JP7028817B2 - Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this - Google Patents

Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this Download PDF

Info

Publication number
JP7028817B2
JP7028817B2 JP2019043921A JP2019043921A JP7028817B2 JP 7028817 B2 JP7028817 B2 JP 7028817B2 JP 2019043921 A JP2019043921 A JP 2019043921A JP 2019043921 A JP2019043921 A JP 2019043921A JP 7028817 B2 JP7028817 B2 JP 7028817B2
Authority
JP
Japan
Prior art keywords
ground
reinforcing
grout
collapse prevention
protective
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019043921A
Other languages
Japanese (ja)
Other versions
JP2020147920A (en
Inventor
公男 惣島
寛 吉田
Original Assignee
東興ジオテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東興ジオテック株式会社 filed Critical 東興ジオテック株式会社
Priority to JP2019043921A priority Critical patent/JP7028817B2/en
Publication of JP2020147920A publication Critical patent/JP2020147920A/en
Application granted granted Critical
Publication of JP7028817B2 publication Critical patent/JP7028817B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Piles And Underground Anchors (AREA)
  • Pit Excavations, Shoring, Fill Or Stabilisation Of Slopes (AREA)

Description

本発明は、傾斜地の崩壊を防止する崩壊防止補強体に関する。特に、削孔長が2~5m程度の地山補強土工の施工領域から、削孔長が略7~10m以上に及ぶグラウンドアンカー工の施工領域との中間領域にあたる削孔長が略3~10m(後述するが、さらに好適には削孔長が略5~10m)の領域を対象とした、傾斜地の崩壊防止補強体およびこれを用いた傾斜地の崩壊防止工法に関する。 The present invention relates to a collapse prevention reinforcing body that prevents the collapse of slopes. In particular, the drilling length, which is an intermediate region between the construction area of the ground reinforcement earthwork with a drilling length of about 2 to 5 m and the construction area of the ground anchor construction with a drilled length of approximately 7 to 10 m or more, is approximately 3 to 10 m. (Although it will be described later, more preferably, the present invention relates to a slope collapse prevention reinforcing body for a region having a drilling length of about 5 to 10 m) and a slope collapse prevention construction method using the same.

傾斜地の崩壊を防止する崩壊防止補強体を設ける工法(特許文献1~3等)は、グラウンドアンカー工と地山補強土工(鉄筋挿入工、ロックボルト工ともいう)に大別される。 Construction methods (Patent Documents 1 to 3, etc.) for providing a collapse prevention reinforcing body to prevent collapse of slopes are roughly classified into ground anchor construction and ground reinforcement earthwork (also referred to as reinforcing bar insertion construction and rock bolt construction).

グラウンドアンカー工は、傾斜地の地山を、移動土塊を貫通して不動地山(定着領域ともいう)まで削孔して行われる。その崩壊防止補強体は、地山の表層部に設けられた支圧材と不動地山とを連結する補強材を有する。補強材は、不動地山と一体化されていない伸縮領域(自由長部ともいう)を部分的に有している。伸縮領域は、保護材との二重構造となっている。 Ground anchor construction is carried out by drilling a hole in a sloped ground through a moving soil mass to an immovable ground (also called a settlement area). The collapse prevention reinforcing body has a reinforcing material for connecting the bearing material provided on the surface layer portion of the ground and the immovable ground. The reinforcing material partially has an elastic region (also referred to as a free length portion) that is not integrated with the immovable ground. The stretchable area has a double structure with a protective material.

グラウンドアンカー工は、作用する引張力を地盤に伝達させるためのシステムである。グラウトの注入によって造成されたアンカー体、引張部、アンカー頭部によって構成されている。地山補強土工との相違点は、地山と補強材(引張材)間の付着力が働かない伸縮領域があり、これによりプレストレスが導入されるので、地山の変形を積極的に防止することができる点である。 The ground anchor work is a system for transmitting the acting tensile force to the ground. It is composed of an anchor body, a tension part, and an anchor head created by injecting grout. The difference from the ground reinforcement earthwork is that there is a stretchable area where the adhesive force between the ground and the reinforcing material (tensile material) does not work, which introduces prestress and actively prevents deformation of the ground. It is a point that can be done.

地山補強土工もまた、傾斜地の地山を、移動土塊を貫通して不動地山まで削孔して行われ、その崩壊防止補強体は、地山の表層部に設けられた支圧材と不動地山とを連結する補強材を有する。補強材は、不動地山とグラウトを介して一体化された構造となっている。 Ground reinforcement earthwork is also carried out by drilling holes in sloped ground to immovable ground through moving soil mass, and the collapse prevention reinforcement is a bearing material provided on the surface layer of the ground. It has a reinforcing material that connects to the immovable ground. The reinforcing material has a structure integrated with the immovable ground via grout.

地山補強土工は、地山に補強材を挿入打設し、地山と補強材の相互作用によって不安定土塊の挙動特性や強さなどを改善し、法面・斜面の安定性を高める工法である。つまり地山に鉄筋を挿入打設し、グラウトによって地山と一体化する工法で、補強材の周りをすべてグラウトで充填して固定する全面(全孔)接着型である。 Ground reinforcement earthwork is a construction method in which a reinforcing material is inserted and placed in the ground to improve the behavior characteristics and strength of unstable soil mass by the interaction between the ground and the reinforcing material, and to improve the stability of slopes and slopes. Is. In other words, it is a construction method in which reinforcing bars are inserted and placed in the ground and integrated with the ground by grout, and the entire circumference (all holes) of the reinforcing material is filled with grout and fixed.

地山補強度工は、PC鋼線やPC鋼棒が自由に伸縮する伸縮領域がないことでグラウンドアンカー工と区分できる。地山補強土工にはプレストレスを導入するという概念はないので、頭部をナットで絞めるだけで施工は完了する。 The ground reinforcement work can be distinguished from the ground anchor work because there is no expansion / contraction area where the PC steel wire or PC steel rod can freely expand and contract. Since there is no concept of introducing prestress in the ground reinforcement earthwork, the construction is completed simply by tightening the head with a nut.

