JP7029147B2 - Radio wave propagation distance estimation system - Google Patents

Radio wave propagation distance estimation system Download PDF

Info

Publication number
JP7029147B2
JP7029147B2 JP2020216168A JP2020216168A JP7029147B2 JP 7029147 B2 JP7029147 B2 JP 7029147B2 JP 2020216168 A JP2020216168 A JP 2020216168A JP 2020216168 A JP2020216168 A JP 2020216168A JP 7029147 B2 JP7029147 B2 JP 7029147B2
Authority
JP
Japan
Prior art keywords
distance
propagation distance
antennas
propagation
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020216168A
Other languages
Japanese (ja)
Other versions
JP2021060416A (en
Inventor
健一 古賀
友美 今井
明暁 岩下
信良 菊間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya Institute of Technology NUC
Tokai Rika Co Ltd
Original Assignee
Nagoya Institute of Technology NUC
Tokai Rika Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya Institute of Technology NUC, Tokai Rika Co Ltd filed Critical Nagoya Institute of Technology NUC
Priority to JP2020216168A priority Critical patent/JP7029147B2/en
Publication of JP2021060416A publication Critical patent/JP2021060416A/en
Application granted granted Critical
Publication of JP7029147B2 publication Critical patent/JP7029147B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lock And Its Accessories (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

本発明は、機器と携帯機との間で往復する電波の伝搬距離を推定する電波伝搬距離推定装置に関する。 The present invention relates to a radio wave propagation distance estimation device that estimates the propagation distance of radio waves reciprocating between a device and a portable device.

いわゆるスマートキーシステム(登録商標)において、中継器を使用した不正行為(リレーアタック)に対する対策のため、車載器と携帯機との間で往復する電波の伝搬時間を測定する技術が提案されている(例えば、特許文献1~2を参照)。 In the so-called smart key system (registered trademark), a technique for measuring the propagation time of radio waves reciprocating between an on-board unit and a portable device has been proposed as a countermeasure against fraudulent acts (relay attacks) using a repeater. (See, for example, Patent Documents 1 and 2).

伝搬時間に光速を乗じることで伝搬距離を算出しつつ、機器から携帯機までの距離を推定することが可能となる。そして、距離推定値が閾値を超えた場合にリレーアタックと判断し、ドア施開錠やエンジン始動を不許可とする。 By multiplying the propagation time by the speed of light, it is possible to estimate the distance from the device to the portable device while calculating the propagation distance. Then, when the estimated distance value exceeds the threshold value, it is determined that the relay attack is performed, and the door locking / unlocking and engine starting are not permitted.

特開2014-159685号公報Japanese Unexamined Patent Publication No. 2014-159685 特開2014-17603号公報Japanese Unexamined Patent Publication No. 2014-17603

マルチパス(車両による乱反射やボディに発生する電流の再輻射等)により、電波の位相が乱されることで、距離推定の精度が大幅に劣化する場合がある。この場合、携帯機が車両付近にあるにも関わらず、距離推定値が閾値を超えてしまい、ドア施開錠やエンジン始動ができなくなる可能性がある。また、携帯機が遠くにあるにも関わらず、距離推定値が閾値以下となり、携帯機が車両付近にない状況でドア施開錠やエンジン始動が許可される可能性がある。 The accuracy of distance estimation may be significantly deteriorated by disturbing the phase of radio waves due to multipath (diffuse reflection by the vehicle, re-radiation of current generated in the body, etc.). In this case, even though the portable device is near the vehicle, the estimated distance may exceed the threshold value, making it impossible to lock / unlock the door or start the engine. In addition, even though the portable device is far away, the estimated distance is below the threshold value, and there is a possibility that the door can be locked / unlocked or the engine can be started when the portable device is not near the vehicle.

本発明は、このような問題点に着目してなされたものであって、その目的は、距離推定精度の向上を可能にした電波伝搬距離推定装置を提供することにある。 The present invention has been made by paying attention to such a problem, and an object of the present invention is to provide a radio wave propagation distance estimation device capable of improving the distance estimation accuracy.

上記課題を解決する電波伝搬距離推定装置は、機器と携帯機との間で往復する電波の伝搬距離を推定する電波伝搬距離推定装置において、前記機器に搭載された複数のアンテナから送信された複数の周波数成分を含む第1の距離推定信号を前記携帯機が受信し、前記携帯機が受信した前記第1の距離推定信号に基づいて第2の距離推定信号を前記機器に搭載された前記複数のアンテナへ返信することにより前記機器は前記第2の距離推定信号を受信し、前記機器は、送信した前記第1の距離推定信号と、受信した前記第2の距離推定信号との間に生じる各周波数における位相回転量について、異なる周波数間の位相回転量の差を算出することにより前記伝搬距離を推定するとともに、その推定した複数の前記伝搬距離の中央値を測距値として選択することをその要旨としている。 The radio wave propagation distance estimation device that solves the above problems is a radio wave propagation distance estimation device that estimates the propagation distance of the radio wave that reciprocates between the device and the portable device, and is a plurality of radio wave propagation distance estimation devices transmitted from a plurality of antennas mounted on the device. The portable device receives the first distance estimation signal including the frequency component of the above, and the second plurality of distance estimation signals are mounted on the device based on the first distance estimation signal received by the portable device. By replying to the antenna of the device, the device receives the second distance estimation signal, and the device is generated between the transmitted first distance estimation signal and the received second distance estimation signal. For the phase rotation amount at each frequency, the propagation distance is estimated by calculating the difference in the phase rotation amount between different frequencies, and the median value of the estimated plurality of the propagation distances is selected as the distance measurement value. It is the gist.

この構成によれば、周波数と位相回転量との関係における傾きが電波の遅延時間を示すため、遅延時間に公知の光速を乗じることで伝搬距離を算出しつつ、機器から携帯機までの距離を推定することが可能となる。このような原理に基づき距離を推定するにあたり、マルチパスによる位相変動の影響が小さな測距値が採用され易くなり、距離推定精度が向上する。したがって、距離推定精度を向上できる。 According to this configuration, the gradient in the relationship between frequency and phase rotation indicates the delay time of radio waves, so the distance from the device to the portable device is calculated while calculating the propagation distance by multiplying the delay time by the known speed of light. It is possible to estimate. In estimating the distance based on such a principle, it becomes easy to adopt a distance measurement value that is less affected by phase fluctuation due to multipath, and the distance estimation accuracy is improved. Therefore, the distance estimation accuracy can be improved.

上記電波伝搬距離推定装置について、前記機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定し、その推定した全ての前記伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する前記伝搬距離を前記測距値として選択することとしてもよい。 Regarding the radio wave propagation distance estimation device, the device estimates the propagation distance for each of the plurality of antennas, sorts all the estimated propagation distances in order of the magnitude of the distance, and rearranges the estimated propagation distances. The propagation distance located at the center may be selected as the distance measurement value.

この構成によれば、マルチパスによる位相変動の影響が大きいと考えられる最大値及び最小値といった極値或いはそれに近い値を測距値として選択せず、中央の値を測距値として選択する。このように、マルチパスによる位相変動の影響が最小或いはそれに近いと考えられる値を測距値として選択することで、距離推定精度を向上できる。 According to this configuration, the extreme value such as the maximum value and the minimum value, which are considered to be greatly affected by the phase fluctuation due to multipath, or a value close to the extreme value is not selected as the distance measurement value, but the center value is selected as the distance measurement value. In this way, the distance estimation accuracy can be improved by selecting a value that is considered to have the minimum or near the influence of the phase fluctuation due to multipath as the distance measurement value.

