JP3914978B2 - Battery separator performance analysis method - Google Patents

Battery separator performance analysis method Download PDF

Info

Publication number
JP3914978B2
JP3914978B2 JP32947197A JP32947197A JP3914978B2 JP 3914978 B2 JP3914978 B2 JP 3914978B2 JP 32947197 A JP32947197 A JP 32947197A JP 32947197 A JP32947197 A JP 32947197A JP 3914978 B2 JP3914978 B2 JP 3914978B2
Authority
JP
Japan
Prior art keywords
sample
dye
color
separator
battery separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP32947197A
Other languages
Japanese (ja)
Other versions
JPH11142339A (en
Inventor
哲男 境
雅昭 西田
和寿 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP32947197A priority Critical patent/JP3914978B2/en
Publication of JPH11142339A publication Critical patent/JPH11142339A/en
Application granted granted Critical
Publication of JP3914978B2 publication Critical patent/JP3914978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電池用セパレータの主として品質管理や工程管理等に適用できる、電池用セパレータの性能分析方法に関する。
【0002】
【従来の技術】
一般に、Ni−Cd,Ni−MH等のアルカリ二次電池用のセパレータには、化学的安定性に優れたオレフィン系繊維の不織布シートやオレフィン系樹脂に、グラフト重合やスルフォン化処理等の親水化処理を施したものやイオン交換性微粉体を付着したものが用いられている。
上記セパレータには、高温における耐アルカリ性・耐酸化性、電解液保持性、高いイオン交換容量等の諸性能が要求され、また電池に組み込んだときの性能として、高率充放電特性・自己放電特性・サイクル寿命特性が要求されている。
【0003】
そこで、従来セパレータの性能として、耐アルカリ性は、セパレータ試料を、例えば30%KOH液に80℃×7日間浸漬して、試験前後の重量減比で測定し、また電解液保持性は、セパレータ試料を、例えば30%KOH液に10分間浸漬して、試験前後の重量増比で測定して分析している。また、セパレータのイオン交換容量は、親水基のイオン交換容量滴定によって行っている。
また、セパレータを電池に組み込んだときの性能は、試験用の電池を作製し、この電池の充放電試験を行って、高率充放電特性・自己放電特性・サイクル寿命特性の物性値を測定している。
また、イオン交換性微粉体を付着したセパレータの付着量は、原反に付着した樹脂を脱落させてその重量を測定している。
【0004】
上記従来の分析方法によるときは、非常に多くの手数を要するばかりか、長い日数を要しているのが実情であり、セパレータの性能を簡単に分析する方法がなかった。
【0005】
【発明が解決しようとする課題】
本発明は、親水化処理又はイオン交換能を付与したセパレータの性能を、簡単な方法によって短時間で分析可能にし、主としてセパレータ製品の品質管理や工程管理等に適用可能にすることを課題とする。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明の電池用セパレータの性能分析方法は、親水化処理又はイオン交換能を付与したセパレータの親水基に着目してなしたものであり、セパレータの試料をイオン結合可能な染料で以て染色し、試料中の親水基を発色させることを特徴とする。
【0007】
この手段によれば、試料中の親水基がそのpHの大小によって特有の色彩に発色される。従って、試料の発色状態(色彩のバラツキやムラ)によって、試料中の親水基の分布状況を判別して、親水基やイオン交換樹脂の付着の均一性が検知される。また、発色された試料の色相が、例えば試料中の親水基がスルフォン基であれば赤色に発色し、親水基のpHの大小により濃い赤になったり、薄いピンクに変化にするので、試料中の親水基の種類を判別して、親水化処理の方法が特定される。
