JP7028733B2 - How to identify pollutants in fuel cell separators - Google Patents

How to identify pollutants in fuel cell separators Download PDF

Info

Publication number
JP7028733B2
JP7028733B2 JP2018128999A JP2018128999A JP7028733B2 JP 7028733 B2 JP7028733 B2 JP 7028733B2 JP 2018128999 A JP2018128999 A JP 2018128999A JP 2018128999 A JP2018128999 A JP 2018128999A JP 7028733 B2 JP7028733 B2 JP 7028733B2
Authority
JP
Japan
Prior art keywords
fuel cell
derivatives
pollutant
contaminants
contaminant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128999A
Other languages
Japanese (ja)
Other versions
JP2020009608A (en
Inventor
俊樹 杉本
雄一 加藤
義勇 菅沼
拓哉 光岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Toyota Central R&D Labs Inc
Original Assignee
Toyota Motor Corp
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Toyota Central R&D Labs Inc filed Critical Toyota Motor Corp
Priority to JP2018128999A priority Critical patent/JP7028733B2/en
Publication of JP2020009608A publication Critical patent/JP2020009608A/en
Application granted granted Critical
Publication of JP7028733B2 publication Critical patent/JP7028733B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

本発明は燃料電池セパレータの汚染物質識別方法に関する。 The present invention relates to a method for identifying contaminants in a fuel cell separator.

燃料電池のセル化行程では、熱可塑性樹脂による接着が行われている。接着剤には、熱可塑性樹脂が用いられており、加熱プレスで接着剤を溶融させ、冷却プレスで接着剤を固化させることにより、接着力を発現させている。接着強度は、セパレータの表面上の汚染物質に敏感であり、汚染物質は、接着強度低下の大きな要因である。汚染物質は、親水系、中性、撥水系に大別できる。 In the process of cell formation of a fuel cell, bonding with a thermoplastic resin is performed. A thermoplastic resin is used as the adhesive, and the adhesive is developed by melting the adhesive with a heating press and solidifying the adhesive with a cooling press. Adhesive strength is sensitive to contaminants on the surface of the separator, which is a major factor in reducing adhesive strength. Pollutants can be roughly classified into hydrophilic type, neutral type, and water repellent type.

撥水系の汚染物質を検出する方法としては、測定対象の接触角度を測定する方法がある。接触角度を測定する方法は、汚染物質による接触角の変化が少ないものでは汚染物質を検出することが困難である。例えば、親水系汚染物質および中性系汚染物質は、接触角の変化が少ないので、これらの汚染物質を接触角度を測定する方法で検出することは困難である。 As a method of detecting water-repellent contaminants, there is a method of measuring the contact angle of the measurement target. In the method of measuring the contact angle, it is difficult to detect the pollutant if the change in the contact angle due to the pollutant is small. For example, hydrophilic contaminants and neutral contaminants have little change in contact angle, so it is difficult to detect these contaminants by the method of measuring the contact angle.

また、特許文献1には、蛍光強度比と検量線から検出対象物の表面に付着した油の有無を検出する方法が記載されている。 Further, Patent Document 1 describes a method of detecting the presence or absence of oil adhering to the surface of a detection object from the fluorescence intensity ratio and the calibration curve.

特開2017-62186号公報Japanese Unexamined Patent Publication No. 2017-62186

特許文献1の方法は、汚染物質である油の有無を検出することはできるが、汚染物質である油の種類を識別することができなかった。 The method of Patent Document 1 can detect the presence or absence of oil as a pollutant, but cannot identify the type of oil as a pollutant.

したがって、油の種類を識別するためには、油の種類別に異なる分析方法を用いる必要があり、一つの分析方法で汚染物質の種類を親水系、中性、撥水系で識別する方法がないという問題があった。 Therefore, in order to identify the type of oil, it is necessary to use different analysis methods for each type of oil, and there is no method for distinguishing the types of pollutants by hydrophilic type, neutral type, and water repellent type with one analysis method. There was a problem.

一実施形態の燃料電池セパレータの汚染物質識別方法は、測定物質に試薬を加えた後に、測光し、測光した光の波長の変化に基づいて、燃料電池セパレータの表面に付着した汚染物質が撥水系汚染物質、親水系汚染物質または中性系汚染物質のいずれであるかを識別する燃料電池セパレータの汚染物質識別方法であって、
前記試薬が、
アニリノナフタレン誘導体、チオフェン誘導体、ジフェニルオキサゾール誘導体、ニトロベンゾオキサジアゾール誘導体、ピレン誘導体、多環芳香族誘導体のいずれかを含む蛍光試薬、
ニトロアニリン類、アゾ色素、ベタイン類スピロピラン系色素、メロシアニン類、ジフェニルポリエン類のいずれかを含む比色試薬、または、
ジオキセタン誘導体、フタルヒドラジド誘導体のいずれかを含む化学発光試薬、のいずれかを含むようにした。
In the method for identifying a contaminant of a fuel cell separator according to one embodiment, a reagent is added to the substance to be measured, then light is measured, and the contaminant attached to the surface of the fuel cell separator is water repellent based on the change in the wavelength of the measured light. A method for identifying a pollutant in a fuel cell separator that identifies whether it is a pollutant, a hydrophilic pollutant, or a neutral pollutant.
The reagent is
Fluorescent reagents containing any of anilinonaphthalene derivatives, thiophene derivatives, diphenyloxazole derivatives, nitrobenzoxadiazole derivatives, pyrene derivatives, polycyclic aromatic derivatives,
Color reagent containing any of nitroanilines, azo dyes, betaines, spiropyran dyes, merocyanines, diphenylpolyenes, or
A chemiluminescent reagent containing either a dioxetane derivative or a phthalhydrazide derivative was included.

