WO2019244379A1 - Road surface condition determination method and road surface condition determination device - Google Patents
Road surface condition determination method and road surface condition determination device Download PDFInfo
- Publication number
- WO2019244379A1 WO2019244379A1 PCT/JP2018/047157 JP2018047157W WO2019244379A1 WO 2019244379 A1 WO2019244379 A1 WO 2019244379A1 JP 2018047157 W JP2018047157 W JP 2018047157W WO 2019244379 A1 WO2019244379 A1 WO 2019244379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- road surface
- waveform
- window
- tire
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60C—VEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
- B60C19/00—Tyre parts or constructions not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W40/00—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
- B60W40/02—Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
- B60W40/06—Road conditions
- B60W40/068—Road friction coefficient
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01W—METEOROLOGY
- G01W1/00—Meteorology
Definitions
- the present invention relates to a method and an apparatus for determining a road surface state using only data of a time-series waveform of tire vibration during running.
- a time window calculated from a time series waveform extracted by multiplying a time series waveform of a tire vibration by a window function is used.
- a method has been proposed in which a road surface state is determined using a kernel function calculated from a characteristic amount for each road surface and a reference characteristic amount, which is a characteristic amount for each time window, obtained in advance for each road surface state.
- the reference feature amount is obtained by machine learning (SVM) using, as learning data, a feature amount for each time window calculated from a time series waveform of tire vibration previously obtained for each road surface condition (for example, see Patent Document 1). ).
- the present invention has been made in view of the conventional problems, and provides a road surface state determination method and a road surface state determination device that can ensure the road surface state determination accuracy even when the amount of time expansion / contraction calculation is reduced.
- the purpose is to:
- the present invention provides a step (a) of detecting a vibration of a tire during running, a step (b) of extracting a time-series waveform of the detected tire vibration, and a step of adding a predetermined time width to the time-series waveform of the tire vibration.
- the trailing time of t k points, the time t f and the time t k time of grounding the center point is an intermediate time and t c, when the period of the time series waveform is T
- the time length T K including any one of the times t f , t k, or t c from the time-series waveform of the detected tire vibration is 13T / 40 ⁇ .
- a time-series waveform in the range of T K ⁇ 19T / 40 is cut out, a window function is applied to the cut-out waveform, which is the cut-out time-series waveform, to extract a time-series waveform for each time window.
- the time length Tc which is cut out from the time-series waveform of the tire vibration determined in advance for each time window and the road surface condition, is in the range of 13T / 40 ⁇ T K ⁇ 19T / 40.
- Reference selected from feature values for each time window calculated from reference cutout waveform The feature is that a kernel function is calculated from the feature amount. This makes it possible to reduce the number of reference features used for calculating the kernel function K (X, Y), thereby increasing the calculation speed while ensuring the road surface state determination accuracy.
- a vibration level of a specific frequency band of a cutout waveform for each time window extracted by applying the window function a time-varying variance of a vibration level of the specific frequency band, and the cutout waveform , One or more, or all, of the cepstrum coefficients.
- the vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a bandpass filter. It can be obtained from the obtained time-series waveform.
- the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function, it is possible to improve the determination accuracy of the road surface state.
- the present invention is a road surface condition determination device that detects the vibration of a running tire and determines the condition of a road surface on which the tire is running, the device being disposed on an air chamber side of an inner liner portion of a tire tread portion.
- Tire vibration detecting means for detecting the vibration of the running tire, the time of the stepping point in the time series waveform of the tire vibration is t f , the time of the kicking point is tk , the time t f and the time the time of grounding the center point is an intermediate time t k and t c, when the period of the time series waveform is T, from the time-series waveform of the detected tire vibration, the time t f, t k, Alternatively, a waveform extracting means for extracting a time-series waveform having a time length T K including any time of t c in the range of 13T / 40 ⁇ T K ⁇ 19T / 40; When a window function is applied to an extracted waveform A
- the feature amount calculation means to be calculated and the time length T K extracted from the time series waveform of the tire vibration for each road surface condition which is obtained in advance for each road surface condition is 13T / 40 ⁇ T K ⁇ 19T / 40.
- Storage means for storing a reference feature value selected from feature values for each time window calculated from a reference cutout waveform that is a time-series waveform in a range and a Lagrange undetermined multiplier corresponding to the reference feature value, Kernel function calculation means for calculating a kernel function from the feature quantity for each time window calculated by the feature quantity calculation means and the reference feature quantity stored in the storage means, and a value of an identification function using the kernel function Road surface condition determining means for determining the road surface condition based on
- FIG. 4 is a diagram illustrating a method for calculating a GA kernel. 4 is a flowchart illustrating a road surface state determination method according to the present invention.
- FIG. 4 is a diagram illustrating a relationship between a cutout width of a waveform and determination accuracy.
- FIG. 9 is a diagram illustrating another example of how to cut out a waveform.
- FIG. 1 is a diagram illustrating a configuration of a road surface state determination device 10 according to the present embodiment.
- the road surface condition determination device 10 includes an acceleration sensor 11 as a tire vibration detection unit, a waveform cutting unit 12, a windowing unit 13, a feature vector calculation unit 14, a storage unit 15, a kernel function calculation unit 16, a road surface
- a state determination unit 17 is provided for performing two road surface determinations as to whether the road surface on which the tire 20 is traveling is a DRY road surface or a WET road surface.
- Each unit from the waveform extracting unit 12 to the road surface state determining unit 17 is composed of, for example, computer software and a memory such as a RAM. As shown in FIG.
- the acceleration sensor 11 is disposed integrally at a substantially central portion of the inner liner portion 21 of the tire 20 on the tire air chamber 22 side, and detects vibration of the tire 20 due to input from a road surface.
- the tire vibration signal output from the acceleration sensor 11 is, for example, amplified by an amplifier, converted into a digital signal, and sent to the waveform cutout unit 12.
- the waveform cutout unit 12 cuts out a portion used for determination of a road surface condition from the time series waveform of the tire vibration detected by the acceleration sensor 11 and sends the portion to the windowing unit 13.
- a diagram showing an example of FIG. 3 (a) time-series waveform of tire vibration, time-series waveform of tire vibration has a large peak in the vicinity of point P k out kicking the neighboring depression point P f, and, regions R k after kicking after previous depression front region R f where land portion of the tire 20 contacts the ground, the land portion of the tire 20 is separated from the road surface, and, grounding land portion of the tire 20 is grounded on the road surface in the region R s, different vibrations may appear by the road surface condition.
- the area of to the area R k after kicking from depression before area R f of the road surface area is represented by T.
- the period T may, for example, as shown in FIG. 3 (b), the time interval between temporally adjacent two depression point P f, or may be calculated from the time interval between the two kick-out point P k.
- the time length T K including the time t f at the depression point P f is 13T / 40 ⁇ T K ⁇ 19T / 40 (T: the time series waveform of the tire vibration
- T the time series waveform of the tire vibration
- a time series waveform in the range of (period) is cut out, and the cut out waveform which is the cut out time series waveform is sent to the windowing means 13.
- the above T K is referred to as a cutout width.
- FIG. 3B shows an example of how to extract a time series waveform of tire vibration.
- t f is the time of the depressed point P f
- t k is the time of the kick-out point P k
- t c is the time of the ground contact center point which is an intermediate time between the time t f and the time t k .
- the road surface condition was determined by comparing the reference feature vector Y ASV of A with the GA kernel.
- the cutout width T K including the time t f of the stepping point P f starting from the time 3 T / 8 before the time t c of the ground contact center point is 13 T / 40, for example. , 3T / 8, 19T / 40, etc., and cut out waveforms, which are cut out waveforms, are sent to the windowing means 13.
- T K 13T / 40
- the end point is the time of the depressed point t f
- the 19T / 40 it is later than the time t k of the end point is kick-out point P k.
- the windowing means 13 windows the extracted waveform with a predetermined time width (also referred to as a time window width) ⁇ T, and extracts a waveform of the tire vibration for each time window.
- the time series waveforms of the tire vibration are used as the feature vectors X i to be calculated, and the band-pass filters of 0-0.5 kHz, 0.5-1 kHz, 1-2 kHz, 2-3 kHz, 3-4 kHz, and 4-5 kHz, respectively.
- Feature vectors, the number of X i (a i1, a i2, a i3, a i4, a i5, a i6) , the feature vector X i is the N.
- Figure 5 is a schematic diagram showing the input space of feature vectors X i, each axis represents the vibration level a ik of a specific frequency band, which is a feature quantity, each point representing a feature vector X i.
- the actual input space is a seven-dimensional space when combined with the time axis because the number of specific frequency bands is three. However, the figure is expressed in two dimensions (the horizontal axis is a 1 and the vertical axis is a 2 ).
- a set of feature vectors X i when the group C travels the DRY road when group C be the set of i 'is the feature vector X of when traveling the WET road', and the group C If the tire can be distinguished from the group C ′, it can be determined whether the road on which the tires are traveling is a DRY road surface or a WET road surface.
- the storage means 15 stores a DW identification model for identifying a DRY road surface and a WET road surface, which has been obtained in advance.
- the DW identification model includes a reference feature vector Y AK (y jk ), which is a reference feature amount for separating a DRY road surface and a WET road surface by an identification function f (x) representing a separation hyperplane, and a reference feature vector Y AK ( y jk ) and a Lagrange multiplier ⁇ A.
- the reference feature vectors Y AK (y jk ) and ⁇ A are usually the tire vibrations obtained by running a test vehicle equipped with a tire equipped with an acceleration sensor at various speeds on a DRY road surface and a WET road surface.
- the feature vector for each time series time was calculated from the cut waveforms cut from the waveform windows of tire vibration as a road surface feature vector Y A (y jk), seeking the reference feature vector Y AK (y jk) and lambda A Therefore, the number of reference feature vectors Y AK (y jk ) also decreases.
- the tire size used for learning may be one type or a plurality of types.
- the subscript A of the reference feature vector Y AK (y jk ) indicates DRY or WET.
- the reference feature vector Y AK (y jk ) is the number of dimensions of the vector y i (here, 6 ⁇ M (M; number of windows)). Of the matrix.
- the method of calculating the road surface feature vector Y A is the same as the feature vector X j described above, for example, if the reference feature vectors Y D of DRY road, cut waveform cut out from the time-series waveform of tire vibrations when traveling along DRY road Is windowed with a time width ⁇ T, a cut-out waveform is extracted for each time window, and a DRY road surface feature vector Y D is calculated for each of the extracted cut-out waveforms for each time window.
- the WET road surface feature vector Y W is calculated from a cut-out waveform for each time window when traveling on a WET road surface.
- the reference feature vector Y AK is a feature vector selected as a support vector by a support vector machine (SVM) using the DRY road surface feature vector Y D and the WET road surface feature vector Y W as learning data.
- SVM support vector machine
- the time width ⁇ T has the same value as the time width ⁇ T when the feature vector Xj is obtained.
- the time width T is constant, the number M of cut-out waveforms of the time window differs depending on the tire type and the vehicle speed. That is, the number M of time window cutout waveform of the reference symptom vector Y A does not necessarily coincide with the number N of time windows of the cutout waveform of the feature vector X j.
- a tire species is the same, if slower than the vehicle speed when the vehicle speed when determining the feature vector X j to determine the road feature vector Y A is a M ⁇ N when M> N, and the fast .
- Figure 6 is a conceptual diagram showing a DRY road feature vector Y D and WET road feature vector Y W in the input space, black circles in the figure is DRY road, open circles are WET road.
- a DRY road feature vectors Y D also WET road feature vector Y W also matrices, for explaining how to determine the decision boundary of the group
- DRY road feature vectors Y D and WET The road surface feature vector Y W is shown as a two-dimensional vector. Group identification boundaries generally do not allow linear separation.
- the road surface feature vectors Y V and Y W are mapped to a high-dimensional feature space by a non-linear mapping ⁇ to perform linear separation, so that the road surface feature vectors Y D and Y W are obtained in the original input space.
- Non-linear classification is performed.
- a margin is provided for an identification function f (x) that is a separating hyperplane that separates the DRY road surface feature vector Y Dj and the WET road surface feature vector Y Wj .
- the DRY road surface and the WET road surface can be accurately distinguished.
- the DRY road surface feature vectors Y Dj are all in the region of f (x) ⁇ + 1, and the WET road surface feature vectors Y Wj are all in the region of f (x) ⁇ ⁇ 1.
- the optimal identification function f (x) w for identifying the data.
- T ⁇ (x) -b w
- w is a vector representing a weight coefficient
- b is a constant.
- the optimization problem is replaced by the following equations (1) and (2).
- ⁇ and ⁇ are indexes of a plurality of learning data.
- ⁇ is a Lagrange multiplier
- ⁇ T (x ⁇ ) ⁇ (x ⁇ ) is an inner product after x ⁇ and x ⁇ are mapped to a high-dimensional space by a mapping ⁇ .
- the Lagrange multiplier ⁇ can be obtained by using an optimization algorithm such as the steepest descent method or SMO (Sequential Minimal Optimization) for the above equation (2).
- the GA kernel K (x ⁇ , x ⁇ ) is a local kernel ⁇ ij (indicating the similarity between the feature vector x ⁇ and the feature vector x ⁇ ) x ⁇ i , x ⁇ j ) can be directly compared with time series waveforms having different time lengths using a function composed of the sum or the sum of the products.
- the local kernel ⁇ ij (x ⁇ i , x ⁇ j ) is obtained for each window of the time interval T.
- the kernel function calculating means 16 calculates the feature vector X i calculated by the feature vector calculating means 14, the reference feature vector Y DK of the DRY road surface stored in the storage means 15 and the reference feature vector Y WK of the WET road surface. , DRYGA kernel K D (X, Y DK ) and WETGA kernel K W (X, Y WK ).
- these GA kernels K D (X, Y DK ) and K W (X, Y WK ) it is possible to directly compare time-series waveforms (cut-out waveforms) having different time lengths.
- the value of the identification function f DW (x) using the kernel function K D (X, Y DK ) and the kernel function K W (X, Y WD ) shown in the following equation (5) The road surface condition is determined based on the above.
- N WK is the number of reference feature vectors Y Wkj the WET road.
- the identification function f DW is calculated, and if f DW > 0, the road surface is determined to be a DRY road surface, and if f DW ⁇ 0, the road surface is determined to be a WET road surface.
- the number of cut-out waveforms for each time window is set to m (step S12).
- a feature vector X i (x i1 , x i2 , x i3 , x i4 , x i5 , x i6 ) is calculated for each of the extracted time-series waveforms in each time window (step S13).
- the time width T is 3 msec.
- the number of feature vectors X i is six.
- the reference feature vector Y DK of the DRY road surface and the reference feature of the WET road surface are provided.
- a vector Y WK is extracted (step S14), and a local kernel ⁇ ij (X i , Y AKj ) is calculated from the reference feature vectors Y DK and Y WK and the feature vector X i, and then the local kernel ⁇ ij ( The sum of X i , Y AKj ) is obtained, and the GA kernel function K A (X, Y AK ) is calculated (step S15).
- an identification function f DW (x) using the GA kernel function K D of the DRY road surface and the GA kernel function K W of the WET road surface is calculated (step S16). If f DW > 0, the road surface is the DRY road surface And if f DW ⁇ 0, it is determined that the road surface is a WET road surface. (Step S17). Since the cut-out waveform is as small as about 50% of the cut-out width of the road area waveform, the amount of data used for calculating the kernel function K (X, Y) can be reduced, and as a result, the calculation time can be shortened.
- Example 10 The time calculated from the time series waveform (cut-out waveform) of the tire vibration when traveling on the DRY road surface and the WET road surface, in which the support vector of the DRY road surface and the support vector of the WET road surface are determined in advance.
- Road surface data which is a feature of each window, was obtained as learning data by machine learning (SVM).
- SVM machine learning
- Table 1 the used road surface data is divided into those for training (for Train) and those for test (for Test), and the support vector for the DRY road surface and the support vector for the WET road surface are After the determination, the support vector of the DRY road surface and the boundary surface of the support vector of the WET road surface were determined.
- FIG. 9 is a diagram showing the relationship between the cutout width and the discrimination accuracy. “All waveforms” indicates that the cutout waveform is the entire waveform (100%) of the road surface area, that is, the cutout width Tk is 3T / 4. Refers to the case. "Until after kick” is waveforms up just after the point out kick from depression front region R f, is cut width T k is 19T / 40 (63%). The “ground center” is the first half of the entire waveform, and the cutout width T k is 3T / 8 (50%).
- the time length T K including the time t f of the depression point P f is in the range of 13 T / 40 ⁇ T K ⁇ 19 T / 40 from the time series waveform of the tire vibration. cut out waveform has a cutout waveform is this cut-out time series waveform, FIG.
- two road surface determinations as to whether the road surface on which the tire 20 is traveling are the DRY road surface or the WET road surface are performed using the DW identification model. Is used, it is possible to determine whether the road surface on which the tire 20 is traveling is a DRY road surface, a WET road surface, a SNOW road surface, or an ICE road surface.
- the AA ′ identification model is an identification function f AA ′ (x ), A road surface feature vector Y AK and a Lagrangian multiplier ⁇ AA ′ , which are reference feature amounts for separation by A), and an A ′ road surface feature vector Y A′K Lagrangian multiplier ⁇ A ′ A.
- the reference feature values Y ASV and ⁇ A are the values of tire vibration obtained by running a test vehicle equipped with a tire equipped with an acceleration sensor at various speeds on DRY, WET, SNOW, and ICE road surfaces.