特開2004-084407号公報Japanese Unexamined Patent Publication No. 2004-084407 特開平11-343800号公報Japanese Unexamined Patent Publication No. 11-343800 特開2007-107372号公報Japanese Unexamined Patent Publication No. 2007-107372

既往の斜面安定工は、地山補強土工が削孔長略2~5m、グラウンドアンカー工が削孔長略7~数10mを対象としている。そのため、すべり面が2~5m程度より深部に存在する場合には削孔長が概ね3~10mとなるので、地山補強土工が採用できない問題があった。 The existing slope stabilization works are targeted for drilling lengths of approximately 2 to 5 m for ground reinforcement earthworks and approximately 7 to several tens of meters for ground anchor works. Therefore, when the slip surface is deeper than about 2 to 5 m, the drilling length is about 3 to 10 m, and there is a problem that the ground reinforcement earthwork cannot be adopted.

また、この場合に略7m以上を対象とするグラウンドアンカー工を適用すると、崩壊防止という機能は得られるが、経済的に高価、つまり過大設計となる問題を有していた。 Further, in this case, if a ground anchor construction targeting about 7 m or more is applied, a function of preventing collapse can be obtained, but there is a problem that it is economically expensive, that is, it becomes an over-designed.

さらに削孔長が略3~10mの場合に地山補強土工を適用すると、地山の変位により支圧板のプレートや補強材を締結しているナットが浮き上がる現象が生じる問題があった。そのため、削孔長略3~10mの境界領域、さらに好適には削孔長略5~10mの境界領域においては、地山補強土工とグラウンドアンカー工の双方の機能が発揮できる工法、つまり曲げ・剪断抵抗に優れ、プレストレスを維持して地山変位を生じず、かつ経済的である傾斜地の崩壊防止補強体および傾斜地の崩壊防止補強工法が求められていた。 Further, when the ground reinforcement earthwork is applied when the drilling length is about 3 to 10 m, there is a problem that the plate of the bearing plate and the nut for fastening the reinforcing material are lifted due to the displacement of the ground. Therefore, in a boundary region with a drilling length of approximately 3 to 10 m, more preferably in a boundary region with a drilling length of approximately 5 to 10 m, a construction method that can demonstrate the functions of both ground reinforcement earthwork and ground anchor construction, that is, bending. There has been a demand for a collapse prevention reinforcement body for slopes and a collapse prevention reinforcement method for slopes, which have excellent shear resistance, maintain prestress and do not cause ground displacement, and are economical.

本発明の目的は、グラウンドアンカー工と地山補強土工の境界領域の傾斜地の地山に適した崩壊防止工法を提供することである。 An object of the present invention is to provide a collapse prevention method suitable for a sloped ground in a boundary region between a ground anchor work and a ground reinforcement earthwork.

上記の目的を達成するために、本発明は、以下の構成を提供する。
・ 本発明の態様は、傾斜地の地山における移動土塊を貫通して不動地山まで達する削孔に設置され、前記地山の表層部に設けられた支圧材と、前記支圧材と前記不動地山とを連結しかつ前記地山と一体化されていない伸縮領域を形成された補強材と、前記補強材の外管である保護材とを有する傾斜地の崩壊防止補強体において、
前記補強材が、全長が伸縮可能な可撓性を有する線材と、略全長に亘る伸縮領域を確保するために前記線材を覆う被覆材とを有し、前記補強材と可撓性を有しない前記保護材とが、軸方向の先端部で互いに固定されて一体化されており、
前記削孔の長さが3~10mであり、前記保護材が軸方向にて少なくとも2本に分割され、分割された各保護材同士が、前記補強材にプレストレスを与えた際に発生する前記不動地山の塑性変位を吸収できる弾性構造を有する弾性体を各保護材の間に介して結合されていることを特徴とする。
・ 上記態様において、分割された各前記保護材のうち、前記移動土塊側に位置する保護材が、配管用炭素鋼鋼管であることが、好適である。
・ 上記態様において、前記弾性体が、硬質ゴムニップルであり、軸方向に貫通するグラウト注入孔と排気孔とを有することが、好適である。
・ 本発明の別の態様は、傾斜地の崩壊防止補強工法であって、上記いずれかの態様の崩壊防止補強体を、前記削孔に挿入してグラウトを充填し、前記グラウトが硬化した後に前記補強材に前記支圧材を介して所定のプレストレスを与えて定着させることを特徴とする。
In order to achieve the above object, the present invention provides the following configurations.
-Aspects of the present invention include a bearing material provided in a drilling hole that penetrates a moving soil mass in a sloped ground and reaches an immovable ground, and is provided on the surface layer of the ground, and the bearing material and the above. In a sloped slope collapse prevention reinforcing body having a reinforcing material formed of an elastic region that is connected to an immovable ground and is not integrated with the ground, and a protective material that is an outer pipe of the reinforcing material.
The reinforcing material has a flexible wire having a stretchable overall length and a covering material covering the wire to secure a stretchable region over substantially the entire length, and does not have flexibility with the reinforcing material. The protective material is fixed to each other at the tip in the axial direction and integrated.
The length of the drilled hole is 3 to 10 m, the protective material is divided into at least two in the axial direction, and each of the divided protective materials is generated when prestress is applied to the reinforcing material. It is characterized in that an elastic body having an elastic structure capable of absorbing the plastic displacement of the immovable ground is bonded to each protective material .
-In the above embodiment, it is preferable that the protective material located on the moving soil mass side of the divided protective materials is a carbon steel pipe for piping.
-In the above embodiment, it is preferable that the elastic body is a hard rubber nipple and has a grout injection hole and an exhaust hole penetrating in the axial direction.
Another aspect of the present invention is a collapse prevention reinforcement method for slopes, wherein the collapse prevention reinforcement body of any one of the above aspects is inserted into the drilling hole to fill the grout, and after the grout is cured, the said It is characterized in that a predetermined prestress is applied to the reinforcing material via the pressure bearing material to fix the reinforcing material.