一実施形態の燃料電池セパレータの汚染物質識別方法によれば、燃料電池セパレータの表面に付着した汚染物質と蛍光試薬との相互作用による蛍光波長のシフトにより汚染物質の種類を識別することができる。 According to the method for identifying a contaminant of a fuel cell separator of one embodiment, the type of contaminant can be identified by shifting the fluorescence wavelength due to the interaction between the contaminant and the fluorescent reagent adhering to the surface of the fuel cell separator.

本発明の燃料電池セパレータの汚染物質識別方法は、一つの分析方法で、汚染物質の種類を親水系、中性、撥水系で識別することができる。 The method for identifying pollutants in the fuel cell separator of the present invention is one analytical method, and the types of pollutants can be identified as hydrophilic, neutral, or water repellent.

実施例1の測定結果を示すスペクトル図である。It is a spectrum figure which shows the measurement result of Example 1. FIG. 燃料電池のセル化における各工程を示すフロー図である。It is a flow chart which shows each process in the cell formation of a fuel cell.

(実施の形態1)
以下、図面を参照して本発明の実施の形態について説明する。
測定対象である燃料電池セパレータは、燃料電池を構成するパーツである。この燃料電池のセル内部では、発電中に水(液体)が生成される。一般的に極性の汚れは水を引き寄せるため、初期の接着強度不良の原因となる。また非極性の汚れは、水は引き寄せないが、接着阻害物質であるため、耐久時の接着力低下の原因となる。
(Embodiment 1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The fuel cell separator to be measured is a part constituting the fuel cell. Inside the cell of this fuel cell, water (liquid) is generated during power generation. Generally, polar stains attract water and cause initial poor adhesive strength. In addition, non-polar stains do not attract water, but because they are adhesion-inhibiting substances, they cause a decrease in adhesive strength during durability.

これらの接着不良の原因を特定するためには、汚染物質の種類の識別が必要になる。すなわち、汚染物質の種類が撥水系汚染物質、親水系汚染物質、中性系汚染物質のいずれであるか識別することが必要になる。 In order to identify the cause of these poor adhesions, it is necessary to identify the type of pollutant. That is, it is necessary to identify whether the type of pollutant is a water-repellent pollutant, a hydrophilic pollutant, or a neutral pollutant.

実施の形態1では、燃料電池セパレータの汚染物質の種類が撥水系汚染物質、親水系汚染物質、中性系汚染物質のいずれであるか識別する方法について説明する。
実施の形態1の燃料電池セパレータの汚染物質識別方法では、測定物質に試薬を加えた後に、測光し、測光した光の波長の変化に基づいて、燃料電池セパレータの表面に付着した汚染物質が撥水系汚染物質、親水系汚染物質または中性系汚染物質のいずれであるかを識別する。
In the first embodiment, a method for identifying whether the type of the pollutant of the fuel cell separator is a water-repellent pollutant, a hydrophilic pollutant, or a neutral pollutant will be described.
In the method for identifying a contaminant of a fuel cell separator according to the first embodiment, after adding a reagent to the substance to be measured, light is measured, and the contaminant attached to the surface of the fuel cell separator is repelled based on the change in the wavelength of the measured light. Identify whether it is a water-based contaminant, a hydrophilic-based contaminant, or a neutral-based contaminant.

この試薬は、色素(発光・色調変化する部位)と、電子吸引部位(NO2基など)または電子供与部位(NH2基など)を有する試薬である。この試薬の電子吸引部位または電子供与部位が汚染物質と相互作用することにより、試薬の局所環境が変化し、物質本来の波長と異なる波長の光を発する。 This reagent is a reagent having a dye (a site where light emission / color tone changes) and an electron attraction site (NO 2 groups, etc.) or an electron donation site (NH 2 groups, etc.). When the electron attraction site or electron donation site of this reagent interacts with the contaminant, the local environment of the reagent changes and emits light with a wavelength different from the original wavelength of the substance.

すなわち、この試薬は、汚染物質の種類(撥水系汚染物質、親水系汚染物質または中性系汚染物質)の違いにより、相互作用の度合いが異なる。実施の形態1では、この相互作用に起因する発光波長の変化を測定することにより、汚染物質の種類を識別する。 That is, the degree of interaction of this reagent differs depending on the type of pollutant (water-repellent pollutant, hydrophilic pollutant or neutral pollutant). In Embodiment 1, the type of contaminant is identified by measuring the change in emission wavelength due to this interaction.

