数演算手段24と、記憶手段15と、路面状態判別手段16とを備える。
加速度センサー11は、前輪に装着された加速度センサー(以下、前輪側加速度センサーという)で、加速度センサー21は、後輪に装着された加速度センサー(以下、後輪側加速度センサーという)で、前輪加速度波形抽出手段12~路面状態判別手段16、及び、後輪加速度波形抽出手段22、後輪識別関数演算手段24の各手段は、例えば、コンピュータのソフトウェア、及び、RAM等のメモリーから構成される。
前輪側加速度センサー11は、図2に示すように、前輪のタイヤ(以下、前輪30Fという)のインナーライナー部31のタイヤ気室32側のほぼ中央部に一体に配置されて、路面からの入力による前輪30Fの振動を検出する。
一方、後輪側加速度センサー21は、後輪のタイヤ(以下、後輪30Rという)のインナーライナー部31のタイヤ気室32側のほぼ中央部に一体に配置されて、路面Rからの入力による後輪30Rの振動を検出する。
前輪側加速度センサー11の出力である前輪30Fのタイヤ振動の信号と、後輪側加速度センサー21の出力である後輪30Rのタイヤ振動の信号とは、それぞれ、図示しない増幅器で増幅された後、デジタル信号に変換されて、前輪加速度波形抽出手段12と後輪加速度波形抽出手段22に送られる。
なお、前輪30Fと後輪30Rを区別しない場合には、単に、タイヤ30という。
FIG. 1 is a functional block diagram showing the configuration of the road surface condition determination device 10.
The road surface condition determination device 10 includes acceleration sensors 11 and 21 as tire vibration detection means, front wheel acceleration waveform extraction means 12, rear wheel acceleration waveform extraction means 22, front wheel feature amount calculation means 13, and rear wheel feature amount calculation. The means 23, the front wheel identification function calculation means 14, the rear wheel identification function calculation means 24, the storage means 15, and the road surface state determination means 16 are provided.
The acceleration sensor 11 is an acceleration sensor mounted on the front wheels (hereinafter referred to as a front wheel side acceleration sensor), and the acceleration sensor 21 is an acceleration sensor mounted on the rear wheels (hereinafter referred to as a rear wheel side acceleration sensor). Each means of the waveform extraction means 12 to the road surface state determination means 16, the rear wheel acceleration waveform extraction means 22, and the rear wheel identification function calculation means 24 is composed of, for example, computer software and a memory such as a RAM.
As shown in FIG. 2, the front wheel side acceleration sensor 11 is integrally arranged at substantially the center of the inner liner portion 31 of the front wheel tire (hereinafter referred to as the front wheel 30F) on the tire air chamber 32 side, and is input from the road surface. The vibration of the front wheel 30F is detected.
On the other hand, the rear wheel side acceleration sensor 21 is integrally arranged at substantially the center of the inner liner portion 31 of the rear wheel tire (hereinafter referred to as the rear wheel 30R) on the tire air chamber 32 side, and is based on input from the road surface R. The vibration of the rear wheel 30R is detected.
The signal of the tire vibration of the front wheel 30F, which is the output of the front wheel side acceleration sensor 11, and the signal of the tire vibration of the rear wheel 30R, which is the output of the rear wheel side acceleration sensor 21, are amplified by an amplifier (not shown) and then amplified. It is converted into a digital signal and sent to the front wheel acceleration waveform extracting means 12 and the rear wheel acceleration waveform extracting means 22.
When the front wheel 30F and the rear wheel 30R are not distinguished, it is simply referred to as a tire 30.

前輪加速度波形抽出手段12は、前輪側加速度センサー11で検出したタイヤ振動の信号から、タイヤ30の一回転毎に、タイヤ振動の時系列波形である加速度波形(以下、前輪加速度波形という)を抽出し、後輪加速度波形抽出手段22は、後輪側加速度センサー21で検出したタイヤ振動の信号からタイヤ振動の時系列波形である加速度波形(以下、後輪加速度波形という)を抽出する。
図3はタイヤ振動の時系列波形の一例を示す図で、タイヤ振動の時系列波形は、踏み込み位置近傍と蹴り出し位置近傍に大きなピークを有しており、かつ、タイヤの陸部が接地する前の踏み込み前領域Rfにおいても、タイヤの陸部が路面から離れた後の蹴り出し後領域Rkにおいても、路面状態によって異なる振動が出現する。一方、踏み込み前領域Rfの前の領域と蹴り出し後領域Rkの後の領域(以下、路面外領域という)とは路面の影響を殆ど受けていないので、振動レベルも小さく、路面の情報も含んでいない。
なお、路面外領域の定義としては、例えば、加速度波形に対してバックグラウンドレベルを設定し、このバックグラウンドレベルよりも小さな振動レベルを有する領域を路面外領域とすればよい。
本例では、加速度波形のうちの。路面の情報を含む、踏み込み前領域Rfから蹴り出し後領域Rkまで領域である路面内領域の加速度波形を計測データx1(t)とし、この計測データx1(t)を、経験的モード分解(Empirical Mode Decomposition ; EMD)のアルゴリズムを用いて複数の固有振動モード(Intrinsic Mode Function ; IMF)に分解した後、各IMFに対してヒルベルト変換を行って特徴量を算出する。
The front wheel acceleration waveform extracting means 12 extracts an acceleration waveform (hereinafter referred to as a front wheel acceleration waveform) which is a time-series waveform of the tire vibration for each rotation of the tire 30 from the tire vibration signal detected by the front wheel side acceleration sensor 11. Then, the rear wheel acceleration waveform extracting means 22 extracts an acceleration waveform (hereinafter referred to as a rear wheel acceleration waveform) which is a time-series waveform of the tire vibration from the signal of the tire vibration detected by the rear wheel side acceleration sensor 21.
FIG. 3 is a diagram showing an example of the time-series waveform of the tire vibration. The time-series waveform of the tire vibration has large peaks near the stepping position and the kicking position, and the land portion of the tire touches the ground. In both the front pre-stepping region R f and the post-kicking region R k after the land portion of the tire is separated from the road surface, different vibrations appear depending on the road surface condition. On the other hand, since the region before the pre-stepping region R f and the region after the kicking region R k (hereinafter referred to as the out-of-road region) are hardly affected by the road surface, the vibration level is small and the information on the road surface is small. Does not include.
As the definition of the off-road surface region, for example, a background level may be set for the acceleration waveform, and a region having a vibration level smaller than this background level may be set as the out-of-road surface region.
In this example, of the acceleration waveforms. The acceleration waveform in the road surface region, which is the region from the pre-stepping region R f to the post-kicking region R k , including the road surface information, is defined as measurement data x 1 (t), and this measurement data x 1 (t) is empirical. After decomposing into multiple natural mode functions (IMF) using the algorithm of Mode Decomposition (EMD), Hilbert transform is performed for each IMF to calculate the features.