- Lagrange multiplier ⁇ A corresponding to the reference feature vector Y AK exists for each identification model.
- three Lagrangian multipliers ⁇ DW , ⁇ DS , and ⁇ DI corresponding to the DRY road surface feature vector Y DK have different values. The same applies to other road surface feature vectors Y WK , Y SK , and Y IK .
- the kernel function K I (X, Y IK ) is a GA kernel function for the ICE road surface.
- the tire vibration detecting means is the acceleration sensor 11, but other vibration detecting means such as a pressure sensor may be used.
- the acceleration sensor 11 may be installed at another location such as one at a position separated from the center of the tire in the width direction by a predetermined distance in the width direction, or may be installed in a block.
- a feature vector X i and the power value x ik of filtration wave, variance, when the power value x ik of filtration wave (log [x ik (t) 2 + x ik ( t-1) 2 ]) may be used.
- a feature vector X i Fourier coefficients a vibration level of a particular frequency band when the Fourier transform of the tire vibration time series waveform or may be cepstral coefficients.
- the cepstrum is obtained by assuming the waveform after Fourier transform as a spectrum waveform and performing Fourier transform again, or assuming that an AR spectrum is a waveform and obtaining an AR coefficient (LPC Cepstrum). Since the shape of the spectrum can be characterized without being affected, discrimination accuracy is improved as compared with the case where a frequency spectrum obtained by Fourier transform is used.
- the GA kernel is used as the kernel function, but a dynamic time warping kernel function (DTW kernel) may be used.
- DTW kernel dynamic time warping kernel function
- a GA kernel and a DTW kernel operation value may be used.
- the present invention provides a step (a) of detecting a vibration of a tire during running, a step (b) of extracting a time-series waveform of the detected tire vibration, and a step of extracting a predetermined time-series waveform of the tire vibration.
- the kernel function is calculated from the feature amount for each time window calculated in the above and the reference feature amount selected from the feature amount for each time window calculated from the time series waveform of the tire vibration obtained in advance for each road surface condition.
- a time-series waveform of the tire vibration wherein the method further comprises a step (e) and a step (f) of determining a state of the running road surface based on a value of the identification function using the kernel function.
- the time length T K including any one of the times t f , t k, or t c is obtained from the time-series waveform of the detected tire vibration,
- a time-series waveform in the range of 13T / 40 ⁇ T K ⁇ 19T / 40 is cut out, and a time-series waveform for each time window is extracted by applying a window function to the cut-out waveform, which is the cut-out time-series waveform,
- a window function to the cut-out waveform
- a kernel function is calculated from the reference feature amount to be performed. This makes it possible to reduce the number of reference features used for calculating the kernel function K (X, Y), thereby increasing the calculation speed while ensuring the road surface state determination accuracy.
- a vibration level of a specific frequency band of a cutout waveform for each time window extracted by applying the window function a time-varying variance of a vibration level of the specific frequency band, and the cutout waveform , One or more, or all, of the cepstrum coefficients.
- the vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a bandpass filter. It can be obtained from the obtained time-series waveform.
- the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function, it is possible to improve the determination accuracy of the road surface state.
- the present invention is a road surface condition determination device for detecting vibration of a tire during traveling and determining a condition of a road surface on which the tire travels, the device being disposed on an air chamber side of an inner liner portion of a tire tread portion.
- Tire vibration detecting means for detecting the vibration of the running tire, the time of the stepping point in the time series waveform of the tire vibration is t f , the time of the kicking point is tk , the time t f and the time the time of grounding the center point is an intermediate time t k and t c, when the period of the time series waveform is T, from the time-series waveform of the detected tire vibration, the time t f, t k,
- a waveform extracting means for extracting a time-series waveform having a time length T K including any time of t c in the range of 13T / 40 ⁇ T K ⁇ 19T / 40; Apply a window function to an extracted waveform
- the feature amount calculation means to be calculated and the time length T K extracted from the time series waveform of the tire vibration for each road surface condition which is obtained in advance for each road surface condition is 13T / 40 ⁇ T K ⁇ 19T / 40.
- a kernel function calculating unit that calculates a kernel function from the feature amount for each time window calculated by the feature amount calculating unit and the reference feature amount stored in the storage unit, and a classification function using the kernel function. Characterized in that it comprises a road surface condition judging means for judging road surface condition based on.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Mathematical Physics (AREA)
- Transportation (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Life Sciences & Earth Sciences (AREA)
- Atmospheric Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Ecology (AREA)
- Environmental Sciences (AREA)
- Tires In General (AREA)
Abstract
As a result of the present invention, a chronological waveform having a time length TK that is within the range of 13T/40 < TK < 19T/40 and includes a stepping point time tf, a kicking point time tk, or a ground contact center point time tc can be cut out from a chronological waveform for detected tire vibration, a window function can be applied to a cut-out waveform being this cut-out chronological waveform, a cut-out waveform for each time window can be extracted, and a feature vector Xi for each time window can be calculated, when calculating a kernel function KA from the feature vector Xi for each time window and a reference feature vector YASVJ being a feature vector for each time window found for each road surface state calculated beforehand, said kernel function KA being calculated after: windowing chronological waveforms for tire vibration detected by an acceleration sensor, for time T, by using a windowing means; extracting the chronological waveform for tire vibration for each time window; and calculating the feature vector Xi for each time window.
Description
本発明は、走行中のタイヤの振動の時系列波形のデータのみを用いて路面状態を判別する方法とその装置に関する。
The present invention relates to a method and an apparatus for determining a road surface state using only data of a time-series waveform of tire vibration during running.
従来、走行中のタイヤの振動の時系列波形のデータのみを用いて路面状態を判別する方法として、タイヤの振動の時系列波形に窓関数をかけて抽出した時系列波形から算出される時間窓毎の特徴量と、予め路面状態毎に求めておいた時間窓毎の特徴量である基準特徴量とから算出したカーネル関数を用いて路面状態を判別する方法が提案されている。
基準特徴量は、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量を学習データとして、機械学習(SVM)により求められる(例えば、特許文献1参照)。 Conventionally, as a method of determining a road surface state using only data of a time series waveform of a tire vibration during traveling, a time window calculated from a time series waveform extracted by multiplying a time series waveform of a tire vibration by a window function is used. A method has been proposed in which a road surface state is determined using a kernel function calculated from a characteristic amount for each road surface and a reference characteristic amount, which is a characteristic amount for each time window, obtained in advance for each road surface state.
The reference feature amount is obtained by machine learning (SVM) using, as learning data, a feature amount for each time window calculated from a time series waveform of tire vibration previously obtained for each road surface condition (for example, see Patent Document 1). ).
基準特徴量は、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量を学習データとして、機械学習(SVM)により求められる(例えば、特許文献1参照)。 Conventionally, as a method of determining a road surface state using only data of a time series waveform of a tire vibration during traveling, a time window calculated from a time series waveform extracted by multiplying a time series waveform of a tire vibration by a window function is used. A method has been proposed in which a road surface state is determined using a kernel function calculated from a characteristic amount for each road surface and a reference characteristic amount, which is a characteristic amount for each time window, obtained in advance for each road surface state.
The reference feature amount is obtained by machine learning (SVM) using, as learning data, a feature amount for each time window calculated from a time series waveform of tire vibration previously obtained for each road surface condition (for example, see Patent Document 1). ).
しかしながら、時間伸縮は、取得された時系列波形を比較するために必要な操作であるものの、計算量が多いため、計算時間が長く、処理が非常に重くなってしまう、といった問題点があった。
However, although the time expansion / contraction is an operation necessary for comparing the acquired time-series waveforms, there is a problem that the calculation amount is large, the calculation time is long, and the processing becomes very heavy. .
本発明は、従来の問題点に鑑みてなされたもので、時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別方法と路面状態判別装置とを提供することを目的とする。
The present invention has been made in view of the conventional problems, and provides a road surface state determination method and a road surface state determination device that can ensure the road surface state determination accuracy even when the amount of time expansion / contraction calculation is reduced. The purpose is to:
本発明は、走行中のタイヤの振動を検出するステップ(a)と、前記検出されたタイヤの振動の時系列波形を取り出すステップ(b)と、前記タイヤ振動の時系列波形に所定の時間幅の窓関数をかけて時間窓毎の時系列波形を抽出するステップ(c)と、前記時間窓毎の時系列波形からそれぞれ特徴量を算出するステップ(d)と、前記ステップ(d)で算出した時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出するステップ(e)と、前記カーネル関数を用いた識別関数の値に基づいて走行中の路面の状態を判別するステップ(f)と、を備えた路面状態判別方法において、前記タイヤ振動の時系列波形における踏み込み点の時刻をtf、蹴り出し点の時刻をtk、前記時刻tfと前記時刻tkの中間の時刻である接地中心点の時刻をtcとし、前記時系列波形の周期をTとしたとき、前記ステップ(c)では、前記検出されたタイヤ振動の時系列波形から、前記時刻tf、tk、もしくは、tcのいずれかの時刻含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出し、この切り出された時系列波形である切り出し波形に窓関数をかけて時間窓毎の時系列波形を抽出し、前記ステップ(e)では、前記時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から切り出された、時間長さTcが13T/40<TK<19T/40の範囲にある基準切り出し波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出することを特徴とする。
これにより、カーネル関数K(X,Y)を算出するために使用する基準特徴量の数を削減できるので、路面状態の判別精度を確保しつつ、計算速度を速くすることができる。 The present invention provides a step (a) of detecting a vibration of a tire during running, a step (b) of extracting a time-series waveform of the detected tire vibration, and a step of adding a predetermined time width to the time-series waveform of the tire vibration. (C) extracting a time-series waveform for each time window by multiplying by the window function, (d) calculating a feature amount from the time-series waveform for each time window, and calculating in the step (d). Calculating a kernel function from the calculated feature values for each time window and a reference feature value selected from the feature values for each time window calculated from the time series waveform of the tire vibration obtained in advance for each road surface condition ( e) and a step (f) of determining the state of the running road surface based on the value of the identification function using the kernel function, wherein the stepping on the time-series waveform of the tire vibration is performed. point Time to t f, the trailing time of t k points, the time t f and the time t k time of grounding the center point is an intermediate time and t c, when the period of the time series waveform is T In the step (c), the time length T K including any one of the times t f , t k, or t c from the time-series waveform of the detected tire vibration is 13T / 40 <. A time-series waveform in the range of T K <19T / 40 is cut out, a window function is applied to the cut-out waveform, which is the cut-out time-series waveform, to extract a time-series waveform for each time window. In the step (e), The time length Tc, which is cut out from the time-series waveform of the tire vibration determined in advance for each time window and the road surface condition, is in the range of 13T / 40 <T K <19T / 40. Reference selected from feature values for each time window calculated from reference cutout waveform The feature is that a kernel function is calculated from the feature amount.
This makes it possible to reduce the number of reference features used for calculating the kernel function K (X, Y), thereby increasing the calculation speed while ensuring the road surface state determination accuracy.
これにより、カーネル関数K(X,Y)を算出するために使用する基準特徴量の数を削減できるので、路面状態の判別精度を確保しつつ、計算速度を速くすることができる。 The present invention provides a step (a) of detecting a vibration of a tire during running, a step (b) of extracting a time-series waveform of the detected tire vibration, and a step of adding a predetermined time width to the time-series waveform of the tire vibration. (C) extracting a time-series waveform for each time window by multiplying by the window function, (d) calculating a feature amount from the time-series waveform for each time window, and calculating in the step (d). Calculating a kernel function from the calculated feature values for each time window and a reference feature value selected from the feature values for each time window calculated from the time series waveform of the tire vibration obtained in advance for each road surface condition ( e) and a step (f) of determining the state of the running road surface based on the value of the identification function using the kernel function, wherein the stepping on the time-series waveform of the tire vibration is performed. point Time to t f, the trailing time of t k points, the time t f and the time t k time of grounding the center point is an intermediate time and t c, when the period of the time series waveform is T In the step (c), the time length T K including any one of the times t f , t k, or t c from the time-series waveform of the detected tire vibration is 13T / 40 <. A time-series waveform in the range of T K <19T / 40 is cut out, a window function is applied to the cut-out waveform, which is the cut-out time-series waveform, to extract a time-series waveform for each time window. In the step (e), The time length Tc, which is cut out from the time-series waveform of the tire vibration determined in advance for each time window and the road surface condition, is in the range of 13T / 40 <T K <19T / 40. Reference selected from feature values for each time window calculated from reference cutout waveform The feature is that a kernel function is calculated from the feature amount.
This makes it possible to reduce the number of reference features used for calculating the kernel function K (X, Y), thereby increasing the calculation speed while ensuring the road surface state determination accuracy.
なお、前記の特徴ベクトルXiとしては、前記窓関数をかけて抽出した時間窓毎の切り出し波形の特定周波数帯域の振動レベル、前記特定周波数帯域の振動レベルの時変分散、及び、前記切り出し波形のケプストラム係数のいずれか1つ、または、複数、または、全部等が挙げられる。また、前記特定周波数帯域の振動レベルは、前記窓関数をかけて抽出した時間窓毎の切り出し波形の周波数スペクトル、もしくは、前記窓関数をかけて抽出した時間窓毎の切り出し波形をバンドパスフィルタを通して得られた時系列波形から求めることができる。
また、前記カーネル関数を、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値とすれば、路面状態の判別精度を向上させることができる。 Note that, as the feature vector X i , a vibration level of a specific frequency band of a cutout waveform for each time window extracted by applying the window function, a time-varying variance of a vibration level of the specific frequency band, and the cutout waveform , One or more, or all, of the cepstrum coefficients. Further, the vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a bandpass filter. It can be obtained from the obtained time-series waveform.
Further, if the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function, it is possible to improve the determination accuracy of the road surface state.
また、前記カーネル関数を、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値とすれば、路面状態の判別精度を向上させることができる。 Note that, as the feature vector X i , a vibration level of a specific frequency band of a cutout waveform for each time window extracted by applying the window function, a time-varying variance of a vibration level of the specific frequency band, and the cutout waveform , One or more, or all, of the cepstrum coefficients. Further, the vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a bandpass filter. It can be obtained from the obtained time-series waveform.
Further, if the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function, it is possible to improve the determination accuracy of the road surface state.
また、本発明は、走行中のタイヤの振動を検出して、前記タイヤの走行する路面の状態を判別する路面状態判別装置であって、タイヤトレッド部のインナーライナー部の気室側に配設されて、走行中のタイヤの振動を検出するタイヤ振動検出手段と、前記タイヤ振動の時系列波形における踏み込み点の時刻をtf、蹴り出し点の時刻をtk、前記時刻tfと前記時刻tkの中間の時刻である接地中心点の時刻をtcとし、前記時系列波形の周期をTとしたとき、前記検出されたタイヤ振動の時系列波形から、前記時刻tf、tk、もしくは、tcのいずれかの時刻含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出す波形切り出し手段と、前記切り出された時系列波形である切り出し波形に窓関数をかけて時間窓毎の時系列波形を抽出する窓掛け手段と、前記抽出された時間窓毎の切り出し波形における特定周波数の振動レベルを成分とする特徴量もしくは前記振動レベルの関数を成分とする特徴量を算出する特徴量算出手段と、予め予め路面状態毎に求めておいた路面状態毎のタイヤ振動の時系列波形から切り出された、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形である基準切り出し波形から算出された時間窓毎の特徴量から選択される基準特徴量と前記基準特徴量に対応するラグランジェ未定乗数とを記憶する記憶手段と、前記特徴量算出手段で算出した時間窓毎の特徴量と、前記記憶手段に記憶された基準特徴量とからカーネル関数を算出するカーネル関数算出手段と、前記カーネル関数を用いた識別関数の値に基づいて路面状態を判別する路面状態判別手段とを備えることを特徴とする。
このような構成を採ることにより、時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別装置と得ることができる。 Further, the present invention is a road surface condition determination device that detects the vibration of a running tire and determines the condition of a road surface on which the tire is running, the device being disposed on an air chamber side of an inner liner portion of a tire tread portion. Tire vibration detecting means for detecting the vibration of the running tire, the time of the stepping point in the time series waveform of the tire vibration is t f , the time of the kicking point is tk , the time t f and the time the time of grounding the center point is an intermediate time t k and t c, when the period of the time series waveform is T, from the time-series waveform of the detected tire vibration, the time t f, t k, Alternatively, a waveform extracting means for extracting a time-series waveform having a time length T K including any time of t c in the range of 13T / 40 <T K <19T / 40; When a window function is applied to an extracted waveform A windowing means for extracting a time-series waveform for each inter-window, and a feature quantity having a component of a vibration level of a specific frequency or a feature quantity having a function of the vibration level as a component in the extracted cut-out waveform for each time window. The feature amount calculation means to be calculated and the time length T K extracted from the time series waveform of the tire vibration for each road surface condition which is obtained in advance for each road surface condition is 13T / 40 <T K <19T / 40. Storage means for storing a reference feature value selected from feature values for each time window calculated from a reference cutout waveform that is a time-series waveform in a range and a Lagrange undetermined multiplier corresponding to the reference feature value, Kernel function calculation means for calculating a kernel function from the feature quantity for each time window calculated by the feature quantity calculation means and the reference feature quantity stored in the storage means, and a value of an identification function using the kernel function Road surface condition determining means for determining the road surface condition based on
By adopting such a configuration, it is possible to obtain a road surface state determination device that can ensure the road surface state determination accuracy even when the amount of time expansion / contraction calculation is reduced.