具体的には、この試薬は、アニリノナフタレン誘導体、チオフェン誘導体、ジフェニルオキサゾール誘導体、ニトロベンゾオキサジアゾール誘導体、ピレン誘導体、多環芳香族誘導体のいずれかを含む蛍光試薬、ニトロアニリン類、アゾ色素、ベタイン類スピロピラン系色素、メロシアニン類、ジフェニルポリエン類のいずれかを含む比色試薬、または、ジオキセタン誘導体、フタルヒドラジド誘導体のいずれかを含む化学発光試薬、のいずれかを含む。 Specifically, this reagent is a fluorescent reagent containing any one of anilinonaphthalene derivative, thiophene derivative, diphenyloxazole derivative, nitrobenzoxazole derivative, pyrene derivative, and polycyclic aromatic derivative, nitroaniline, and azo dye. , A colorimetric reagent containing any of betaines spiropyran dyes, merocyanins and diphenylpolyenes, or a chemical luminescent reagent containing any of a dioxetane derivative and a phthalhydrazide derivative.

アニリノナフタレン誘導体を含む蛍光物質の具体例としては、下記の化学式(1)で示される2,6-ANS(2-ANILINONAPHTHALENE-6-SULFONIC ACID)、下記の化学式(2)で示されるPRODAN(2-(Dimethylamino)-6-propionylnaphthalene)、下記の化学式(3)で示されるDansyl EDA(5-dimethylaminonaphthalene-l-[N-(2-aminoethyl)]sulfonamide)が挙げられる。

Figure 0007028733000001
Figure 0007028733000002
Figure 0007028733000003
Specific examples of the fluorescent substance containing the anilinonaphthalene derivative include 2,6-ANS (2-ANILINONAPHTHALENE-6-SULFONIC ACID) represented by the following chemical formula (1) and PRODAN (2) represented by the following chemical formula (2). 2- (Dimethylamino) -6-propionylnaphthalene), Dansyl EDA (5-dimethylaminonaphthalene-l- [N- (2-aminoethyl)] sulfonamide) represented by the following chemical formula (3) can be mentioned.
Figure 0007028733000001
Figure 0007028733000002
Figure 0007028733000003

チオフェン誘導体を含む蛍光物質の具体例としては、下記の化学式(4)で示されるPolaric(登録商標)-500c6Fが挙げられる。

Figure 0007028733000004
Specific examples of the fluorescent substance containing the thiophene derivative include Polaric®-500c6F represented by the following chemical formula (4).
Figure 0007028733000004

ジフェニルオキサゾール誘導体を含む蛍光物質の具体例としては、下記の化学式(5)で示されるDapoxyl SEDA(Daproxyl sulfonyl ethylenediamine)が挙げられる。

Figure 0007028733000005
Specific examples of the fluorescent substance containing the diphenyloxazole derivative include Dapoxyl SEDA (Daproxyl sulfonyl ethylenediamine) represented by the following chemical formula (5).
Figure 0007028733000005

ニトロベンゾオキサジアゾール誘導体を含む蛍光物質の具体例としては、下記の化学式(6)で示される6-(7-Nitrobenzofurazan-4-ylamino)-hexanoic acidが挙げられる。

Figure 0007028733000006
Specific examples of the fluorescent substance containing the nitrobenzoxadiazole derivative include 6- (7-Nitrobenzofurazan-4-ylamino) -hexanoic acid represented by the following chemical formula (6).
Figure 0007028733000006

ピレン誘導体等の多環芳香族誘導体を含む蛍光物質の具体例としては、下記の化学式(7)で示される1,3-Bis(pyrene-1-ylcarbonyl)benzeneが挙げられる。

Figure 0007028733000007
Specific examples of the fluorescent substance containing a polycyclic aromatic derivative such as a pyrene derivative include 1,3-Bis (pyrene-1-ylcarbonyl) benzene represented by the following chemical formula (7).
Figure 0007028733000007

また、ニトロアニリン類を含む比色試薬の具体例としては、下記の化学式(8)で示されるN,N-Diethyl-4-nitroanilineが挙げられる。

Figure 0007028733000008
Specific examples of the colorimetric reagent containing nitroanilines include N, N-Diethyl-4-nitroaniline represented by the following chemical formula (8).
Figure 0007028733000008

アゾ色素を含む比色試薬の具体例としては、下記の化学式(9)で示されるN-methyl-4-pyridone 1,4-benzoquinone azineが挙げられる。

Figure 0007028733000009
Specific examples of the colorimetric reagent containing an azo dye include N-methyl-4-pyridone 1,4-benzoquinone azine represented by the following chemical formula (9).
Figure 0007028733000009