前輪特徴量算出手段13は、固有振動モード抽出部13aと、特徴データ算出部13bと、特徴量算出部13cとを備え、前輪加速度波形抽出手段12により抽出した前輪加速度波形から、前輪特徴量を算出する。
固有振動モード抽出部13aは、計測データx1(t)から、EMDのアルゴリズムを用いて複数のIMF(C1,C2,……,Cn)を取得するとともに、取得された複数のIMFから任意のIMFCkを抽出する。
ここで、IMFの求め方について説明する。
まず、図4に示すように、計測データx1(t)の全ての極大点と極小点とを抽出し、極大点を結んだ上側包絡線emax(t)と極小点を結んだ下側包絡線emin(t)とを求めた後、上側包絡線emax(t)と下側包絡線emin(t)との局所平均m1(t)=(emax(t)+emin(t))/2を算出する。
次に、計測データx1(t)と局所平均m1(t)との差分波形y1(t)=x1(t)-m1(t)を求める。差分波形y1(t)は対称性が乏しく、IMFとはいえない。そこで、差分波形y1 (t)に計測データx1 (t)に対して行った処理と同様の処理を行い、差分波形y2(t)を求める。更に、この処理を繰り返し行って、差分波形y3(t),y4(t),……,ym(t)を求める。差分波形yk(t)はkが大きくなるほど対称性が高く、IMFに近くなる。
差分波形がIMFとなる条件としては、yk(t)のゼロクロス点の数とピーク数が、IMFを求める過程で4~8回連続して変化せず、かつ、ゼロクロス点の数とピーク数が一致するとうい条件が提案されている。なお、局所平均mk(t)の標準偏差が閾値以下になった時点における差分波形yk-1(t)をIMFとしてもよい。
この計測データx1(t)から抽出しIMFを、第1のIMFC1という。
The front wheel feature amount calculation means 13 includes a natural vibration mode extraction unit 13a, a feature data calculation unit 13b, and a feature amount calculation unit 13c, and obtains a front wheel feature amount from the front wheel acceleration waveform extracted by the front wheel acceleration waveform extraction means 12. calculate.
The natural vibration mode extraction unit 13a acquires a plurality of IMFs (C 1 , C 2 , ..., C n ) from the measurement data x 1 (t) using an EMD algorithm, and also acquires a plurality of acquired IMFs. Extract any IMFC k from.
Here, how to obtain the IMF will be described.
First, as shown in FIG. 4, all the maximum points and the minimum points of the measurement data x 1 (t) are extracted, and the upper envelope line e max (t) connecting the maximum points and the lower side connecting the minimum points. After finding the envelope e min (t), the local average of the upper envelope e max (t) and the lower envelope e min (t) = (e max (t) + e min (e max (t) + e min ( t))) / 2 is calculated.
Next, the difference waveform y 1 (t) = x 1 (t) −m 1 (t) between the measurement data x 1 (t) and the local average m 1 (t) is obtained. The difference waveform y 1 (t) has poor symmetry and cannot be said to be an IMF. Therefore, the same processing as that performed on the measurement data x 1 (t) is performed on the difference waveform y 1 (t) to obtain the difference waveform y 2 (t). Further, this process is repeated to obtain the difference waveforms y 3 (t), y 4 (t), ..., Y m (t). The difference waveform y k (t) has higher symmetry as k becomes larger, and becomes closer to the IMF.
The conditions for the difference waveform to be the IMF are that the number of zero cross points and the number of peaks of y k (t) do not change 4 to 8 times in a row in the process of obtaining the IMF, and the number of zero cross points and the number of peaks. If they match, the conditions are proposed. The difference waveform y k-1 (t) at the time when the standard deviation of the local average m k (t) becomes equal to or less than the threshold value may be used as the IMF.
The IMF extracted from this measurement data x 1 (t) is called the first IMFC 1 .

次に、第1のIMFC1と計測データx1(t)とから第2のIMFC2を抽出する。具体的には、計測データx1(t)から第1のIMFC1を引いたデータx2(t)=x1(t)-IMFC1を新たな計測データとし、この新たな計測データx2(t)に対して、上記の計測データx1(t)に対する処理と同様の処理を行って第2のIMFC2を抽出する。
この処理を、繰り返し、第nのIMFCnが、極値が1つである波形になった時点で、IMFを求める処理を終了する。抽出されるIMFの個数は元波形(計測データ)により変化するが、通常は、10~15個のIMFが抽出される。
なお、IMFCkは、高周波成分から順番に抽出される。
また、全てのIMFCkの和は、計測データx1(t)に等しい。
ところで、路面判別のためには、タイヤ振動の高周波成分に着目する必要があるので特徴量を算出するためのIMFとしては、第1のIMFC1や第2のIMFC2などの低い番号のIMFを用いればよい。
なお、計算量を低減するには、使用するIMFのみを抽出して、そこで計算をとめるようにすればよい。例えば、第3のIMFC3のみを使用する場合には、第4のIMFC4以降を抽出する計算を省略してもよい。
以下、使用するIMFである第kのIMFCkをXk(t)とする。
Next, the second IMFC 2 is extracted from the first IMFC 1 and the measurement data x 1 (t). Specifically, the data x 2 (t) = x 1 (t) -IMFC 1 obtained by subtracting the first IMF 1 from the measurement data x 1 (t) is used as new measurement data, and this new measurement data x 2 The second IMFC 2 is extracted by performing the same processing on (t) as the above-mentioned processing on the measurement data x 1 (t).
This process is repeated, and when the nth IMFC n becomes a waveform having one extremum, the process for obtaining the IMF ends. The number of IMFs to be extracted varies depending on the original waveform (measurement data), but usually 10 to 15 IMFs are extracted.
IMFC k is extracted in order from the high frequency component.
Also, the sum of all IMFC ks is equal to the measurement data x 1 (t).
By the way, in order to discriminate the road surface, it is necessary to pay attention to the high frequency component of the tire vibration, so as the IMF for calculating the feature amount, a low number IMF such as the first IMFC 1 or the second IMFC 2 is used. You can use it.
In order to reduce the amount of calculation, only the IMF to be used should be extracted and the calculation should be stopped there. For example, when only the third IMFC 3 is used, the calculation for extracting the fourth IMFC 4 and later may be omitted.
Hereinafter, the kth IMFC k , which is the IMF to be used, is referred to as X k (t).