上記電波伝搬距離推定装置について、前記機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定するとともに、その推定した前記伝搬距離をアンテナ単位で距離の大きさ順に並べ替え、その並べ替えによって中央に位置するアンテナ毎の前記伝搬距離を合成処理して得た前記伝搬距離を前記測距値として選択することとしてもよい。 Regarding the radio wave propagation distance estimation device, the device estimates the propagation distance for each of the plurality of antennas, and rearranges the estimated propagation distance for each antenna in order of the magnitude of the distance. The propagation distance obtained by synthesizing the propagation distances for each antenna located at the center by rearrangement may be selected as the distance measurement value.

この構成によれば、アンテナ単位でマルチパスによる位相変動の影響が大きいと考えられる最大値及び最小値といった極値或いはそれに近い値を合成処理の対象から外し、中央の値を合成処理の対象とする。このように、アンテナ単位でマルチパスによる位相変動の影響が最小或いはそれに近いと考えられる値を合成処理の対象とし、それらを合成処理して得た値を測距値として選択することで、距離推定精度を向上できる。 According to this configuration, extreme values such as maximum and minimum values, which are considered to be greatly affected by phase fluctuation due to multipath, are excluded from the target of synthesis processing, and the center value is set as the target of synthesis processing. do. In this way, values that are considered to have the least or near the effect of phase fluctuation due to multipath for each antenna are targeted for synthesis processing, and the values obtained by combining them are selected as distance measurement values. The estimation accuracy can be improved.

上記電波伝搬距離推定装置について、前記機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定するとともに、その推定した前記伝搬距離をアンテナ単位で合成処理し、その合成処理で得たアンテナ毎の前記伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する前記伝搬距離を前記測距値として選択することとしてもよい。 Regarding the radio wave propagation distance estimation device, the device estimates the propagation distance for each of the plurality of antennas, synthesizes the estimated propagation distance for each antenna, and obtains the combined processing. The propagation distance for each antenna may be rearranged in order of the magnitude of the distance, and the propagation distance located at the center may be selected as the distance measurement value by the rearrangement.

この構成によれば、アンテナ単位で合成処理を行ってアンテナ毎の伝搬距離を得た上で、それらのうち、マルチパスによる位相変動の影響が大きいと考えられる最大値及び最小値といった極値或いはそれに近い値を測距値として選択せず、中央の値を測距値として選択する。このように、マルチパスによる位相変動の影響が最小或いはそれに近いと考えられる値を測距値として選択することで、距離推定精度を向上できる。 According to this configuration, after performing synthesis processing for each antenna to obtain the propagation distance for each antenna, the extreme values such as the maximum value and the minimum value, which are considered to be greatly affected by the phase fluctuation due to multipath, or Do not select a value close to it as the distance measurement value, but select the center value as the distance measurement value. In this way, the distance estimation accuracy can be improved by selecting a value that is considered to have the minimum or near the influence of the phase fluctuation due to multipath as the distance measurement value.

上記電波伝搬距離推定装置について、前記機器は、前記異なる周波数を規定する2つの周波数のうち、一方の周波数におけるデータの振幅を第1の振幅とし、他方の周波数におけるデータの振幅を第2の振幅とし、該異なる周波数間の位相回転量の差を算出することにより推定した前記伝搬距離を対象に、前記第1の振幅と前記第2の振幅とを掛け合わせた値に応じて該値が大きい程、より大きな係数による重み付けを行いつつ、他の異なる周波数間の位相回転量の差を算出することにより推定した前記伝搬距離との合成処理に用いることとしてもよい。 Regarding the radio wave propagation distance estimation device, the device uses the amplitude of the data at one of the two frequencies defining the different frequencies as the first amplitude and the amplitude of the data at the other frequency as the second amplitude. The value is large according to the value obtained by multiplying the first amplitude and the second amplitude with respect to the propagation distance estimated by calculating the difference in the amount of phase rotation between the different frequencies. It may be used for the synthesis process with the propagation distance estimated by calculating the difference in the amount of phase rotation between other different frequencies while weighting with a larger coefficient.

この構成によれば、重み付けに工夫を凝らした合成処理を経ることによって得た伝搬距離を測距値として選択することで、距離推定精度を向上できる。
上記電波伝搬距離推定装置について、前記機器は、前記複数のアンテナで受信した前記複数の周波数成分を含む前記第2の距離推定信号のうち、振幅が閾値以上のデータのみを使用して、前記異なる周波数間の位相回転量の差を算出することにより前記伝搬距離を推定することとしてもよい。
According to this configuration, the distance estimation accuracy can be improved by selecting the propagation distance obtained by performing the synthesis process with elaborate weighting as the distance measurement value.
Regarding the radio wave propagation distance estimation device, the device uses only the data whose amplitude is equal to or larger than the threshold value among the second distance estimation signals including the plurality of frequency components received by the plurality of antennas, and is different from the above. The propagation distance may be estimated by calculating the difference in the amount of phase rotation between frequencies.

この構成によれば、振幅が小さい部分において、位相変動が大きい傾向が見られるため、振幅が閾値未満のデータを距離推定の演算に使用せず、振幅が閾値以上のデータのみを使用して伝搬距離を推定することにより、より高精度化できる。 According to this configuration, since the phase fluctuation tends to be large in the part where the amplitude is small, the data whose amplitude is less than the threshold value is not used for the distance estimation calculation, and only the data whose amplitude is equal to or more than the threshold value is used for propagation. Higher accuracy can be achieved by estimating the distance.

本発明によれば、距離推定精度を向上できる。 According to the present invention, the distance estimation accuracy can be improved.

電波伝搬距離推定装置の概念図。Conceptual diagram of radio wave propagation distance estimation device. 自由空間での周波数と位相回転量との関係を示す特性図。A characteristic diagram showing the relationship between frequency and phase rotation amount in free space. マルチパスの影響を受けた位相特性。Phase characteristics affected by multipath. 第1の実施の形態による測距値の選択方法。A method for selecting a distance measurement value according to the first embodiment. 第2の実施の形態による測距値の選択方法。A method of selecting a distance measurement value according to the second embodiment. 第3の実施の形態による測距値の選択方法。A method for selecting a distance measurement value according to a third embodiment.

(第1の実施の形態)
以下、電波伝搬距離推定装置の第1の実施の形態について説明する。
図1に示すように、電波伝搬距離推定装置1は、周波数の異なるN個のサイン波を合成した測距信号を車載器2から携帯機3に無線で送信し、携帯機3はこれをそのまま送り返し、車載器2はその測距信号を受信する。車載器2から携帯機3への測距信号が第1の距離推定信号に相当し、携帯機3から車載器2への測距信号が第2の距離推定信号に相当する。車両が機器に相当する。
(First Embodiment)
Hereinafter, the first embodiment of the radio wave propagation distance estimation device will be described.
As shown in FIG. 1, the radio wave propagation distance estimation device 1 wirelessly transmits a distance measuring signal obtained by synthesizing N sine waves having different frequencies from the on-board unit 2 to the portable device 3, and the portable device 3 keeps this as it is. It is sent back, and the vehicle-mounted device 2 receives the ranging signal. The distance measuring signal from the vehicle-mounted device 2 to the portable device 3 corresponds to the first distance estimation signal, and the distance measuring signal from the portable device 3 to the vehicle-mounted device 2 corresponds to the second distance estimation signal. The vehicle corresponds to the equipment.