本発明の効果は次のとおりである。
1) 本発明は、伸縮領域を備えプレストレスが持続する高耐力の地山補強土工である。これにより、従来の崩壊防止工法である法枠工+地山補強土工などで発生する支圧板のプレートやナットが浮き上がる現象を防止することができる。
2) 本発明は、崩壊防止補強体1本当たりの許容耐力が大きいことから、従来の地山補強土工の打設間隔(略1.5~2.0m)を3.0m程度まで拡大することができる。
3) 補強材に異形鉄筋(D19~D29)を使用する従来の地山補強土工と比較して断面二次モーメントの大きな配管用炭素鋼鋼管(SGP鋼管)を使用することにより、曲げや剪断に対する抵抗力が格段に向上する。特に、モーメントに対する抵抗力に関しては、保護材である外管となる鋼管には、PC綱撚線を介して緊張力が作用していることから、小口径のPC杭に近い構造になる。
4) 地山補強土工(長さ略2~5m)の適用外であった、長さ5~10m程度までの領域までを施工が可能になる。
5) グラウンドアンカー工と地山補強土工の適用範囲の境界領域(略5~7mの範囲)の施工が可能となるので、地山補強土工の施工対象となっている小規模崩壊(深度3m程度)までの抑止能力を中規模崩壊(深度7m程度)までに拡大できる。
6) 少なくとも2本に分割した保護材(外管)を弾性体で結合することにより、グラウンドアンカー工的な機能と地山補強土工的な機能を有する、境界領域専用の斜面安定工が実現した。
7) 保護材同士を結合する弾性体が定着領域の塑性変位を吸収するため、伸縮領域のグラウトに与える影響(クラック発生など)を軽減できる。
8) アンカー定着体の定着領域に相当する保護材を構成するSGP鋼管は、内外に螺子加工を施すことにより、グラウトの付着抵抗が増加する。
9) アンカー定着体の定着領域に相当する保護材を構成するSGP鋼管は、その先端部で補強材と固定されることにより、インナーグラウトに圧縮力が作用する。このため、摩擦引張型のグラウンドアンカー工で懸念されているクラックの発生を大きく抑制することができる。
10) 保護材内部にインナーグラウトを設けることにより、グラウンドアンカー工におけるアンカー定着体を造成することが可能となる。
11) 不動地山側に位置する保護材の側面に開口部を設けた構造、または、不動地山側の保護材の先端部の固定部材に開口部を設けた構造とすることにより、グラウトをインナーグラウト用の注入パイプから注入するだけで、アウターグラウトも同時に行うことができる。
12) 補強材を構成する部品数が、グラウンドアンカーに比べて少ないため、あらかじめ工場生産しない場合であっても、現場で組み立てることが容易である。
13) 弾性体以外の材料は市場調達が容易なことから、施工地域が限定されることなく法面保護工として広く適用することができる。
The effects of the present invention are as follows.
1) The present invention is a high-strength ground-reinforcing earthwork having a stretchable region and sustaining prestress. As a result, it is possible to prevent the phenomenon that the plate and nut of the bearing plate are lifted, which occurs in the conventional frame construction + ground reinforcement earthwork, which is a conventional collapse prevention construction method.
2) In the present invention, since the permissible yield strength per collapse prevention reinforcing body is large, the placement interval (approximately 1.5 to 2.0 m) of the conventional ground reinforcement earthwork is expanded to about 3.0 m. Can be done.
3) By using a carbon steel pipe for piping (SGP steel pipe) with a large moment of inertia of area compared to the conventional ground reinforcement earthwork that uses deformed reinforcing bars (D19 to D29) as the reinforcing material, it is resistant to bending and shearing. Resistance is greatly improved. In particular, regarding the resistance to the moment, since the tension force acts on the steel pipe which is the outer pipe which is the protective material via the PC rope twisted wire, the structure is similar to that of a PC pile having a small diameter.
4) It is possible to construct up to an area with a length of about 5 to 10 m, which was not applicable to the ground reinforcement earthwork (length approximately 2 to 5 m).
5) Since it is possible to construct the boundary area (a range of approximately 5 to 7 m) between the ground anchor work and the ground reinforcement earthwork, a small-scale collapse (depth of about 3 m) that is the target of the ground reinforcement earthwork will be constructed. ) Can be expanded to a medium-scale collapse (depth of about 7 m).
6) By connecting the protective material (outer pipe) divided into at least two with an elastic body, a slope stabilization work dedicated to the boundary area, which has a ground anchoring function and a ground reinforcement earthworking function, has been realized. ..
7) Since the elastic body that connects the protective materials absorbs the plastic displacement in the fixing region, the influence on the grout in the expansion / contraction region (crack generation, etc.) can be reduced.
8) The SGP steel pipe constituting the protective material corresponding to the fixing region of the anchor fixing body is subjected to screw processing inside and outside, so that the adhesion resistance of grout is increased.
9) The SGP steel pipe constituting the protective material corresponding to the fixing region of the anchor fixing body is fixed to the reinforcing material at the tip thereof, so that a compressive force acts on the inner grout. Therefore, it is possible to greatly suppress the occurrence of cracks, which is a concern in the friction-pull type ground anchor construction.
10) By providing an inner grout inside the protective material, it becomes possible to create an anchor fixing body in the ground anchor work.
11) The grout can be made into an inner grout by using a structure in which an opening is provided on the side surface of the protective material located on the immovable ground side or a structure in which an opening is provided in the fixing member at the tip of the protective material on the immovable ground side. Outer grout can also be performed at the same time by simply injecting from the injection pipe.
12) Since the number of parts constituting the reinforcing material is smaller than that of the ground anchor, it is easy to assemble on-site even if it is not manufactured in the factory in advance.
13) Since materials other than elastic materials can be easily procured on the market, they can be widely applied as slope protection works without limiting the construction area.

図1は、本発明の実施例の概要を示す地山の概略断面図である。FIG. 1 is a schematic cross-sectional view of a ground showing an outline of an embodiment of the present invention. 図2(a)は、図1の概略拡大断面図であり、(b)は(a)の補強材と保護材の部分を示す断面図である。2 (a) is a schematic enlarged cross-sectional view of FIG. 1, and FIG. 2 (b) is a cross-sectional view showing a portion of the reinforcing material and the protective material of (a). 図3(a)は図2(a)のA-A断面を示し、(b)は図2(a)のB-B断面を示し、(c)は図2(a)のC-C断面を示す。3 (a) shows the AA cross section of FIG. 2 (a), (b) shows the BB cross section of FIG. 2 (a), and (c) shows the CC cross section of FIG. 2 (a). Is shown. 図4(a)は、本発明の弾性体の一実施例の側面図であり、(b)は(a)の端面を示す。FIG. 4A is a side view of an embodiment of the elastic body of the present invention, and FIG. 4B shows an end face of FIG. 4A. 図5は、本発明の弾性体の別の実施例の側面図である。FIG. 5 is a side view of another embodiment of the elastic body of the present invention.