特徴データ算出部13bは、得られたIMFXk(t)についてヒルベルト変換を行い、波形のゼロクロス点における瞬時周波数fk(t)と、瞬時振幅ak(t)の極大値とを算出する。瞬時周波数fk(t)は、位相関数θk(t)の時間微分である。
k(t)のヒルベルト変換Yk(t)は、以下の式(1)で求められる。
[数1]

Figure 0007030531000001
このヒルベルト変換により、特徴データを算出するための解析波形Zk(t)は、以下の式(2)~(4)のように表せる。
[数2]
Figure 0007030531000002
図5に示すように、各IMFXk(t)の波形は、複数の時刻tjにおいてのゼロクロス点を有し、時刻tjと時刻t
j+1との間に、瞬時振幅の極大値を有する。
そこで、同図の太線で示す、時刻tjと時刻t j+1との間の波形を、周波数fkjが瞬時周波数fk(tj)で、振幅akjが瞬時振幅ak(tj )の波形ck,jの一部(λk,j/2)であるとみなし、この周波数fkjと振幅akjとを各IMFXk(t)の特徴データとする。ここで、tj =(tj+tj+1)/2である。
特徴量算出部13cは、IMFXk(t)の特徴データである、周波数fk,jに対する振幅ak,jの分布から、統計量である、平均μk、標準偏差σk、及び、歪度b1 kを算出する。
これらの統計量は、時間に依存しない統計量であるので、これらの統計量を特徴量として採用する。なお、特徴量はCk毎に求まる。 The feature data calculation unit 13b performs a Hilbert transform on the obtained IFX k (t), and calculates the instantaneous frequency f k (t) at the zero cross point of the waveform and the maximum value of the instantaneous amplitude a k (t). The instantaneous frequency f k (t) is the time derivative of the phase function θ k (t).
The Hilbert transform Y k (t) of X k (t) is obtained by the following equation (1).
[Number 1]
Figure 0007030531000001
By this Hilbert transform, the analysis waveform Z k (t) for calculating the feature data can be expressed by the following equations (2) to (4).
[Number 2]
Figure 0007030531000002
As shown in FIG. 5, the waveform of each IFX k (t) has zero crossing points at a plurality of time t j , and the time t j and the time t j.
It has a maximum value of instantaneous amplitude between j + 1 and j + 1.
Therefore, the waveform between time t j and time t j + 1 , shown by the thick line in the figure, has a frequency f k j as an instantaneous frequency f k (t j ) and an amplitude a k j as an instantaneous amplitude a k (t j ). It is regarded as a part (λ k, j / 2) of the waveform c k, j of ' ), and the frequency f k j and the amplitude a k j are used as the feature data of each IFX k (t). Here, t j ' = (t j + t j + 1 ) / 2.
The feature amount calculation unit 13c is based on the distribution of the amplitudes a k and j with respect to the frequencies f k and j , which are the feature data of the IFX k (t), and are statistics such as the mean μ k , the standard deviation σ k , and the skewness. Calculate the degree b 1 k .
Since these statistics are time-independent statistics, these statistics are adopted as features. The feature amount is obtained for each C k .

図6は、特徴量をX=(μ,σ,b1)としたときの、特徴量の入力空間を示す模式図で、a軸が平均μ、a2軸が標準偏差σ、a3軸が歪度b1である。
同図において、グループCがDRY路面を走行しているときの特徴量Xiの集合で、グループC’がWET路面を走行しているときの特徴量X’iの集合とすると、グループCとグループC’とを区別することができれば、タイヤの走行している路面がDRY路面かWET路面かを判別することができる。
同様に、SNOW路面やICE路面を走行したときの加速度波形からも、SNOW路面における特徴量の分布やICE路面における特徴量の分布を求めることができる。
なお、図1では省略したが、後輪特徴量算出手段23の構成及び動作は、前輪特徴量算出手段13と同じで、後輪加速度波形抽出手段22により抽出された後輪加速度波形からIMFCkを抽出した後、後輪特徴量である、平均μk、標準偏差σk、及び、歪度b1 kを、Ck毎に求める。
以下、使用する特徴量を第1のIMFC1の特徴量とする。
FIG. 6 is a schematic diagram showing the input space of the feature amount when the feature amount is X = (μ, σ, b 1 ). The a1 axis is the average μ, and the a2 axis is the standard deviation σ, a3 . The axis has a skewness b 1 .
In the figure, if the set of the features X i when the group C is traveling on the DRY road surface and the set of the features X'i when the group C'is traveling on the WET road surface, the group C and If it can be distinguished from Group C', it is possible to determine whether the road surface on which the tire is traveling is a DRY road surface or a WET road surface.
Similarly, the distribution of the feature amount on the SNOW road surface and the distribution of the feature amount on the ICE road surface can be obtained from the acceleration waveform when traveling on the SNOW road surface or the ICE road surface.
Although omitted in FIG. 1, the configuration and operation of the rear wheel feature amount calculation means 23 are the same as those of the front wheel feature amount calculation means 13, and the IMFC k is obtained from the rear wheel acceleration waveform extracted by the rear wheel acceleration waveform extraction means 22. After extracting, the average μ k , standard deviation σ k , and skewness b 1 k , which are the features of the rear wheels, are obtained for each C k .
Hereinafter, the feature amount to be used will be referred to as the feature amount of the first IMFC 1 .

記憶手段15は、予め求めておいた、D/W識別モデル、D/S識別モデル、D/I識別モデル、及び、S/I識別モデルの4つの識別モデルを記憶する。
D/W識別モデルは、DRY路面とWET路面とを分離超平面を表わす識別関数fDW(x)により分離するための特徴量である基準特徴量YDSV(yjk)及びYWSV(yjk)と、基準特徴量YDSV(yjk)及びYWSV(yjk)をそれぞれ重み付けするラグランジュ乗数λD及びλWを記憶する。
D/S識別モデルは、基準特徴量YDSV(yjk),YSSV(yjk)、及び、ラグランジュ乗数λD,λSを記憶し、D/I識別モデルは、基準特徴量YDSV(yjk),YISV(yjk)、及び、ラグランジュ乗数λD,λIを記憶する。
また、S/I識別モデルは、基準特徴量YSSV(yjk),YISV(yjk)、及び、ラグランジュ乗数λS,λIを記憶する。
各識別モデルは、タイヤに加速度センサーを取り付けたタイヤを搭載した試験車両をDRY、WET、SNOW、及び、ICEの各路面で様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された特徴量YA=(μA,σA,b1A)を求めた後、YAを学習データとして、サポートベクターマシーン(SVM)により構築される。ここで、添え字Aは、DRY、WET、SNOW、及び、ICEを示している。また、SVMにより選択された識別境界の近傍の特徴量を路面特徴量YASVという。
なお、D/W識別モデルは、前輪側加速度センサー11の出力である前輪加速度波形を用いて構築され、D/S識別モデル、D/I識別モデル、及び、S/I識別モデルは、後輪側加速度センサー21の出力である後輪加速度波形を用いて構築される。
The storage means 15 stores four discriminative models, a D / W discriminative model, a D / S discriminative model, a D / I discriminative model, and an S / I discriminative model, which have been obtained in advance.
The D / W discrimination model is a reference feature quantity Y DSV (y jk ) and Y WSV (y jk ), which are features for separating a DRY road surface and a WET road surface by a discrimination function f DW (x) representing a separation hyperplane. ) And the Lagrange multipliers λ D and λ W that weight the reference features Y DSV (y jk ) and Y WSV (y jk ), respectively.
The D / S discrimination model stores the reference feature quantities Y DSV (y jk ), Y SSV (y jk ), and the Lagrange multipliers λ D , λ S , and the D / I discrimination model stores the reference feature quantities Y DSV (y jk). Stores y jk ), Y ISV (y jk ), and Lagrange multipliers λ D and λ I.
Further, the S / I discrimination model stores the reference feature quantities Y SSV (y jk ), Y ISV (y jk ), and the Lagrange multipliers λ S and λ I.
Each identification model is calculated from the time-series waveform of tire vibration obtained by running a test vehicle equipped with a tire with an acceleration sensor attached to the tire at various speeds on each road surface of DRY, WET, SNOW, and ICE. After obtaining the obtained feature quantity Y A = (μ A , σ A , b 1 A), it is constructed by a support vector machine (SVM) using Y A as training data. Here, the subscript A indicates DRY, WET, SNOW, and ICE. Further, the feature amount in the vicinity of the identification boundary selected by the SVM is referred to as a road surface feature amount Y ASV .
The D / W discrimination model is constructed using the front wheel acceleration waveform that is the output of the front wheel side acceleration sensor 11, and the D / S discrimination model, the D / I discrimination model, and the S / I discrimination model are the rear wheels. It is constructed using the rear wheel acceleration waveform which is the output of the side acceleration sensor 21.