図2に示すように、車載器2が現在送信している測距信号と、車載器2が受信した測距信号との間に生じている位相回転量を周波数毎に求め、さらに隣り合う周波数における位相回転量の差を求める。周波数と位相回転量との関係における傾きが測距信号の遅延時間を示すため、遅延時間に公知の光速cを乗じることで伝搬距離を算出しつつ、車載器2から携帯機3までの距離を推定することが可能となる。そして、距離推定値が閾値以下の場合にドア施開錠やエンジン始動を許可し、距離推定値が閾値を超えた場合にリレーアタックと判断し、ドア施開錠やエンジン始動を不許可とする。 As shown in FIG. 2, the phase rotation amount generated between the distance measuring signal currently transmitted by the vehicle-mounted device 2 and the distance measuring signal received by the vehicle-mounted device 2 is obtained for each frequency, and the adjacent frequencies are further obtained. The difference in the amount of phase rotation in. Since the inclination in the relationship between the frequency and the amount of phase rotation indicates the delay time of the ranging signal, the distance from the on-board unit 2 to the portable device 3 is calculated while calculating the propagation distance by multiplying the delay time by the known light speed c. It is possible to estimate. Then, when the estimated distance value is less than the threshold value, the door lock / unlock and engine start are permitted, and when the distance estimated value exceeds the threshold value, it is determined as a relay attack, and the door lock / unlock and engine start are not permitted. ..

車載器2から送信する時刻tにおける測距信号をx(t)とすると、測距信号をx(t)は以下のように表される。 Assuming that the distance measuring signal at time t transmitted from the vehicle-mounted device 2 is x (t), the distance measuring signal x (t) is expressed as follows.

Figure 0007029147000001
Figure 0007029147000001

同様に、車載器2が受信した測距信号をx’(t)とすると、x’(t)は以下のように表される。 Similarly, assuming that the distance measuring signal received by the vehicle-mounted device 2 is x'(t), x'(t) is expressed as follows.

Figure 0007029147000002
Figure 0007029147000002

車載器2が受信した測距信号から、n番目の周波数fnにおける位相回転量θnを求めるには、次式により求められる。隣り合う周波数における位相回転量の差から、さらに続く式により距離dを求める。 To obtain the phase rotation amount θn at the nth frequency fn from the distance measuring signal received by the vehicle-mounted device 2, it is obtained by the following equation. From the difference in the amount of phase rotation at adjacent frequencies, the distance d is obtained by the following equation.

Figure 0007029147000003
Figure 0007029147000003

Figure 0007029147000004
Figure 0007029147000004

上記のように、周波数の異なるN個のサイン波を合成した測距信号を送受信することで、距離を推定することが可能となる。しかし、上記は自由空間での伝搬の場合である。自由空間では位相回転量は伝搬距離、周波数に比例し増大する(図2参照)。
ところが、図3に示すように、車両に取り付けたアンテナを用いて送受信する場合には、車体に流れる不要電流等の影響により、位相回転量は伝搬距離、周波数に比例しなくなってしまい、距離推定結果に誤差が生じてしまう。
As described above, it is possible to estimate the distance by transmitting and receiving a distance measurement signal that combines N sine waves having different frequencies. However, the above is the case of propagation in free space. In free space, the amount of phase rotation increases in proportion to the propagation distance and frequency (see FIG. 2).
However, as shown in FIG. 3, when transmitting and receiving using an antenna attached to the vehicle, the phase rotation amount is no longer proportional to the propagation distance and frequency due to the influence of unnecessary current flowing through the vehicle body, and the distance is estimated. There will be an error in the result.

そこで、複数のアンテナ(上記車載器2に相当)と携帯機3との間で測距信号を往復させる。車両は、上記複数のアンテナから送信した測距信号x(t)と、上記複数のアンテナで受信した測距信号x’(t)との間に生じる各周波数における位相回転量について、異なる周波数間の位相回転量の差を算出することにより距離dを算出するとともに、その算出した複数の距離dの中央値を測距値として選択する。これにより、高い距離推定精度を得ることが可能となる。 Therefore, the distance measurement signal is reciprocated between the plurality of antennas (corresponding to the on-board unit 2) and the portable device 3. The vehicle has different frequencies for the amount of phase rotation at each frequency generated between the distance measurement signals x (t) transmitted from the plurality of antennas and the distance measurement signals x'(t) received by the plurality of antennas. The distance d is calculated by calculating the difference in the amount of phase rotation of the above, and the median value of the calculated plurality of distances d is selected as the distance measurement value. This makes it possible to obtain high distance estimation accuracy.

次に、電波伝搬距離推定装置1の作用について説明する。
図4に示すように、車両に複数のアンテナとして3個のアンテナ(便宜上、アンテナA~C)が搭載され、周波数の異なるN個のサイン波として4個のサイン波(便宜上、周波数f1~f4)を合成した測距信号を用いる場合を想定する。
Next, the operation of the radio wave propagation distance estimation device 1 will be described.
As shown in FIG. 4, three antennas (for convenience, antennas A to C) are mounted on the vehicle as a plurality of antennas, and four sine waves (frequency f1 to f4 for convenience) as N sine waves having different frequencies. ) Is used as a composite ranging signal.

尚、アンテナAを対象に、周波数f1と周波数f2との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離1A」であるとする。また、アンテナAを対象に、周波数f2と周波数f3との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離2A」であるとする。さらに、アンテナAを対象に、周波数f3と周波数f4との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離3A」であるとする。 For the antenna A, the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f1 and the frequency f2 is assumed to be "distance 1A" for convenience. Further, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f2 and the frequency f3 for the antenna A is "distance 2A" for convenience. Further, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f3 and the frequency f4 for the antenna A is "distance 3A" for convenience.

一方、アンテナBを対象に、周波数f1と周波数f2との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離1B」であるとする。また、アンテナBを対象に、周波数f2と周波数f3との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離2B」であるとする。さらに、アンテナBを対象に、周波数f3と周波数f4との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離3B」であるとする。 On the other hand, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f1 and the frequency f2 for the antenna B is "distance 1B" for convenience. Further, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f2 and the frequency f3 for the antenna B is "distance 2B" for convenience. Further, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f3 and the frequency f4 for the antenna B is "distance 3B" for convenience.

他方、アンテナCを対象に、周波数f1と周波数f2との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離1C」であるとする。また、アンテナCを対象に、周波数f2と周波数f3との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離2C」であるとする。さらに、アンテナCを対象に、周波数f3と周波数f4との間の位相回転量の差を算出することにより推定された伝搬距離が便宜上「距離3C」であるとする。 On the other hand, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f1 and the frequency f2 for the antenna C is "distance 1C" for convenience. Further, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f2 and the frequency f3 for the antenna C is "distance 2C" for convenience. Further, it is assumed that the propagation distance estimated by calculating the difference in the amount of phase rotation between the frequency f3 and the frequency f4 for the antenna C is "distance 3C" for convenience.

そして、上記のように推定された全ての伝搬距離を距離の大きさ順に並べ替えたとき、本例では、大きいものから順に「3B>1A>2A>2C>3A>3C>1C>1B>2B」であったとする。この場合、上記並べ替えによって中央に位置する距離3Aを測距値として選択し、この距離3Aの1/2を車載器2から携帯機3までの距離として推定する。 Then, when all the propagation distances estimated as described above are rearranged in order of the magnitude of the distance, in this example, "3B> 1A> 2A> 2C> 3A> 3C> 1C> 1B> 2B in order from the largest one. ". In this case, the distance 3A located at the center is selected as the distance measurement value by the above rearrangement, and 1/2 of the distance 3A is estimated as the distance from the vehicle-mounted device 2 to the portable device 3.