【0008】
また、発色された試料の色彩は、試料中の親水基の量の増減によって変化するので、発色された色彩と予め設定した基準色彩との色差を求め、この偏差値によって、試料中の親水基導入量を定量的に判別することができる。ところで、上記色差は、試料の色彩と基準色彩とを、例えば色彩色差計によって計測して、色の三属性と呼ばれる、色相・明度・彩度の要素をL* * * 表色系による物体色の表示方法(JIS Z 8729−1980)で数値化して測定することができる。
【0009】
さらに、親水化処理又はイオン交換能を付与した、疎水性繊維から成る電池用セパレータの試料を用いて、セパレータの耐薬品性試験又は電池のサイクル寿命試験を行った後に、上記試料をイオン結合可能な染料の溶液で以て染色し、試料の発色状態によって、試料中の親水基の劣化状況を判別して、親水基の外れ易さが検知される。例えばアクリル酸グラフト重合処理したセパレータでは、反応時間が増加すると、濃い紫色から薄い紫色に変化しており、過度な酸化条件下でカルボキシル基が外れたことを検知することができ、また、サイクル数が増加するにつれて色あせていき、特に正極側の色落ちが激しく、色落ちが電極の縁から始まることを検知することができる。
【0010】
上記イオン結合可能な染料としては、カチオン染料又は酸性染料が好ましい。また、上記イオン結合可能な染料は、その溶液にギ酸、酢酸等を適量添加して、そのpHを調整して、試料中の官能基との結合力を調整して発色させることによって、発色された試料の色の三属性(色相・明度・彩度)の変化をより一層明瞭にすることができる。
【0011】
ところで、上記電池用セパレータの性能分析方法は、電池用セパレータの製造工程において、ロット毎にセパレータの端末に染色し、発色された色彩と基準データとの色差を求めて、この色差によって親水基やイオン交換樹脂微粉体の付着量を検出し、この検出値と予め設定した基準付着量との偏差を求め、この偏差値によってイオン交換樹脂微粉体の付着量を制御することにより、電池用セパレータのイオン交換樹脂微粉体の付着量を制御するのに、適用することができる。
【0012】
【発明の実施の形態】
次に、本発明の電池用セパレータの性能分析方法を詳細に説明する。
各種親水化処理を施された電池用セパレータとイオン交換能を付与した電池用セパレータの各種試料を準備した。次に、加温して均一に溶解して沸騰した染料(例えば、カチオン染料)の溶液に、上記各種試料を浸漬して、温度ムラを防ぐため、一定時間攪拌して煮沸した後、水洗し、乾燥した。各種試料は、親水基の種類によって発色していた。
【0013】
本発明に用いるイオン結合可能な染料として、カチオン染料としては、第4級アンモニュウムが染料分子共役系の中に存在する共役型カチオン染料と第4級アンモニュウムが染料分子共役系の外に存在して水溶性に寄与する絶縁型カチオン染料とがあるが、色相が鮮明で、着色力が大きい共役型の方が好ましい。
また、酸性染料としては、染色pH2〜4に適する均染型(レベリングタイプ)、染色pH4〜5に適する堅牢型(ファーストタイプ)、染色pH6〜7に適するミーリング型(ミーリングタイプ)を用いることができる。
【0014】
また、試料中の親水基が判明しているときには、染料溶液のpHを試料中の親水基の等電点付近に、例えば、スルフォン基はpH2〜3、カルボキシル基はpH5〜6、水酸基はpH8〜9に調整すると、試料中の親水基をより一層明瞭に染色することができる。
【0015】
また、試料中の親水基が強酸性のスルフォン基のときには赤色染料(カチオン染料)を、弱酸性のカルボキシル基のときには青色染料(酸性染料)のように、試料中の親水基の種類によって、染料を使い分けると、試料中の親水基をより一層明瞭に染色することができる。
【0016】
本発明において、染料は、0.3g〜1.0gを100倍の蒸留水で、溶解温度60℃〜70℃で溶解すると、均一に溶解されるので、好ましい。
【0017】
ところで、上記実施の形態において、各種試料を染料溶液中に入れて一定時間煮沸して染色したが、単一の試料のときには均一に溶解した染料溶液中に浸漬することにより試料中の親水基を発色することもできる。
【0018】
【実施例】
以下、本発明の実施例について説明するが、本発明がこれによって限定されるものではない。
【0019】
カチオン染料(商標カヤステンQ:日本化薬製)1.0gを100gの蒸留水に入れ加温(60℃〜70℃)して均一に溶解した後、沸騰させた溶液中にポリプロピレン繊維から成る不織布に各種親水化処理及びイオン交換樹脂微粉体を付着したセパレータの試料A,B,C,D,Eを投入して攪拌しながら10分間煮沸した。次に、各種試料A,B,C,D,Eを十分に水洗して、80℃×10分間乾燥したところ、各種試料は次の色彩に発色され、次の事項が判別された。
【0020】