ベタイン類を含む比色試薬の具体例としては、下記の化学式(10)で示される2,6-Diphenyl-4-(2,4,6-triphenyl-1-pyridinio)phenolateが挙げられる。

Figure 0007028733000010
Specific examples of the colorimetric reagent containing betaines include 2,6-Diphenyl-4- (2,4,6-triphenyl-1-pyridinio) phenolate represented by the following chemical formula (10).
Figure 0007028733000010

スピロピラン系色素を含む比色試薬の具体例としては、下記の化学式(11)で示される1',3',3'-trimethylindolino-6-nitrobenzospiropyranが挙げられる。

Figure 0007028733000011
Specific examples of the colorimetric reagent containing a spiropyran dye include 1', 3', 3'-trimethylindolino-6-nitrobenzospiropyran represented by the following chemical formula (11).
Figure 0007028733000011

メロシアニン類を含む比色試薬の具体例としては、下記の化学式(12)で示される1,3-Diethyl-5-[5-(2,3,6,7-tetrahydro-1H,5H-benzo[ij]-quinolizin-9-yl)-1,3-neopentylene-2,4-pentadienylidene]-2-thiobarbituric Acidが挙げられる。

Figure 0007028733000012
As a specific example of the colorimetric reagent containing merocyanines, 1,3-Diethyl-5- [5- (2,3,6,7-tetrahydro-1H, 5H-benzo [5-(2,3,6,7-tetrahydro-1H, 5H-benzo [ ij] -quinolizin-9-yl) -1,3-neopentylene-2,4-pentadienylidene] -2-thiobarbituric Acid.
Figure 0007028733000012

ジフェニルポリエン類を含む比色試薬の具体例としては、下記の化学式(13)で示される4-Dimethylamino-2'-methyl-4'-nitrostilbeneが挙げられる。

Figure 0007028733000013
Specific examples of the colorimetric reagent containing diphenylpolyenes include 4-Dimethylamino-2'-methyl-4'-nitrostilbene represented by the following chemical formula (13).
Figure 0007028733000013

また、ジオキセタン誘導体を含む化学発光試薬の具体例としては、下記の化学式(14)で示される{disodium 3-(2'-spiroadamantane)-4-methoxy-4-(3''-phosphoryloxy)phenyl-1,2-dioxentane}が挙げられる。

Figure 0007028733000014
As a specific example of the chemiluminescent reagent containing a dioxetane derivative, {disodium 3- (2'-spiroadamantane) -4-methoxy-4- (3''-phosphoryloxy) phenyl- represented by the following chemical formula (14). 1,2-dioxentane} can be mentioned.
Figure 0007028733000014

フタルヒドラジド誘導体を含む化学発光試薬の具体例としては、下記の化学式(15)で示される6-(5-(4-(dihexylamino)phenyl)thiophene-2-yl)2,3-dihydrophthalazine-1,4-dioneが挙げられる。

Figure 0007028733000015
Specific examples of the chemiluminescent reagent containing a phthalhydrazide derivative include 6- (5- (4- (dihexylamino) phenyl) thiophene-2-yl) 2,3-dihydrophthalazine-1, represented by the following chemical formula (15). 4-dione can be mentioned.
Figure 0007028733000015

汚染物質の例としては、下記の化学式(16)で示されるPDMS(Polydimethylpolysiloxane)、下記の化学式(17)で示されるSDBS(Sodium-2-dodecylbenzenesulfonate)、下記の化学式(18)で示されるTritonX-100(登録商標)(Polyoxyethylene(10) octylphenyl ether)、下記の化学式(19)で示されるDDAO(n-dodecyl-N,N-dimethylamine-N-oxide)、下記の化学式(20)で示されるtween20(Polyoxyethylene Sorbitan Monolaurate)が例示できる。

Figure 0007028733000016
Figure 0007028733000017
Figure 0007028733000018
Figure 0007028733000019
Figure 0007028733000020
Examples of contaminants include PDMS (Polydimethylpolylactone) represented by the following chemical formula (16), SDBS (Sodium-2-dodecylbenzenesulfonate) represented by the following chemical formula (17), and Triton X- represented by the following chemical formula (18). 100 (registered trademark) (Polyoxyethylene (10) octylphenyl ether), DDAO (n-dodecyl-N, N-dimethylamine-N-oxide) represented by the following chemical formula (19), tween 20 represented by the following chemical formula (20). (Polyoxyethylene Sorbitan Monolaurate) can be exemplified.
Figure 0007028733000016
Figure 0007028733000017
Figure 0007028733000018
Figure 0007028733000019
Figure 0007028733000020

撥水系汚染物質としては、PDMSがある。また、親水系汚染物質としては、SDBS、TritonX-100、DDAOがある。そして、中性系汚染物質としては、tween20がある。 PDMS is a water-repellent pollutant. Further, as hydrophilic pollutants, there are SDBS, TritonX-100 and DDAO. And, as a neutral pollutant, there is tween20.