以上説明したように、本実施の形態によれば、以下の効果を奏することができる。
(1)算出した複数の距離dの中央値(本例では距離3A)を測距値として選択することで、マルチパスによる位相変動の影響が小さな測距値が採用され易くなり、距離推定精度が向上する。したがって、距離推定精度を向上できる。
As described above, according to the present embodiment, the following effects can be obtained.
(1) By selecting the median value of the calculated multiple distances d (distance 3A in this example) as the distance measurement value, it becomes easier to adopt the distance measurement value that is less affected by the phase fluctuation due to multipath, and the distance estimation accuracy. Is improved. Therefore, the distance estimation accuracy can be improved.

(2)マルチパスによる位相変動の影響が大きいと考えられる最大値及び最小値といった極値或いはそれに近い値を測距値として選択せず、中央の値(本例では距離3A)を測距値として選択する。このように、マルチパスによる位相変動の影響が最小或いはそれに近いと考えられる値を測距値として選択することで、距離推定精度を向上できる。 (2) Do not select extreme values such as maximum and minimum values, which are considered to be greatly affected by phase fluctuation due to multipath, or values close to them as distance measurement values, and use the median value (distance 3A in this example) as the distance measurement value. Select as. In this way, the distance estimation accuracy can be improved by selecting a value that is considered to have the minimum or near the influence of the phase fluctuation due to multipath as the distance measurement value.

(第2の実施の形態)
次に、電波伝搬距離推定装置の第2の実施の形態について説明する。
図5に示すように、上記第1の実施の形態と同じ想定のもと、本例では、推定された伝搬距離をアンテナ単位で距離の大きさ順に並べ替える。すなわち、アンテナAを対象に、大きいものから順に「1A>2A>3A」となり、アンテナBを対象に、大きいものから順に「3B>1B>2B」となり、アンテナCを対象に、大きいものから順に「2C>3C>1C」となる。
(Second embodiment)
Next, a second embodiment of the radio wave propagation distance estimation device will be described.
As shown in FIG. 5, based on the same assumption as in the first embodiment, in this example, the estimated propagation distances are rearranged in order of distance in units of antennas. That is, "1A>2A>3A" for antenna A in order from the largest one, "3B>1B>2B" for antenna B in order from the largest one, and "3B>1B>2B" for antenna C in order from the largest one. "2C>3C>1C".

そして、上記並べ替えによって中央に位置するアンテナ毎の距離2A,1B,3Cを合成処理する。本例では、合成処理として次のような最大比合成の処理を行う。すなわち、距離2Aの算出に用いた周波数f2,f3のうち、一方の周波数f2の振幅が便宜上「2mV」であり、他方の周波数f3の振幅が便宜上「3mV」であるとする。また、距離1Bの算出に用いた周波数f1,f2のうち、一方の周波数f1の振幅が便宜上「2mV」であり、他方の周波数f2の振幅が便宜上「1mV」であるとする。さらに、距離3Cの算出に用いた周波数f3,f4のうち、一方の周波数f3の振幅が便宜上「1mV」であり、他方の周波数f4の振幅が便宜上「2mV」であるとする。 Then, the distances 2A, 1B, and 3C for each antenna located at the center are combined by the above rearrangement. In this example, the following maximum ratio synthesis process is performed as the synthesis process. That is, of the frequencies f2 and f3 used for calculating the distance 2A, the amplitude of one frequency f2 is "2 mV" for convenience, and the amplitude of the other frequency f3 is "3 mV" for convenience. Further, of the frequencies f1 and f2 used for calculating the distance 1B, the amplitude of one of the frequencies f1 is "2 mV" for convenience, and the amplitude of the other frequency f2 is "1 mV" for convenience. Further, of the frequencies f3 and f4 used for calculating the distance 3C, the amplitude of one frequency f3 is "1 mV" for convenience, and the amplitude of the other frequency f4 is "2 mV" for convenience.

そして、この場合の最大比合成の処理では、上記並べ替えによって中央に位置するアンテナ毎の伝搬距離を対象に、その伝搬距離の算出に用いた2つの周波数のそれぞれの振幅を掛け合わせた値に応じて該値が大きい程、より大きな係数による重み付けを行いつつ、他のアンテナ毎の伝搬距離との加算処理に用いる。本例では、2つの振幅を掛け合わせた値の大きさに比例して、アンテナAの距離2Aに係数「0.6」の重み付けをするとともに、アンテナBの距離1BとアンテナCの距離3Cとにそれぞれ係数「0.2」の重み付けをした上で、アンテナ毎に伝搬距離と係数とを掛け合わせ、それらを加算して伝搬距離の最大比合成値を得る。尚、この場合の最大比合成値は、「距離2A×0.6+距離1B×0.2+距離3C×0.2」で表される。 Then, in the processing of the maximum ratio synthesis in this case, the propagation distance of each antenna located in the center is multiplied by the amplitudes of the two frequencies used for calculating the propagation distance by the above rearrangement. Therefore, the larger the value, the larger the coefficient, and the weighting is performed, and the weight is added to the propagation distance of each other antenna. In this example, the distance 2A of the antenna A is weighted with a coefficient "0.6" in proportion to the magnitude of the value obtained by multiplying the two amplitudes, and the distance 1B of the antenna B and the distance 3C of the antenna C are used. After weighting each with a coefficient of "0.2", the propagation distance and the coefficient are multiplied for each antenna, and these are added to obtain the maximum ratio composite value of the propagation distance. The maximum ratio composite value in this case is represented by "distance 2A x 0.6 + distance 1B x 0.2 + distance 3C x 0.2".

そして、上記最大比合成値を測距値として選択し、この最大比合成値の1/2を車載器2から携帯機3までの距離として推定する。
以上説明したように、本実施の形態によれば、以下の効果を奏することができる。
Then, the maximum ratio composite value is selected as the distance measurement value, and 1/2 of the maximum ratio composite value is estimated as the distance from the vehicle-mounted device 2 to the portable device 3.
As described above, according to the present embodiment, the following effects can be obtained.

(3)アンテナ単位でマルチパスによる位相変動の影響が大きいと考えられる最大値及び最小値といった極値或いはそれに近い値を合成処理の対象から外し、中央の値(本例では距離2A,1B,3C)を合成処理の対象とする。このように、アンテナ単位でマルチパスによる位相変動の影響が最小或いはそれに近いと考えられる値を合成処理の対象とし、それらを合成処理して得た値(本例では最大比合成値)を測距値として選択することで、距離推定精度を向上できる。 (3) Extreme values such as maximum and minimum values, which are considered to be greatly affected by phase fluctuation due to multipath for each antenna, or values close to them are excluded from the target of synthesis processing, and the center value (distance 2A, 1B in this example, 3C) is the target of the synthesis process. In this way, the values that are considered to have the least or near the effect of phase fluctuation due to multipath for each antenna are targeted for synthesis processing, and the values obtained by combining them (maximum ratio composite value in this example) are measured. By selecting it as the distance value, the distance estimation accuracy can be improved.

(4)重み付けに工夫を凝らした合成処理を経ることによって得た伝搬距離(本例では最大比合成値)を測距値として選択することで、距離推定精度を向上できる。
(第3の実施の形態)
次に、電波伝搬距離推定装置の第3の実施の形態について説明する。
(4) The distance estimation accuracy can be improved by selecting the propagation distance (maximum ratio composite value in this example) obtained by performing the synthesis process with elaborate weighting as the distance measurement value.
(Third embodiment)
Next, a third embodiment of the radio wave propagation distance estimation device will be described.

図6に示すように、上記第1の実施の形態と同じ想定のもと、本例では、推定された伝搬距離をアンテナ単位で合成処理し、その合成処理で得たアンテナ毎の伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する伝搬距離を測距値として選択する。 As shown in FIG. 6, based on the same assumption as in the first embodiment, in this example, the estimated propagation distance is combined for each antenna, and the propagation distance for each antenna obtained by the combined processing is calculated. Sort by the magnitude of the distance, and select the propagation distance located in the center as the distance measurement value by the sorting.