図7は、入力空間上におけるDRY路面特徴量YDとWET路面特徴量YWを示す概念図で、同図の黒丸がDRY路面、白丸がWET路面である。
なお、前述したように、DRY路面特徴量YDもWET路面特徴量YWも行列であるが、グループの識別境界の求め方を説明するため、図7では、DRY路面特徴量YDとWET路面特徴量YWとをそれぞれ2次元のベクトルで示した。
グループの識別境界は、一般には、線形分離が不可能である。
そこで、カーネル法を用いて、路面特徴量Y及びYWを非線形写像φによって高次元特徴空間に写像して線形分離を行うことで、元の入力空間において路面特徴量YD及びYWに対して非線形な分類を行う。
DRY路面とWET路面とを区別する際には、DRY路面特徴量YDとWET路面特徴量YWとを分離する分離超平面である識別関数fDW(x)に対してマージンを持たせることで、DRY路面とWET路面とを精度よく区別することができる。マージンとは、分離超平面から一番近いサンプル(サポートベクトル)までの距離をいい、識別境界である分離超平面はf(x)=0である。
そして、図7に示すように、DRY路面特徴量YDは全てfDW(x)≧+1の領域にあり、WET路面特徴量YWは、fDW(x)≦-1の領域にある。
DRY路面とWET路面とを区別するD/W識別モデルは、fDW(x)=+1の距離にあるサポートベクトルYDSVと、fDW(x)=-1の距離にあるサポートベクトルYWSVとを備えた入力空間である。YDSVとYWSVとは、一般に複数個存在する。
D/S識別モデル、D/I識別モデル、及び、S/I識別モデルについても同様である。
FIG. 7 is a conceptual diagram showing a DRY road surface feature amount Y D and a WET road surface feature amount Y W on the input space. In the figure, black circles are DRY road surfaces and white circles are WET road surfaces.
As described above, both the DRY road surface features Y D and the WET road surface features Y W are matrices, but in order to explain how to obtain the identification boundary of the group, in FIG. 7, the DRY road surface features Y D and WET The road surface features Y W are shown as two-dimensional vectors.
Group identification boundaries are generally not linearly separable.
Therefore, by using the kernel method to map the road surface features Y D and Y W to a high-dimensional feature space by the nonlinear mapping φ and performing linear separation, the road surface features Y D and Y W can be obtained in the original input space. On the other hand, non-linear classification is performed.
When distinguishing between the DRY road surface and the WET road surface, a margin should be provided for the discrimination function f DW (x) which is a separation hyperplane that separates the DRY road surface feature amount Y D and the WET road surface feature amount Y W. Therefore, the DRY road surface and the WET road surface can be accurately distinguished. The margin means the distance from the separation hyperplane to the nearest sample (support vector), and the separation hyperplane which is the discrimination boundary is f (x) = 0.
Then, as shown in FIG. 7, the DRY road surface features Y D are all in the region of f DW (x) ≧ + 1, and the WET road surface features Y W are in the region of f DW (x) ≦ -1.
The D / W discriminative model that distinguishes between the DRY road surface and the WET road surface is a support vector Y DSV at a distance of f DW (x) = + 1 and a support vector Y WSV at a distance of f DW (x) = -1. It is an input space equipped with. Generally, there are a plurality of Y DSVs and Y WSVs .
The same applies to the D / S discriminative model, the D / I discriminative model, and the S / I discriminative model.

次に、データの集合X=(x1,x2,……xn)と所属クラスz={1、-1}とを用いて、データを識別する最適な識別関数fDW(x)=wTφ(x)-bを求める。ここで、wは重み係数を表すベクトルで、bは定数である。
また、データはDRY路面特徴量YDjとWER路面特徴量YWjであり、所属クラスはz=1が同図のχ1で示すDRY路面のデータで、z=-1がχ2で示すWET路面のデータである。f(x)=0が識別境界で、1/||w||が路面特徴量YAj(A=D,W)とf(x)=0との距離である。
識別関数fDW(x)=wTφ(x)-bは、例えば、ラグランジュ未定乗数法を用いて最適化される。最適化問題は、以下の式(6),(7)に置き換えられる。
[数3]

Figure 0007030531000003
ここで、α,βは複数ある学習データの指標である。また、λはラグランジュ乗数で、λ>0である。なお、λ=0である路面特徴量YAjは、識別関数f(x)に寄与しない(サポートベクトルではない)ベクトルデータである。
ラグランジュ乗数は、φ(xα)φ(xβ)は、xαとxβを写像φで高次元空間へ写像した後の内積である。
また、φ(xα)φ(xβ)は、xαとxβを写像φで高次元空間へ写像した後の内積で、内積φT(xα)φ(xβ)を直接求めずに、カーネル関数K(xα,xβ)に置き換えることで、識別関数f(x)=wTφ(x)-bを非線形できる。
ラグランジュ乗数λは、前記の式(7)について、最急下降法やSMO(Sequential Minimal Optimization)などの最適化アルゴリズムを用いて求めることができる。
D/S識別モデル、D/I識別モデル、及び、S/I識別モデルについても、同様に、基準特徴量YASV(yjk)、及び、ラグランジュ乗数λAを求めることができる。
本例では、カーネル関数K(xα,xβ)として、以下の式に示す、ガウシアンカーネル(RBFカーネル)を用いた。
[数4]
Figure 0007030531000004
Next, the optimal discriminant function f DW (x) = that discriminates the data using the set of data X = (x 1 , x 2 , ... x n ) and the belonging class z = {1, -1}. w T φ (x) −b is obtained. Here, w is a vector representing the weighting coefficient, and b is a constant.
The data are DRY road surface features Y Dj and WER road surface features Y Wj , and the belonging class is DRY road surface data in which z = 1 is indicated by χ 1 in the figure, and z = -1 is WET indicated by χ 2 . It is the data of the road surface. f (x) = 0 is the discrimination boundary, and 1 / || w || is the distance between the road surface feature amount Y Aj (A = D, W) and f (x) = 0.
The discriminant function f DW (x) = w T φ (x) −b is optimized using, for example, the Lagrange undetermined multiplier method. The optimization problem is replaced by the following equations (6) and (7).
[Number 3]
Figure 0007030531000003
Here, α and β are indices of multiple learning data. Further, λ is a Lagrange multiplier, and λ> 0. The road surface feature amount Y Aj in which λ = 0 is vector data that does not contribute to the discrimination function f (x) (not a support vector).
The Lagrange multiplier is φ (x α ) φ (x β ), which is the inner product after mapping x α and x β to a higher dimensional space with the mapping φ.
Further, φ (x α ) φ (x β ) is the inner product after mapping x α and x β to a high-dimensional space with the mapping φ, and the inner product φ T (x α ) φ (x β ) is not directly obtained. By substituting the kernel function K (x α , x β ), the discriminant function f (x) = w T φ (x) −b can be made non-linear.
The Lagrange multiplier λ can be obtained for the above equation (7) by using an optimization algorithm such as a steepest descent method or SMO (Sequential Minimal Optimization).
Similarly, for the D / S discriminative model, the D / I discriminative model, and the S / I discriminative model, the reference feature quantity Y ASV (y jk ) and the Lagrange multiplier λ A can be obtained.
In this example, the Gaussian kernel (RBF kernel) shown in the following equation was used as the kernel function K (x α , x β ).
[Number 4]
Figure 0007030531000004