Figure 0003914978
【0021】
また、赤色の色相の差異によって、試料A,B,Eのスルフォン基導入量は、試料A>試料E>試料Bであることが判別された。
さらに、各種試料A〜Eの発色状態(バラツキ・ムラ)によって、試料中の親水基の分布状態を判別して、親水基の付着の均一性を確認することができた。
【0022】
次に、アクリル酸グラフト重合処理セパレータの試料Cを、5%の過マンガン酸カリウムを溶解した30%の水酸化カリウム溶液に浸漬し、60℃で1時間放置する耐酸化試験を行った後、上述の染料溶液中に浸漬して染色した。この試料Cは、耐酸化試験前に染色したものと比較して、色相が薄くなっており、耐酸化試験によって試料中のカルボキシル基が脱落したことが確認できた。
【0023】
また、上記試料AとCとEとを用いて、容量2400mAhの密閉電池を試作して、0.1C率で130%充電し、0.2C率で0.8Vまで放電する、充放電サイクル試験を行った後、上述と同一の染料溶液を用いて染色した。
【0024】
上記試料Cは、サイクル数が進むにつれて、電極接触部分から変色が進行することが確認できた。そこで、電極接触部分を光学顕微鏡で観察したところ、試料Cの電極接触部分の一部の繊維が濃紫から黄変(ポリプロピレン繊維特有の色)しており、この試料Cの親水基は、サイクル試験により外れたものであることが確認できた。これに対して、試料AとEは、サイクル数が進んでも、変色が生じず、サイクル寿命特性に優れていることが確認できた。
【0025】
【発明の効果】
本発明によるときは、親水化処理又はイオン交換能を付与したセパレータの性能を、簡単な方法によって短時間で分析することができる。また、製造工程におけるロット毎の一部や最終製品の端末に本発明の方法を用いることにより、主として工程管理や品質管理等に適用することができ、セパレータ製品の品質の安定化を図ることができる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a battery separator performance analysis method that can be applied mainly to quality control and process control of battery separators.
[0002]
[Prior art]
In general, separators for alkaline secondary batteries such as Ni-Cd, Ni-MH, etc. are made hydrophilic, such as graft polymerization and sulfonation, to non-woven sheets of olefin fibers and olefin resins with excellent chemical stability. The thing which processed and the thing which adhered the ion-exchange fine powder is used.
The above separators are required to have various performances such as alkali resistance / oxidation resistance at high temperatures, electrolyte retention, and high ion exchange capacity. -Cycle life characteristics are required.
[0003]
Therefore, as the performance of the conventional separator, the alkali resistance is measured by immersing the separator sample in, for example, a 30% KOH solution at 80 ° C. for 7 days and measuring the weight loss ratio before and after the test. For example, by immersing in 30% KOH solution for 10 minutes, and measuring and analyzing the weight increase ratio before and after the test. The ion exchange capacity of the separator is determined by ion exchange capacity titration of hydrophilic groups.
In addition, the performance when the separator is incorporated in the battery is measured by measuring the physical property values of high rate charge / discharge characteristics, self-discharge characteristics, and cycle life characteristics by preparing a test battery and conducting a charge / discharge test of the battery. ing.
In addition, the amount of adhesion of the separator to which the ion-exchangeable fine powder is adhered is measured by dropping the resin adhered to the original fabric.
[0004]
When the above conventional analysis method is used, not only a great amount of work is required but also a long time is required, and there is no method for easily analyzing the performance of the separator.
[0005]
[Problems to be solved by the invention]
It is an object of the present invention to make it possible to analyze the performance of a separator imparted with hydrophilic treatment or ion exchange capability in a short time by a simple method, and to be applicable mainly to quality control and process control of separator products. .
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the battery separator performance analysis method of the present invention focuses on the hydrophilic group of the separator that has been subjected to hydrophilic treatment or ion exchange ability, and can ion-bond the separator sample. It is characterized by dyeing with a simple dye and coloring the hydrophilic group in the sample.
[0007]
According to this means, the hydrophilic group in the sample is colored in a specific color depending on the pH. Therefore, the distribution state of the hydrophilic groups in the sample is determined based on the color development state (color variation or unevenness) of the sample, and the uniformity of adhesion of the hydrophilic groups or the ion exchange resin is detected. In addition, if the color of the colored sample is, for example, a sulfone group in the sample, the color of the sample will be red, and it will become dark red or light pink depending on the pH of the hydrophilic group. The type of hydrophilic group is discriminated, and the method of hydrophilic treatment is specified.