本例では、アンテナ単位での合成処理として最大比合成の処理を行う。便宜上、具体的な数値を用いた説明は割愛するが、最大比合成の処理では、アンテナ単位で、伝搬距離の算出に用いた2つの周波数(アンテナAの距離1Aの例では周波数f1と周波数f2、アンテナCの距離3Cの例では周波数f3と周波数f4)のそれぞれの振幅を掛け合わせた値に応じて、上記第2の実施の形態と同じ原理で重み付けを行う。そして、アンテナ単位で、その重み付けの係数と対応する伝搬距離とを掛け合わせ、それらを加算する。これにより、アンテナ毎に伝搬距離の最大比合成値が得られることになる。 In this example, the maximum ratio synthesis process is performed as the synthesis process for each antenna. For the sake of convenience, the explanation using specific numerical values is omitted, but in the processing of maximum ratio synthesis, the two frequencies used for calculating the propagation distance for each antenna (frequency f1 and frequency f2 in the example of the antenna A distance 1A). In the example of the distance 3C of the antenna C, weighting is performed according to the value obtained by multiplying the respective amplitudes of the frequency f3 and the frequency f4) by the same principle as in the second embodiment. Then, for each antenna, the weighting coefficient is multiplied by the corresponding propagation distance, and they are added. As a result, the maximum ratio composite value of the propagation distance can be obtained for each antenna.

そして、アンテナ毎の最大比合成値を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する最大比合成値(例えばアンテナAの最大比合成値)を測距値として選択し、この最大比合成値の1/2を車載器2から携帯機3までの距離として推定する。 Then, the maximum ratio composite value for each antenna is sorted in order of the magnitude of the distance, and the maximum ratio composite value located in the center (for example, the maximum ratio composite value of antenna A) is selected as the distance measurement value by the sort, and this maximum is selected. 1/2 of the specific composite value is estimated as the distance from the on-board unit 2 to the portable device 3.

以上説明したように、本実施の形態によれば、以下の効果を奏することができる。
(5)アンテナ単位で合成処理を行ってアンテナ毎の伝搬距離(本例では最大比合成値)を得た上で、それらのうち、マルチパスによる位相変動の影響が大きいと考えられる最大値及び最小値といった極値或いはそれに近い値を測距値として選択せず、中央の値(本例ではアンテナAの最大比合成値)を測距値として選択する。このように、マルチパスによる位相変動の影響が最小或いはそれに近いと考えられる値を測距値として選択することで、距離推定精度を向上できる。
As described above, according to the present embodiment, the following effects can be obtained.
(5) After performing synthesis processing for each antenna to obtain the propagation distance for each antenna (maximum ratio composite value in this example), the maximum value and the maximum value that are considered to be greatly affected by the phase fluctuation due to multipath. The extreme value such as the minimum value or a value close to it is not selected as the distance measurement value, but the center value (in this example, the maximum ratio composite value of the antenna A) is selected as the distance measurement value. In this way, the distance estimation accuracy can be improved by selecting a value that is considered to have the minimum or near the influence of the phase fluctuation due to multipath as the distance measurement value.

(6)重み付けに工夫を凝らした合成処理を経ることによって得た伝搬距離(本例ではアンテナAの最大比合成値)を測距値として選択することで、距離推定精度を向上できる。 (6) The distance estimation accuracy can be improved by selecting the propagation distance (in this example, the maximum ratio composite value of the antenna A) obtained by undergoing the synthesis process with elaborate weighting as the distance measurement value.

尚、上記各実施の形態は、次のように変更して具体化することも可能である。
・合成処理として最大比合成の処理に代えて、重み付けを伴わずに伝搬距離を加算する、いわゆる等利得合成の処理を採用してもよい。また、最大比合成とは異なる別の方法で重み付けを行ってもよい。
It should be noted that each of the above embodiments can be modified and embodied as follows.
-As the synthesis process, instead of the maximum ratio synthesis process, a so-called equal gain synthesis process in which the propagation distance is added without weighting may be adopted. Further, weighting may be performed by a method different from the maximum ratio composition.

・最大比合成等の合成処理は、伝搬距離に変換した後に行うのではなく、伝搬距離に変換する前に行ってもよい。
・振幅の大小にかかわらず全てのデータを使用して、異なる周波数間の位相回転量の差を算出することにより伝搬距離を推定する代わりに、振幅が閾値以上のデータのみを使用して、異なる周波数間の位相回転量の差を算出することにより伝搬距離を推定してもよい。この構成によれば、振幅が小さい部分において、位相変動が大きい傾向が見られるため、振幅が閾値未満のデータを距離推定の演算に使用せず、振幅が閾値以上のデータのみを使用して伝搬距離を推定することにより、より高精度化できる。
-Synthesis processing such as maximum ratio synthesis may be performed before conversion to the propagation distance, not after conversion to the propagation distance.
-Instead of estimating the propagation distance by using all the data regardless of the magnitude of the amplitude and calculating the difference in the amount of phase rotation between different frequencies, only the data whose amplitude is greater than or equal to the threshold is used and different. The propagation distance may be estimated by calculating the difference in the amount of phase rotation between frequencies. According to this configuration, since the phase fluctuation tends to be large in the part where the amplitude is small, the data whose amplitude is less than the threshold value is not used for the distance estimation calculation, and only the data whose amplitude is equal to or more than the threshold value is used for propagation. Higher accuracy can be achieved by estimating the distance.

・該当する測距値として複数の測距値を選定し、それらの平均値を測距値として選択してもよい。
・原信号を変調処理等、電気的に処理した後の信号が測距信号x(t)として複数のアンテナから送信される。このため、車両内での変調処理等に伴い、複数のアンテナから送信される測距信号x(t)と原信号との間に位相回転量が生じることになるが、そうした車両内での位相回転量を事前に算出しておき、それを除外した補正後の位相回転量を基準とする測距信号x(t)を複数のアンテナから送信することとしてもよい。このように、原信号との間に生じる各周波数における位相回転量を除外した補正後の位相回転量を基準とする測距信号x(t)を複数のアンテナから送信することで、距離推定精度を向上できる。
-A plurality of distance measurement values may be selected as the corresponding distance measurement values, and the average value thereof may be selected as the distance measurement value.
A signal after electrical processing such as modulation processing of the original signal is transmitted from a plurality of antennas as a ranging signal x (t). For this reason, a phase rotation amount is generated between the ranging signal x (t) transmitted from the plurality of antennas and the original signal due to the modulation processing in the vehicle, and the phase in the vehicle is generated. The rotation amount may be calculated in advance, and the ranging signal x (t) based on the corrected phase rotation amount excluding the rotation amount may be transmitted from the plurality of antennas. In this way, the distance estimation accuracy is achieved by transmitting the ranging signal x (t) based on the corrected phase rotation amount excluding the phase rotation amount at each frequency generated between the original signal and the original signal from the plurality of antennas. Can be improved.

・車両に複数のアンテナとして2個或いは4個以上のアンテナを搭載し、各アンテナと携帯機3との間で測距信号を往復させつつ、上記各実施の形態と同様の原理で距離推定を行ってもよい。 -A vehicle is equipped with two or four or more antennas as a plurality of antennas, and distance estimation is performed by the same principle as in each of the above-described embodiments while reciprocating a distance measurement signal between each antenna and the portable device 3. You may go.