以下、実施例を示した図面を参照して本発明の実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings showing examples.

図1は、本発明の実施例の概要を示す地山の概略断面図である。図2(a)は、図1の概略拡大断面図であり、(b)は(a)の補強材と保護材の部分を示す断面図である(なお、図2は崩壊防止補強体の軸方向の長さについては一部省略し、軸方向に垂直な方向の寸法を誇張して示している)。 FIG. 1 is a schematic cross-sectional view of a ground showing an outline of an embodiment of the present invention. 2A is a schematic enlarged cross-sectional view of FIG. 1, and FIG. 2B is a cross-sectional view showing a portion of the reinforcing material and the protective material of FIG. 1 (Note that FIG. 2 is a shaft of a collapse prevention reinforcing body. The length in the direction is partially omitted, and the dimension in the direction perpendicular to the axial direction is exaggerated).

図3(a)は図2(a)のA-A断面を示し、(b)は図2(a)のB-B断面を示し、(c)は図2(a)のC-C断面を示す。図4(a)は、本発明の弾性体の一実施例の側面図であり、(b)は(a)の端面を示す。(c)は、本発明の弾性体の別の実施例の側面図である。図5は、本発明の弾性体の別の実施例の側面図である。 3 (a) shows the AA cross section of FIG. 2 (a), (b) shows the BB cross section of FIG. 2 (a), and (c) shows the CC cross section of FIG. 2 (a). Is shown. FIG. 4A is a side view of an embodiment of the elastic body of the present invention, and FIG. 4B shows an end face of FIG. 4A. (C) is a side view of another embodiment of the elastic body of the present invention. FIG. 5 is a side view of another embodiment of the elastic body of the present invention.

図1~図5を参照して本発明の傾斜地の崩壊防止補強体について説明する。
図1に示すように、傾斜地の地山に移動土塊3を貫通して不動地山4に達する削孔11が穿設され、削孔11内に本発明の傾斜地の崩壊防止補強体12が挿入され、所定の工程を経て定着されている。なお、すべり面2の位置は、一例でありこの部分に限定されるものではない。
The collapse prevention reinforcing body for slopes of the present invention will be described with reference to FIGS. 1 to 5.
As shown in FIG. 1, a hole 11 is drilled in a sloped ground through a moving soil mass 3 to reach an immovable ground 4, and a slope collapse prevention reinforcing body 12 of the present invention is inserted into the hole 11. It has been established through a predetermined process. The position of the slip surface 2 is an example and is not limited to this portion.

崩壊防止補強体12は、補強材6と、その外管である保護材7との二重構造となっている。補強材6は可撓性を有する線材であり、保護材7は可撓性を有しない円管材であり、補強材6の外周面と保護材7の内周面との間は一定の距離が設けられている。補強材6と保護材7の軸方向の全体長さはほぼ同じであるが、補強材6の方がより長く、保護材7の頭部及び先端部よりも所定の長さだけ突出することができる。 The collapse prevention reinforcing body 12 has a double structure of a reinforcing material 6 and a protective material 7 which is an outer pipe thereof. The reinforcing material 6 is a flexible wire rod, the protective material 7 is a non-flexible circular pipe material, and there is a certain distance between the outer peripheral surface of the reinforcing material 6 and the inner peripheral surface of the protective material 7. It is provided. The overall lengths of the reinforcing material 6 and the protective material 7 in the axial direction are almost the same, but the reinforcing material 6 is longer and may protrude by a predetermined length from the head and the tip of the protective material 7. can.

保護材7は、軸方向にて少なくとも2本に分割されている。図示の例では、不動地山4側の保護材7aと、移動土塊3側の保護材7bに分割されている。分割された各保護材7a、7b同士は、弾性8を介して結合されている。保護材7が3本以上に分割される場合は、2個以上の弾性8を介して各保護材同士が結合される。さらに、補強材6の先端部は、保護材7の先端部と、適宜の固定部材9により固定され、一体化された構造となっている。 The protective material 7 is divided into at least two pieces in the axial direction. In the illustrated example, it is divided into a protective material 7a on the immovable ground 4 side and a protective material 7b on the moving soil mass 3 side. The divided protective materials 7a and 7b are connected to each other via the elastic body 8. When the protective material 7 is divided into three or more, each protective material is bonded to each other via two or more elastic bodies 8. Further, the tip portion of the reinforcing material 6 is fixed and integrated with the tip portion of the protective material 7 by an appropriate fixing member 9.

弾性8は、軸方向に所定の長さを有し少なくとも保護材7と同等の直径を有する略円柱状である。弾性8は、軸方向に補強材6を貫通させる孔を有する。さらに弾性8は、軸方向にグラウト注入パイプ23を貫通させる注入パイプ孔41と、空気用の排気孔42が形成されている。 The elastic body 8 is a substantially columnar shape having a predetermined length in the axial direction and having a diameter at least equivalent to that of the protective material 7. The elastic body 8 has a hole through which the reinforcing material 6 is penetrated in the axial direction. Further, the elastic body 8 is formed with an injection pipe hole 41 for passing the grout injection pipe 23 in the axial direction and an exhaust hole 42 for air.

例えば、図2(b)に示すように、固定部材9が不動地山4側の保護材7aの先端部の開口を閉鎖し、補強材6の先端部が固定部材9を貫通して端部ヘッド14を介して楔15により固定されている。先端部の固定方法は、図示の例に限られない。このようにして、補強材6と保護材7(保護材7a、7b及び弾性8)が一体化され、さらに注入パイプ23が予め備えられる。
For example, as shown in FIG. 2B, the fixing member 9 closes the opening at the tip of the protective material 7a on the immovable ground 4, and the tip of the reinforcing member 6 penetrates the fixing member 9 and ends. It is fixed by a wedge 15 via the head 14. The method of fixing the tip portion is not limited to the illustrated example. In this way, the reinforcing material 6 and the protective material 7 (protective materials 7a, 7b and the elastic body 8) are integrated, and the injection pipe 23 is provided in advance.