[0008]
In addition, since the color of the colored sample changes as the amount of the hydrophilic group in the sample increases or decreases, the color difference between the colored color and the preset reference color is obtained, and the deviation value is used to determine the hydrophilic group in the sample. The amount introduced can be determined quantitatively. By the way, the color difference is obtained by measuring the color of the sample and the reference color with, for example, a color difference meter, and determining the elements of hue, brightness, and saturation, which are called three color attributes, according to the L * a * b * color system. It can be measured by digitizing the object color display method (JIS Z 8729-1980).
[0009]
In addition, using a battery separator sample made of hydrophobic fibers with hydrophilic treatment or ion exchange capability, the separator can be ionically bonded after a separator chemical resistance test or battery cycle life test. The dye is dyed with a simple dye solution, and the deterioration state of the hydrophilic group in the sample is determined according to the color development state of the sample, and the ease of removal of the hydrophilic group is detected. For example, in the case of a separator subjected to acrylic acid graft polymerization, when the reaction time increases, the color changes from dark purple to light purple, and it can be detected that the carboxyl group has been removed under excessive oxidation conditions. It is possible to detect that the color fading occurs, particularly, the color fading on the positive electrode side is severe and the color fading starts from the edge of the electrode.
[0010]
As the ion-bondable dye, a cationic dye or an acid dye is preferable. The above ion-bondable dye is colored by adding a suitable amount of formic acid, acetic acid, etc. to the solution, adjusting its pH, and adjusting the bond strength with the functional group in the sample to develop color. The change in the three attributes (hue, lightness, and saturation) of the color of the sample can be further clarified.
[0011]
By the way, in the battery separator manufacturing process, in the battery separator manufacturing process, the terminal of the separator is dyed for each lot, and the color difference between the developed color and the reference data is obtained. By detecting the adhesion amount of the ion exchange resin fine powder, obtaining a deviation between this detected value and a preset reference adhesion amount, and controlling the adhesion amount of the ion exchange resin fine powder by this deviation value, the battery separator It can be applied to control the amount of ion exchange resin fine powder deposited.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the performance analysis method for the battery separator of the present invention will be described in detail.
Various samples of battery separators subjected to various hydrophilization treatments and battery separators provided with ion exchange ability were prepared. Next, in order to prevent temperature unevenness by immersing the above various samples in a solution of heated dyes (for example, cationic dyes) that has been uniformly dissolved and boiled, the mixture is stirred for a certain period of time and then boiled. , Dried. Various samples were colored depending on the type of hydrophilic group.
[0013]
As an ion-bondable dye used in the present invention, as a cationic dye, a conjugated cation dye in which a quaternary ammonium is present in a dye molecule conjugated system and a quaternary ammonium are present outside the dye molecule conjugated system. Although there are insulating cationic dyes that contribute to water solubility, a conjugated dye having a clear hue and high coloring power is preferred.
Further, as the acid dye, it is possible to use a level dyeing type (leveling type) suitable for dyeing pH 2-4, a fast dyeing type (first type) suitable for dyeing pH 4-5, and a milling type (milling type) suitable for dyeing pH 6-7. it can.
[0014]
When the hydrophilic group in the sample is known, the pH of the dye solution is in the vicinity of the isoelectric point of the hydrophilic group in the sample. For example, the pH of the sulfone group is 2 to 3, the carboxyl group is pH 5 to 6, and the hydroxyl group is pH 8 When adjusted to ˜9, the hydrophilic group in the sample can be dyed more clearly.