前輪識別関数演算手段14は、カーネル関数算出部14aと識別関数演算部14bとを備え、DRY路面特徴量YDとWET路面特徴量YWとを分離する分離超平面である識別関数fDW(x)の値を計算する。
カーネル関数算出部14aは、前輪特徴量算出手段13にて算出された特徴量Xと記憶手段15に記録されているD/Wモデルの各サポートベクトルYDSVとYWSVとから、上記式(8)を用いて、ガウシアンカーネルKD(X,YDSV)とKW(X,YWSV)とを算出する。
識別関数演算部14bでは、カーネル関数KD(X,YDSV),KW(X,YWSV)を用いて、DRY路面とWET路面とを識別するための識別関数fDW(x)の値を求める。
識別関数fD W(x)の値は、下記の式(9)を用いて計算する。
[数5]

Figure 0007030531000005
なお、NDSVはDRYモデルのサポートベクトルの数、NWSVはWETモデルのサポートベクトルの数である。また、識別関数のラグランジュ乗数λD,λWなどの値は、DRY路面とWET路面とを識別する識別関数を求める際の学習により求められる。
後輪識別関数演算手段24は、カーネル関数算出部24aと識別関数演算部24bとを備え、DRY路面特徴量YDとSNOW路面特徴量YSとを分離するる識別関数fDS(x)の値、DRY路面特徴量YDとICE路面特徴量YIとを分離する識別関数fDI(x)の値、及び、SNOW路面特徴量YSとICE路面特徴量YIとを分離する識別関数fSI(x)の値を計算する。
カーネル関数算出部24aは、後輪特徴量算出手段23にて算出された特徴量Xと記憶手段15に記録されているD/Sモデル、D/Iモデル、S/Iモデルの各サポートベクトルYDSV,YSSV,YISVから、上記式(8)を用いて、ガウシアンカーネルKD(X,YDSV)とKS(X,YSSV)とKI(X,YISV)とを算出する。
識別関数演算部24bでは、カーネル関数KD(X,YDSV),KS(X,YSSV),KI(X,YWSV)を用いて、識別関数fDS(x),fDI(x),fSI(x)の値を求める。
識別関数fDS(x),fDI(x),fSI(x)の値は、下記の式(10)~(12)を用いて計算する。
[数6]
Figure 0007030531000006
路面状態判別手段16は、前輪識別関数演算手段14で計算された識別関数fDW(x)の値と、後輪識別関数演算手段24で計算された識別関数fDS(x),fDI(x),fSI(x)の値とから、路面状態がDRY/WET/SNOW/ICEのいずれかであるかを判別する。 The front wheel discrimination function calculation means 14 includes a kernel function calculation unit 14a and a discrimination function calculation unit 14b, and is a separation superplane that separates the DRY road surface feature amount Y D and the WET road surface feature amount Y W (discrimination function f DW ( Calculate the value of x).
The kernel function calculation unit 14a uses the above equation (8) from the feature amount X calculated by the front wheel feature amount calculation means 13 and the support vectors Y DSV and Y WSV of the D / W model recorded in the storage means 15. ) Is used to calculate the Gaussian kernels KD (X, Y DSV ) and K W (X, Y WSV ).
In the discriminant function calculation unit 14b, the value of the discriminant function f DW (x) for discriminating between the DRY road surface and the WET road surface by using the kernel functions KD (X, Y DSV ) and K W (X, Y WSV ). Ask for.
The value of the discriminant function f DW (x) is calculated using the following equation (9).
[Number 5]
Figure 0007030531000005
N DSV is the number of support vectors of the DRY model, and N WSV is the number of support vectors of the WET model. Further, the values of the Lagrange multipliers λ D , λ W , etc. of the discriminant function are obtained by learning when finding the discriminant function for discriminating between the DRY road surface and the WET road surface.
The rear wheel identification function calculation means 24 includes a kernel function calculation unit 24a and an identification function calculation unit 24b, and has an identification function f DS (x) that separates the DRY road surface feature amount Y D and the SNOW road surface feature amount Y S. The value, the value of the discrimination function f DI (x) that separates the DRY road surface feature amount Y D and the ICE road surface feature amount Y I , and the discrimination function that separates the SNOW road surface feature amount Y S and the ICE road surface feature amount Y I. f Calculate the value of SI (x).
The kernel function calculation unit 24a has a feature amount X calculated by the rear wheel feature amount calculation means 23 and each support vector Y of the D / S model, the D / I model, and the S / I model recorded in the storage means 15. From DSV , Y SSV , and Y ISV , the Gaussian kernels KD (X, Y DSV ), KS ( X , Y SSV ), and KI ( X , Y ISV ) are calculated using the above equation (8). ..
The discriminant function calculation unit 24b uses the kernel functions KD (X, Y DSV ) , KS ( X , Y SSV ), and KI ( X , Y WSV ) to discriminate functions f DS (x), f DI (. Find the values of x) and f SI (x).
The values of the discriminant functions f DS (x), f DI (x), and f SI (x) are calculated using the following equations (10) to (12).
[Number 6]
Figure 0007030531000006
The road surface condition discriminating means 16 includes the value of the discriminating function f DW (x) calculated by the front wheel discriminating function calculating means 14 and the discriminating functions f DS (x) and f DI calculated by the rear wheel discriminating function calculating means 24. From the values of x) and f SI (x), it is determined whether the road surface condition is DRY / WET / SNOW / ICE.