このような構成を採ることにより、時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別装置と得ることができる。 Further, the present invention is a road surface condition determination device that detects the vibration of a running tire and determines the condition of a road surface on which the tire is running, the device being disposed on an air chamber side of an inner liner portion of a tire tread portion. Tire vibration detecting means for detecting the vibration of the running tire, the time of the stepping point in the time series waveform of the tire vibration is t f , the time of the kicking point is tk , the time t f and the time the time of grounding the center point is an intermediate time t k and t c, when the period of the time series waveform is T, from the time-series waveform of the detected tire vibration, the time t f, t k, Alternatively, a waveform extracting means for extracting a time-series waveform having a time length T K including any time of t c in the range of 13T / 40 <T K <19T / 40; When a window function is applied to an extracted waveform A windowing means for extracting a time-series waveform for each inter-window, and a feature quantity having a component of a vibration level of a specific frequency or a feature quantity having a function of the vibration level as a component in the extracted cut-out waveform for each time window. The feature amount calculation means to be calculated and the time length T K extracted from the time series waveform of the tire vibration for each road surface condition which is obtained in advance for each road surface condition is 13T / 40 <T K <19T / 40. Storage means for storing a reference feature value selected from feature values for each time window calculated from a reference cutout waveform that is a time-series waveform in a range and a Lagrange undetermined multiplier corresponding to the reference feature value, Kernel function calculation means for calculating a kernel function from the feature quantity for each time window calculated by the feature quantity calculation means and the reference feature quantity stored in the storage means, and a value of an identification function using the kernel function Road surface condition determining means for determining the road surface condition based on
By adopting such a configuration, it is possible to obtain a road surface state determination device that can ensure the road surface state determination accuracy even when the amount of time expansion / contraction calculation is reduced.
なお、前記発明の概要は、本発明の必要な全ての特徴を列挙したものではなく、これらの特徴群のサブコンビネーションもまた、発明となり得る。
The summary of the present invention does not list all necessary features of the present invention, and a sub-combination of these features may also be an invention.
実施の形態
図1は、本実施の形態に係る路面状態判別装置10の構成を示す図である。
路面状態判別装置10は、タイヤ振動検出手段としての加速度センサー11と、波形切り出し手段12と、窓掛け手段13と、特徴ベクトル算出手段14と、記憶手段15と、カーネル関数算出手段16と、路面状態判別手段17とを備え、タイヤ20の走行している路面が、DRY路面であるかWET路面であるかの2路面判別を行う。
波形切り出し手段12~路面状態判別手段17までの各手段は、例えば、コンピュータのソフトウェア、及び、RAM等のメモリーから構成される。
加速度センサー11は、図2に示すように、タイヤ20のインナーライナー部21のタイヤ気室22側のほぼ中央部に一体に配置されて、路面からの入力による当該タイヤ20の振動を検出する。加速度センサー11の出力であるタイヤ振動の信号は、例えば、増幅器で増幅された後、デジタル信号に変換されて波形切り出し手段12に送られる。 Embodiment FIG. 1 is a diagram illustrating a configuration of a road surfacestate determination device 10 according to the present embodiment.
The road surfacecondition determination device 10 includes an acceleration sensor 11 as a tire vibration detection unit, a waveform cutting unit 12, a windowing unit 13, a feature vector calculation unit 14, a storage unit 15, a kernel function calculation unit 16, a road surface A state determination unit 17 is provided for performing two road surface determinations as to whether the road surface on which the tire 20 is traveling is a DRY road surface or a WET road surface.
Each unit from thewaveform extracting unit 12 to the road surface state determining unit 17 is composed of, for example, computer software and a memory such as a RAM.
As shown in FIG. 2, the acceleration sensor 11 is disposed integrally at a substantially central portion of theinner liner portion 21 of the tire 20 on the tire air chamber 22 side, and detects vibration of the tire 20 due to input from a road surface. The tire vibration signal output from the acceleration sensor 11 is, for example, amplified by an amplifier, converted into a digital signal, and sent to the waveform cutout unit 12.
図1は、本実施の形態に係る路面状態判別装置10の構成を示す図である。
路面状態判別装置10は、タイヤ振動検出手段としての加速度センサー11と、波形切り出し手段12と、窓掛け手段13と、特徴ベクトル算出手段14と、記憶手段15と、カーネル関数算出手段16と、路面状態判別手段17とを備え、タイヤ20の走行している路面が、DRY路面であるかWET路面であるかの2路面判別を行う。
波形切り出し手段12~路面状態判別手段17までの各手段は、例えば、コンピュータのソフトウェア、及び、RAM等のメモリーから構成される。
加速度センサー11は、図2に示すように、タイヤ20のインナーライナー部21のタイヤ気室22側のほぼ中央部に一体に配置されて、路面からの入力による当該タイヤ20の振動を検出する。加速度センサー11の出力であるタイヤ振動の信号は、例えば、増幅器で増幅された後、デジタル信号に変換されて波形切り出し手段12に送られる。 Embodiment FIG. 1 is a diagram illustrating a configuration of a road surface
The road surface
Each unit from the
As shown in FIG. 2, the acceleration sensor 11 is disposed integrally at a substantially central portion of the
波形切り出し手段12は、加速度センサー11で検出したタイヤ振動の時系列波形から路面状態の判定に使用する部分を切り出して窓かけ手段13に送る。
図3(a)はタイヤ振動の時系列波形の一例を示す図で、タイヤ振動の時系列波形は、踏み込み点Pf近傍と蹴り出し点Pk近傍に大きなピークを有しており、かつ、タイヤ20の陸部が接地する前の踏み込み前領域Rf、タイヤ20の陸部が路面から離れた後の蹴り出し後領域Rk、及び、タイヤ20の陸部が路面に接地している接地領域Rsにおいては、路面状態によって異なる振動が出現する。以下、踏み込み前領域Rfから蹴り出し後領域Rkまでの領域を路面領域という。一方、踏み込み前領域Rfの前の領域と蹴り出し後領域Rkの後の領域(以下、路面外領域という)とは路面の影響を殆ど受けていないので、振動レベルも小さく、路面の情報も含んでいない。
ここで、タイヤ20が1回転する時間である振動の時系列波形の周期をTとする。この周期Tは、例えば、図3(b)に示すように、時間的に隣接する2つの踏み込み点Pfの時間間隔、もしくは、2つの蹴り出し点Pkの時間間隔から算出すればよい。
本例では、前記タイヤ振動の時系列波形から、踏み込み点Pfにおける時刻tf含む、時間長さTKが、13T/40<TK<19T/40(T:タイヤ振動の時系列波形の周期)の範囲にある時系列波形を切り出し、この切り出された時系列波形である切り出し波形を窓かけ手段13に送る。以下、上記のTKを切り出し幅という。 Thewaveform cutout unit 12 cuts out a portion used for determination of a road surface condition from the time series waveform of the tire vibration detected by the acceleration sensor 11 and sends the portion to the windowing unit 13.
A diagram showing an example of FIG. 3 (a) time-series waveform of tire vibration, time-series waveform of tire vibration has a large peak in the vicinity of point P k out kicking the neighboring depression point P f, and, regions R k after kicking after previous depression front region R f where land portion of thetire 20 contacts the ground, the land portion of the tire 20 is separated from the road surface, and, grounding land portion of the tire 20 is grounded on the road surface in the region R s, different vibrations may appear by the road surface condition. Below, the area of to the area R k after kicking from depression before area R f of the road surface area. On the other hand, the area before the stepping-in area Rf and the area after the kicking-out area Rk (hereinafter referred to as “out-of-road area”) are hardly affected by the road surface, so that the vibration level is small and the road surface information is low. Not included.
Here, the period of the time-series waveform of the vibration, which is the time for thetire 20 to make one rotation, is represented by T. The period T may, for example, as shown in FIG. 3 (b), the time interval between temporally adjacent two depression point P f, or may be calculated from the time interval between the two kick-out point P k.
In this example, from the time series waveform of the tire vibration, the time length T K including the time t f at the depression point P f is 13T / 40 <T K <19T / 40 (T: the time series waveform of the tire vibration A time series waveform in the range of (period) is cut out, and the cut out waveform which is the cut out time series waveform is sent to thewindowing means 13. Hereinafter, the above T K is referred to as a cutout width.
図3(a)はタイヤ振動の時系列波形の一例を示す図で、タイヤ振動の時系列波形は、踏み込み点Pf近傍と蹴り出し点Pk近傍に大きなピークを有しており、かつ、タイヤ20の陸部が接地する前の踏み込み前領域Rf、タイヤ20の陸部が路面から離れた後の蹴り出し後領域Rk、及び、タイヤ20の陸部が路面に接地している接地領域Rsにおいては、路面状態によって異なる振動が出現する。以下、踏み込み前領域Rfから蹴り出し後領域Rkまでの領域を路面領域という。一方、踏み込み前領域Rfの前の領域と蹴り出し後領域Rkの後の領域(以下、路面外領域という)とは路面の影響を殆ど受けていないので、振動レベルも小さく、路面の情報も含んでいない。
ここで、タイヤ20が1回転する時間である振動の時系列波形の周期をTとする。この周期Tは、例えば、図3(b)に示すように、時間的に隣接する2つの踏み込み点Pfの時間間隔、もしくは、2つの蹴り出し点Pkの時間間隔から算出すればよい。
本例では、前記タイヤ振動の時系列波形から、踏み込み点Pfにおける時刻tf含む、時間長さTKが、13T/40<TK<19T/40(T:タイヤ振動の時系列波形の周期)の範囲にある時系列波形を切り出し、この切り出された時系列波形である切り出し波形を窓かけ手段13に送る。以下、上記のTKを切り出し幅という。 The
A diagram showing an example of FIG. 3 (a) time-series waveform of tire vibration, time-series waveform of tire vibration has a large peak in the vicinity of point P k out kicking the neighboring depression point P f, and, regions R k after kicking after previous depression front region R f where land portion of the
Here, the period of the time-series waveform of the vibration, which is the time for the
In this example, from the time series waveform of the tire vibration, the time length T K including the time t f at the depression point P f is 13T / 40 <T K <19T / 40 (T: the time series waveform of the tire vibration A time series waveform in the range of (period) is cut out, and the cut out waveform which is the cut out time series waveform is sent to the
タイヤ振動の時系列波形の切り出し方の例を図3(b)に示す。
同図において、tfは踏み込み点Pfの時刻、tkは蹴り出し点Pkの時刻、tcは時刻tfと時刻をtkの中間の時刻である接地中心点の時刻である。
従来は、接地中心点の時刻tcを中心に、その前後3T/8分の波形(TK=3T/4)を切り出し、その波形(路面領域の波形)から算出した特徴ベクトルXiと路面Aの基準特徴ベクトルYASVとをGAカーネルを用いて比較することで、路面状態を判別していた。
これに対して、本例では、接地中心点の時刻tcから3T/8だけ前の時刻を始点とし、踏み込み点Pfの時刻tfを含む、切り出し幅TKが、例えば、13T/40、3T/8、19T/40などの波形を切り出し、切り出した波形である切り出し波形を窓掛け手段13に送るようにしている。
なお、図3(b)の時系列波形では、TK=13T/40の場合には、終点が踏み込み点tfの時刻となり、TK=3T/8の場合には、終点が接地中心点の時刻tcとなる。また、19T/40の場合には、終点が蹴り出し点Pkの時刻tkよりも後になっている。 FIG. 3B shows an example of how to extract a time series waveform of tire vibration.
In the figure, t f is the time of the depressed point P f , t k is the time of the kick-out point P k , and t c is the time of the ground contact center point which is an intermediate time between the time t f and the time t k .
Conventionally, a waveform (T K = 3T / 4) corresponding to 3T / 8 before and after the time t c of the ground contact center is cut out, and the feature vector X i calculated from the waveform (waveform of the road surface area) and the road surface The road surface condition was determined by comparing the reference feature vector Y ASV of A with the GA kernel.
On the other hand, in the present example, the cutout width T K including the time t f of the stepping point P f starting from thetime 3 T / 8 before the time t c of the ground contact center point is 13 T / 40, for example. , 3T / 8, 19T / 40, etc., and cut out waveforms, which are cut out waveforms, are sent to the windowing means 13.
In the time series waveform of FIG. 3B, when T K = 13T / 40, the end point is the time of the depressed point t f , and when T K = 3T / 8, the end point is the ground contact point. the time t c. In addition, in the case of the 19T / 40 is, it is later than the time t k of the end point is kick-out point P k.
同図において、tfは踏み込み点Pfの時刻、tkは蹴り出し点Pkの時刻、tcは時刻tfと時刻をtkの中間の時刻である接地中心点の時刻である。
従来は、接地中心点の時刻tcを中心に、その前後3T/8分の波形(TK=3T/4)を切り出し、その波形(路面領域の波形)から算出した特徴ベクトルXiと路面Aの基準特徴ベクトルYASVとをGAカーネルを用いて比較することで、路面状態を判別していた。
これに対して、本例では、接地中心点の時刻tcから3T/8だけ前の時刻を始点とし、踏み込み点Pfの時刻tfを含む、切り出し幅TKが、例えば、13T/40、3T/8、19T/40などの波形を切り出し、切り出した波形である切り出し波形を窓掛け手段13に送るようにしている。
なお、図3(b)の時系列波形では、TK=13T/40の場合には、終点が踏み込み点tfの時刻となり、TK=3T/8の場合には、終点が接地中心点の時刻tcとなる。また、19T/40の場合には、終点が蹴り出し点Pkの時刻tkよりも後になっている。 FIG. 3B shows an example of how to extract a time series waveform of tire vibration.
In the figure, t f is the time of the depressed point P f , t k is the time of the kick-out point P k , and t c is the time of the ground contact center point which is an intermediate time between the time t f and the time t k .
Conventionally, a waveform (T K = 3T / 4) corresponding to 3T / 8 before and after the time t c of the ground contact center is cut out, and the feature vector X i calculated from the waveform (waveform of the road surface area) and the road surface The road surface condition was determined by comparing the reference feature vector Y ASV of A with the GA kernel.
On the other hand, in the present example, the cutout width T K including the time t f of the stepping point P f starting from the
In the time series waveform of FIG. 3B, when T K = 13T / 40, the end point is the time of the depressed point t f , and when T K = 3T / 8, the end point is the ground contact point. the time t c. In addition, in the case of the 19T / 40 is, it is later than the time t k of the end point is kick-out point P k.
窓掛け手段13は、図4に示すように、前記切り出された切り出し波形を予め設定した時間幅(時間窓幅ともいう)ΔTで窓掛けし、時間窓毎にタイヤ振動の切り出し波形を抽出して特徴ベクトル算出手段14に送る。
なお、同図のTKは切り出し幅で、ここでは、TK=3T/8とした。
特徴ベクトル算出手段14は、図4に示すように、抽出された各時間窓の切り出し波形のそれぞれに対して特徴ベクトルXi(i=1~N;Nは抽出された時間窓毎の時系列波形の数)算出する。
このように、切り出し幅TKを狭くすると、時間窓の数も少なくなるので、特徴ベクトルXi数も少なくなる。
本例では、算出する特徴ベクトルXiとして、タイヤ振動の時系列波形を、それぞれ、0-0.5kHz、0.5-1kHz、1-2kHz、2-3kHz、3-4kHz、4-5kHzのバンドパスフィルタにそれぞれ通して得られた特定周波数帯域の振動レベル(フィルター濾過波のパワー値)aik(k=1~6)を用いた。特徴ベクトルは、Xi=(ai1,ai2,ai3,ai4,ai5,ai6)で、特徴ベクトルXiの数はN個である。
図5は、特徴ベクトルXiの入力空間を示す模式図で、各軸は特徴量である特定周波数帯域の振動レベルaikを表し、各点が特徴ベクトルXiを表している。実際の入力空間は特定周波数帯域の数が3つなので時間軸と合わせると7次元空間になるが、同図は2次元(横軸がa1、縦軸がa2)で表している。
同図において、グループCがDRY路面を走行しているときの特徴ベクトルXiの集合で、グループC’がWET路面を走行しているときの特徴ベクトルX’iの集合とすると、グループCとグループC’とを区別することができれば、タイヤの走行している路面がDRY路面かWET路面かを判別することができる。 As shown in FIG. 4, the windowing means 13 windows the extracted waveform with a predetermined time width (also referred to as a time window width) ΔT, and extracts a waveform of the tire vibration for each time window. To the feature vector calculation means 14.
In the figure, T K is a cutout width, and here, T K = 3T / 8.
As shown in FIG. 4, the feature vector calculation means 14 calculates a feature vector X i (i = 1 to N; N is a time series for each extracted time window for each of the extracted waveforms of the extracted time windows. The number of waveforms) is calculated.
As described above, when the cutout width T K is reduced, the number of time windows is reduced, and the number of feature vectors X i is also reduced.
In this example, the time series waveforms of the tire vibration are used as the feature vectors X i to be calculated, and the band-pass filters of 0-0.5 kHz, 0.5-1 kHz, 1-2 kHz, 2-3 kHz, 3-4 kHz, and 4-5 kHz, respectively. The vibration level (power value of the filtered wave) a ik (k = 1 to 6) of the specific frequency band obtained by passing through each of them was used. Feature vectors, the number of X i = (a i1, a i2, a i3, a i4, a i5, a i6) , the feature vector X i is the N.