[0015]
Depending on the type of hydrophilic group in the sample, a red dye (cationic dye) is used when the hydrophilic group in the sample is a strongly acidic sulfone group, and a blue dye (acidic dye) is used when the hydrophilic group is a weakly acidic carboxyl group. By using differently, the hydrophilic group in the sample can be stained more clearly.
[0016]
In the present invention, it is preferable that the dye is dissolved uniformly when 0.3 g to 1.0 g is dissolved in 100 times distilled water at a dissolution temperature of 60 ° C. to 70 ° C.
[0017]
By the way, in the above embodiment, various samples are put in a dye solution and boiled and dyed for a certain period of time. However, in the case of a single sample, the hydrophilic groups in the sample are removed by immersing in a uniformly dissolved dye solution. It can also develop color.
[0018]
【Example】
Examples of the present invention will be described below, but the present invention is not limited thereby.
[0019]
A non-woven fabric made of polypropylene fibers in a boiling solution after 1.0 g of a cationic dye (Trademark Kayasten Q: manufactured by Nippon Kayaku Co., Ltd.) is placed in 100 g of distilled water and heated uniformly (60 ° C. to 70 ° C.). Samples A, B, C, D, and E of separators to which various hydrophilization treatments and ion-exchange resin fine powders were attached were put in and boiled for 10 minutes while stirring. Next, various samples A, B, C, D, and E were sufficiently washed with water and dried at 80 ° C. for 10 minutes. As a result, the various samples were colored in the following colors, and the following matters were determined.
[0020]
Figure 0003914978
[0021]
In addition, it was determined that the amount of sulfone group introduced in Samples A, B, and E was Sample A> Sample E> Sample B based on the difference in red hue.
Furthermore, the distribution state of the hydrophilic group in the sample was determined based on the color development state (variation / unevenness) of the various samples A to E, and the uniformity of the hydrophilic group adhesion could be confirmed.
[0022]
Next, after performing an oxidation resistance test in which sample C of the acrylic acid graft polymerization-treated separator was immersed in a 30% potassium hydroxide solution in which 5% potassium permanganate was dissolved and left at 60 ° C. for 1 hour, It was immersed in the above dye solution and dyed. This sample C had a thinner hue than that dyed before the oxidation resistance test, and it was confirmed that the carboxyl group in the sample was removed by the oxidation resistance test.
[0023]
In addition, a charge / discharge cycle test was performed using a sample of A, C, and E, a prototype of a sealed battery with a capacity of 2400 mAh, which was charged 130% at a 0.1C rate and discharged to 0.8V at a 0.2C rate. After dyeing, dyeing was performed using the same dye solution as described above.
[0024]
In Sample C, it was confirmed that the discoloration progressed from the electrode contact portion as the number of cycles progressed. Therefore, when the electrode contact portion was observed with an optical microscope, some of the fibers in the electrode contact portion of Sample C were turned from deep purple to yellow (a color peculiar to polypropylene fibers). The hydrophilic group of Sample C was subjected to a cycle test. It was confirmed that it was out of the range. On the other hand, it was confirmed that Samples A and E did not discolor even when the number of cycles progressed and were excellent in cycle life characteristics.
[0025]
【The invention's effect】
According to the present invention, the performance of a separator provided with a hydrophilic treatment or ion exchange ability can be analyzed in a short time by a simple method. In addition, by using the method of the present invention for a part of each lot in the manufacturing process or the terminal of the final product, it can be applied mainly to process management, quality control, etc., and the quality of the separator product can be stabilized. it can.