崩壊防止補強体12は、一般的には、あらかじめ工場等において補強材6と保護材7が先端部で固定されて一体化されたものを現場に搬するのが効率的である。しかしながら、弾性体以外の材料は市場調達が容易なことから、現場で組み立てることも可能である。また、補強材6と保護材7が先端部で固定されて一体化されている先端部に拘束具を備えることにより圧縮型のアンカーとすることもできる(拘束具を設けない場合は摩擦型のアンカーとなる)。 In general, it is efficient to carry the collapse prevention reinforcing body 12 to the site in which the reinforcing material 6 and the protective material 7 are fixed and integrated at the tip portion in advance at a factory or the like. However, materials other than elastic bodies can be assembled on-site because they are easily procured on the market. Further, a compression type anchor can be obtained by providing a restraint at the tip where the reinforcing material 6 and the protective material 7 are fixed and integrated at the tip (if the restraint is not provided, the friction type). Become an anchor).

図2(a)に示すように、崩壊防止補強体12の全長に亘って、補強材6と保護材7の間の空間にインナーグラウト22が充填され、保護材7と削孔11の壁との間の空間にアウターグラウト21が充填される。 As shown in FIG. 2A, the inner grout 22 is filled in the space between the reinforcing material 6 and the protective material 7 over the entire length of the collapse prevention reinforcing body 12, and the protective material 7 and the wall of the drilling 11 are formed. The outer grout 21 is filled in the space between them.

補強材6は、設計で求められる所定の強度を有し、可撓性を有する線材であれば、材質は特に問わない。全長が伸縮可能なPC鋼撚線が好適である。さらに本発明の補強材6は、略全長に亘ってポリエチレン樹脂等の被覆材17で被覆されている。これにより、被覆材17の外側がグラウトで固められた後にも、被覆材17の内部で補強材6が伸縮可能な伸縮領域が、補強材6の略全長に亘って確保される。 The reinforcing material 6 may be made of any material as long as it has a predetermined strength required by design and is flexible. A PC steel stranded wire having a total length that can be expanded and contracted is suitable. Further, the reinforcing material 6 of the present invention is covered with a covering material 17 such as polyethylene resin over substantially the entire length. As a result, even after the outside of the covering material 17 is hardened by grout, an expansion / contraction region in which the reinforcing material 6 can be expanded and contracted is secured over substantially the entire length of the reinforcing material 6.

補強材6はその略全長をポリエチレン樹脂等の被覆材17被覆することにより、略全長を伸縮領域とすることができるので、従前の地山補強土工と比較してより大きな変位に対応することができる。 Since the reinforcing material 6 can have a substantially total length as a stretchable region by covering the substantially total length with a covering material 17 such as polyethylene resin, it is possible to cope with a larger displacement as compared with the conventional ground reinforcement earthwork. can.

また、さらに防錆効果を高めたPC鋼撚線として、PC鋼撚線の間隙に防錆剤を充填したアンボンドPC鋼撚線を用いることもできる。補強材6の線径は、本発明の適用対象である地山補強土工とグラウンドアンカー工の中間領域への適用を考慮すると、強度および経済性から15.2mm相当若しくは17.8mm相当が好適である。 Further, as the PC steel stranded wire having a further enhanced rust preventive effect, an unbonded PC steel stranded wire in which the gap between the PC steel stranded wires is filled with a rust preventive agent can also be used. The wire diameter of the reinforcing material 6 is preferably 15.2 mm or 17.8 mm in terms of strength and economy, considering the application to the intermediate region between the ground reinforcement earthwork and the ground anchor work to which the present invention is applied. be.

保護材7は、設計で求められる所定の強度を有するものであれば、材質は特に問わない。しかしながら、少なくとも移動土塊3側の保護材7bは、断面二次モーメントの大きな小口径鋼管杭としての機能を持たせるため、ディンプル鋼管や配管用炭素鋼鋼管(SGP鋼管)が好適である。特に、SGP鋼管は汎用性が高く、経済性においても有効である。SGP鋼管を用いた場合の断面二次モーメントは、一般的な地山補強土工で用いられる鉄筋(PC鋼棒D22)の略10倍以上となり、曲げと剪断性能を格段に向上できる。 The material of the protective material 7 is not particularly limited as long as it has a predetermined strength required by design. However, dimple steel pipes and carbon steel pipes for piping (SGP steel pipes) are suitable because at least the protective material 7b on the side of the moving soil mass 3 has a function as a small-diameter steel pipe pile having a large moment of inertia of area. In particular, SGP steel pipe has high versatility and is also effective in terms of economy. When the SGP steel pipe is used, the moment of inertia of area is about 10 times or more that of the reinforcing bar (PC steel rod D22) used in general ground reinforcement earthwork, and the bending and shearing performance can be significantly improved.

これにより、許容荷重を計算すると、PC鋼棒D22が75kN/本であるのに対し、本発明の崩壊防止補強体12は、可撓性を有する補強材6にアンボンドPC鋼撚線を、保護材7にSGP鋼管を使用した場合は156~232kN/本となり、PC鋼棒D19の4倍、PC鋼棒D22の3倍に向上させることができる。 As a result, when the allowable load is calculated, the PC steel rod D22 is 75 kN / piece, whereas the collapse prevention reinforcing body 12 of the present invention protects the unbonded PC steel stranded wire on the flexible reinforcing material 6. When the SGP steel pipe is used for the material 7, the value is 156 to 232 kN / piece, which can be improved to 4 times that of the PC steel rod D19 and 3 times that of the PC steel rod D22.

本発明の崩壊防止補強体12では、略全長に亘って、インナーグラウト22と保護材7とアウターグラウト21とが定着領域を構成し、一方、補強材6が伸縮領域を構成する。定着領域と伸縮領域は被覆材17により分離されている。 In the collapse prevention reinforcing body 12 of the present invention, the inner grout 22, the protective material 7, and the outer grout 21 form a fixing region, while the reinforcing material 6 constitutes an expansion / contraction region over substantially the entire length. The fixing region and the expansion / contraction region are separated by the covering material 17.