・周波数f1~f4を含む周波数帯域内で隣り合う周波数間の位相回転量の差を算出することにより伝搬距離を推定する代わりに、該周波数帯域内で隣り合わない異なる周波数間の位相回転量の差を算出することにより伝搬距離を推定してもよい。 -Instead of estimating the propagation distance by calculating the difference in the amount of phase rotation between adjacent frequencies in the frequency band including frequencies f1 to f4, the amount of phase rotation between different frequencies not adjacent in the frequency band The propagation distance may be estimated by calculating the difference.

・機器は車両に限定されない。建物のドア等に複数のアンテナを搭載し、携帯機との間で往復する電波の伝搬距離を推定する電波伝搬距離推定装置に本発明を適用してもよい。そして、距離推定値が閾値を超えた場合にリレーアタックと判断し、ドア施開錠や電化製品の動作を不許可としてもよい。車両用或いは建物用の電子キーシステムに応用できることになる。 ・ Equipment is not limited to vehicles. The present invention may be applied to a radio wave propagation distance estimation device in which a plurality of antennas are mounted on a door of a building or the like and the propagation distance of radio waves reciprocating to and from a portable device is estimated. Then, when the estimated distance value exceeds the threshold value, it may be determined as a relay attack, and the door locking / unlocking or the operation of the electric appliance may be disallowed. It can be applied to electronic key systems for vehicles or buildings.

次に、上記各実施の形態及び別例から把握できる技術的思想について記載する。
(イ)前記電波伝搬距離推定装置において、前記機器は、原信号との間に生じる各周波数における位相回転量を除外した補正後の位相回転量を基準とする前記第1の距離推定信号を前記複数のアンテナから送信すること。
Next, the technical ideas that can be grasped from each of the above embodiments and other examples will be described.
(B) In the radio wave propagation distance estimation device, the device obtains the first distance estimation signal based on the corrected phase rotation amount excluding the phase rotation amount at each frequency generated between the original signal and the original signal. Transmit from multiple antennas.

この構成によれば、機器内での変調処理等に伴い、複数のアンテナから送信する第1の距離推定信号と原信号との間に位相回転量が生じることになるが、そうした機器内での位相回転量を事前に算出しておき、それを除外した補正後の位相回転量を基準とすることで、距離推定精度を向上できる。 According to this configuration, a phase rotation amount is generated between the first distance estimation signal transmitted from a plurality of antennas and the original signal due to the modulation processing in the device, but in such a device. The distance estimation accuracy can be improved by calculating the phase rotation amount in advance and using the corrected phase rotation amount excluding it as a reference.

1…電波伝搬距離推定装置、2…車載器(複数のアンテナ)、3…携帯機、A~C…ア
ンテナ。
1 ... Radio wave propagation distance estimation device, 2 ... On-board unit (multiple antennas), 3 ... Portable device, AC ... Antenna.

Claims (8)