Claims (2)

親水化処理又はイオン交換能を付与した、疎水性繊維から成る電池用セパレータの試料をイオン結合可能な染料の溶液で以て染色し、試料中の親水基を発色させ、発色された試料の色相の変化によって、試料中の親水基の種類を判別することを特徴とする電池用セパレータの性能分析方法。A sample of a battery separator made of hydrophobic fibers that has been subjected to a hydrophilic treatment or ion exchange ability is dyed with a solution of a dye that can be ionically bonded to develop a color of hydrophilic groups in the sample, and the color of the colored sample the changes, performance analysis method of a battery separator characterized that you determine the type of hydrophilic groups in the sample. イオン結合可能な染料が、カチオン染料又は酸性染料である請求項1に記載の電池用セパレータの性能分析方法。The method for analyzing the performance of a battery separator according to claim 1, wherein the ion-bondable dye is a cationic dye or an acid dye.
JP32947197A 1997-11-12 1997-11-12 Battery separator performance analysis method Expired - Lifetime JP3914978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32947197A JP3914978B2 (en) 1997-11-12 1997-11-12 Battery separator performance analysis method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32947197A JP3914978B2 (en) 1997-11-12 1997-11-12 Battery separator performance analysis method

Publications (2)

Publication Number Publication Date
JPH11142339A JPH11142339A (en) 1999-05-28
JP3914978B2 true JP3914978B2 (en) 2007-05-16

Family

ID=18221755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32947197A Expired - Lifetime JP3914978B2 (en) 1997-11-12 1997-11-12 Battery separator performance analysis method

Country Status (1)

Country Link
JP (1) JP3914978B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008107212A (en) * 2006-10-26 2008-05-08 Sawai Pharmaceutical Co Ltd New sticking evaluating method
JP7028733B2 (en) * 2018-07-06 2022-03-02 トヨタ自動車株式会社 How to identify pollutants in fuel cell separators
CN115184346B (en) * 2022-07-08 2024-06-04 天鹏锂能技术(淮安)有限公司 Battery self-discharge detection method

Also Published As

Publication number Publication date
JPH11142339A (en) 1999-05-28

Similar Documents

Publication Publication Date Title
CN111141755B (en) Method for detecting internal defects of battery cell
JP3914978B2 (en) Battery separator performance analysis method
CN110418956A (en) Monitor the device and method of the drying regime of electrode base board
CN112881928B (en) Screening method for consistency of battery monomers
CN105223509B (en) Lead-acid battery method for testing performance
CN108598388A (en) A kind of C/SiO2Coat lithium electricity tertiary cathode material and preparation method thereof
AU654964B2 (en) Battery with charge indicator
CN105424782B (en) Lead powder chemical property detection method and its test system based on small pole plate
CN112578085A (en) Evaluation method of binder for lithium ion battery isolating membrane coating
CN108693231A (en) A kind of electrochemica biological sensor and preparation method thereof of detection carcinomebryonic antigen
CN110459733A (en) A kind of preparation method of lithium ion battery negative electrode
JPH08222279A (en) Degraded condition detecting method of sealed lead-acid battery
CN111189884B (en) Measuring method of ion transmission resistance and testing method of tortuosity of pole piece coating and diaphragm
CN107134566A (en) The method for preparing lithium ion battery negative material using iron content solid waste obtained by electric flocculation dyeing waste water
Nagata et al. Study of the association of anionic and cationic polymers by nonradiative energy transfer
CN108344660A (en) A kind of detection method of silk gum content
CN115166564A (en) Method for online quantitative evaluation of micro short circuit degree of lithium iron phosphate battery
JP6741769B2 (en) Lithium-ion battery formation process
CN109856066B (en) Method for evaluating gram capacity of nickel-containing material and application thereof
JPS6445065A (en) Hydrogen evolution detecting method for electrolyte flow type cell and its equipment
CN110715902A (en) Method for detecting uniformity of positive lead paste of lead-acid storage battery
CN115184346B (en) Battery self-discharge detection method
CA2140812A1 (en) Method for preparing dye useful for tinting contact lens
CN101212044A (en) Li-ion secondary battery anode preparation method
Bieber et al. Silver Peroxide–Zinc Alkaline Cells. Polymeric Membrane Separators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040202

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term