次に、路面状態判別装置10を用いて、路面の状態を判別する方法について、図8のフローチャートを参照して説明する。
まず、加速度センサー11,21により路面Rからの入力により発生したタイヤ振動をそれぞれ検出し(ステップS10)、検出されたタイヤ振動の信号から、前輪30Fタイヤ振動の時系列波形である前輪加速度波形と後輪30Rタイヤ振動の時系列波形である後輪加速度波形を抽出する(ステップS11)。
そして、抽出されたタイヤ振動の時系列波形のデータから、EMDのアルゴリズムを用いて複数のIMFC1~Cnを取得した後(ステップS12)後、これらのIMFの中から、低い番号の第1~第3のIMFC1~C3を抽出して、路面状態の判別に使用する使用するIMFCkを選択し、これをXk(t)とする(ステップS13)。
次に、Xk(t)に対してヒルベルト変換を行って、特徴データであるゼロクロス点における瞬時周波数fk(t)と、瞬時振幅ak(t)の極大値とを算出(ステップS14)した後、瞬時周波数fk(t)に対する瞬間振幅ak(t)の分布から統計量を算出し、この算出された統計量を特徴量Xkとする(ステップS15)。本例では、統計量を平均μk、標準偏差σk、及び、歪度b1 kをとした。
なお、ステップS12~ステップS15までの各ステップは、前輪加速度波形と後輪加速度波形のそれぞれに対して行い、前輪加速度波形から前輪特徴量を算出し、後輪加速度波形から後輪特徴量を算出する。なお、本例では、前輪特徴量と後輪特徴量とを区別せずに、特徴量Xkと記す。
次に、算出された特徴量Xkと、記憶手段15に記録されている識別モデルのサポートベクトルYDSV,YWSV,YSSV,YISVとから、ガウシアンカーネルKD(X,YDSV),KW(X,YWSV),KS(X,YSSV),KI(X,YISV)を求め(ステップS16)た後、カーネル関数KA(X,Y)を用いた4つの識別関数fDW(x),fDS(x),fDI(x),fSI(x)をそれぞれ計算する(ステップS17)。
最後に、4つの識別関数fDW(x),fDS(x),fDI(x),fSI(x)の計算値を用いて路面状態を判別する(ステップS18)。
路面状態の判別は、はじめに、前輪特徴量とD/W識別モデルとを用いて計算した識別関数fDW(x)の値から、路面がDRY路面かWET路面かを判別する。
具体的には、fDW(x)<0であれば、WET路面とSNOW路面との判別、及び、WET路面とICE路面との判別をすることなく、路面がWET路面であると判別する。
一方、fDW(x)>0である場合には、後輪特徴量とD/S識別モデル、D/I識別モデル、及び、S/I識別モデルを用いて計算した識別関数fDS(x),fDI(x),fSI(x)の値から、路面がDRY路面か、SNOW路面か、ICE路面かを判別する。
具体的には、fDS(x)>0、かつ、fDI(x)>0であればDRY路面と判別し、fDS(x)<0、かつ、fSI(x)>0であればSNOW路面と判別する。
また、fDS(x)<0、かつ、fSI(x)<0であればICE路面と判別する。
Next, a method of discriminating the state of the road surface by using the road surface condition discriminating device 10 will be described with reference to the flowchart of FIG.
First, the acceleration sensors 11 and 21 detect the tire vibration generated by the input from the road surface R (step S10), and from the detected tire vibration signal, the front wheel acceleration waveform which is the time-series waveform of the front wheel 30F tire vibration is obtained. The rear wheel acceleration waveform, which is a time-series waveform of the rear wheel 30R tire vibration, is extracted (step S11).
Then, after acquiring a plurality of IMFs 1 to Cn from the extracted tire vibration time-series waveform data using the EMD algorithm (step S12), the first of these IMFs has a lower number. -Third IMFCs 1 to C 3 are extracted, IMFC k to be used for determining the road surface condition is selected, and this is set as X k (t) (step S13).
Next, the Hilbert transform is performed on X k (t) to calculate the instantaneous frequency f k (t) at the zero cross point, which is the characteristic data, and the maximum value of the instantaneous amplitude a k (t) (step S14). Then, a statistic is calculated from the distribution of the instantaneous amplitude a k (t) with respect to the instantaneous frequency f k (t), and the calculated statistic is defined as the feature quantity X k (step S15). In this example, the statistics are mean μ k , standard deviation σ k , and skewness b 1 k .
Each step from step S12 to step S15 is performed for each of the front wheel acceleration waveform and the rear wheel acceleration waveform, the front wheel feature amount is calculated from the front wheel acceleration waveform, and the rear wheel feature amount is calculated from the rear wheel acceleration waveform. do. In this example, the feature amount X k is described without distinguishing between the front wheel feature amount and the rear wheel feature amount.
Next, from the calculated feature quantity X k and the support vectors Y DSV , Y WSV , Y SSV , Y ISV of the identification model recorded in the storage means 15, the Gaussian kernel KD (X, Y DSV ) ,. After finding K W (X, Y WSV ), K S ( X , Y SSV ), KI (X, Y ISV ) (step S16), four identifications using the kernel function KA (X, Y) The functions f DW (x), f DS (x), f DI (x), and f SI (x) are calculated respectively (step S17).
Finally, the road surface condition is discriminated using the calculated values of the four discriminant functions f DW (x), f DS (x), f DI (x), and f SI (x) (step S18).
To determine the road surface condition, first, it is determined whether the road surface is a DRY road surface or a WET road surface from the value of the discrimination function f DW (x) calculated using the front wheel feature amount and the D / W discrimination model.
Specifically, if f DW (x) <0, it is determined that the road surface is a WET road surface without discriminating between the WET road surface and the SNOW road surface and the WET road surface and the ICE road surface.
On the other hand, when f DW (x)> 0, the discriminative function f DS (x) calculated using the rear wheel features, the D / S discriminative model, the D / I discriminative model, and the S / I discriminative model. ), F DI (x), f SI (x), it is determined whether the road surface is a DRY road surface, a SNOW road surface, or an ICE road surface.
Specifically, if f DS (x)> 0 and f DI (x)> 0, it is determined that the road surface is DRY, and f DS (x) <0 and f SI (x)> 0. If so, it is determined to be a SNOW road surface.
Further, if f DS (x) <0 and f SI (x) <0, it is determined to be an ICE road surface.

以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the claims that such modified or modified forms may also be included in the technical scope of the invention.

例えば、前記実施の形態では、タイヤ振動検出手段を加速度センサー11,21としたが、圧力センサーなどの他の振動検出手段を用いてもよい。また、加速度センサー11,21の設置箇所についても、タイヤ幅方向中心から幅方向に所定距離だけ離隔した位置に1個ずつ配設したり、ブロック内に設置するなど他の箇所に設置してもよい。また、加速度センサー11,21の個数も1個に限るものではなく、タイヤ周方向の複数箇所に設けてもよい。
また、前記実施の形態では、特徴量を算出するためのIMFとして第1のIMFC1を用いたが、他のIMFを用いてもよい。なお、上記したように、路面判別のためには、タイヤ振動の高周波成分に着目する必要があるので特徴量を算出するためのIMFとしては、低い番号のIMFを用いることが好ましい。
また、前記実施の形態では、特徴量を、平均μ、標準偏差σ、及び、歪度b1としたが、更に尖度b2などの他の統計量を加えてもよい。あるいは、平均μ、標準偏差σ、歪度b1、尖度b2などの中から複数の統計量を組み合わせてもよい。
For example, in the above embodiment, the tire vibration detecting means is the acceleration sensors 11 and 21, but other vibration detecting means such as a pressure sensor may be used. Also, regarding the installation locations of the acceleration sensors 11 and 21, even if they are installed one by one at a position separated by a predetermined distance in the width direction from the center in the tire width direction, or installed in another location such as in a block. good. Further, the number of acceleration sensors 11 and 21 is not limited to one, and may be provided at a plurality of locations in the tire circumferential direction.
Further, in the above-described embodiment, the first IMFC 1 is used as the IMF for calculating the feature amount, but other IMFs may be used. As described above, since it is necessary to pay attention to the high frequency component of the tire vibration in order to discriminate the road surface, it is preferable to use a low number IMF as the IMF for calculating the feature amount.
Further, in the above-described embodiment, the feature amounts are the average μ, the standard deviation σ, and the skewness b 1 , but other statistics such as the kurtosis b 2 may be added. Alternatively, a plurality of statistics may be combined from among the mean μ, the standard deviation σ, the skewness b 1 , the kurtosis b 2 , and the like.