(実施例1)
次に、汚染物質を識別した実施例について説明する。
まず、Al基材上に0.1%汚染物質溶液を50μl滴下、その後、溶液を乾燥させた。
モデル汚染物質は、以下の5種類を用いた。
(1)tween20
(2)Sodium-2-dodecylbenzenesulfonate(SDBS)
(3)n-dodecyl-N,N-dimethylamine-N-Oxide(DDAO)
(4)TritonX-100
(5)Polydimethylsiloxane(PDMS)
(Example 1)
Next, examples in which pollutants have been identified will be described.
First, 50 μl of a 0.1% contaminant solution was added dropwise onto the Al substrate, and then the solution was dried.
The following five types of model pollutants were used.
(1) tween20
(2) Sodium-2-dodecylbenzenesulfonate (SDBS)
(3) n-dodecyl-N, N-dimethylamine-N-Oxide (DDAO)
(4) Triton X-100
(5) Polydimethylsulfonic (PDMS)

次に、2μM蛍光プローブ(POLARIC(登録商標)-500c6F(五稜化薬製))溶液を50μl滴下し、その後、溶液を乾燥させた。
そして、ラマン分光装置(励起波長532nm)を用いて、測定対象物の蛍光波長を測定した。具体的には、複数回蛍光波長を測定を行い、スペクトルの平均を算出した。
Next, 50 μl of a 2 μM fluorescent probe (POLARIC®-500c6F (manufactured by Goryokuyaku)) solution was added dropwise, and then the solution was dried.
Then, the fluorescence wavelength of the object to be measured was measured using a Raman spectroscope (excitation wavelength 532 nm). Specifically, the fluorescence wavelength was measured a plurality of times, and the average of the spectra was calculated.

図1は、実施例1の測定結果を示すスペクトル図である。図1において、横軸は波長を示し、縦軸は蛍光強度を示す。図1において、汚染物質がない状態では、580nm(1554cm-1)にピークを有するスペクトルが得られた。
そして、測定対象に撥水系汚染物質としてPDMSを加えた例では、585nm(1701cm-1)にピークを有するスペクトルが得られた。
FIG. 1 is a spectrum diagram showing the measurement results of Example 1. In FIG. 1, the horizontal axis represents wavelength and the vertical axis represents fluorescence intensity. In FIG. 1, a spectrum having a peak at 580 nm (1554 cm -1 ) was obtained in the absence of contaminants.
Then, in the example in which PDMS was added as a water-repellent contaminant to the measurement target, a spectrum having a peak at 585 nm (1701 cm -1 ) was obtained.

また、測定対象に親水系汚染物質としてSDBSを加えた例では、594nm(1961cm-1)にピークを有するスペクトルが得られた。測定対象に親水系汚染物質としてTritonX-100を加えた例では、626nm(2821cm-1)にピークを有するスペクトルが得られた。測定対象に親水系汚染物質としてDDAOを加えた例では、633nm(3004cm-1)にピークを有するスペクトルが得られた。 Further, in the example in which SDBS was added as a hydrophilic contaminant to the measurement target, a spectrum having a peak at 594 nm (1961 cm -1 ) was obtained. In the example in which Triton X-100 was added as a hydrophilic contaminant to the measurement target, a spectrum having a peak at 626 nm (2821 cm -1 ) was obtained. In the example in which DDAO was added as a hydrophilic contaminant to the measurement target, a spectrum having a peak at 633 nm (3004 cm -1 ) was obtained.

更に、測定対象に中性系汚染物質としてtween20を加えた例では、650nm(3422cm-1)にピークを有するスペクトルが得られた。 Furthermore, in the example in which tween20 was added as a neutral pollutant to the measurement target, a spectrum having a peak at 650 nm (3422 cm -1 ) was obtained.

このように、汚染物質がない状態の蛍光波長を基準として、波長の変化量(シフト量)の大きさは、撥水系汚染物質では小さく、中性系汚染物質では大きい。また、親水系汚染物質の波長の変化量の大きさは、撥水系汚染物質と中性系汚染物質の間である。 As described above, the magnitude of the change in wavelength (shift amount) is small for water-repellent contaminants and large for neutral contaminants, based on the fluorescence wavelength in the absence of contaminants. The magnitude of the change in wavelength of the hydrophilic pollutant is between the water-repellent pollutant and the neutral pollutant.

汚染物質の種類により蛍光波長の変化が異なることから、極性敏感蛍光プローブにより、金属上の汚染物を識別することができた。 Since the change in fluorescence wavelength differs depending on the type of contaminant, the polar sensitive fluorescent probe was able to identify contaminants on the metal.

モデル汚染物質の官能基(水酸基、メチレン鎖、ベンゼン環)の種類や量が異なることから、蛍光プローブ近傍の局所環境が変化し、蛍光物質本来の波長と異なる波長の蛍光を発したものと考えられる。また、刻線数の多い回折格子を用いたラマン分光装置を用いることで、わずかな蛍光波長の変化を高い波長分解能で識別できたものと考えられる。 Since the types and amounts of functional groups (hydroxyl group, methylene chain, benzene ring) of the model contaminants are different, it is considered that the local environment near the fluorescent probe has changed and fluorescence of a wavelength different from the original wavelength of the fluorescent substance has been emitted. Be done. Further, it is considered that a slight change in the fluorescence wavelength could be discriminated with high wavelength resolution by using a Raman spectroscope using a diffraction grating having a large number of engraved lines.