弾性体8は、補強材6にプレストレスを与えた際に発生する定着領域の塑性変位を吸収する緩衝材となる。その機能を満たす素材であれば特に問わない。しかしながら、免振装置などに採用されている硬質ゴムが好適である。 The elastic body 8 serves as a cushioning material that absorbs the plastic displacement of the fixing region generated when the reinforcing material 6 is prestressed. It does not matter as long as it is a material that satisfies the function. However, the hard rubber used for the seismic isolation device or the like is suitable.

また、弾性体8は、不動地山4側の保護材7aと移動土塊3側の保護材7bと接続する必要がある。例えば図4(a)(参考のために被覆材17付き補強材6も示す)に示すように、螺子加工された硬質ゴムニップルとすることがさらに好適である。なお、ゴムのほか、たとえば鋼製であっても蛇腹に加工されているなど、変位を吸収できる弾性構造であればよい。 Further, the elastic body 8 needs to be connected to the protective material 7a on the immovable ground 4 side and the protective material 7b on the moving soil mass 3 side. For example, as shown in FIG. 4 (a) (reinforcing material 6 with a covering material 17 is also shown for reference), it is more preferable to use a screwed hard rubber nipple. In addition to rubber, any elastic structure that can absorb displacement, such as steel being processed into a bellows, may be used.

図3(a)~(c)の断面図に示すように、弾性体8には、ポリエチレン樹脂等の被覆材17で被覆された補強材6が通る孔のほか、グラウトを注入するポリエチレン製の注入パイプ23等を通す注入パイプ孔41と、グラウト注入時に内部の空気を排出するための排気孔42が設けられている。これにより、弾性体8は、注入パイプ23を介してグラウトを定着領域に加圧注入する際に、インナーグラウト22用のパッカーとして作用し、インナーグラウト22を加圧注入する効果が得られる。 As shown in the cross-sectional views of FIGS. 3A to 3C, the elastic body 8 is made of polyethylene into which grout is injected, in addition to a hole through which a reinforcing material 6 coated with a covering material 17 such as polyethylene resin passes. An injection pipe hole 41 through which the injection pipe 23 and the like are passed and an exhaust hole 42 for discharging the internal air at the time of grout injection are provided. As a result, the elastic body 8 acts as a packer for the inner grout 22 when the grout is pressure-injected into the fixing region via the injection pipe 23, and the effect of pressure-injecting the inner grout 22 can be obtained.

また、図5に示すように、弾性体8の直径を保護材7よりも大きくして、削孔11の壁と略接するようにすることにより、注入パイプを介してグラウトを定着領域に加圧注入する際にアウターグラウト21用のパッカーとして作用し、アウターグラウト21を加圧注入する効果が得られる。 Further, as shown in FIG. 5, the diameter of the elastic body 8 is made larger than that of the protective material 7 so that the grout is substantially in contact with the wall of the drilling 11 to press the grout to the fixing region via the injection pipe. When injecting, it acts as a packer for the outer grout 21, and the effect of pressurizing the outer grout 21 can be obtained.

施工は、傾斜地の地山1を定着地盤あるいは不動地山4まで削孔して、本発明の崩壊防止補強体12を挿入し、崩壊防止補強体12に予め備えられた注入パイプ23を介してグラウトを充填し、グラウトが硬化した後に支圧材5に所定のプレストレスを与えて定着させることにより完成する。 In the construction, the ground 1 of the slope is drilled to the fixed ground or the immovable ground 4, the collapse prevention reinforcing body 12 of the present invention is inserted, and the injection pipe 23 provided in advance in the collapse prevention reinforcing body 12 is used for the construction. It is completed by filling the grout, and after the grout is cured, applying a predetermined prestress to the bearing material 5 to fix the grout.

削孔やグラウトの注入には、既往の地山補強土工やグラウンドアンカー工の施工に用いる一般的な方法を適宜使用することができる。また、グラウトは、セメントミルクに代表される固化剤を適宜使用することができる。 For drilling and injecting grout, the general method used for the existing ground reinforcement earthwork and ground anchor work can be appropriately used. Further, as the grout, a solidifying agent typified by cement milk can be appropriately used.

なお、グラウトの充填方法の一例においては、既往の施工方法に準じて削孔11にグラウトを先行注入した後に本発明の傾斜地の崩壊防止構造体12を挿入して、インナーグラウト22を行うことも可能である。 In an example of the grout filling method, the inner grout 22 may be performed by inserting the collapse prevention structure 12 of the slope of the present invention after injecting the grout into the drilling 11 in advance according to the existing construction method. It is possible.

グラウトの充填方法の別の例においては、不動地山側に位置する保護材7aの側面に開口部を設けた構造、または、不動地山側の保護材7の先端部の固定部材9に開口部を設けた構造とすることにより、グラウトをインナーグラウト用の注入パイプ32から注入するだけで、保護材7a、7bの外側のアウターグラウト21も同時に行うことができる。不動地山側に位置する保護材7aの側面に開口部を設ける場合は、先端近傍において複数個の孔(例えば直径10mm程度)を設ければよい。固定部材9に開口部を設ける場合も同程度の隙間を有する構造とすればよい。 In another example of the grout filling method, a structure in which an opening is provided on the side surface of the protective material 7a located on the immovable ground side, or an opening is provided in the fixing member 9 at the tip of the protective material 7 on the immovable ground side. By adopting the provided structure, the outer grout 21 on the outer side of the protective materials 7a and 7b can be performed at the same time only by injecting the grout from the injection pipe 32 for the inner grout. When an opening is provided on the side surface of the protective material 7a located on the immovable ground side, a plurality of holes (for example, about 10 mm in diameter) may be provided in the vicinity of the tip. When the fixing member 9 is provided with an opening, the structure may have a similar gap.

グラウトの注入パイプ23は、少なくとも弾性体8より深部に注入できる構造とする必要がある。定着領域へのグラウトの効率的な重点を考慮すると、可能な限り先端まで配管されていることが望ましい。 The grout injection pipe 23 needs to have a structure that can be injected at least deeper than the elastic body 8. Considering the efficient emphasis of grout on the anchorage area, it is desirable to pipe as far as possible to the tip.