また、路面状態の識別に用いる特徴量としては、振動波形から抽出される特定周波数帯域の振動レベル、または、複数の特定周波数帯域の振動レベルから演算される演算値など、他の特徴量を用いてもよい。
また、温度センサーなどで取得した温度情報を用い、外気温が低温(例えば、5℃以下)である場合には、後輪加速度波形のみを用いて、路面がDRY路面か、SNOW路面か、ICE路面かを判別し、外気温が低温でない場合には、前輪加速度波形のみを用いて、路面がDRY路面か、WET路面かを判別すれば、演算量を更に少なくできる。
In addition, as the feature amount used for identifying the road surface state, other feature amounts such as the vibration level of a specific frequency band extracted from the vibration waveform or the calculated value calculated from the vibration levels of a plurality of specific frequency bands are used. You may.
In addition, when the outside air temperature is low (for example, 5 ° C or less) using the temperature information acquired by a temperature sensor or the like, only the rear wheel acceleration waveform is used to determine whether the road surface is a DRY road surface, a SNOW road surface, or an ICE. If it is determined whether the road surface is a DRY road surface or a WET road surface by using only the front wheel acceleration waveform when the outside air temperature is not low, the calculation amount can be further reduced.

10 路面状態判別装置、11 前輪側加速度センサー、
12 前輪加速度波形抽出手段、13 前輪特徴量算出手段、
13a 固有振動モード抽出部、13b 特徴データ算出部、13c 特徴量算出部、
14 前輪識別関数演算手段、14a カーネル関数算出部、14b 識別関数演算部、15 記憶手段、16 路面状態判別手段、21 後輪側加速度センサー、
22 後輪加速度波形抽出手段、23 後輪特徴量算出手段、
24 後輪識別関数演算手段、
30F 前輪のタイヤ、30R 後輪のタイヤ、31 インナーライナー部、
32 タイヤ気室、R 路面。
10 Road surface condition discriminator, 11 Front wheel side accelerometer,
12 Front wheel acceleration waveform extraction means, 13 Front wheel feature amount calculation means,
13a natural vibration mode extraction unit, 13b feature data calculation unit, 13c feature amount calculation unit,
14 front wheel identification function calculation means, 14a kernel function calculation unit, 14b identification function calculation unit, 15 storage means, 16 road surface condition determination means, 21 rear wheel side acceleration sensor,
22 Rear wheel acceleration waveform extraction means, 23 Rear wheel feature amount calculation means,
24 Rear wheel identification function calculation means,
30F front tires, 30R rear tires, 31 inner liner,
32 Tire air chamber, R road surface.

Claims (2)

タイヤに装着された振動検出手段により検出した走行中のタイヤの振動の時間変化波形からタイヤの接している路面の状態を路面状態判別装置により判別する方法であって、
前記タイヤの前輪に装着された振動検出手段と前記タイヤの後輪に装着された振動検出手段とにより前記前輪の振動の時間変化波形である前輪加速度波形と前記後輪の振動の時間変化波形である後輪加速度波形とを検出するステップと、
前記前輪加速度波形と前記後輪加速度波形とから、それぞれ、前輪の特徴量と後輪の特徴量とを算出するステップと、
前記算出された前輪の特徴量と後輪の特徴量と、予め路面状態毎に求めておいた路面特徴量とから、前記前輪と後輪の接している路面の状態をそれぞれ判別するステップとを備え、
前記特徴量が、経験的モード分解のアルゴリズムを用いて取得された固有振動モードにヒルベルト変換を行って抽出した、瞬時周波数と瞬時振幅のいずれか一方または両方のデータの分布の統計量であり、
前記路面の状態を判別するステップでは、
前記前輪特徴量と前記路面特徴量とを用いて前記前輪の特徴量を含むカーネル関数を算出した後、前記算出された前記前輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とWET路面との判別を行い、
前記後輪特徴量と前記路面特徴量とを用いて前記後輪の特徴量を含むカーネル関数を算出した後、前記算出された前記後輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とICE路面との判別とDRY路面とSNOW路面との判別、もしくは、DRY路面とICE・SNOW路面との判別を行うことを特徴とする路面状態判別方法
It is a method of discriminating the state of the road surface in contact with the tire by the road surface condition discriminating device from the time change waveform of the vibration of the running tire detected by the vibration detecting means mounted on the tire.
With the vibration detecting means mounted on the front wheel of the tire and the vibration detecting means mounted on the rear wheel of the tire, the front wheel acceleration waveform which is the time change waveform of the vibration of the front wheel and the time change waveform of the vibration of the rear wheel are used. A step to detect a certain rear wheel acceleration waveform,
A step of calculating the feature amount of the front wheel and the feature amount of the rear wheel from the front wheel acceleration waveform and the rear wheel acceleration waveform, respectively.
From the calculated feature amount of the front wheel and the feature amount of the rear wheel and the road surface feature amount obtained in advance for each road surface condition, the step of determining the state of the road surface in which the front wheel and the rear wheel are in contact with each other is performed. Prepare,
The feature quantity is a statistic of the distribution of one or both of the instantaneous frequency and the instantaneous amplitude, which is extracted by performing the Hilbert transform on the natural vibration mode acquired by using the algorithm of empirical mode decomposition.
In the step of determining the state of the road surface,
After calculating the kernel function including the front wheel feature amount using the front wheel feature amount and the road surface feature amount, DRY is obtained from the value of the discrimination function using the kernel function including the calculated front wheel feature amount . Distinguish between the road surface and the WET road surface,
After calculating the kernel function including the feature amount of the rear wheel using the feature amount of the rear wheel and the road surface feature amount, the discriminating function using the kernel function including the calculated feature amount of the rear wheel. A road surface condition determination method comprising discriminating between a DRY road surface and an ICE road surface and a DRY road surface and a SNOW road surface from a value , or discriminating between a DRY road surface and an ICE / SNOW road surface .
走行中のタイヤの振動を検出してタイヤの接している路面の状態を判別する路面状態判別装置であって、
前記タイヤの前輪に装着されて前記前輪の振動の時間変化波形である前輪加速度波形を検出する前輪振動検出手段と、
前記タイヤの後輪に装着されて前記後輪の振動の時間変化波形である後輪加速度波形を検出する後輪振動検出手段と、
前記前輪加速度波形と前記後輪加速度波形とから、それぞれ、前輪の特徴量と後輪の特徴量とを算出する特徴量算出手段と、
予め路面状態毎に求めておいたタイヤ振動の時間変化波形を用いて算出された路面特徴量を記憶する記憶手段と、
前記算出された特徴量と前記路面特徴量とから、前記前輪と後輪の接している路面の状態を判別する路面状態判別手段とを備え、
前記特徴量が、経験的モード分解のアルゴリズムを用いて取得された固有振動モードにヒルベルト変換を行って抽出した、瞬時周波数と瞬時振幅のいずれか一方または両方のデータの分布の統計量であり、
前記路面状態判別手段は、
前記前輪特徴量と前記路面特徴量とを用いて前記前輪の特徴量を含むカーネル関数を算出した後、前記算出された前記前輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とWET路面との判別を行い、
前記後輪特徴量と前記路面特徴量とを用いて前記後輪の特徴量を含むカーネル関数を算出した後、前記算出された前記後輪の特徴量を含むカーネル関数を用いた識別関数の値からDRY路面とICE路面との判別とDRY路面とSNOW路面との判別、もしくは、DRY路面とICE・SNOW路面との判別を行うことを特徴とする路面状態判別装置。
It is a road surface condition determination device that detects the vibration of the running tire and determines the condition of the road surface in contact with the tire.
A front wheel vibration detecting means mounted on the front wheel of the tire and detecting a front wheel acceleration waveform which is a time-varying waveform of the vibration of the front wheel.
A rear wheel vibration detecting means mounted on the rear wheel of the tire and detecting a rear wheel acceleration waveform which is a time-varying waveform of the vibration of the rear wheel.
A feature amount calculating means for calculating the feature amount of the front wheel and the feature amount of the rear wheel from the front wheel acceleration waveform and the rear wheel acceleration waveform, respectively.
A storage means for storing the road surface feature amount calculated by using the time change waveform of the tire vibration obtained in advance for each road surface condition, and a storage means.
It is provided with a road surface condition determining means for determining the state of the road surface in which the front wheel and the rear wheel are in contact from the calculated feature amount and the road surface feature amount.
The feature quantity is a statistic of the distribution of one or both of the instantaneous frequency and the instantaneous amplitude, which is extracted by performing the Hilbert transform on the natural vibration mode acquired by using the algorithm of empirical mode decomposition.
The road surface condition determining means is
After calculating the kernel function including the front wheel feature amount using the front wheel feature amount and the road surface feature amount, DRY is obtained from the value of the discrimination function using the kernel function including the calculated front wheel feature amount . Distinguish between the road surface and the WET road surface,
After calculating the kernel function including the feature amount of the rear wheel using the feature amount of the rear wheel and the road surface feature amount, the discriminating function using the kernel function including the calculated feature amount of the rear wheel. A road surface condition discriminating device characterized by discriminating between a DRY road surface and an ICE road surface, discriminating between a DRY road surface and a SNOW road surface, or discriminating between a DRY road surface and an ICE / SNOW road surface from a value .
JP2018003944A 2018-01-15 2018-01-15 Road surface condition determination method and road surface condition determination device Active JP7030531B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018003944A JP7030531B2 (en) 2018-01-15 2018-01-15 Road surface condition determination method and road surface condition determination device
PCT/JP2018/045974 WO2019138774A1 (en) 2018-01-15 2018-12-13 Road surface condition determination method and road surface condition determination device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003944A JP7030531B2 (en) 2018-01-15 2018-01-15 Road surface condition determination method and road surface condition determination device