Figure 5 is a schematic diagram showing the input space of feature vectors X i, each axis represents the vibration level a ik of a specific frequency band, which is a feature quantity, each point representing a feature vector X i. The actual input space is a seven-dimensional space when combined with the time axis because the number of specific frequency bands is three. However, the figure is expressed in two dimensions (the horizontal axis is a 1 and the vertical axis is a 2 ).
In the figure, a set of feature vectors X i when the group C travels the DRY road, when group C be the set of i 'is the feature vector X of when traveling the WET road', and the group C If the tire can be distinguished from the group C ′, it can be determined whether the road on which the tires are traveling is a DRY road surface or a WET road surface.
なお、同図のTKは切り出し幅で、ここでは、TK=3T/8とした。
特徴ベクトル算出手段14は、図4に示すように、抽出された各時間窓の切り出し波形のそれぞれに対して特徴ベクトルXi(i=1~N;Nは抽出された時間窓毎の時系列波形の数)算出する。
このように、切り出し幅TKを狭くすると、時間窓の数も少なくなるので、特徴ベクトルXi数も少なくなる。
本例では、算出する特徴ベクトルXiとして、タイヤ振動の時系列波形を、それぞれ、0-0.5kHz、0.5-1kHz、1-2kHz、2-3kHz、3-4kHz、4-5kHzのバンドパスフィルタにそれぞれ通して得られた特定周波数帯域の振動レベル(フィルター濾過波のパワー値)aik(k=1~6)を用いた。特徴ベクトルは、Xi=(ai1,ai2,ai3,ai4,ai5,ai6)で、特徴ベクトルXiの数はN個である。
図5は、特徴ベクトルXiの入力空間を示す模式図で、各軸は特徴量である特定周波数帯域の振動レベルaikを表し、各点が特徴ベクトルXiを表している。実際の入力空間は特定周波数帯域の数が3つなので時間軸と合わせると7次元空間になるが、同図は2次元(横軸がa1、縦軸がa2)で表している。
同図において、グループCがDRY路面を走行しているときの特徴ベクトルXiの集合で、グループC’がWET路面を走行しているときの特徴ベクトルX’iの集合とすると、グループCとグループC’とを区別することができれば、タイヤの走行している路面がDRY路面かWET路面かを判別することができる。 As shown in FIG. 4, the windowing means 13 windows the extracted waveform with a predetermined time width (also referred to as a time window width) ΔT, and extracts a waveform of the tire vibration for each time window. To the feature vector calculation means 14.
In the figure, T K is a cutout width, and here, T K = 3T / 8.
As shown in FIG. 4, the feature vector calculation means 14 calculates a feature vector X i (i = 1 to N; N is a time series for each extracted time window for each of the extracted waveforms of the extracted time windows. The number of waveforms) is calculated.
As described above, when the cutout width T K is reduced, the number of time windows is reduced, and the number of feature vectors X i is also reduced.
In this example, the time series waveforms of the tire vibration are used as the feature vectors X i to be calculated, and the band-pass filters of 0-0.5 kHz, 0.5-1 kHz, 1-2 kHz, 2-3 kHz, 3-4 kHz, and 4-5 kHz, respectively. The vibration level (power value of the filtered wave) a ik (k = 1 to 6) of the specific frequency band obtained by passing through each of them was used. Feature vectors, the number of X i = (a i1, a i2, a i3, a i4, a i5, a i6) , the feature vector X i is the N.
Figure 5 is a schematic diagram showing the input space of feature vectors X i, each axis represents the vibration level a ik of a specific frequency band, which is a feature quantity, each point representing a feature vector X i. The actual input space is a seven-dimensional space when combined with the time axis because the number of specific frequency bands is three. However, the figure is expressed in two dimensions (the horizontal axis is a 1 and the vertical axis is a 2 ).
In the figure, a set of feature vectors X i when the group C travels the DRY road, when group C be the set of i 'is the feature vector X of when traveling the WET road', and the group C If the tire can be distinguished from the group C ′, it can be determined whether the road on which the tires are traveling is a DRY road surface or a WET road surface.
記憶手段15は、予め求めておいた、DRY路面とWET路面とを識別するためのDW識別モデルを記憶する。
DW識別モデルは、DRY路面とWET路面とを分離超平面を表わす識別関数f(x)により分離するための基準特徴量である基準特徴ベクトルYAK(yjk)と、基準特徴ベクトルYAK(yjk)に対応するラグランジュ乗数λAとを備える。
基準特徴ベクトルYAK(yjk)及びλAは、通常は、加速度センサーを取り付けたタイヤを搭載した試験車両を、DRY路面とWET路面にて、様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された時間窓毎の特徴ベクトルである路面特徴ベクトルYA(yjk)を入力データとして、学習により求められる。
例では、タイヤ振動の時系列波形から切り出した切り出し波形から算出した時間窓毎の特徴ベクトルを路面特徴ベクトルYA(yjk)として、基準特徴ベクトルYAK(yjk)及びλAを求めているので、基準特徴ベクトルYAK(yjk)の数も少なくなる。
なお、学習に使うタイヤサイズは1種類でもよいし、複数種でもよい。
基準特徴ベクトルYAK(yjk)の添え字Aは、DRYもしくはWETを示している。
また、添字j(j=1~M)は時間窓毎に抽出した時系列波形の窓番号を示し、添字kはベクトルの成分を示している(k=1~6)。すなわち、yjk=(aj1,aj2,aj3,aj4,aj5,aj6))である。
なお、本例のように、グローバルアライメントカーネル関数を用いる場合には、基準特徴ベクトルYAK(yjk)は、ベクトルyiの次元数(ここでは、6×M(M;窓の数))の行列となる。
以下、路面特徴ベクトルYA(yjk)及び基準特徴ベクトルYAK(yjk)を、それぞれ、YA、YAKと記す。 The storage means 15 stores a DW identification model for identifying a DRY road surface and a WET road surface, which has been obtained in advance.
The DW identification model includes a reference feature vector Y AK (y jk ), which is a reference feature amount for separating a DRY road surface and a WET road surface by an identification function f (x) representing a separation hyperplane, and a reference feature vector Y AK ( y jk ) and a Lagrange multiplier λ A.
The reference feature vectors Y AK (y jk ) and λ A are usually the tire vibrations obtained by running a test vehicle equipped with a tire equipped with an acceleration sensor at various speeds on a DRY road surface and a WET road surface. The road surface feature vector Y A (y jk ), which is a feature vector for each time window calculated from the time-series waveform of the above, is obtained by learning using as input data.
In the example, the feature vector for each time series time was calculated from the cut waveforms cut from the waveform windows of tire vibration as a road surface feature vector Y A (y jk), seeking the reference feature vector Y AK (y jk) and lambda A Therefore, the number of reference feature vectors Y AK (y jk ) also decreases.
Note that the tire size used for learning may be one type or a plurality of types.
The subscript A of the reference feature vector Y AK (y jk ) indicates DRY or WET.
The subscript j (j = 1 to M) indicates the window number of the time-series waveform extracted for each time window, and the subscript k indicates a vector component (k = 1 to 6). That is, y jk = (a j1, a j2, a j3, a j4, a j5, a j6)).
When the global alignment kernel function is used as in this example, the reference feature vector Y AK (y jk ) is the number of dimensions of the vector y i (here, 6 × M (M; number of windows)). Of the matrix.
Hereinafter, the road feature vector Y A a (y jk) and the reference feature vector Y AK (y jk), respectively, referred to as Y A, Y AK.
DW識別モデルは、DRY路面とWET路面とを分離超平面を表わす識別関数f(x)により分離するための基準特徴量である基準特徴ベクトルYAK(yjk)と、基準特徴ベクトルYAK(yjk)に対応するラグランジュ乗数λAとを備える。
基準特徴ベクトルYAK(yjk)及びλAは、通常は、加速度センサーを取り付けたタイヤを搭載した試験車両を、DRY路面とWET路面にて、様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された時間窓毎の特徴ベクトルである路面特徴ベクトルYA(yjk)を入力データとして、学習により求められる。
例では、タイヤ振動の時系列波形から切り出した切り出し波形から算出した時間窓毎の特徴ベクトルを路面特徴ベクトルYA(yjk)として、基準特徴ベクトルYAK(yjk)及びλAを求めているので、基準特徴ベクトルYAK(yjk)の数も少なくなる。
なお、学習に使うタイヤサイズは1種類でもよいし、複数種でもよい。
基準特徴ベクトルYAK(yjk)の添え字Aは、DRYもしくはWETを示している。
また、添字j(j=1~M)は時間窓毎に抽出した時系列波形の窓番号を示し、添字kはベクトルの成分を示している(k=1~6)。すなわち、yjk=(aj1,aj2,aj3,aj4,aj5,aj6))である。
なお、本例のように、グローバルアライメントカーネル関数を用いる場合には、基準特徴ベクトルYAK(yjk)は、ベクトルyiの次元数(ここでは、6×M(M;窓の数))の行列となる。
以下、路面特徴ベクトルYA(yjk)及び基準特徴ベクトルYAK(yjk)を、それぞれ、YA、YAKと記す。 The storage means 15 stores a DW identification model for identifying a DRY road surface and a WET road surface, which has been obtained in advance.
The DW identification model includes a reference feature vector Y AK (y jk ), which is a reference feature amount for separating a DRY road surface and a WET road surface by an identification function f (x) representing a separation hyperplane, and a reference feature vector Y AK ( y jk ) and a Lagrange multiplier λ A.
The reference feature vectors Y AK (y jk ) and λ A are usually the tire vibrations obtained by running a test vehicle equipped with a tire equipped with an acceleration sensor at various speeds on a DRY road surface and a WET road surface. The road surface feature vector Y A (y jk ), which is a feature vector for each time window calculated from the time-series waveform of the above, is obtained by learning using as input data.
In the example, the feature vector for each time series time was calculated from the cut waveforms cut from the waveform windows of tire vibration as a road surface feature vector Y A (y jk), seeking the reference feature vector Y AK (y jk) and lambda A Therefore, the number of reference feature vectors Y AK (y jk ) also decreases.
Note that the tire size used for learning may be one type or a plurality of types.
The subscript A of the reference feature vector Y AK (y jk ) indicates DRY or WET.
The subscript j (j = 1 to M) indicates the window number of the time-series waveform extracted for each time window, and the subscript k indicates a vector component (k = 1 to 6). That is, y jk = (a j1, a j2, a j3, a j4, a j5, a j6)).
When the global alignment kernel function is used as in this example, the reference feature vector Y AK (y jk ) is the number of dimensions of the vector y i (here, 6 × M (M; number of windows)). Of the matrix.
Hereinafter, the road feature vector Y A a (y jk) and the reference feature vector Y AK (y jk), respectively, referred to as Y A, Y AK.
路面特徴ベクトルYAの算出方法は、前述した特徴ベクトルXjと同様で、例えば、DRY路面の基準特徴ベクトルYDなら、DRY路面を走行したときのタイヤ振動の時系列波形から切り出した切り出し波形を時間幅ΔTで窓掛けし、時間窓毎に切り出し波形を抽出し、抽出された各時間窓の切り出し波形のそれぞれに対してDRY路面特徴ベクトルYDを算出する。同様に、WET路面特徴ベクトルYWは、WET路面を走行したときの時間窓毎の切り出し波形から算出される。
また、基準特徴ベクトルYAKは、DRY路面特徴ベクトルYDとWET路面特徴ベクトルYWとを学習データとしたサポートベクトルマシーン(SVM)により、サポートベクトルとして選択された特徴ベクトルである。
ここで、時間幅ΔTが、特徴ベクトルXjを求める場合の時間幅ΔTと同じ値であることが肝要である。時間幅Tが一定なら、時間窓の切り出し波形の数Mはタイヤ種と車速によって異なる。すなわち、基準徴ベクトルYAの時間窓の切り出し波形の数Mは、特徴ベクトルXjの時間窓の切り出し波形の数Nとは必ずしも一致しない。例えば、タイヤ種が同じでも、特徴ベクトルXjを求めるときの車速が路面特徴ベクトルYAを求めたときの車速よりも遅い場合には、M>Nとなり、速い場合にはM<Nとなる。 The method of calculating the road surface feature vector Y A is the same as the feature vector X j described above, for example, if the reference feature vectors Y D of DRY road, cut waveform cut out from the time-series waveform of tire vibrations when traveling along DRY road Is windowed with a time width ΔT, a cut-out waveform is extracted for each time window, and a DRY road surface feature vector Y D is calculated for each of the extracted cut-out waveforms for each time window. Similarly, the WET road surface feature vector Y W is calculated from a cut-out waveform for each time window when traveling on a WET road surface.
The reference feature vector Y AK is a feature vector selected as a support vector by a support vector machine (SVM) using the DRY road surface feature vector Y D and the WET road surface feature vector Y W as learning data.
Here, it is important that the time width ΔT has the same value as the time width ΔT when the feature vector Xj is obtained. If the time width T is constant, the number M of cut-out waveforms of the time window differs depending on the tire type and the vehicle speed. That is, the number M of time window cutout waveform of the reference symptom vector Y A does not necessarily coincide with the number N of time windows of the cutout waveform of the feature vector X j. For example, a tire species is the same, if slower than the vehicle speed when the vehicle speed when determining the feature vector X j to determine the road feature vector Y A is a M <N when M> N, and the fast .
また、基準特徴ベクトルYAKは、DRY路面特徴ベクトルYDとWET路面特徴ベクトルYWとを学習データとしたサポートベクトルマシーン(SVM)により、サポートベクトルとして選択された特徴ベクトルである。
ここで、時間幅ΔTが、特徴ベクトルXjを求める場合の時間幅ΔTと同じ値であることが肝要である。時間幅Tが一定なら、時間窓の切り出し波形の数Mはタイヤ種と車速によって異なる。すなわち、基準徴ベクトルYAの時間窓の切り出し波形の数Mは、特徴ベクトルXjの時間窓の切り出し波形の数Nとは必ずしも一致しない。例えば、タイヤ種が同じでも、特徴ベクトルXjを求めるときの車速が路面特徴ベクトルYAを求めたときの車速よりも遅い場合には、M>Nとなり、速い場合にはM<Nとなる。 The method of calculating the road surface feature vector Y A is the same as the feature vector X j described above, for example, if the reference feature vectors Y D of DRY road, cut waveform cut out from the time-series waveform of tire vibrations when traveling along DRY road Is windowed with a time width ΔT, a cut-out waveform is extracted for each time window, and a DRY road surface feature vector Y D is calculated for each of the extracted cut-out waveforms for each time window. Similarly, the WET road surface feature vector Y W is calculated from a cut-out waveform for each time window when traveling on a WET road surface.
The reference feature vector Y AK is a feature vector selected as a support vector by a support vector machine (SVM) using the DRY road surface feature vector Y D and the WET road surface feature vector Y W as learning data.
Here, it is important that the time width ΔT has the same value as the time width ΔT when the feature vector Xj is obtained. If the time width T is constant, the number M of cut-out waveforms of the time window differs depending on the tire type and the vehicle speed. That is, the number M of time window cutout waveform of the reference symptom vector Y A does not necessarily coincide with the number N of time windows of the cutout waveform of the feature vector X j. For example, a tire species is the same, if slower than the vehicle speed when the vehicle speed when determining the feature vector X j to determine the road feature vector Y A is a M <N when M> N, and the fast .
図6は、入力空間上におけるDRY路面特徴ベクトルYDとWET路面特徴ベクトルYWを示す概念図で、同図の黒丸がDRY路面、白丸がWET路面である。
なお、前述したように、DRY路面特徴ベクトルYDもWET路面特徴ベクトルYWも行列であるが、グループの識別境界の求め方を説明するため、図6では、DRY路面特徴ベクトルYDとWET路面特徴ベクトルYWとをそれぞれ2次元のベクトルで示した。
グループの識別境界は、一般には、線形分離が不可能である。そこで、カーネル法を用いて、路面特徴ベクトルYV及びYWを非線形写像φによって高次元特徴空間に写像して線形分離を行うことで、元の入力空間において路面特徴ベクトルYD及びYWに対して非線形な分類を行う。
DRY路面とWET路面とを区別するには、DRY路面特徴ベクトルYDjとWET路面特徴ベクトルYWjとを分離する分離超平面である識別関数f(x)に対してマージンを持たせることで、DRY路面とWET路面とを精度よく区別することができる。
マージンとは、分離超平面から一番近いサンプルまでの距離をいい、識別境界である分離超平面はf(x)=0である。また、DRY路面特徴ベクトルYDjは全てf(x)≧+1の領域にあり、WET路面特徴ベクトルYWjは全てf(x)≦-1の領域にある。 Figure 6 is a conceptual diagram showing a DRY road feature vector Y D and WET road feature vector Y W in the input space, black circles in the figure is DRY road, open circles are WET road.
As described above, although a DRY road feature vectors Y D also WET road feature vector Y W also matrices, for explaining how to determine the decision boundary of the group, in FIG. 6, DRY road feature vectors Y D and WET The road surface feature vector Y W is shown as a two-dimensional vector.
Group identification boundaries generally do not allow linear separation. Thus, by using the kernel method, the road surface feature vectors Y V and Y W are mapped to a high-dimensional feature space by a non-linear mapping φ to perform linear separation, so that the road surface feature vectors Y D and Y W are obtained in the original input space. Non-linear classification is performed.
In order to distinguish between a DRY road surface and a WET road surface, a margin is provided for an identification function f (x) that is a separating hyperplane that separates the DRY road surface feature vector Y Dj and the WET road surface feature vector Y Wj . The DRY road surface and the WET road surface can be accurately distinguished.