このように実施の形態1の燃料電池セパレータの汚染物質識別方法によれば、燃料電池セパレータの表面に付着した汚染物質と試薬との相互作用による蛍光波長のシフトにより汚染物質の種類を識別することができる。 As described above, according to the method for identifying a contaminant of a fuel cell separator according to the first embodiment, the type of contaminant is identified by shifting the fluorescence wavelength due to the interaction between the contaminant and the reagent adhering to the surface of the fuel cell separator. Can be done.

なお、蛍光試薬の代わりに比色試薬または化学発光試薬を用いる場合には、蛍光の代わりに吸光もしくは発光を測定する。 When a colorimetric reagent or a chemiluminescent reagent is used instead of the fluorescent reagent, absorption or luminescence is measured instead of fluorescence.

(実施の形態2)
図2は、燃料電池のセル化における各工程を示すフロー図である。
まず、ステップS21において、セパレータがプレス成形される。そしてステップS22に進む。
次に、ステップS22において、成形されたセパレータが洗浄される。そしてステップS23に進む。
(Embodiment 2)
FIG. 2 is a flow chart showing each process in cell formation of a fuel cell.
First, in step S21, the separator is press-molded. Then, the process proceeds to step S22.
Next, in step S22, the molded separator is washed. Then, the process proceeds to step S23.

ステップS23において実施の形態1の測定を行うことにより汚染物質の種類が識別される。そして、汚染物質が撥水系汚染物質である場合、ステップS24に進む。また、汚染物質が親水系汚染物質である場合、ステップS25に進む。また、汚染物質が検出されない場合、ステップS26に進む。 By performing the measurement of the first embodiment in step S23, the type of the pollutant is identified. Then, if the pollutant is a water-repellent pollutant, the process proceeds to step S24. If the contaminant is a hydrophilic contaminant, the process proceeds to step S25. If no contaminant is detected, the process proceeds to step S26.

ステップS24において、撥水系汚染物質は加工油残渣に起因すると判断される。そして汚染が確認されたセパレータは取り除かれる。また、ステップS21のプレス成形における汚染要因を除去する必要があると判断される。 In step S24, it is determined that the water repellent contaminant is due to the processing oil residue. Then, the separator confirmed to be contaminated is removed. Further, it is determined that it is necessary to remove the contamination factor in the press molding in step S21.

ステップS25において、親水系汚染物質は洗浄残渣に起因すると判断される。そして汚染が確認されたセパレータは取り除かれる。また、ステップS22の洗浄における汚染要因を除去する必要があると判断される。 In step S25, the hydrophilic contaminants are determined to be due to the wash residue. Then, the separator confirmed to be contaminated is removed. Further, it is determined that it is necessary to remove the pollution factor in the cleaning in step S22.

ステップS26において、セパレータにガスケットが貼り付けられる。そしてステップS27に進む。
ステップS27において、セパレータが梱包され、輸送される。そしてステップS28に進む。
In step S26, the gasket is attached to the separator. Then, the process proceeds to step S27.
In step S27, the separator is packed and transported. Then, the process proceeds to step S28.

ステップS28において、実施の形態1の測定を行うことにより汚染物質の種類が識別される。そして、汚染物質が中性系汚染物質である場合、ステップS29に進む。また、汚染物質が撥水系汚染物質である場合、ステップS30に進む。また、汚染物質が検出されない場合、ステップS31に進む。 In step S28, the type of contaminant is identified by performing the measurement of Embodiment 1. Then, if the pollutant is a neutral pollutant, the process proceeds to step S29. If the pollutant is a water-repellent pollutant, the process proceeds to step S30. If no contaminant is detected, the process proceeds to step S31.

ステップS29において、中性系汚染物質は加工油残渣に起因すると判断される。そして汚染が確認されたセパレータは取り除かれる。また、ステップS21のプレス成形における汚染要因を除去する必要があると判断される。 In step S29, it is determined that the neutral contaminants are due to the processing oil residue. Then, the separator confirmed to be contaminated is removed. Further, it is determined that it is necessary to remove the contamination factor in the press molding in step S21.

ステップS30において、撥水系汚染物質はガスケット(GSK)成分の転写に起因すると判断される。そして汚染が確認されたセパレータは取り除かれる。また、ステップS22のガスケット成分の転写による汚染要因を除去する必要があると判断される。 In step S30, it is determined that the water repellent contaminant is due to the transfer of the gasket (GSK) component. Then, the separator confirmed to be contaminated is removed. Further, it is determined that it is necessary to remove the contamination factor due to the transfer of the gasket component in step S22.