Publications (2)

Publication Number Publication Date
JP2019123293A JP2019123293A (en) 2019-07-25
JP7030531B2 true JP7030531B2 (en) 2022-03-07

Family

ID=67219007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003944A Active JP7030531B2 (en) 2018-01-15 2018-01-15 Road surface condition determination method and road surface condition determination device

Country Status (2)

Country Link
JP (1) JP7030531B2 (en)
WO (1) WO2019138774A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102443716B1 (en) * 2020-10-20 2022-09-16 한국건설기술연구원 Apparatus for determining slip of road surface and method thereof, and system for providing information of slip of road surface
CN113737703A (en) * 2021-10-08 2021-12-03 徐州徐工环境技术有限公司 Water spraying and dust falling automatic control method and system of road sweeper and road sweeper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006533A (en) 2011-06-24 2013-01-10 Bridgestone Corp Method and apparatus for determining road surface condition
JP2014035279A (en) 2012-08-09 2014-02-24 Bridgestone Corp Road surface state determination method and device
JP2017030722A (en) 2015-07-31 2017-02-09 株式会社ブリヂストン Vehicle control method
JP2017144975A (en) 2016-02-19 2017-08-24 株式会社デンソー Vehicle risk avoidance device
JP2018004419A (en) 2016-06-30 2018-01-11 株式会社ブリヂストン Road surface state determination method
JP2018004417A (en) 2016-06-30 2018-01-11 株式会社ブリヂストン Method and device for determining state of road surface

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013006533A (en) 2011-06-24 2013-01-10 Bridgestone Corp Method and apparatus for determining road surface condition
JP2014035279A (en) 2012-08-09 2014-02-24 Bridgestone Corp Road surface state determination method and device
JP2017030722A (en) 2015-07-31 2017-02-09 株式会社ブリヂストン Vehicle control method
JP2017144975A (en) 2016-02-19 2017-08-24 株式会社デンソー Vehicle risk avoidance device
JP2018004419A (en) 2016-06-30 2018-01-11 株式会社ブリヂストン Road surface state determination method
JP2018004417A (en) 2016-06-30 2018-01-11 株式会社ブリヂストン Method and device for determining state of road surface

Also Published As

Publication number Publication date
JP2019123293A (en) 2019-07-25
WO2019138774A1 (en) 2019-07-18

Similar Documents

Publication Publication Date Title
JP6450170B2 (en) Road surface condition determination method
JP6783184B2 (en) Road surface condition determination method and road surface condition determination device
US9434387B2 (en) Method and apparatus for determining road surface condition
CN109477906B (en) Road surface state discrimination method and road surface state discrimination device
JP6673766B2 (en) Road condition determination method
CN109003275B (en) Segmentation method of weld defect image
JP7030531B2 (en) Road surface condition determination method and road surface condition determination device
JP2018004418A (en) Method and device for determining state of road surface
JP7030532B2 (en) Road surface condition determination method and road surface condition determination device
WO2018230181A1 (en) Road surface state determination method and road surface state determination device
JP7112909B2 (en) Tire type discrimination method and tire type discrimination device
JP6961539B2 (en) Road surface condition determination method and road surface condition determination device
WO2019244379A1 (en) Road surface condition determination method and road surface condition determination device
WO2019244380A1 (en) Road surface condition determination method and road surface condition determination device
Jin et al. Accurate urban road model reconstruction from high resolution remotely sensed imagery based on Support Vector Machine and Gabor filters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220222

R150 Certificate of patent or registration of utility model

Ref document number: 7030531

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150