The margin refers to the distance from the separation hyperplane to the nearest sample, and the separation hyperplane that is the identification boundary is f (x) = 0. The DRY road surface feature vectors Y Dj are all in the region of f (x) ≧ + 1, and the WET road surface feature vectors Y Wj are all in the region of f (x) ≦ −1.
なお、前述したように、DRY路面特徴ベクトルYDもWET路面特徴ベクトルYWも行列であるが、グループの識別境界の求め方を説明するため、図6では、DRY路面特徴ベクトルYDとWET路面特徴ベクトルYWとをそれぞれ2次元のベクトルで示した。
グループの識別境界は、一般には、線形分離が不可能である。そこで、カーネル法を用いて、路面特徴ベクトルYV及びYWを非線形写像φによって高次元特徴空間に写像して線形分離を行うことで、元の入力空間において路面特徴ベクトルYD及びYWに対して非線形な分類を行う。
DRY路面とWET路面とを区別するには、DRY路面特徴ベクトルYDjとWET路面特徴ベクトルYWjとを分離する分離超平面である識別関数f(x)に対してマージンを持たせることで、DRY路面とWET路面とを精度よく区別することができる。
マージンとは、分離超平面から一番近いサンプルまでの距離をいい、識別境界である分離超平面はf(x)=0である。また、DRY路面特徴ベクトルYDjは全てf(x)≧+1の領域にあり、WET路面特徴ベクトルYWjは全てf(x)≦-1の領域にある。 Figure 6 is a conceptual diagram showing a DRY road feature vector Y D and WET road feature vector Y W in the input space, black circles in the figure is DRY road, open circles are WET road.
As described above, although a DRY road feature vectors Y D also WET road feature vector Y W also matrices, for explaining how to determine the decision boundary of the group, in FIG. 6, DRY road feature vectors Y D and WET The road surface feature vector Y W is shown as a two-dimensional vector.
Group identification boundaries generally do not allow linear separation. Thus, by using the kernel method, the road surface feature vectors Y V and Y W are mapped to a high-dimensional feature space by a non-linear mapping φ to perform linear separation, so that the road surface feature vectors Y D and Y W are obtained in the original input space. Non-linear classification is performed.
In order to distinguish between a DRY road surface and a WET road surface, a margin is provided for an identification function f (x) that is a separating hyperplane that separates the DRY road surface feature vector Y Dj and the WET road surface feature vector Y Wj . The DRY road surface and the WET road surface can be accurately distinguished.
The margin refers to the distance from the separation hyperplane to the nearest sample, and the separation hyperplane that is the identification boundary is f (x) = 0. The DRY road surface feature vectors Y Dj are all in the region of f (x) ≧ + 1, and the WET road surface feature vectors Y Wj are all in the region of f (x) ≦ −1.
次に、データの集合X=(x1,x2,……xn)と所属クラスz={1、-1}とを用いて、データを識別する最適な識別関数f(x)=wTφ(x)-bを求める。ここで、wは重み係数を表すベクトルで、bは定数である。
また、データはDRY路面特徴ベクトルYDjとWET路面特徴ベクトルYWjであり、所属クラスはz=1が同図のχ1で示すDRY路面のデータで、z=-1がχ2で示すWET路面のデータである。f(x)=0が識別境界で、1/||w||が路面特徴ベクトルYAj(A=D,W)とf(x)=0との距離である。
識別関数f(x)=wTφ(x)-bは、例えば、ラグランジュ未定乗数法を用いて最適化される。最適化問題は、以下の式(1),(2)に置き換えられる。
ここで、α,βは複数ある学習データの指標である。また、λはラグランジュ乗数で、λ=0である路面特徴ベクトルYAjは、識別関数f(x)には関与しない(サポートベクトルではない)ベクトルデータである。
ここで、内積φT(xα)φ(xβ)をカーネル関数K(xα,xβ)に置き換えることで、識別関数f(x)=wTφ(x)-bを非線形できる。
なお、φT(xα)φ(xβ)は、xαとxβを写像φで高次元空間へ写像した後の内積である。
ラグランジュ乗数λは、前記の式(2)について、最急下降法やSMO(Sequential Minimal Optimization)などの最適化アルゴリズムを用いて求めることができる。
このように、内積φT(xα)φ(xβ)を直接求めずに、カーネル関数K(xα,xβ)に置き換えるようにすれば、高次元の内積を直接求める必要がないので、計算時間を大幅に縮減できる。 Next, using the data set X = (x 1 , x 2 ,..., X n ) and the belonging class z = {1, −1}, the optimal identification function f (x) = w for identifying the data. Find T φ (x) -b. Here, w is a vector representing a weight coefficient, and b is a constant.
The data is DRY road feature vectors Y Dj and WET road feature vector Y Wj, with data DRY road indicated by chi 1 belongs class z = 1 is the figure, WET indicated by z = -1 is chi 2 This is road surface data. f (x) = 0 is the identification boundary, and 1 / || w || is the distance between the road surface feature vector Y Aj (A = D, W) and f (x) = 0.
The discriminant function f (x) = w T φ (x) -b is optimized using, for example, the Lagrange undetermined multiplier method. The optimization problem is replaced by the following equations (1) and (2).
Here, α and β are indexes of a plurality of learning data. Further, λ is a Lagrange multiplier, and the road surface feature vector Y Aj with λ = 0 is vector data that is not involved in the identification function f (x) (not a support vector).
Here, by replacing the inner product φ T (x α ) φ (x β ) with the kernel function K (x α , x β ), the discriminant function f (x) = w T φ (x) −b can be nonlinearized.
Note that φ T (x α ) φ (x β ) is an inner product after x α and x β are mapped to a high-dimensional space by a mapping φ.
The Lagrange multiplier λ can be obtained by using an optimization algorithm such as the steepest descent method or SMO (Sequential Minimal Optimization) for the above equation (2).
Thus, without asking the inner product phi T a (x α) φ (x β ) directly, the kernel function K (x α, x β) if so replace the, there is no need to determine directly the inner product of high dimensional , Can greatly reduce the calculation time.
また、データはDRY路面特徴ベクトルYDjとWET路面特徴ベクトルYWjであり、所属クラスはz=1が同図のχ1で示すDRY路面のデータで、z=-1がχ2で示すWET路面のデータである。f(x)=0が識別境界で、1/||w||が路面特徴ベクトルYAj(A=D,W)とf(x)=0との距離である。
識別関数f(x)=wTφ(x)-bは、例えば、ラグランジュ未定乗数法を用いて最適化される。最適化問題は、以下の式(1),(2)に置き換えられる。
ここで、内積φT(xα)φ(xβ)をカーネル関数K(xα,xβ)に置き換えることで、識別関数f(x)=wTφ(x)-bを非線形できる。
なお、φT(xα)φ(xβ)は、xαとxβを写像φで高次元空間へ写像した後の内積である。
ラグランジュ乗数λは、前記の式(2)について、最急下降法やSMO(Sequential Minimal Optimization)などの最適化アルゴリズムを用いて求めることができる。
このように、内積φT(xα)φ(xβ)を直接求めずに、カーネル関数K(xα,xβ)に置き換えるようにすれば、高次元の内積を直接求める必要がないので、計算時間を大幅に縮減できる。 Next, using the data set X = (x 1 , x 2 ,..., X n ) and the belonging class z = {1, −1}, the optimal identification function f (x) = w for identifying the data. Find T φ (x) -b. Here, w is a vector representing a weight coefficient, and b is a constant.
The data is DRY road feature vectors Y Dj and WET road feature vector Y Wj, with data DRY road indicated by chi 1 belongs class z = 1 is the figure, WET indicated by z = -1 is chi 2 This is road surface data. f (x) = 0 is the identification boundary, and 1 / || w || is the distance between the road surface feature vector Y Aj (A = D, W) and f (x) = 0.
The discriminant function f (x) = w T φ (x) -b is optimized using, for example, the Lagrange undetermined multiplier method. The optimization problem is replaced by the following equations (1) and (2).
Here, by replacing the inner product φ T (x α ) φ (x β ) with the kernel function K (x α , x β ), the discriminant function f (x) = w T φ (x) −b can be nonlinearized.
Note that φ T (x α ) φ (x β ) is an inner product after x α and x β are mapped to a high-dimensional space by a mapping φ.
The Lagrange multiplier λ can be obtained by using an optimization algorithm such as the steepest descent method or SMO (Sequential Minimal Optimization) for the above equation (2).
Thus, without asking the inner product phi T a (x α) φ (x β ) directly, the kernel function K (x α, x β) if so replace the, there is no need to determine directly the inner product of high dimensional , Can greatly reduce the calculation time.
本例では、カーネル関数K(xα,xβ)として、グローバルアライメントカーネル関数(GAカーネル)を用いた。
GAカーネルK(xα,xβ)は、図7及び以下の式(3),(4)に示すように、特徴ベクトルxαと特徴ベクトルxβとの類似度を示すローカルカーネルκij(xαi,xβj)の総和もしくは総積から成る関数で、時間長さの異なる時系列波形を直接比較することができる。ローカルカーネルκij(xαi,xβj)は、時間間隔Tの窓毎に求められる。
なお、図7は、時間窓の数が3である特徴ベクトルxαiと、時間窓の数が2である特徴ベクトルxβとのGAカーネルを求めた例である。
この例では、切り出し幅がTK=3T/8であるので、窓数も、切り出し幅がTK=3T/4である従来の半分になっている。
ここで、||xαi-xβij||は、特徴ベクトル間の距離(ノルム)で、σは定数である。
In this example, a kernel function K (x α, x β) as was used global alignment kernel function (GA kernel).
As shown in FIG. 7 and the following equations (3) and (4), the GA kernel K (x α , x β ) is a local kernel κ ij (indicating the similarity between the feature vector x α and the feature vector x β ) x αi , x βj ) can be directly compared with time series waveforms having different time lengths using a function composed of the sum or the sum of the products. The local kernel κ ij (x αi , x βj ) is obtained for each window of the time interval T.
FIG. 7 shows an example in which a GA kernel is obtained for a feature vector x αi having three time windows and a feature vector x β having two time windows.
In this example, since the cutout width is T K = 3T / 8, the number of windows is half that of the conventional case where the cutout width is T K = 3T / 4.
Here, || x αi −x βij || is a distance (norm) between feature vectors, and σ is a constant.
GAカーネルK(xα,xβ)は、図7及び以下の式(3),(4)に示すように、特徴ベクトルxαと特徴ベクトルxβとの類似度を示すローカルカーネルκij(xαi,xβj)の総和もしくは総積から成る関数で、時間長さの異なる時系列波形を直接比較することができる。ローカルカーネルκij(xαi,xβj)は、時間間隔Tの窓毎に求められる。
なお、図7は、時間窓の数が3である特徴ベクトルxαiと、時間窓の数が2である特徴ベクトルxβとのGAカーネルを求めた例である。
この例では、切り出し幅がTK=3T/8であるので、窓数も、切り出し幅がTK=3T/4である従来の半分になっている。
As shown in FIG. 7 and the following equations (3) and (4), the GA kernel K (x α , x β ) is a local kernel κ ij (indicating the similarity between the feature vector x α and the feature vector x β ) x αi , x βj ) can be directly compared with time series waveforms having different time lengths using a function composed of the sum or the sum of the products. The local kernel κ ij (x αi , x βj ) is obtained for each window of the time interval T.
FIG. 7 shows an example in which a GA kernel is obtained for a feature vector x αi having three time windows and a feature vector x β having two time windows.
In this example, since the cutout width is T K = 3T / 8, the number of windows is half that of the conventional case where the cutout width is T K = 3T / 4.
カーネル関数算出手段16は、特徴ベクトル算出手段14にて算出された特徴ベクトルXiと、記憶手段15に記憶されているDRY路面の基準特徴ベクトルYDKとWET路面の基準特徴ベクトルYWKとから、DRYGAカーネルKD(X,YDK)とWETGAカーネルKW(X,YWK)とを算出する。
DRYGAカーネルKD(X,YDK)は、上記式(3)及び(4)において、特徴ベクトルxiαを特徴ベクトル算出手段14で算出された特徴ベクトルXiとし、特徴ベクトルxβをDRY路面の基準特徴ベクトルYDKjとしたときのローカルカーネルκij(Xi,YDKj)の総和もしくは総積から成る関数で、WETGAカーネルKW(X,YWK)は、特徴ベクトルxβをWET路面の基準特徴ベクトルYWKjとしたときのローカルカーネルκij(Xi,YWKj)の総和もしくは総積から成る関数である。これらのGAカーネルKD(X,YDK)及びKW(X,YWK)を用いることで、時間長さの異なる時系列波形(切り出し波形)を直接比較することができる。
なお、上記のように、特徴ベクトルXiを求めた場合の時間窓の切り出し波形の数nと路面特徴ベクトルYAj求めた場合の時間窓の切り出し波形の数mとが異なっている場合でも、特徴ベクトルXiと基準特徴ベクトルYASVj間の類似度を求めることができる。 The kernel function calculating means 16 calculates the feature vector X i calculated by the feature vector calculating means 14, the reference feature vector Y DK of the DRY road surface stored in the storage means 15 and the reference feature vector Y WK of the WET road surface. , DRYGA kernel K D (X, Y DK ) and WETGA kernel K W (X, Y WK ).
DRYGA kernel K D (X, Y DK), in the above formula (3) and (4), and a feature vector X i calculated feature vector x i.alpha the featurevector calculating section 14, DRY road feature vector x beta local kernel κ ij (X i, Y DKj ) when formed into a reference feature vector Y DKj the sum or function consisting of total product of, WETGA kernel K W (X, Y WK) is the feature vector x beta WET road Is a function consisting of the sum or total product of the local kernels κ ij (X i , Y WKj ) when the reference feature vector Y WKj is By using these GA kernels K D (X, Y DK ) and K W (X, Y WK ), it is possible to directly compare time-series waveforms (cut-out waveforms) having different time lengths.
As described above, even when the number n of cut-out waveforms of the time window when the feature vector X i is obtained is different from the number m of the cut-out waveforms of the time window when the road surface feature vector Y Aj is obtained, it can be obtained a similarity between feature vectors X i and the reference feature vector Y ASVj.
DRYGAカーネルKD(X,YDK)は、上記式(3)及び(4)において、特徴ベクトルxiαを特徴ベクトル算出手段14で算出された特徴ベクトルXiとし、特徴ベクトルxβをDRY路面の基準特徴ベクトルYDKjとしたときのローカルカーネルκij(Xi,YDKj)の総和もしくは総積から成る関数で、WETGAカーネルKW(X,YWK)は、特徴ベクトルxβをWET路面の基準特徴ベクトルYWKjとしたときのローカルカーネルκij(Xi,YWKj)の総和もしくは総積から成る関数である。これらのGAカーネルKD(X,YDK)及びKW(X,YWK)を用いることで、時間長さの異なる時系列波形(切り出し波形)を直接比較することができる。
なお、上記のように、特徴ベクトルXiを求めた場合の時間窓の切り出し波形の数nと路面特徴ベクトルYAj求めた場合の時間窓の切り出し波形の数mとが異なっている場合でも、特徴ベクトルXiと基準特徴ベクトルYASVj間の類似度を求めることができる。 The kernel function calculating means 16 calculates the feature vector X i calculated by the feature vector calculating means 14, the reference feature vector Y DK of the DRY road surface stored in the storage means 15 and the reference feature vector Y WK of the WET road surface. , DRYGA kernel K D (X, Y DK ) and WETGA kernel K W (X, Y WK ).
DRYGA kernel K D (X, Y DK), in the above formula (3) and (4), and a feature vector X i calculated feature vector x i.alpha the feature
As described above, even when the number n of cut-out waveforms of the time window when the feature vector X i is obtained is different from the number m of the cut-out waveforms of the time window when the road surface feature vector Y Aj is obtained, it can be obtained a similarity between feature vectors X i and the reference feature vector Y ASVj.
路面状態判別手段17では、以下の式(5)式に示す、カーネル関数KD(X,YDK)とカーネル関数KW(X,YWD)を用いた識別関数fDW(x)の値とに基づいて路面状態を判別する。
ここで、NDKVはDRY路面の基準特徴ベクトルYDKjの個数で、NWKはWET路面の基準特徴ベクトルYWKjの個数である。
本例では、識別関数fDWを計算し、fDW>0であれば、路面がDRY路面であると判別し、fDW<0であれば、路面がWET路面であると判別する。 In the road surface state determination means 17, the value of the identification function f DW (x) using the kernel function K D (X, Y DK ) and the kernel function K W (X, Y WD ) shown in the following equation (5) The road surface condition is determined based on the above.
Here, N DKV in the number of reference feature vectors Y DKj of DRY road, N WK is the number of reference feature vectors Y Wkj the WET road.
In this example, the identification function f DW is calculated, and if f DW > 0, the road surface is determined to be a DRY road surface, and if f DW <0, the road surface is determined to be a WET road surface.
本例では、識別関数fDWを計算し、fDW>0であれば、路面がDRY路面であると判別し、fDW<0であれば、路面がWET路面であると判別する。 In the road surface state determination means 17, the value of the identification function f DW (x) using the kernel function K D (X, Y DK ) and the kernel function K W (X, Y WD ) shown in the following equation (5) The road surface condition is determined based on the above.
In this example, the identification function f DW is calculated, and if f DW > 0, the road surface is determined to be a DRY road surface, and if f DW <0, the road surface is determined to be a WET road surface.