複数のアンテナを搭載する第1機器およびアンテナを搭載する第2機器を有し、前記第1機器と前記第2機器との間で往復する電波の伝搬距離を推定する電波伝搬距離推定システムにおいて、
複数の周波数成分を有する信号の合成波である第1の距離推定信号を前記第1機器の複数のアンテナが送信し、
前記第2機器のアンテナが、前記第1の距離推定信号の受信に基づき、前記複数の周波数成分を有する信号の合成波である第2の距離推定信号を送信し、
前記第1機器は、前記第1機器の各アンテナで受信された前記第2の距離推定信号ごとに、前記第1の距離推定信号に対する前記第2の距離推定信号の位相回転量を各周波数成分について算出し、
異なる周波数成分の複数の組み合わせごとに前記位相回転量の差分に基づいて前記伝搬距離を推定し、
前記第1機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定し、推定された全ての前記伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する前記伝搬距離を選択することにより距値を取得する、ことを特徴とする電波伝搬距離推定システム。
Radio wave propagation distance estimation that has a first device equipped with a plurality of antennas and a second device equipped with antennas , and estimates the propagation distance of radio waves reciprocating between the first device and the second device. In the system
A plurality of antennas of the first device transmit a first distance estimation signal which is a composite wave of a signal having a plurality of frequency components.
Based on the reception of the first distance estimation signal, the antenna of the second device transmits the second distance estimation signal, which is a composite wave of the signals having the plurality of frequency components.
The first device sets the phase rotation amount of the second distance estimation signal with respect to the first distance estimation signal as each frequency component for each of the second distance estimation signals received by each antenna of the first device. Calculated and
The propagation distance is estimated based on the difference in the amount of phase rotation for each of a plurality of combinations of different frequency components.
The first device estimates the propagation distance for each of the plurality of antennas, rearranges all the estimated propagation distances in order of the magnitude of the distance, and is located in the center by the rearrangement. A radio wave propagation distance estimation system characterized in that a distance value is acquired by selecting a propagation distance.
複数のアンテナを搭載する第1機器およびアンテナを搭載する第2機器を有し、前記第1機器と前記第2機器との間で往復する電波の伝搬距離を推定する電波伝搬距離推定システムにおいて、In a radio wave propagation distance estimation system that has a first device equipped with a plurality of antennas and a second device equipped with antennas, and estimates the propagation distance of radio waves reciprocating between the first device and the second device.
複数の周波数成分を有する信号の合成波である第1の距離推定信号を前記第1機器の複数のアンテナが送信し、 A plurality of antennas of the first device transmit a first distance estimation signal which is a composite wave of a signal having a plurality of frequency components.
前記第2機器のアンテナが、前記第1の距離推定信号の受信に基づき、前記複数の周波数成分を有する信号の合成波である第2の距離推定信号を送信し、 Based on the reception of the first distance estimation signal, the antenna of the second device transmits the second distance estimation signal, which is a composite wave of the signals having the plurality of frequency components.
前記第1機器は、前記第1機器の各アンテナで受信された前記第2の距離推定信号ごとに、前記第1の距離推定信号に対する前記第2の距離推定信号の位相回転量を各周波数成分について算出し、 The first device sets the phase rotation amount of the second distance estimation signal with respect to the first distance estimation signal as each frequency component for each of the second distance estimation signals received by each antenna of the first device. Calculated and
異なる周波数成分の複数の組み合わせごとに前記位相回転量の差分に基づいて前記伝搬距離を推定し、 The propagation distance is estimated based on the difference in the amount of phase rotation for each of a plurality of combinations of different frequency components.
前記第1機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定するとともに、推定された前記伝搬距離をアンテナ単位で距離の大きさ順に並べ替え、その並べ替えによって中央に位置するアンテナ毎の前記伝搬距離を合成処理して得た前記伝搬距離を測距値として取得する、ことを特徴とする電波伝搬距離推定システム。 The first device estimates the propagation distance for each of the plurality of antennas, rearranges the estimated propagation distance in units of antennas in order of distance magnitude, and positions the estimated propagation distance in the center by the rearrangement. A radio wave propagation distance estimation system characterized in that the propagation distance obtained by synthesizing the propagation distances for each antenna is acquired as a distance measurement value.
複数のアンテナを搭載する第1機器およびアンテナを搭載する第2機器を有し、前記第1機器と前記第2機器との間で往復する電波の伝搬距離を推定する電波伝搬距離推定システムにおいて、In a radio wave propagation distance estimation system that has a first device equipped with a plurality of antennas and a second device equipped with antennas, and estimates the propagation distance of radio waves reciprocating between the first device and the second device.
複数の周波数成分を有する信号の合成波である第1の距離推定信号を前記第1機器の複数のアンテナが送信し、 A plurality of antennas of the first device transmit a first distance estimation signal which is a composite wave of a signal having a plurality of frequency components.
前記第2機器のアンテナが、前記第1の距離推定信号の受信に基づき、前記複数の周波数成分を有する信号の合成波である第2の距離推定信号を送信し、 Based on the reception of the first distance estimation signal, the antenna of the second device transmits the second distance estimation signal, which is a composite wave of the signals having the plurality of frequency components.
前記第1機器は、前記第1機器の各アンテナで受信された前記第2の距離推定信号ごとに、前記第1の距離推定信号に対する前記第2の距離推定信号の位相回転量を各周波数成分について算出し、 The first device sets the phase rotation amount of the second distance estimation signal with respect to the first distance estimation signal as each frequency component for each of the second distance estimation signals received by each antenna of the first device. Calculated and
異なる周波数成分の複数の組み合わせごとに前記位相回転量の差分に基づいて前記伝搬距離を推定し、 The propagation distance is estimated based on the difference in the amount of phase rotation for each of a plurality of combinations of different frequency components.
前記第1機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定するとともに、推定された前記伝搬距離をアンテナ単位で合成処理し、その合成処理で得たアンテナ毎の前記伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する前記伝搬距離を測距値として取得する、ことを特徴とする電波伝搬距離推定システム。The first device estimates the propagation distance for each of the plurality of antennas, synthesizes the estimated propagation distance for each antenna, and performs the propagation for each antenna obtained by the synthesis processing. A radio wave propagation distance estimation system characterized in that distances are rearranged in order of magnitude of distance, and the propagation distance located in the center is acquired as a distance measurement value by the rearrangement.
前記第1機器は、前記異なる周波数を規定する2つの周波数のうち、一方の周波数における前記第2の距離測定信号の振幅を第1の振幅とし、他方の周波数における前記第2の距離測定信号の振幅を第2の振幅とし、該異なる周波数間の位相回転量の差を算出することにより推定した前記伝搬距離を対象に、前記第1の振幅と前記第2の振幅とを掛け合わせた値に応じて該値が大きい程、より大きな係数による重み付けを行いつつ、他の異なる周波数間の位相回転量の差を算出することにより推定した前記伝搬距離との合成処理に用いる
請求項2又は3に記載の電波伝搬距離推定システム。
The first device has the amplitude of the second distance measurement signal at one of the two frequencies defining the different frequencies as the first amplitude, and the second distance measurement signal at the other frequency. The amplitude is set as the second amplitude, and the propagation distance estimated by calculating the difference in the amount of phase rotation between the different frequencies is set to the value obtained by multiplying the first amplitude and the second amplitude. Therefore, the larger the value, the larger the weighting by the coefficient, and it is used for the synthesis process with the propagation distance estimated by calculating the difference in the amount of phase rotation between other different frequencies.
The radio wave propagation distance estimation system according to claim 2 or 3 .
前記第1機器は、前記複数のアンテナで受信した前記複数の周波数成分を含む前記第2の距離推定信号のうち、振幅が閾値以上の周波数のみを使用して、前記異なる周波数間の位相回転量の差を算出することにより前記伝搬距離を推定する
請求項1~4のいずれか一項に記載の電波伝搬距離推定システム。
The first device uses only the frequency whose amplitude is equal to or higher than the threshold value among the second distance estimation signals including the plurality of frequency components received by the plurality of antennas, and the amount of phase rotation between the different frequencies. Estimate the propagation distance by calculating the difference between
The radio wave propagation distance estimation system according to any one of claims 1 to 4 .
複数のアンテナを搭載する第1機器およびアンテナを搭載する第2機器を有し、前記第1機器と前記第2機器との間で往復する電波の伝搬距離を推定する電波伝搬距離推定システムにおいて、
複数の周波数の各々における周波数成分である第1の測距信号成分を前記第1機器の複数のアンテナが送信し、
前記第2機器のアンテナが、前記第1の測距信号成分の受信に基づき、前記複数の周波数の各々における周波数成分である第2の測距信号成分を送信し、
前記第1機器は、前記第1機器の各アンテナで受信された前記第2の測距信号成分ごとに、前記第1の測距信号成分に対する前記第2の測距信号成分の位相回転量を各周波数成分について算出し、
異なる周波数成分の複数の組み合わせごとに前記位相回転量の差分に基づいて前記伝搬距離を推定し、
前記第1機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定し、推定された全ての前記伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する前記伝搬距離を選択することにより距値を取得する、ことを特徴とする電波伝搬距離推定システム。
Radio wave propagation distance estimation that has a first device equipped with a plurality of antennas and a second device equipped with antennas , and estimates the propagation distance of radio waves reciprocating between the first device and the second device. In the system
The plurality of antennas of the first device transmit the first ranging signal component , which is a frequency component at each of the plurality of frequencies,.
Based on the reception of the first ranging signal component, the antenna of the second device transmits the second ranging signal component which is a frequency component at each of the plurality of frequencies.
The first device determines the phase rotation amount of the second range-finding signal component with respect to the first range-finding signal component for each of the second range-finding signal components received by each antenna of the first device. Calculate for each frequency component,
The propagation distance is estimated based on the difference in the amount of phase rotation for each of a plurality of combinations of different frequency components.
The first device estimates the propagation distance for each of the plurality of antennas, rearranges all the estimated propagation distances in order of the magnitude of the distance, and is located in the center by the rearrangement. A radio wave propagation distance estimation system characterized in that a distance value is acquired by selecting a propagation distance.
複数のアンテナを搭載する第1機器およびアンテナを搭載する第2機器を有し、前記第1機器と前記第2機器との間で往復する電波の伝搬距離を推定する電波伝搬距離推定システムにおいて、 In a radio wave propagation distance estimation system that has a first device equipped with a plurality of antennas and a second device equipped with antennas, and estimates the propagation distance of radio waves reciprocating between the first device and the second device.
複数の周波数の各々における周波数成分である第1の測距信号成分を前記第1機器の複数のアンテナが送信し、 The plurality of antennas of the first device transmit the first ranging signal component, which is a frequency component at each of the plurality of frequencies,.
前記第2機器のアンテナが、前記第1の測距信号成分の受信に基づき、前記複数の周波数の各々における周波数成分である第2の測距信号成分を送信し、 Based on the reception of the first ranging signal component, the antenna of the second device transmits the second ranging signal component which is a frequency component at each of the plurality of frequencies.
前記第1機器は、前記第1機器の各アンテナで受信された前記第2の測距信号成分ごとに、前記第1の測距信号成分に対する前記第2の測距信号成分の位相回転量を各周波数成分について算出し、 The first device determines the phase rotation amount of the second range-finding signal component with respect to the first range-finding signal component for each of the second range-finding signal components received by each antenna of the first device. Calculate for each frequency component,
異なる周波数成分の複数の組み合わせごとに前記位相回転量の差分に基づいて前記伝搬距離を推定し、 The propagation distance is estimated based on the difference in the amount of phase rotation for each of a plurality of combinations of different frequency components.
前記第1機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定するとともに、推定された前記伝搬距離をアンテナ単位で距離の大きさ順に並べ替え、その並べ替えによって中央に位置するアンテナ毎の前記伝搬距離を合成処理して得た前記伝搬距離を測距値として取得する、ことを特徴とする電波伝搬距離推定システム。The first device estimates the propagation distance for each of the plurality of antennas, rearranges the estimated propagation distance in units of antennas in order of distance magnitude, and positions the estimated propagation distance in the center by the rearrangement. A radio wave propagation distance estimation system characterized in that the propagation distance obtained by synthesizing the propagation distances for each antenna is acquired as a distance measurement value.
複数のアンテナを搭載する第1機器およびアンテナを搭載する第2機器を有し、前記第1機器と前記第2機器との間で往復する電波の伝搬距離を推定する電波伝搬距離推定システムにおいて、 In a radio wave propagation distance estimation system that has a first device equipped with a plurality of antennas and a second device equipped with antennas, and estimates the propagation distance of radio waves reciprocating between the first device and the second device.
複数の周波数の各々における周波数成分である第1の測距信号成分を前記第1機器の複数のアンテナが送信し、 The plurality of antennas of the first device transmit the first ranging signal component, which is a frequency component at each of the plurality of frequencies,.
前記第2機器のアンテナが、前記第1の測距信号成分の受信に基づき、前記複数の周波数の各々における周波数成分である第2の測距信号成分を送信し、 Based on the reception of the first ranging signal component, the antenna of the second device transmits the second ranging signal component which is a frequency component at each of the plurality of frequencies.
前記第1機器は、前記第1機器の各アンテナで受信された前記第2の測距信号成分ごとに、前記第1の測距信号成分に対する前記第2の測距信号成分の位相回転量を各周波数成分について算出し、 The first device determines the phase rotation amount of the second range-finding signal component with respect to the first range-finding signal component for each of the second range-finding signal components received by each antenna of the first device. Calculate for each frequency component,
異なる周波数成分の複数の組み合わせごとに前記位相回転量の差分に基づいて前記伝搬距離を推定し、 The propagation distance is estimated based on the difference in the amount of phase rotation for each of a plurality of combinations of different frequency components.
前記第1機器は、前記複数のアンテナを対象に、アンテナ毎に前記伝搬距離を推定するとともに、推定された前記伝搬距離をアンテナ単位で合成処理し、その合成処理で得たアンテナ毎の前記伝搬距離を距離の大きさ順に並べ替え、その並べ替えによって中央に位置する前記伝搬距離を測距値として取得する、ことを特徴とする電波伝搬距離推定システム。The first device estimates the propagation distance for each of the plurality of antennas, synthesizes the estimated propagation distance for each antenna, and performs the propagation for each antenna obtained by the synthesis processing. A radio wave propagation distance estimation system characterized in that distances are rearranged in order of magnitude of distance, and the propagation distance located in the center is acquired as a distance measurement value by the rearrangement.