ステップS31において、輸送されたセパレータを含めた燃料電池のパーツをセル化する。具体的には、熱可塑性樹脂による接着が行われる。
以上の工程により燃料電池のセル化が行われる。
In step S31, the fuel cell parts including the transported separator are made into cells. Specifically, bonding with a thermoplastic resin is performed.
The fuel cell is made into a cell by the above process.

従来では、加工油残渣による撥水系汚染物質および洗浄残渣による親水系汚染物質の分析と、輸送による中性系汚染物質およびガスケット成分の転写による撥水系汚染物質の分析は、別々に行わざるを得なかった。 Conventionally, the analysis of water-repellent pollutants by processing oil residues and the analysis of hydrophilic pollutants by cleaning residues and the analysis of neutral pollutants by transportation and water-repellent pollutants by transfer of gasket components have to be performed separately. There wasn't.

一方、実施の形態2の燃料電池セパレータの汚染物質識別方法は、ステップS26の実行前にセパレータに実施の形態1の測定を行うことにより、これらの汚染物質を全て識別する検査を実現できる。 On the other hand, in the method for identifying pollutants of the fuel cell separator of the second embodiment, it is possible to realize an inspection for discriminating all of these pollutants by measuring the separator according to the first embodiment before the execution of step S26.

このように、実施の形態2の燃料電池セパレータの汚染物質識別方法によれば、燃料電池のセル化行程において、接着に影響するセパレータの汚れを種類別で識別できるので、汚れの原因となる具体的な工程が特定でき、接着不良を低減することができる。 As described above, according to the method for identifying the contaminants of the fuel cell separator according to the second embodiment, the stains on the separator that affect the adhesion can be identified by type in the cell formation process of the fuel cell, and thus the stains that cause the stains can be identified. Process can be specified, and poor adhesion can be reduced.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。例えば、実施の形態2では、ステップS23及びステップS28において、汚染物質の種類を特定しているが、ステップS23を実行せずにステップS28でまとめて汚染物質の種類を特定しても良い。また、ステップS26におけるセパレータにガスケットが貼り付け工程は、セパレータの用途に応じて省略されてもよい。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit. For example, in the second embodiment, the types of pollutants are specified in steps S23 and S28, but the types of pollutants may be collectively specified in step S28 without executing step S23. Further, the step of attaching the gasket to the separator in step S26 may be omitted depending on the use of the separator.

Claims (1)

測定物質に試薬を加えた後に、測光し、
測光した光の波長の変化に基づいて、燃料電池セパレータの表面に付着した汚染物質が撥水系汚染物質、親水系汚染物質または中性系汚染物質のいずれであるかを識別する燃料電池セパレータの汚染物質識別方法であって、
前記試薬が、
アニリノナフタレン誘導体、チオフェン誘導体、ジフェニルオキサゾール誘導体、ニトロベンゾオキサジアゾール誘導体、ピレン誘導体、多環芳香族誘導体のいずれかを含む蛍光試薬、
ニトロアニリン類、アゾ色素、ベタイン類スピロピラン系色素、メロシアニン類、ジフェニルポリエン類のいずれかを含む比色試薬、または、
ジオキセタン誘導体、フタルヒドラジド誘導体のいずれかを含む化学発光試薬、のいずれかを含む燃料電池セパレータの汚染物質識別方法。
After adding the reagent to the substance to be measured, photometry is performed.
Contamination of fuel cell separators that identifies whether the contaminants adhering to the surface of the fuel cell separators are water repellent contaminants, hydrophilic contaminants or neutral contaminants based on changes in the wavelength of the measured light. It ’s a substance identification method.
The reagent is
Fluorescent reagents containing any of anilinonaphthalene derivatives, thiophene derivatives, diphenyloxazole derivatives, nitrobenzoxadiazole derivatives, pyrene derivatives, polycyclic aromatic derivatives,
Color reagent containing any of nitroanilines, azo dyes, betaines, spiropyran dyes, merocyanines, diphenylpolyenes, or
A method for identifying a contaminant of a fuel cell separator containing any of a chemiluminescent reagent containing either a dioxetane derivative or a phthalhydrazide derivative.
JP2018128999A 2018-07-06 2018-07-06 How to identify pollutants in fuel cell separators Active JP7028733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128999A JP7028733B2 (en) 2018-07-06 2018-07-06 How to identify pollutants in fuel cell separators

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128999A JP7028733B2 (en) 2018-07-06 2018-07-06 How to identify pollutants in fuel cell separators

Publications (2)

Publication Number Publication Date
JP2020009608A JP2020009608A (en) 2020-01-16
JP7028733B2 true JP7028733B2 (en) 2022-03-02

Family

ID=69152097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128999A Active JP7028733B2 (en) 2018-07-06 2018-07-06 How to identify pollutants in fuel cell separators

Country Status (1)