次に、路面状態判別装置10を用いて、タイヤ20の走行している路面の状態を判別する方法について、図8のフローチャートを参照して説明する。
まず、加速度センサー11によりタイヤ20が走行している路面からの入力により発生したタイヤ振動を検出し(ステップS10)、この検出されたタイヤ振動の時系列波形から、蹴り出し点の時刻tkを含む、切り出し幅TKが、TK=3T/8である時系列波形を切り出す(ステップS11)。
そして、切り出されたタイヤ振動の時系列波形である切り出し波形に、予め設定した時間幅ΔTで窓掛けして、時間窓毎の切り出し波形を求める。ここで、時間窓毎の切り出し波形の数をm個とする(ステップS12)。
次に、抽出された各時間窓の時系列波形のそれぞれに対して特徴ベクトルXi=(xi1,xi2,xi3,xi4,xi5,xi6)を算出する(ステップS13)。本例では時間幅Tを3msec.とした。また、特徴ベクトルXiの数は6個である。
特徴ベクトルXiの各成分xi1~xi6(i=1~6)は、前述したように、タイヤ振動の時系列波形(切り出し波形)のフィルター濾過波のパワー値である。
次に、算出された特徴ベクトルXiと記憶手段15に記録されているDRY路面及びWET路面の基準特徴ベクトルYAKjとの中から、DRY路面の基準特徴ベクトルYDKとWET路面の基準用特徴ベクトルYWKとを取出し(ステップS14)、これら基準特徴ベクトルYDK及びYWKと、特徴ベクトルXiとから、ローカルカーネルκij(Xi,YAKj)を算出した後、ローカルカーネルκij(Xi,YAKj)の総和を求めて、GAカーネル関数KA(X,YAK)をそれぞれ算出する(ステップS15)。
A=DであるGAカーネル関数KD(X,YDK)がDRY路面のGAカーネル関数で、A=WであるGAカーネル関数KW(X,YWK)がWET路面のGAカーネル関数である。
そして、DRY路面のGAカーネル関数KDとWET路面のGAカーネル関数KWとを用いた識別関数fDW(x)を計算(ステップS16)し、fDW>0であれば、路面がDRY路面であると判別し、fDW<0であれば、路面がWET路面であると判別する。(ステップS17)。
切り出し波形は、路面領域の波形の切り出し幅の約50%と少ないので、カーネル関数K(X,Y)の演算に使用するデータ量を削減でき、その結果、演算時間を速くすることができる。 Next, a method of determining the state of the road surface on which thetire 20 is traveling using the road surface state determination device 10 will be described with reference to the flowchart of FIG.
First, to detect the tire vibration generated by the input from the road surface on which thetire 20 is traveling by the acceleration sensor 11 (step S10), and from the time-series waveform of the detected tire vibration, the time t k points out kick A time-series waveform including a cutout width T K of T K = 3T / 8 is cut out (step S11).
Then, the cut-out waveform, which is a time-series waveform of the cut-out tire vibration, is windowed with a preset time width ΔT to obtain a cut-out waveform for each time window. Here, the number of cut-out waveforms for each time window is set to m (step S12).
Next, a feature vector X i = (x i1 , x i2 , x i3 , x i4 , x i5 , x i6 ) is calculated for each of the extracted time-series waveforms in each time window (step S13). In this example, the time width T is 3 msec. The number of feature vectors X i is six.
Each of the components x i1 to x i6 (i = 1 to 6) of the feature vector X i is the power value of the filtered wave of the time series waveform (cutout waveform) of the tire vibration, as described above.
Next, from the calculated feature vector X i and the reference feature vector Y AKj of the DRY road surface and the WET road surface recorded in the storage means 15, the reference feature vector Y DK of the DRY road surface and the reference feature of the WET road surface are provided. A vector Y WK is extracted (step S14), and a local kernel κ ij (X i , Y AKj ) is calculated from the reference feature vectors Y DK and Y WK and the feature vector X i, and then the local kernel κ ij ( The sum of X i , Y AKj ) is obtained, and the GA kernel function K A (X, Y AK ) is calculated (step S15).
The GA kernel function K D (X, Y DK ) where A = D is a GA kernel function for a DRY road surface, and the GA kernel function K W (X, Y WK ) where A = W is a GA kernel function for a WET road surface. .
Then, an identification function f DW (x) using the GA kernel function K D of the DRY road surface and the GA kernel function K W of the WET road surface is calculated (step S16). If f DW > 0, the road surface is the DRY road surface And if f DW <0, it is determined that the road surface is a WET road surface. (Step S17).
Since the cut-out waveform is as small as about 50% of the cut-out width of the road area waveform, the amount of data used for calculating the kernel function K (X, Y) can be reduced, and as a result, the calculation time can be shortened.
まず、加速度センサー11によりタイヤ20が走行している路面からの入力により発生したタイヤ振動を検出し(ステップS10)、この検出されたタイヤ振動の時系列波形から、蹴り出し点の時刻tkを含む、切り出し幅TKが、TK=3T/8である時系列波形を切り出す(ステップS11)。
そして、切り出されたタイヤ振動の時系列波形である切り出し波形に、予め設定した時間幅ΔTで窓掛けして、時間窓毎の切り出し波形を求める。ここで、時間窓毎の切り出し波形の数をm個とする(ステップS12)。
次に、抽出された各時間窓の時系列波形のそれぞれに対して特徴ベクトルXi=(xi1,xi2,xi3,xi4,xi5,xi6)を算出する(ステップS13)。本例では時間幅Tを3msec.とした。また、特徴ベクトルXiの数は6個である。
特徴ベクトルXiの各成分xi1~xi6(i=1~6)は、前述したように、タイヤ振動の時系列波形(切り出し波形)のフィルター濾過波のパワー値である。
次に、算出された特徴ベクトルXiと記憶手段15に記録されているDRY路面及びWET路面の基準特徴ベクトルYAKjとの中から、DRY路面の基準特徴ベクトルYDKとWET路面の基準用特徴ベクトルYWKとを取出し(ステップS14)、これら基準特徴ベクトルYDK及びYWKと、特徴ベクトルXiとから、ローカルカーネルκij(Xi,YAKj)を算出した後、ローカルカーネルκij(Xi,YAKj)の総和を求めて、GAカーネル関数KA(X,YAK)をそれぞれ算出する(ステップS15)。
A=DであるGAカーネル関数KD(X,YDK)がDRY路面のGAカーネル関数で、A=WであるGAカーネル関数KW(X,YWK)がWET路面のGAカーネル関数である。
そして、DRY路面のGAカーネル関数KDとWET路面のGAカーネル関数KWとを用いた識別関数fDW(x)を計算(ステップS16)し、fDW>0であれば、路面がDRY路面であると判別し、fDW<0であれば、路面がWET路面であると判別する。(ステップS17)。
切り出し波形は、路面領域の波形の切り出し幅の約50%と少ないので、カーネル関数K(X,Y)の演算に使用するデータ量を削減でき、その結果、演算時間を速くすることができる。 Next, a method of determining the state of the road surface on which the
First, to detect the tire vibration generated by the input from the road surface on which the
Then, the cut-out waveform, which is a time-series waveform of the cut-out tire vibration, is windowed with a preset time width ΔT to obtain a cut-out waveform for each time window. Here, the number of cut-out waveforms for each time window is set to m (step S12).
Next, a feature vector X i = (x i1 , x i2 , x i3 , x i4 , x i5 , x i6 ) is calculated for each of the extracted time-series waveforms in each time window (step S13). In this example, the time width T is 3 msec. The number of feature vectors X i is six.
Each of the components x i1 to x i6 (i = 1 to 6) of the feature vector X i is the power value of the filtered wave of the time series waveform (cutout waveform) of the tire vibration, as described above.
Next, from the calculated feature vector X i and the reference feature vector Y AKj of the DRY road surface and the WET road surface recorded in the storage means 15, the reference feature vector Y DK of the DRY road surface and the reference feature of the WET road surface are provided. A vector Y WK is extracted (step S14), and a local kernel κ ij (X i , Y AKj ) is calculated from the reference feature vectors Y DK and Y WK and the feature vector X i, and then the local kernel κ ij ( The sum of X i , Y AKj ) is obtained, and the GA kernel function K A (X, Y AK ) is calculated (step S15).
The GA kernel function K D (X, Y DK ) where A = D is a GA kernel function for a DRY road surface, and the GA kernel function K W (X, Y WK ) where A = W is a GA kernel function for a WET road surface. .
Then, an identification function f DW (x) using the GA kernel function K D of the DRY road surface and the GA kernel function K W of the WET road surface is calculated (step S16). If f DW > 0, the road surface is the DRY road surface And if f DW <0, it is determined that the road surface is a WET road surface. (Step S17).
Since the cut-out waveform is as small as about 50% of the cut-out width of the road area waveform, the amount of data used for calculating the kernel function K (X, Y) can be reduced, and as a result, the calculation time can be shortened.
[実施例]
DRY路面のサポートベクトルとWET路面のサポートベクトルとを、予めDRY路面とWET路面求めておいた、DRY路面とWET路面を走行したときのタイヤ振動の時系列波形(切り出し波形)から算出された時間窓毎の特徴である路面データを学習データとして、機械学習(SVM)により求めた。
具体的には、以下の表1に示すように、使用した路面データを、訓練用(Train用)とテスト用(Test用)との分け、DRY路面のサポートベクトルとWET路面のサポートベクトルとを求めた後、DRY路面のサポートベクトルとWET路面のサポートベクトルの境界面とを求めた。このとき、サポートベクターマシーンのハイパーパラメータC,σは、それぞれ、C=2、σ=125とした。
このとき、サポートベクトルの数は最大で415個であった。
図9は、切り出し幅と判別精度との関係を示す図で、「全波形」は、切り出した波形が路面領域の全波形(100%)であるとき、すなわち、切り出し幅Tkが3T/4の場合を指す。
「蹴り後まで」は、踏み込み前領域Rfから蹴り出し点の直後までの波形で、切り出し幅Tkは19T/40(63%)である。
「接地中心」は、全波形の前半分の波形で、切り出し幅Tkは3T/8(50%)である。
「踏みまで」は、踏み込み前領域Rfの時系列波形で、切り出し幅Tkは13T/40(43%)である。
同図から明らかなように、DRY/WETの2路面判別であれば、切り出し幅Tkが13T/40であっても、十分な判別精度を得ることができることが確認された。 [Example]
The time calculated from the time series waveform (cut-out waveform) of the tire vibration when traveling on the DRY road surface and the WET road surface, in which the support vector of the DRY road surface and the support vector of the WET road surface are determined in advance. Road surface data, which is a feature of each window, was obtained as learning data by machine learning (SVM).
Specifically, as shown in Table 1 below, the used road surface data is divided into those for training (for Train) and those for test (for Test), and the support vector for the DRY road surface and the support vector for the WET road surface are After the determination, the support vector of the DRY road surface and the boundary surface of the support vector of the WET road surface were determined. At this time, the hyperparameters C and σ of the support vector machine were C = 2 and σ = 125, respectively.
At this time, the number of support vectors was 415 at the maximum.
FIG. 9 is a diagram showing the relationship between the cutout width and the discrimination accuracy. “All waveforms” indicates that the cutout waveform is the entire waveform (100%) of the road surface area, that is, the cutout width Tk is 3T / 4. Refers to the case.
"Until after kick" is waveforms up just after the point out kick from depression front region R f, is cut width T k is 19T / 40 (63%).
The “ground center” is the first half of the entire waveform, and the cutout width T k is 3T / 8 (50%).
"Until stepping" is a time-series waveform of depression front region R f, is cut width T k is 13T / 40 (43%).
As is clear from the figure, if 2 road discrimination DRY / WET, cut width T k is even 13T / 40, it was confirmed that it is possible to obtain a sufficient determination accuracy.
DRY路面のサポートベクトルとWET路面のサポートベクトルとを、予めDRY路面とWET路面求めておいた、DRY路面とWET路面を走行したときのタイヤ振動の時系列波形(切り出し波形)から算出された時間窓毎の特徴である路面データを学習データとして、機械学習(SVM)により求めた。
具体的には、以下の表1に示すように、使用した路面データを、訓練用(Train用)とテスト用(Test用)との分け、DRY路面のサポートベクトルとWET路面のサポートベクトルとを求めた後、DRY路面のサポートベクトルとWET路面のサポートベクトルの境界面とを求めた。このとき、サポートベクターマシーンのハイパーパラメータC,σは、それぞれ、C=2、σ=125とした。
このとき、サポートベクトルの数は最大で415個であった。
「蹴り後まで」は、踏み込み前領域Rfから蹴り出し点の直後までの波形で、切り出し幅Tkは19T/40(63%)である。
「接地中心」は、全波形の前半分の波形で、切り出し幅Tkは3T/8(50%)である。
「踏みまで」は、踏み込み前領域Rfの時系列波形で、切り出し幅Tkは13T/40(43%)である。
同図から明らかなように、DRY/WETの2路面判別であれば、切り出し幅Tkが13T/40であっても、十分な判別精度を得ることができることが確認された。 [Example]
The time calculated from the time series waveform (cut-out waveform) of the tire vibration when traveling on the DRY road surface and the WET road surface, in which the support vector of the DRY road surface and the support vector of the WET road surface are determined in advance. Road surface data, which is a feature of each window, was obtained as learning data by machine learning (SVM).
Specifically, as shown in Table 1 below, the used road surface data is divided into those for training (for Train) and those for test (for Test), and the support vector for the DRY road surface and the support vector for the WET road surface are After the determination, the support vector of the DRY road surface and the boundary surface of the support vector of the WET road surface were determined. At this time, the hyperparameters C and σ of the support vector machine were C = 2 and σ = 125, respectively.
At this time, the number of support vectors was 415 at the maximum.
"Until after kick" is waveforms up just after the point out kick from depression front region R f, is cut width T k is 19T / 40 (63%).
The “ground center” is the first half of the entire waveform, and the cutout width T k is 3T / 8 (50%).
"Until stepping" is a time-series waveform of depression front region R f, is cut width T k is 13T / 40 (43%).
As is clear from the figure, if 2 road discrimination DRY / WET, cut width T k is even 13T / 40, it was confirmed that it is possible to obtain a sufficient determination accuracy.
以上、本発明を実施の形態及び実施例を用いて説明したが、本発明の技術的範囲は前記実施の形態に記載の範囲には限定されない。前記実施の形態に、多様な変更または改良を加えることが可能であることが当業者にも明らかである。そのような変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲から明らかである。
Although the present invention has been described with reference to the embodiment and the examples, the technical scope of the present invention is not limited to the scope described in the embodiment. It will be apparent to those skilled in the art that various changes or improvements can be made to the embodiment. It is apparent from the appended claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.
例えば、前記実施の形態では、タイヤ振動の時系列波形から、踏み込み点Pfの時刻tfを含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出し、この切り出された時系列波形である切り出し波形をとしたが、図10(a),(b)に示すように、蹴り出し点Pkの時刻tkを含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形や、踏み込み点Pfの時刻tfと蹴り出し点Pkの時刻tkの中間の時刻である接地中心点の時刻tcを含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出し波形をとしても、路面状態の判別精度を確保しつつ、カーネル関数K(X,Y)の演算時間を速くすることができる。
For example, in the above embodiment, the time length T K including the time t f of the depression point P f is in the range of 13 T / 40 <T K <19 T / 40 from the time series waveform of the tire vibration. cut out waveform has a cutout waveform is this cut-out time series waveform, FIG. 10 (a), the (b), the including time t k of the kick-out point P k, the time length T K is, and the time-series waveform in the range of 13T / 40 <T K <19T / 40, the time t k at time t f and trailing point P k of the depression point P f of the time at which the ground center point of the intermediate Even when a time-series waveform including the time t c and having a time length T K in the range of 13T / 40 <T K <19T / 40 is cut out and used as a waveform, the kernel function K is obtained while ensuring the road surface state determination accuracy. The calculation time of (X, Y) can be shortened.
また、前記実施の形態では、DW識別モデルを用いてタイヤ20の走行している路面が、DRY路面であるかWET路面であるかの2路面判別を行ったが、以下の6つの路面識別モデルを用いれば、タイヤ20の走行している路面が、DRY路面、WET路面、SNOW路面、ICE路面のいずれであるか判別することができる。
ここで、A,A’=DRY,WET,SNOW,ICE(A≠A’)とすると、AA’識別モデルは、A路面とA’路面とを分離超平面を表わす識別関数fAA’(x)により分離するための基準特徴量であるA路面特徴ベクトルYAKとラグランジュ乗数λAA’、及び、A’路面特徴ベクトルYA’Kラグランジュ乗数λA’ Aを備える。
基準特徴量YASV及びλAは、加速度センサーを取り付けたタイヤを搭載した試験車両を、DRY,WET,SNOW,ICEの各路面にて、様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された時間窓毎の特徴ベクトルである路面特徴ベクトルYA(yjk)を入力データとして、学習により求められる。
なお、A路面のデータは、図6のχ1で示すz=1に所属するデータで、A’路面のデータは、χ2で示すz=-1に所属するデータである。 Further, in the above-described embodiment, two road surface determinations as to whether the road surface on which thetire 20 is traveling are the DRY road surface or the WET road surface are performed using the DW identification model. Is used, it is possible to determine whether the road surface on which the tire 20 is traveling is a DRY road surface, a WET road surface, a SNOW road surface, or an ICE road surface.