図3(a)は、施工後の移動土塊3側の断面を、図3(b)は不動地山4側の断面を示している。本発明の崩壊防止補強体12の弾性体8より深部の定着地盤あるいは不動地山4側まで配管されている注入パイプを通じてグラウトを注入することにより、保護材7の外側のアウターグラウト21と内側のインナーグラウト22が充填されている。 FIG. 3A shows a cross section of the moving soil mass 3 side after construction, and FIG. 3B shows a cross section of the immovable ground 4 side. By injecting grout through an injection pipe that is piped from the elastic body 8 of the collapse prevention reinforcing body 12 of the present invention to the fixed ground deeper or the immovable ground 4 side, the outer grout 21 and the inner side of the protective material 7 are injected. The inner grout 22 is filled.

図2の実施例では、崩壊防止補強体12は、地山1の表面に受圧板(図示せず)が施工されており、受圧板の上に設置された支圧材5を介してプレストレスが与えられ、楔15により定着されている。定着方法は楔定着に限定されるものではなく、補強材をマンション加工してナット定着させるなど、様々な方法が採用できる。また、支圧材5のほかに、受圧板に類する構造物等を組合せるかどうかは設計事項であり、現場に応じて決定される。 In the embodiment of FIG. 2, the collapse prevention reinforcing body 12 has a pressure receiving plate (not shown) constructed on the surface of the ground 1, and is prestressed via the pressure bearing material 5 installed on the pressure receiving plate. Is given and is fixed by the wedge 15. The fixing method is not limited to wedge fixing, and various methods such as mansion processing of the reinforcing material and nut fixing can be adopted. Further, whether or not to combine a structure similar to a pressure receiving plate in addition to the pressure bearing material 5 is a design matter and is determined according to the site.

弾性体8より深部、つまり不動地山4側の保護材7aは、インナーグラウトにより定着体を形成し、不動地山4側の保護材7bはグラウンドアンカー工における耐荷体として作用する。一方、弾性体8より浅部、つまり移動土塊3側の保護材7bは、インナーグラウトとアウターグラウトによりPC構造の小口径鋼管杭としての機能を発揮するため変位が発生しない。従前工法では保護材7は単なる外管であり、削孔11の保護や止水材として機能するものであるが、本発明により保護材7に崩壊抑制材としての機能が付加されるので、曲げおよび剪断性能に優れた崩壊防止補強体構造が実現する。 The protective material 7a deeper than the elastic body 8, that is, the protective material 7a on the immovable ground 4 side forms a fixing body by the inner grout, and the protective material 7b on the immovable ground 4 side acts as a load-bearing body in the ground anchor work. On the other hand, the protective material 7b shallower than the elastic body 8, that is, the protective material 7b on the moving soil mass 3 side, exerts a function as a small-diameter steel pipe pile of a PC structure by the inner grout and the outer grout, so that displacement does not occur. In the conventional construction method, the protective material 7 is merely an outer pipe and functions as a protective material for drilling holes 11 and as a water blocking material. However, since the protective material 7 is provided with a function as a collapse suppressing material by the present invention, bending is performed. And a collapse prevention reinforcement structure with excellent shear performance is realized.

なお、図4(b)の弾性体8の端面の図で示すように、補強材6が中心よりややずれて描かれているが、図示した程度の寸法の中心のズレは問題にはならない。しかしながら、これを改善したい場合は施工のバリエーションとして、補強材6の直線性を保つために、グラウト充填直後に一次緊張を行い、グラウト硬化後に所定のプレストレスを導入することにより補強材6が中心に位置するようにすることもできる。 As shown in the figure of the end face of the elastic body 8 in FIG. 4 (b), the reinforcing material 6 is drawn slightly offset from the center, but the deviation of the center of the dimensions shown in the figure does not matter. However, if it is desired to improve this, as a variation of construction, in order to maintain the linearity of the reinforcing material 6, the reinforcing material 6 is centered by performing a primary tension immediately after filling the grout and introducing a predetermined prestress after the grout is hardened. It can also be located at.

1 地山
2 すべり面
3 移動土塊
4 不動地山
5 支圧材
6 補強材
7 保護材
8 弾性体
9 固定材
11 削孔
12 崩壊防止補強体
14 端部ヘッド
15 楔
16 頭部ヘッド
17 被覆材
21 アウターグラウト
22 インナーグラウト
23 注入パイプ
41 注入パイプ孔
42 排気孔
1 Ground 2 Sliding surface 3 Moving soil mass 4 Immovable ground 5 Supporting material 6 Reinforcing material 7 Protective material 8 Elastic body 9 Fixing material 11 Drilling hole 12 Collapse prevention reinforcing body 14 End head 15 Wedge 16 Head head 17 Covering material 21 Outer grout 22 Inner grout 23 Injection pipe 41 Injection pipe hole 42 Exhaust hole

Claims (4)