Country Link
JP (1) JP7028733B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008291210A (en) 2007-04-27 2008-12-04 Hokkaido Univ Fluorescent sorvatochromic dye, and method for using the same
JP2009519709A (en) 2005-12-15 2009-05-21 キンバリー クラーク ワールドワイド インコーポレイテッド Methods for screening bacterial conjunctivitis
JP2010053354A (en) 2008-07-28 2010-03-11 Canon Inc New high molecular compound and fluorescent probe having the same
JP2010241874A (en) 2009-04-01 2010-10-28 Kochi Univ Of Technology Fluorescent solvatochromic dye, and light-emitting film comprising the dye and preparation method therefor, and white light source apparatus comprising the light-emitting film
JP2015168682A (en) 2014-03-11 2015-09-28 国立大学法人山口大学 Two-photon-absorbing compound
JP2017062186A (en) 2015-09-25 2017-03-30 三菱電機株式会社 Element for oil detection, oil detector and oil detection method
JP2017110090A (en) 2015-12-16 2017-06-22 大同化学工業株式会社 Cold rolled oil composition and cold rolling method
JP6315158B1 (en) 2017-09-19 2018-04-25 新日鐵住金株式会社 Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3914978B2 (en) * 1997-11-12 2007-05-16 独立行政法人産業技術総合研究所 Battery separator performance analysis method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009519709A (en) 2005-12-15 2009-05-21 キンバリー クラーク ワールドワイド インコーポレイテッド Methods for screening bacterial conjunctivitis
JP2008291210A (en) 2007-04-27 2008-12-04 Hokkaido Univ Fluorescent sorvatochromic dye, and method for using the same
JP2010053354A (en) 2008-07-28 2010-03-11 Canon Inc New high molecular compound and fluorescent probe having the same
JP2010241874A (en) 2009-04-01 2010-10-28 Kochi Univ Of Technology Fluorescent solvatochromic dye, and light-emitting film comprising the dye and preparation method therefor, and white light source apparatus comprising the light-emitting film
JP2015168682A (en) 2014-03-11 2015-09-28 国立大学法人山口大学 Two-photon-absorbing compound
JP2017062186A (en) 2015-09-25 2017-03-30 三菱電機株式会社 Element for oil detection, oil detector and oil detection method
JP2017110090A (en) 2015-12-16 2017-06-22 大同化学工業株式会社 Cold rolled oil composition and cold rolling method
JP6315158B1 (en) 2017-09-19 2018-04-25 新日鐵住金株式会社 Stainless steel sheet and method for producing the same, separator for polymer electrolyte fuel cell, polymer electrolyte fuel cell, and polymer electrolyte fuel cell

Also Published As

Publication number Publication date
JP2020009608A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
EP1949092B1 (en) Material compositions for sensors for determination of chemical species at trace concentrations and method of using sensors
Diaz et al. A versatile and highly selective colorimetric sensor for the detection of amines
Sturm et al. The potential of fluorescent dyes—comparative study of Nile red and three derivatives for the detection of microplastics
CN103364381B (en) For detecting the method for the defect in inorganic-coated polymer surfaces
CN101813617B (en) Microarray having bright fiducial mark and method of obtaining light data from the same
CN111492241B (en) Detection of hydrocarbon contamination in soil and water
RU2725089C1 (en) Sample receiving element, analytical kit and liquid analysis method, in particular lubricant-cooling emulsion
FR2843800A3 (en) FLUORESCENCE REFERENCE PLATE
WO2018154078A1 (en) An analytical test substrate as fluorescent probe for performing a detection of an analyte, a portable device for performing such detection and a system thereof
US20070092972A1 (en) Self-contained phosphate sensors and method for using same
HK1097046A1 (en) Method for detecting biomolecule, labeling dye used therefor, and labeling kit
Leonard et al. Smartphone-enabled rapid quantification of microplastics
JP7028733B2 (en) How to identify pollutants in fuel cell separators
Kim et al. Single‐molecule sensing by grating‐based spectrally resolved super‐resolution microscopy
CN101283267B (en) Method for detecting residues on a component
Titov et al. Detection of fluorescence-labeled DNA with in-plane organic optoelectronic devices
JP6489986B2 (en) Oil detecting element, oil detecting device and oil detecting method
JP2017528720A (en) Normalizing fluorescence response using spectral response
CN1659278B (en) Fluorescent detection of peroxidase enzymes
CN101048651B (en) Multifunctional reference system for use in analyte detection by fluorescence
WO2002073198A2 (en) Non-separation assay and system using opaque particles
ITTO20130680A1 (en) MICROFLUIDIC DEVICE WITH HYDROPHOBE SURFACE MODIFICATION LAYER AND METHOD OF MANUFACTURE OF THE SAME
CN114761796B (en) Chemical sensor with sulfur-containing ionophore
JP2006280296A (en) Method for detecting living cell
BR112020005019B1 (en) TEST TAPE AND METHOD FOR DETECTING ADULTERED GASOLINE USING AN ENVIRONMENTALLY SENSITIVE PHOTOLUMINESCENT MOLECULAR PROBE

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210312

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220217

R151 Written notification of patent or utility model registration

Ref document number: 7028733

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151