Here, if A, A ′ = DRY, WET, SNOW, ICE (A ≠ A ′), the AA ′ identification model is an identification function f AA ′ (x ), A road surface feature vector Y AK and a Lagrangian multiplier λ AA ′ , which are reference feature amounts for separation by A), and an A ′ road surface feature vector Y A′K Lagrangian multiplier λ A ′ A.
The reference feature values Y ASV and λ A are the values of tire vibration obtained by running a test vehicle equipped with a tire equipped with an acceleration sensor at various speeds on DRY, WET, SNOW, and ICE road surfaces. The road surface feature vector Y A (y jk ), which is a feature vector for each time window calculated from the series waveform, is obtained by learning using as input data.
The data of the A road surface, the data belonging to z = 1 indicated by chi 1 in FIG. 6, data A 'road is data belonging to z = -1 shown by chi 2.
ここで、A,A’=DRY,WET,SNOW,ICE(A≠A’)とすると、AA’識別モデルは、A路面とA’路面とを分離超平面を表わす識別関数fAA’(x)により分離するための基準特徴量であるA路面特徴ベクトルYAKとラグランジュ乗数λAA’、及び、A’路面特徴ベクトルYA’Kラグランジュ乗数λA’ Aを備える。
基準特徴量YASV及びλAは、加速度センサーを取り付けたタイヤを搭載した試験車両を、DRY,WET,SNOW,ICEの各路面にて、様々な速度で走行させて得られたタイヤ振動の時系列波形から算出された時間窓毎の特徴ベクトルである路面特徴ベクトルYA(yjk)を入力データとして、学習により求められる。
なお、A路面のデータは、図6のχ1で示すz=1に所属するデータで、A’路面のデータは、χ2で示すz=-1に所属するデータである。 Further, in the above-described embodiment, two road surface determinations as to whether the road surface on which the
Here, if A, A ′ = DRY, WET, SNOW, ICE (A ≠ A ′), the AA ′ identification model is an identification function f AA ′ (x ), A road surface feature vector Y AK and a Lagrangian multiplier λ AA ′ , which are reference feature amounts for separation by A), and an A ′ road surface feature vector Y A′K Lagrangian multiplier λ A ′ A.
The reference feature values Y ASV and λ A are the values of tire vibration obtained by running a test vehicle equipped with a tire equipped with an acceleration sensor at various speeds on DRY, WET, SNOW, and ICE road surfaces. The road surface feature vector Y A (y jk ), which is a feature vector for each time window calculated from the series waveform, is obtained by learning using as input data.
The data of the A road surface, the data belonging to z = 1 indicated by chi 1 in FIG. 6, data A 'road is data belonging to z = -1 shown by chi 2.
ところで、基準特徴ベクトルYAKに対応するラグランジュ乗数λAが識別モデル毎にあることに注意する必要がある。例えば、DRY路面特徴ベクトルYDK対応する3つのラグランジュ乗数λDW,λDS,λDIはそれぞれ異なる値をもつ。他の路面特徴ベクトルYWK,YSK,YIKについても同様である。
GAカーネル関数KA(X,YAK)の算出方法は実施の形態と同様で、A=DであるGAカーネル関数KD(X,YDK)がDRY路面のGAカーネル関数、A=WであるGAカーネル関数KW(X,YWK)がWET路面のGAカーネル関数、A=SであるGAカーネル関数KS(X,YSK)がSNOW路面のGAカーネル関数、A=IであるGAカーネル関数KI(X,YIK)がICE路面のGAカーネル関数である。
路面状態の判別は、以下の式(6)~(11)に示す6つの識別関数fAA’(x)を用いて行う。
上記のように、識別関数がfAA’(x)であれば、A路面のデータがz=1に所属するデーで、A’路面のデータがz=-1に所属するデータであるので、6つの識別関数fAA’から、以下のように路面判別することができる。
fDW >0、fDS>0、fDI>0であれば、路面がDRY路面であると判別する。
fDW <0、fWS>0、fWI>0であれば、路面がWET路面であると判別する。
fDS <0、fWS>0、fSI>0であれば、路面がSNOW路面であると判別する。
fDI <0、fWI<0、fSI<0であれば、路面がICE路面であると判別する。 It should be noted that a Lagrange multiplier λ A corresponding to the reference feature vector Y AK exists for each identification model. For example, three Lagrangian multipliers λ DW , λ DS , and λ DI corresponding to the DRY road surface feature vector Y DK have different values. The same applies to other road surface feature vectors Y WK , Y SK , and Y IK .
The method of calculating the GA kernel function K A (X, Y AK ) is the same as in the embodiment, and the GA kernel function K D (X, Y DK ) where A = D is the GA kernel function of the DRY road surface, and A = W A certain GA kernel function K W (X, Y WK ) is a GA kernel function for a WET road surface, a GA kernel function K S (X, Y SK ) where A = S is a GA kernel function for a SNOW road surface, and a GA where A = I The kernel function K I (X, Y IK ) is a GA kernel function for the ICE road surface.
The determination of the road surface state is performed using six identification functions f AA ′ (x) shown in the following equations (6) to (11).
As described above, if the discriminant function is f AA ′ (x), since the data on the road A is data belonging to z = 1 and the data on the road A ′ is data belonging to z = −1, From the six discriminant functions f AA ′ , the road surface can be determined as follows.
If f DW > 0, f DS > 0, f DI > 0, it is determined that the road surface is a DRY road surface.
If f DW <0, f WS > 0, f WI > 0, it is determined that the road surface is a WET road surface.
If f DS <0, f WS > 0, f SI > 0, it is determined that the road surface is a SNOW road surface.
If f DI <0, f WI <0, f SI <0, it is determined that the road surface is an ICE road surface.
GAカーネル関数KA(X,YAK)の算出方法は実施の形態と同様で、A=DであるGAカーネル関数KD(X,YDK)がDRY路面のGAカーネル関数、A=WであるGAカーネル関数KW(X,YWK)がWET路面のGAカーネル関数、A=SであるGAカーネル関数KS(X,YSK)がSNOW路面のGAカーネル関数、A=IであるGAカーネル関数KI(X,YIK)がICE路面のGAカーネル関数である。
路面状態の判別は、以下の式(6)~(11)に示す6つの識別関数fAA’(x)を用いて行う。
fDW >0、fDS>0、fDI>0であれば、路面がDRY路面であると判別する。
fDW <0、fWS>0、fWI>0であれば、路面がWET路面であると判別する。
fDS <0、fWS>0、fSI>0であれば、路面がSNOW路面であると判別する。
fDI <0、fWI<0、fSI<0であれば、路面がICE路面であると判別する。 It should be noted that a Lagrange multiplier λ A corresponding to the reference feature vector Y AK exists for each identification model. For example, three Lagrangian multipliers λ DW , λ DS , and λ DI corresponding to the DRY road surface feature vector Y DK have different values. The same applies to other road surface feature vectors Y WK , Y SK , and Y IK .
The method of calculating the GA kernel function K A (X, Y AK ) is the same as in the embodiment, and the GA kernel function K D (X, Y DK ) where A = D is the GA kernel function of the DRY road surface, and A = W A certain GA kernel function K W (X, Y WK ) is a GA kernel function for a WET road surface, a GA kernel function K S (X, Y SK ) where A = S is a GA kernel function for a SNOW road surface, and a GA where A = I The kernel function K I (X, Y IK ) is a GA kernel function for the ICE road surface.
The determination of the road surface state is performed using six identification functions f AA ′ (x) shown in the following equations (6) to (11).
If f DW > 0, f DS > 0, f DI > 0, it is determined that the road surface is a DRY road surface.
If f DW <0, f WS > 0, f WI > 0, it is determined that the road surface is a WET road surface.
If f DS <0, f WS > 0, f SI > 0, it is determined that the road surface is a SNOW road surface.
If f DI <0, f WI <0, f SI <0, it is determined that the road surface is an ICE road surface.
また、前記実施の形態では、タイヤ振動検出手段を加速度センサー11としたが圧力センサーなどの他の振動検出手段を用いてもよい。また、加速度センサー11の設置箇所についても、タイヤ幅方向中心から幅方向に所定距離だけ離隔した位置に1個ずつ配設したり、ブロック内に設置するなど他の箇所に設置してもよい。
また、前記実施の形態では、特徴ベクトルXiをフィルター濾過波のパワー値xikとしたが、フィルター濾過波のパワー値xikの時変分散(log[xik(t)2+xik(t-1)2])を用いてもよい。あるいは、特徴ベクトルXiを、タイヤ振動時系列波形をフーリエ変換したときの特定周波数帯域の振動レベルであるフーリエ係数、もしくは、ケプストラム係数としてもよい。ケプストラムは、フーリエ変換後の波形をスペクトル波形とみなし、再度フーリエ変換して得られるか、もしくは、ARスペクトルを波形とみなし、更にAR係数を求めて得られる(LPC Cepstrum)もので、絶対レベルに影響されずにスペクトルの形状を特徴付けできるので、フーリエ変換により得られる周波数スペクトルを用いた場合よりも判別精度が向上する。
また、前記実施の形態では、カーネル関数としてGAカーネルを用いたが、ダイナミックタイムワーピングカーネル関数(DTWカーネル)を用いてもよい。あるいは、GAカーネルとDTWカーネル演算値を用いてもよい。 Further, in the above-described embodiment, the tire vibration detecting means is the acceleration sensor 11, but other vibration detecting means such as a pressure sensor may be used. In addition, the acceleration sensor 11 may be installed at another location such as one at a position separated from the center of the tire in the width direction by a predetermined distance in the width direction, or may be installed in a block.
Further, in the embodiment, a feature vector X i and the power value x ik of filtration wave, variance, when the power value x ik offiltration wave (log [x ik (t) 2 + x ik ( t-1) 2 ]) may be used. Alternatively, a feature vector X i, Fourier coefficients a vibration level of a particular frequency band when the Fourier transform of the tire vibration time series waveform or may be cepstral coefficients. The cepstrum is obtained by assuming the waveform after Fourier transform as a spectrum waveform and performing Fourier transform again, or assuming that an AR spectrum is a waveform and obtaining an AR coefficient (LPC Cepstrum). Since the shape of the spectrum can be characterized without being affected, discrimination accuracy is improved as compared with the case where a frequency spectrum obtained by Fourier transform is used.
In the above embodiment, the GA kernel is used as the kernel function, but a dynamic time warping kernel function (DTW kernel) may be used. Alternatively, a GA kernel and a DTW kernel operation value may be used.
また、前記実施の形態では、特徴ベクトルXiをフィルター濾過波のパワー値xikとしたが、フィルター濾過波のパワー値xikの時変分散(log[xik(t)2+xik(t-1)2])を用いてもよい。あるいは、特徴ベクトルXiを、タイヤ振動時系列波形をフーリエ変換したときの特定周波数帯域の振動レベルであるフーリエ係数、もしくは、ケプストラム係数としてもよい。ケプストラムは、フーリエ変換後の波形をスペクトル波形とみなし、再度フーリエ変換して得られるか、もしくは、ARスペクトルを波形とみなし、更にAR係数を求めて得られる(LPC Cepstrum)もので、絶対レベルに影響されずにスペクトルの形状を特徴付けできるので、フーリエ変換により得られる周波数スペクトルを用いた場合よりも判別精度が向上する。
また、前記実施の形態では、カーネル関数としてGAカーネルを用いたが、ダイナミックタイムワーピングカーネル関数(DTWカーネル)を用いてもよい。あるいは、GAカーネルとDTWカーネル演算値を用いてもよい。 Further, in the above-described embodiment, the tire vibration detecting means is the acceleration sensor 11, but other vibration detecting means such as a pressure sensor may be used. In addition, the acceleration sensor 11 may be installed at another location such as one at a position separated from the center of the tire in the width direction by a predetermined distance in the width direction, or may be installed in a block.
Further, in the embodiment, a feature vector X i and the power value x ik of filtration wave, variance, when the power value x ik of
In the above embodiment, the GA kernel is used as the kernel function, but a dynamic time warping kernel function (DTW kernel) may be used. Alternatively, a GA kernel and a DTW kernel operation value may be used.
以上まとめると、以下のようにも記述することができる。すなわち、本発明は、走行中のタイヤの振動を検出するステップ(a)と、前記検出されたタイヤの振動の時系列波形を取り出すステップ(b)と、前記タイヤ振動の時系列波形に所定の時間幅の窓関数をかけて時間窓毎の時系列波形を抽出するステップ(c)と、前記時間窓毎の時系列波形からそれぞれ特徴量を算出するステップ(d)と、前記ステップ(d)で算出した時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出するステップ(e)と、前記カーネル関数を用いた識別関数の値に基づいて走行中の路面の状態を判別するステップ(f)と、を備えた路面状態判別方法において、前記タイヤ振動の時系列波形における踏み込み点の時刻をtf、蹴り出し点の時刻をtk、前記時刻tfと前記時刻tkの中間の時刻である接地中心点の時刻をtcとし、前記時系列波形の周期をTとしたとき、前記ステップ(c)では、前記検出されたタイヤ振動の時系列波形から、前記時刻tf、tk、もしくは、tcのいずれかの時刻含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出し、この切り出された時系列波形である切り出し波形に窓関数をかけて時間窓毎の時系列波形を抽出し、前記ステップ(e)では、前記時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から切り出された、時間長さTcが13T/40<TK<19T/40の範囲にある基準切り出し波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出することを特徴とする。
これにより、カーネル関数K(X,Y)を算出するために使用する基準特徴量の数を削減できるので、路面状態の判別精度を確保しつつ、計算速度を速くすることができる。 In summary, it can be described as follows. That is, the present invention provides a step (a) of detecting a vibration of a tire during running, a step (b) of extracting a time-series waveform of the detected tire vibration, and a step of extracting a predetermined time-series waveform of the tire vibration. (C) extracting a time-series waveform for each time window by applying a window function of a time width, (d) calculating a feature amount from the time-series waveform for each time window, and (d) The kernel function is calculated from the feature amount for each time window calculated in the above and the reference feature amount selected from the feature amount for each time window calculated from the time series waveform of the tire vibration obtained in advance for each road surface condition. A time-series waveform of the tire vibration, wherein the method further comprises a step (e) and a step (f) of determining a state of the running road surface based on a value of the identification function using the kernel function. In Time the t f of only write point, time, t k of the out-point kick, the time t f and the time t k time of grounding the central point, which is an intermediate of the time of the t c, the period of the time-series waveform When T is set, in the step (c), the time length T K including any one of the times t f , t k, or t c is obtained from the time-series waveform of the detected tire vibration, A time-series waveform in the range of 13T / 40 <T K <19T / 40 is cut out, and a time-series waveform for each time window is extracted by applying a window function to the cut-out waveform, which is the cut-out time-series waveform, In (e), the time length Tc cut out from the feature amount for each time window and the time series waveform of the tire vibration obtained in advance for each road surface condition is 13T / 40 <T K <19T / 40. Select from feature values for each time window calculated from reference cutout waveforms in the range A kernel function is calculated from the reference feature amount to be performed.
This makes it possible to reduce the number of reference features used for calculating the kernel function K (X, Y), thereby increasing the calculation speed while ensuring the road surface state determination accuracy.
これにより、カーネル関数K(X,Y)を算出するために使用する基準特徴量の数を削減できるので、路面状態の判別精度を確保しつつ、計算速度を速くすることができる。 In summary, it can be described as follows. That is, the present invention provides a step (a) of detecting a vibration of a tire during running, a step (b) of extracting a time-series waveform of the detected tire vibration, and a step of extracting a predetermined time-series waveform of the tire vibration. (C) extracting a time-series waveform for each time window by applying a window function of a time width, (d) calculating a feature amount from the time-series waveform for each time window, and (d) The kernel function is calculated from the feature amount for each time window calculated in the above and the reference feature amount selected from the feature amount for each time window calculated from the time series waveform of the tire vibration obtained in advance for each road surface condition. A time-series waveform of the tire vibration, wherein the method further comprises a step (e) and a step (f) of determining a state of the running road surface based on a value of the identification function using the kernel function. In Time the t f of only write point, time, t k of the out-point kick, the time t f and the time t k time of grounding the central point, which is an intermediate of the time of the t c, the period of the time-series waveform When T is set, in the step (c), the time length T K including any one of the times t f , t k, or t c is obtained from the time-series waveform of the detected tire vibration, A time-series waveform in the range of 13T / 40 <T K <19T / 40 is cut out, and a time-series waveform for each time window is extracted by applying a window function to the cut-out waveform, which is the cut-out time-series waveform, In (e), the time length Tc cut out from the feature amount for each time window and the time series waveform of the tire vibration obtained in advance for each road surface condition is 13T / 40 <T K <19T / 40. Select from feature values for each time window calculated from reference cutout waveforms in the range A kernel function is calculated from the reference feature amount to be performed.
This makes it possible to reduce the number of reference features used for calculating the kernel function K (X, Y), thereby increasing the calculation speed while ensuring the road surface state determination accuracy.
なお、前記の特徴ベクトルXiとしては、前記窓関数をかけて抽出した時間窓毎の切り出し波形の特定周波数帯域の振動レベル、前記特定周波数帯域の振動レベルの時変分散、及び、前記切り出し波形のケプストラム係数のいずれか1つ、または、複数、または、全部等が挙げられる。また、前記特定周波数帯域の振動レベルは、前記窓関数をかけて抽出した時間窓毎の切り出し波形の周波数スペクトル、もしくは、前記窓関数をかけて抽出した時間窓毎の切り出し波形をバンドパスフィルタを通して得られた時系列波形から求めることができる。
また、前記カーネル関数を、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値とすれば、路面状態の判別精度を向上させることができる。 Note that, as the feature vector X i , a vibration level of a specific frequency band of a cutout waveform for each time window extracted by applying the window function, a time-varying variance of a vibration level of the specific frequency band, and the cutout waveform , One or more, or all, of the cepstrum coefficients. Further, the vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a bandpass filter. It can be obtained from the obtained time-series waveform.