JP2020216168A 2020-12-25 2020-12-25 Radio wave propagation distance estimation system Active JP7029147B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020216168A JP7029147B2 (en) 2020-12-25 2020-12-25 Radio wave propagation distance estimation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020216168A JP7029147B2 (en) 2020-12-25 2020-12-25 Radio wave propagation distance estimation system

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017016871A Division JP6829833B2 (en) 2017-02-01 2017-02-01 Radio wave propagation distance estimation device

Publications (2)

Publication Number Publication Date
JP2021060416A JP2021060416A (en) 2021-04-15
JP7029147B2 true JP7029147B2 (en) 2022-03-03

Family

ID=75381775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020216168A Active JP7029147B2 (en) 2020-12-25 2020-12-25 Radio wave propagation distance estimation system

Country Status (1)

Country Link
JP (1) JP7029147B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030195723A1 (en) 2001-01-16 2003-10-16 Alan Bensky Accurate distance measurement using RF techniques
WO2006095463A1 (en) 2005-03-09 2006-09-14 Omron Corporation Distance measuring apparatus, distance measuring method, reflector and communication system
JP2006284557A (en) 2005-03-09 2006-10-19 Omron Corp Apparatus and method for processing information, reflector, and communications system
JP2007292744A (en) 2006-03-28 2007-11-08 Omron Corp Rfid tag distance measurement system and reader
US20080143584A1 (en) 2006-12-18 2008-06-19 Radiofy Llc, A California Limited Liability Company Method and system for determining the distance between an RFID reader and an RFID tag using phase
JP2009145300A (en) 2007-12-18 2009-07-02 Omron Corp Range measuring method, range measuring apparatus, non-contacted ic medium, range measuring system and range measuring program
US20100052857A1 (en) 2008-09-04 2010-03-04 Ncr Corporation Methods and Apparatus for Distance Determination for Radiofrequency Identification Devices
JP2010071958A (en) 2008-09-22 2010-04-02 Denso Corp Radar device
JP2014159685A (en) 2013-02-19 2014-09-04 Tokai Rika Co Ltd Propagation time measuring device
WO2015151836A1 (en) 2014-03-31 2015-10-08 株式会社村田製作所 Position-detecting system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07229965A (en) * 1994-02-22 1995-08-29 Nikon Corp Distance measuring device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030195723A1 (en) 2001-01-16 2003-10-16 Alan Bensky Accurate distance measurement using RF techniques
WO2006095463A1 (en) 2005-03-09 2006-09-14 Omron Corporation Distance measuring apparatus, distance measuring method, reflector and communication system
JP2006284557A (en) 2005-03-09 2006-10-19 Omron Corp Apparatus and method for processing information, reflector, and communications system
JP2007292744A (en) 2006-03-28 2007-11-08 Omron Corp Rfid tag distance measurement system and reader
US20080143584A1 (en) 2006-12-18 2008-06-19 Radiofy Llc, A California Limited Liability Company Method and system for determining the distance between an RFID reader and an RFID tag using phase
JP2009145300A (en) 2007-12-18 2009-07-02 Omron Corp Range measuring method, range measuring apparatus, non-contacted ic medium, range measuring system and range measuring program
US20100052857A1 (en) 2008-09-04 2010-03-04 Ncr Corporation Methods and Apparatus for Distance Determination for Radiofrequency Identification Devices
JP2010071958A (en) 2008-09-22 2010-04-02 Denso Corp Radar device
JP2014159685A (en) 2013-02-19 2014-09-04 Tokai Rika Co Ltd Propagation time measuring device
WO2015151836A1 (en) 2014-03-31 2015-10-08 株式会社村田製作所 Position-detecting system

Also Published As

Publication number Publication date
JP2021060416A (en) 2021-04-15

Similar Documents

Publication Publication Date Title
JP6829833B2 (en) Radio wave propagation distance estimation device
US20190219678A1 (en) Received signal strength measuring apparatus, received signal strength measuring method, recording medium, and keyless entry system
JP2018048821A (en) Radio wave propagation distance estimation device
US20200408878A1 (en) A radar transceiver with reduced false alarm rate
JP4972852B2 (en) Radar equipment
EP3736598A1 (en) Radar device
JPH0795183A (en) Selection of optimum receiving antenna from more than two receiving antennas
CN104380135A (en) Phase monopulse radar system and target detecting method
CN113345132A (en) Communication device and computer-readable storage medium
JPWO2015107984A1 (en) Vehicle communication device
US12375924B2 (en) Method for detecting the time of the earliest reception of a signal change, in particular for measuring delay time or for defense against relay attacks
CN106486769A (en) Spatial interpolation methods for linear phased array antenna and equipment
WO2019238789A1 (en) Method for determining a relay attack, relay attack detecting device, and computer program
CN113271620A (en) Communication apparatus, information processing method, and computer-readable storage medium
JP7029147B2 (en) Radio wave propagation distance estimation system
AU2009237438B2 (en) A process for minimising jammer noise in receiver systems
JP2006145251A (en) Radio wave arrival direction prediction system
US8063824B2 (en) Magnitude-squared coherence filtering in a time difference of arrival (TDOA) or group delay interferometric geolocation system
CN114814723A (en) Control device and computer-readable storage medium
Guruswamy et al. Ambiguity optimization for frequency-hopping waveforms in MIMO radars with arbitrary antenna separations
JP7180133B2 (en) Terminal position estimation system, terminal position estimation device, terminal position estimation method, and control program
JP2016038320A (en) Position estimation device
JP2011133406A (en) Observation signal processing apparatus
WO2020148802A1 (en) Beam formation device, radar device, and beam formation method
JPH0862323A (en) Receiving device and transmitting device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220208

R150 Certificate of patent or registration of utility model

Ref document number: 7029147

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250