傾斜地の地山における移動土塊を貫通して不動地山まで達する削孔に設置され、前記地山の表層部に設けられた支圧材と、前記支圧材と前記不動地山とを連結しかつ前記地山と一体化されていない伸縮領域を形成された補強材と、前記補強材の外管である保護材とを有し、前記補強材が、全長が伸縮可能な可撓性を有する線材と、略全長に亘る伸縮領域を確保するために前記線材を覆う被覆材とを有し、前記補強材と可撓性を有しない前記保護材とが、軸方向の先端部で互いに固定されて一体化されている、傾斜地の崩壊防止補強体において、
前記削孔の長さが3~10mであり、
前記保護材が軸方向にて少なくとも2本に分割され、分割された各保護材同士が、前記補強材にプレストレスを与えた際に発生する前記不動地山の塑性変位を吸収できる弾性構造を有する弾性体を各保護材の間に介して結合されているを特徴とする傾斜地の崩壊防止補強体。
It is installed in a drilling hole that penetrates a moving soil mass in a sloped ground and reaches the immovable ground, and connects the bearing material provided on the surface layer of the ground with the bearing material and the immovable ground. It also has a reinforcing material formed with an elastic region that is not integrated with the ground, and a protective material that is an outer pipe of the reinforcing material, and the reinforcing material has flexibility in its entire length that can be expanded and contracted. The wire rod has a covering material covering the wire rod to secure an elastic region over substantially the entire length, and the reinforcing material and the non-flexible protective material are fixed to each other at an axial tip portion. In the collapse prevention reinforcement of slopes that are integrated together
The drilling length is 3 to 10 m, and the drilling length is 3 to 10 m.
The protective material is divided into at least two in the axial direction, and each of the divided protective materials has an elastic structure capable of absorbing the plastic displacement of the immovable ground generated when the reinforcing material is prestressed. A collapse prevention reinforcing body for slopes, characterized in that an elastic body having an elastic body is bonded between the protective materials .
分割された各前記保護材のうち、前記移動土塊側に位置する保護材が、配管用炭素鋼鋼管であることを特徴とする請求項1に記載の傾斜地の崩壊防止補強体。 The collapse prevention reinforcing body for slopes according to claim 1, wherein the protective material located on the moving soil mass side among the divided protective materials is a carbon steel pipe for piping. 前記弾性体が、硬質ゴムニップルであり、軸方向に貫通するグラウト注入孔と排気孔とを有することを特徴とする請求項1又は2に記載の傾斜地の崩壊防止補強体。 The collapse prevention reinforcing body for slopes according to claim 1 or 2, wherein the elastic body is a hard rubber nipple and has a grout injection hole and an exhaust hole penetrating in the axial direction. 請求項1~3のいずれかに記載の崩壊防止補強体を、前記削孔に挿入してグラウトを充填し、前記グラウトが硬化した後に前記補強材に前記支圧材を介して所定のプレストレスを与えて定着させることを特徴とする、傾斜地の崩壊防止補強工法。 The collapse prevention reinforcing body according to any one of claims 1 to 3 is inserted into the drilling hole to fill the grout, and after the grout is cured, the reinforcing material is subjected to a predetermined prestress via the pressure bearing material. A method of reinforcement to prevent collapse of slopes, which is characterized by giving and fixing.
JP2019043921A 2019-03-11 2019-03-11 Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this Active JP7028817B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019043921A JP7028817B2 (en) 2019-03-11 2019-03-11 Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019043921A JP7028817B2 (en) 2019-03-11 2019-03-11 Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this

Publications (2)

Publication Number Publication Date
JP2020147920A JP2020147920A (en) 2020-09-17
JP7028817B2 true JP7028817B2 (en) 2022-03-02

Family

ID=72429160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019043921A Active JP7028817B2 (en) 2019-03-11 2019-03-11 Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this

Country Status (1)

Country Link
JP (1) JP7028817B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7450228B2 (en) 2021-09-27 2024-03-15 ヒロセ補強土株式会社 Core material for small diameter cast-in-place piles
CN115030199B (en) * 2022-07-29 2023-08-04 应急管理部国家自然灾害防治研究院 Toughness energy consumption reinforcing device for earthquake induced tunnel portal slope collapse

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123445A (en) 1999-10-28 2001-05-08 Nichia Steel Works Ltd Tube for protecting well wall, and construction method for protecting well wall using same
JP2002129556A (en) 2000-10-26 2002-05-09 Okabe Co Ltd Method for installing slope stabilizing anchor, and the slope stabilizing anchor
JP2011246948A (en) 2010-05-26 2011-12-08 Toko Geotech Corp Construction structure of reinforcement insertion work using composite reinforcement
JP4835285B2 (en) 2006-06-27 2011-12-14 パナソニック電工株式会社 Fire alarm system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4835285B1 (en) * 1969-05-15 1973-10-26
JPH0340914Y2 (en) * 1986-02-06 1991-08-28
JP5307762B2 (en) * 2010-05-27 2013-10-02 日本ドアーチエック製造株式会社 Pivot hinge

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001123445A (en) 1999-10-28 2001-05-08 Nichia Steel Works Ltd Tube for protecting well wall, and construction method for protecting well wall using same
JP2002129556A (en) 2000-10-26 2002-05-09 Okabe Co Ltd Method for installing slope stabilizing anchor, and the slope stabilizing anchor
JP4835285B2 (en) 2006-06-27 2011-12-14 パナソニック電工株式会社 Fire alarm system
JP2011246948A (en) 2010-05-26 2011-12-08 Toko Geotech Corp Construction structure of reinforcement insertion work using composite reinforcement

Also Published As

Publication number Publication date
JP2020147920A (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP5135034B2 (en) Exposed type column base structure
JP7028817B2 (en) Slope collapse prevention reinforcement body and slope collapse prevention reinforcement method using this
KR101877971B1 (en) Installation structure of earthquake resistant file with the moving function in all directions for building and the construction method thereof
AU2014361778A1 (en) Multiple-point anchored rock bolt
US20070172315A1 (en) Method and Apparatus for Creating Soil or Rock Subsurface Support
JP6872231B2 (en) Reinforcement structure of rock slope with long-term durability and its construction method
KR101448145B1 (en) Column Integrated Footing
JP4189292B2 (en) Shear resistance type fixing device
JP2013170378A (en) Anchor body, reinforcement structure of existing building, installation method of anchor body, construction method of anchor body, and drilling machine
JP2022063477A (en) Column base structure of unbonded precast prestressed concrete column
KR101939020B1 (en) Footing bar jointed pressure supporting unit and foundation construction method of caliber penetrator using the same
JPH10227039A (en) Pile foundation structure
JP4653690B2 (en) Ground anchor structure and construction method
JPH09310345A (en) Prestressed-concrete earthquake-resisting and vibration-isolating pile
KR102091016B1 (en) Metallath permanent anchor assembly
JP2011080210A (en) Method for constructing inclined pile group permitting deformation of pile body utilizing large-diameter core material having head with bearing slab structure
JP2012140823A (en) Base-isolated structure for construction
JP4656606B2 (en) Auxiliary tools for the production of support pillars such as avalanches and rockfalls
KR100741506B1 (en) Reinforcement for civil engineering works
KR100908901B1 (en) Removable prestressed saw nailing construction
KR102063040B1 (en) Hubrid permanent anchor structure and Earth anchor method using the same
JP6296963B2 (en) Natural ground reinforcement method and structure
JP6224420B2 (en) Connection structure between CFT column and concrete bottom slab
US20170298732A1 (en) Rock bolt
KR102108410B1 (en) Ground reinforcing method using compressive ground pressure type ground anchor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R150 Certificate of patent or registration of utility model

Ref document number: 7028817

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150