Further, if the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function, it is possible to improve the determination accuracy of the road surface state.
また、前記カーネル関数を、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値とすれば、路面状態の判別精度を向上させることができる。 Note that, as the feature vector X i , a vibration level of a specific frequency band of a cutout waveform for each time window extracted by applying the window function, a time-varying variance of a vibration level of the specific frequency band, and the cutout waveform , One or more, or all, of the cepstrum coefficients. Further, the vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a bandpass filter. It can be obtained from the obtained time-series waveform.
Further, if the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function, it is possible to improve the determination accuracy of the road surface state.
また、本発明は、 走行中のタイヤの振動を検出して、前記タイヤの走行する路面の状態を判別する路面状態判別装置であって、タイヤトレッド部のインナーライナー部の気室側に配設されて、走行中のタイヤの振動を検出するタイヤ振動検出手段と、前記タイヤ振動の時系列波形における踏み込み点の時刻をtf、蹴り出し点の時刻をtk、前記時刻tfと前記時刻tkの中間の時刻である接地中心点の時刻をtcとし、前記時系列波形の周期をTとしたとき、前記検出されたタイヤ振動の時系列波形から、前記時刻tf、tk、もしくは、tcのいずれかの時刻含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出す波形切り出し手段と、前記切り出された時系列波形である切り出し波形に窓関数をかけて時間窓毎の時系列波形を抽出する窓掛け手段と、前記抽出された時間窓毎の切り出し波形における特定周波数の振動レベルを成分とする特徴量もしくは前記振動レベルの関数を成分とする特徴量を算出する特徴量算出手段と、予め予め路面状態毎に求めておいた路面状態毎のタイヤ振動の時系列波形から切り出された、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形である基準切り出し波形から算出された時間窓毎の特徴量から選択される基準特徴量と前記基準特徴量に対応するラグランジェ未定乗数とを記憶する記憶手段と、前記特徴量算出手段で算出した時間窓毎の特徴量と、前記記憶手段に記憶された基準特徴量とからカーネル関数を算出するカーネル関数算出手段と、前記カーネル関数を用いた識別関数の値に基づいて路面状態を判別する路面状態判別手段とを備えることを特徴とする。
このような構成を採ることにより、時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別装置と得ることができる。 Further, the present invention is a road surface condition determination device for detecting vibration of a tire during traveling and determining a condition of a road surface on which the tire travels, the device being disposed on an air chamber side of an inner liner portion of a tire tread portion. Tire vibration detecting means for detecting the vibration of the running tire, the time of the stepping point in the time series waveform of the tire vibration is t f , the time of the kicking point is tk , the time t f and the time the time of grounding the center point is an intermediate time t k and t c, when the period of the time series waveform is T, from the time-series waveform of the detected tire vibration, the time t f, t k, Alternatively, a waveform extracting means for extracting a time-series waveform having a time length T K including any time of t c in the range of 13T / 40 <T K <19T / 40; Apply a window function to an extracted waveform A windowing means for extracting a time-series waveform for each inter-window, and a feature quantity having a component of a vibration level of a specific frequency or a feature quantity having a function of the vibration level as a component in the extracted cut-out waveform for each time window. The feature amount calculation means to be calculated and the time length T K extracted from the time series waveform of the tire vibration for each road surface condition which is obtained in advance for each road surface condition is 13T / 40 <T K <19T / 40. Storage means for storing a reference feature value selected from feature values for each time window calculated from a reference cutout waveform that is a time-series waveform in a range and a Lagrange undetermined multiplier corresponding to the reference feature value, A kernel function calculating unit that calculates a kernel function from the feature amount for each time window calculated by the feature amount calculating unit and the reference feature amount stored in the storage unit, and a classification function using the kernel function. Characterized in that it comprises a road surface condition judging means for judging road surface condition based on.
By adopting such a configuration, it is possible to obtain a road surface state determination device that can ensure the road surface state determination accuracy even when the amount of time expansion / contraction calculation is reduced.
このような構成を採ることにより、時間伸縮の計算量を削減しても路面状態の判別精度を確保することができる路面状態判別装置と得ることができる。 Further, the present invention is a road surface condition determination device for detecting vibration of a tire during traveling and determining a condition of a road surface on which the tire travels, the device being disposed on an air chamber side of an inner liner portion of a tire tread portion. Tire vibration detecting means for detecting the vibration of the running tire, the time of the stepping point in the time series waveform of the tire vibration is t f , the time of the kicking point is tk , the time t f and the time the time of grounding the center point is an intermediate time t k and t c, when the period of the time series waveform is T, from the time-series waveform of the detected tire vibration, the time t f, t k, Alternatively, a waveform extracting means for extracting a time-series waveform having a time length T K including any time of t c in the range of 13T / 40 <T K <19T / 40; Apply a window function to an extracted waveform A windowing means for extracting a time-series waveform for each inter-window, and a feature quantity having a component of a vibration level of a specific frequency or a feature quantity having a function of the vibration level as a component in the extracted cut-out waveform for each time window. The feature amount calculation means to be calculated and the time length T K extracted from the time series waveform of the tire vibration for each road surface condition which is obtained in advance for each road surface condition is 13T / 40 <T K <19T / 40. Storage means for storing a reference feature value selected from feature values for each time window calculated from a reference cutout waveform that is a time-series waveform in a range and a Lagrange undetermined multiplier corresponding to the reference feature value, A kernel function calculating unit that calculates a kernel function from the feature amount for each time window calculated by the feature amount calculating unit and the reference feature amount stored in the storage unit, and a classification function using the kernel function. Characterized in that it comprises a road surface condition judging means for judging road surface condition based on.
By adopting such a configuration, it is possible to obtain a road surface state determination device that can ensure the road surface state determination accuracy even when the amount of time expansion / contraction calculation is reduced.
10 路面状態判別装置、11 加速度センサー、
12 波形切り出し手段、13 窓掛け手段、
14 特徴ベクトル算出手段、15 記憶手段、
16 カーネル関数算出手段、17 路面状態判別手段、
20 タイヤ、21 インナーライナー部、22 タイヤ気室。
10 road surface condition determination device, 11 acceleration sensor,
12 waveform cutting means, 13 windowing means,
14 feature vector calculation means, 15 storage means,
16 kernel function calculating means, 17 road surface state determining means,
20 tires, 21 inner liner part, 22 tire chamber.
12 波形切り出し手段、13 窓掛け手段、
14 特徴ベクトル算出手段、15 記憶手段、
16 カーネル関数算出手段、17 路面状態判別手段、
20 タイヤ、21 インナーライナー部、22 タイヤ気室。
10 road surface condition determination device, 11 acceleration sensor,
12 waveform cutting means, 13 windowing means,
14 feature vector calculation means, 15 storage means,
16 kernel function calculating means, 17 road surface state determining means,
20 tires, 21 inner liner part, 22 tire chamber.
Claims (4)
- 走行中のタイヤの振動を検出するステップ(a)と、前記検出されたタイヤの振動の時系列波形を取り出すステップ(b)と、前記タイヤ振動の時系列波形に所定の時間幅の窓関数をかけて時間窓毎の時系列波形を抽出するステップ(c)と、前記時間窓毎の時系列波形からそれぞれ特徴量を算出するステップ(d)と、前記ステップ(d)で算出した時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出するステップ(e)と、前記カーネル関数を用いた識別関数の値に基づいて走行中の路面の状態を判別するステップ(f)と、
を備えた路面状態判別方法において、
前記タイヤ振動の時系列波形における踏み込み点の時刻をtf、蹴り出し点の時刻をtk、前記時刻tfと前記時刻tkの中間の時刻である接地中心点の時刻をtcとし、前記時系列波形の周期をTとしたとき、
前記ステップ(c)では、
前記検出されたタイヤ振動の時系列波形から、前記時刻tf、tk、もしくは、tcのいずれかの時刻含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出し、この切り出された時系列波形である切り出し波形に窓関数をかけて時間窓毎の時系列波形を抽出し、
前記ステップ(e)では、
前記時間窓毎の特徴量と、予め路面状態毎に求めておいたタイヤ振動の時系列波形から切り出された、時間長さTcが13T/40<TK<19T/40の範囲にある基準切り出し波形から算出された時間窓毎の特徴量から選択される基準特徴量とからカーネル関数を算出することを特徴とする路面状態判別方法。 Detecting a vibration of the running tire (a), extracting a time-series waveform of the detected vibration of the tire (b), and applying a window function of a predetermined time width to the time-series waveform of the tire vibration. (C) extracting a time-series waveform for each time window by multiplying, (d) calculating a feature amount from the time-series waveform for each time window, and (E) calculating a kernel function from the characteristic amounts of the above and a reference characteristic amount selected from the characteristic amounts for each time window calculated from the time series waveform of the tire vibration obtained in advance for each road surface condition; (F) determining the state of the road surface on which the vehicle is traveling based on the value of the identification function using the kernel function;
In the road surface condition determination method provided with
The tire vibration when the time of depression point in the sequence waveform t f, kick t k time points out, the time t f and the time of intermediate time in which a ground center point of the time t k and t c, When the period of the time series waveform is T,
In the step (c),
From the time series waveform of the detected tire vibration, the time length T K including any one of the times t f , t k, or t c is in a range of 13T / 40 <T K <19T / 40. , And extract a time-series waveform for each time window by applying a window function to the cut-out waveform, which is the extracted time-series waveform,
In the step (e),
A feature amount of the time for each window, cut out from the time-series waveform of tire vibration obtained in advance for each road surface condition, the reference time length T c is in the range of 13T / 40 <T K <19T / 40 A road surface state determination method characterized by calculating a kernel function from a reference feature amount selected from feature amounts for each time window calculated from a cut-out waveform. - 前記特徴量が、
前記窓関数をかけて抽出した時間窓毎の切り出し波形の特定周波数帯域の振動レベル、
前記特定周波数帯域の振動レベルの時変分散、
及び、前記切り出し波形のケプストラム係数のいずれか1つ、または、複数、または、全部であり、
前記特定周波数帯域の振動レベルは、前記窓関数をかけて抽出した時間窓毎の切り出し波形の周波数スペクトル、もしくは、前記窓関数をかけて抽出した時間窓毎の切り出し波形をバンドパスフィルタを通して得られた時系列波形から求められる特定周波数帯域の振動レベルであることを特徴とする請求項1に記載の路面状態判別方法。 The feature quantity is
The vibration level of a specific frequency band of the cut-out waveform for each time window extracted by applying the window function,
Time-varying dispersion of the vibration level of the specific frequency band,
And any one, or a plurality, or all of the cepstrum coefficients of the cut-out waveform,
The vibration level of the specific frequency band is obtained by passing a frequency spectrum of a cutout waveform for each time window extracted by applying the window function or a cutout waveform for each time window extracted by applying the window function through a band-pass filter. The road surface state determination method according to claim 1, wherein the vibration level is a vibration level in a specific frequency band obtained from the time series waveform. - 前記カーネル関数が、グローバルアライメントカーネル関数、または、ダイナミックタイムワーピングカーネル関数、または、前記カーネル関数の演算値であることを特徴とする請求項1または請求項2に記載の路面状態判別方法。 The method according to claim 1, wherein the kernel function is a global alignment kernel function, a dynamic time warping kernel function, or an operation value of the kernel function.
- 走行中のタイヤの振動を検出して、前記タイヤの走行する路面の状態を判別する路面状態判別装置であって、
タイヤトレッド部のインナーライナー部の気室側に配設されて、走行中のタイヤの振動を検出するタイヤ振動検出手段と、
前記タイヤ振動の時系列波形における踏み込み点の時刻をtf、蹴り出し点の時刻をtk、前記時刻tfと前記時刻tkの中間の時刻である接地中心点の時刻をtcとし、前記時系列波形の周期をTとしたとき、
前記検出されたタイヤ振動の時系列波形から、前記時刻tf、tk、もしくは、tcのいずれかの時刻含む、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形を切り出す波形切り出し手段と、
前記切り出された時系列波形である切り出し波形に窓関数をかけて時間窓毎の時系列波形を抽出する窓掛け手段と、
前記抽出された時間窓毎の切り出し波形における特定周波数の振動レベルを成分とする特徴量もしくは前記振動レベルの関数を成分とする特徴量を算出する特徴量算出手段と、
予め予め路面状態毎に求めておいた路面状態毎のタイヤ振動の時系列波形から切り出された、時間長さTKが、13T/40<TK<19T/40の範囲にある時系列波形である基準切り出し波形から算出された時間窓毎の特徴量から選択される基準特徴量と前記基準特徴量に対応するラグランジェ未定乗数とを記憶する記憶手段と、
前記特徴量算出手段で算出した時間窓毎の特徴量と、前記記憶手段に記憶された基準特徴量とからカーネル関数を算出するカーネル関数算出手段と、
前記カーネル関数を用いた識別関数の値に基づいて路面状態を判別する路面状態判別手段とを備えることを特徴とする路面状態判別装置。
A road surface state determination device that detects vibration of a running tire and determines a state of a road surface on which the tire runs,
Tire vibration detection means arranged on the air chamber side of the inner liner portion of the tire tread portion to detect the vibration of the running tire,
The tire vibration when the time of depression point in the sequence waveform t f, kick t k time points out, the time t f and the time of intermediate time in which a ground center point of the time t k and t c, When the period of the time series waveform is T,
From the time series waveform of the detected tire vibration, the time length T K including any one of the times t f , t k, or t c is in a range of 13T / 40 <T K <19T / 40. A waveform extracting means for extracting a time-series waveform in
Windowing means for applying a window function to the cut-out waveform, which is the cut-out time-series waveform, to extract a time-series waveform for each time window,
A feature amount calculating unit that calculates a feature amount having a component of a vibration level of a specific frequency in the cut-out waveform for each extracted time window or a feature amount having a function of the vibration level as a component,
The time length T K extracted from the time-series waveform of the tire vibration for each road surface condition obtained in advance for each road surface condition is a time-series waveform having a range of 13T / 40 <T K <19T / 40. Storage means for storing a reference feature amount selected from the feature amount for each time window calculated from a certain reference cutout waveform and a Lagrange undetermined multiplier corresponding to the reference feature amount,
Kernel function calculation means for calculating a kernel function from the feature quantity for each time window calculated by the feature quantity calculation means and the reference feature quantity stored in the storage means;
A road surface state determination device for determining a road surface state based on a value of the identification function using the kernel function.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-119167 | 2018-06-22 | ||
JP2018119167A JP2019218023A (en) | 2018-06-22 | 2018-06-22 | Road face state discrimination method and road face state discrimination device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019244379A1 true WO2019244379A1 (en) | 2019-12-26 |
Family
ID=68983348
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/047157 WO2019244379A1 (en) | 2018-06-22 | 2018-12-21 | Road surface condition determination method and road surface condition determination device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2019218023A (en) |
WO (1) | WO2019244379A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157516A1 (en) * | 2008-06-25 | 2009-12-30 | 株式会社ブリヂストン | Method for estimating tire wear and device for estimating tire wear |
JP2014035279A (en) * | 2012-08-09 | 2014-02-24 | Bridgestone Corp | Road surface state determination method and device |
JP2016107833A (en) * | 2014-12-05 | 2016-06-20 | 株式会社ブリヂストン | Road surface state discrimination method |
-
2018
- 2018-06-22 JP JP2018119167A patent/JP2019218023A/en active Pending
- 2018-12-21 WO PCT/JP2018/047157 patent/WO2019244379A1/en active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157516A1 (en) * | 2008-06-25 | 2009-12-30 | 株式会社ブリヂストン | Method for estimating tire wear and device for estimating tire wear |
JP2014035279A (en) * | 2012-08-09 | 2014-02-24 | Bridgestone Corp | Road surface state determination method and device |
JP2016107833A (en) * | 2014-12-05 | 2016-06-20 | 株式会社ブリヂストン | Road surface state discrimination method |
Also Published As
Publication number | Publication date |
---|---|
JP2019218023A (en) | 2019-12-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5937921B2 (en) | Road surface condition determination method and apparatus | |
JP6450170B2 (en) | Road surface condition determination method | |
JP6673766B2 (en) | Road condition determination method | |
EP3623850B1 (en) | Road surface condition determining method and road surface condition determining device | |
JP2018004418A (en) | Method and device for determining state of road surface | |
WO2019138774A1 (en) | Road surface condition determination method and road surface condition determination device | |
JP6734713B2 (en) | Road condition determination method | |
WO2018230181A1 (en) | Road surface state determination method and road surface state determination device | |
WO2019244379A1 (en) | Road surface condition determination method and road surface condition determination device | |
WO2019244380A1 (en) | Road surface condition determination method and road surface condition determination device | |
JP6961539B2 (en) | Road surface condition determination method and road surface condition determination device | |
WO2020031513A1 (en) | Tire type distinguishing method and tire type distinguishing device | |
JP7030532B2 (en) | Road surface condition determination method and road surface condition determination device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18923220 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18923220 Country of ref document: EP Kind code of ref document: A1 |