JP7028020B2 - Dielectric compositions and electronic components - Google Patents

Dielectric compositions and electronic components Download PDF

Info

Publication number
JP7028020B2
JP7028020B2 JP2018062930A JP2018062930A JP7028020B2 JP 7028020 B2 JP7028020 B2 JP 7028020B2 JP 2018062930 A JP2018062930 A JP 2018062930A JP 2018062930 A JP2018062930 A JP 2018062930A JP 7028020 B2 JP7028020 B2 JP 7028020B2
Authority
JP
Japan
Prior art keywords
dielectric
dielectric composition
composite oxide
powder
coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018062930A
Other languages
Japanese (ja)
Other versions
JP2019175702A (en
Inventor
翔太 鈴木
信之 奥澤
大亮 廣瀬
和希子 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2018062930A priority Critical patent/JP7028020B2/en
Priority to PCT/JP2019/011580 priority patent/WO2019188617A1/en
Publication of JP2019175702A publication Critical patent/JP2019175702A/en
Application granted granted Critical
Publication of JP7028020B2 publication Critical patent/JP7028020B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/453Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zinc, tin, or bismuth oxides or solid solutions thereof with other oxides, e.g. zincates, stannates or bismuthates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/12Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/33Thin- or thick-film capacitors 

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Insulating Materials (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

本発明は、誘電体組成物および電子部品に関する。 The present invention relates to dielectric compositions and electronic components.

スマートフォンに代表される移動体通信機器の高性能化に対する要求は高く、たとえば、高速で大容量の通信を可能とするために、使用する周波数領域の数も増加している。使用する周波数領域はGHz帯のような高周波領域である。このような高周波領域において作動するバラン、カプラ、フィルタ、あるいは、フィルタを組み合わせたデュプレクサ、ダイプレクサ等の高周波部品のなかには、誘電体材料を共振器として利用しているものがある。このような誘電体材料には、高周波領域において、誘電損失が小さく、周波数の選択性が良好であることが求められる。 There is a high demand for higher performance of mobile communication devices such as smartphones, and for example, the number of frequency domains used is increasing in order to enable high-speed, large-capacity communication. The frequency domain used is a high frequency region such as the GHz band. Some high-frequency components such as baluns, couplers, filters, or duplexers and diplexers combined with filters that operate in such a high-frequency region use a dielectric material as a resonator. Such a dielectric material is required to have a small dielectric loss and good frequency selectivity in a high frequency region.

また、移動体通信機器の高性能化に伴い、1つの移動体通信機器に搭載される電子部品の数も増加する傾向にあり、移動体通信機器のサイズを維持するには、電子部品の小型化も同時に求められる。誘電体材料を用いる高周波部品を小型化するには、電極面積を小さくする必要があるため、これによる静電容量の低下を補うべく、高周波領域において、誘電体材料の比誘電率が高いことが求められる。 In addition, as the performance of mobile communication devices increases, the number of electronic components mounted on one mobile communication device tends to increase, and in order to maintain the size of the mobile communication device, the size of the electronic components is small. At the same time, conversion is required. In order to reduce the size of high-frequency components that use a dielectric material, it is necessary to reduce the electrode area. Therefore, in order to compensate for the decrease in capacitance due to this, the relative permittivity of the dielectric material is high in the high-frequency region. Desired.

このような移動体通信機器は、使用環境、機器に使用されている部品の発熱等により、温度変化に曝される。一方、誘電体材料を用いる高周波部品の共振周波数は温度により変化するため、所定の温度範囲において、誘電体材料には、共振周波数の温度依存性、すなわち、共振周波数温度係数が小さいことが求められる。 Such mobile communication devices are exposed to temperature changes due to the usage environment, heat generation of parts used in the devices, and the like. On the other hand, since the resonance frequency of a high-frequency component using a dielectric material changes depending on the temperature, the dielectric material is required to have a small temperature dependence of the resonance frequency, that is, a small temperature coefficient of resonance frequency within a predetermined temperature range. ..

したがって、高周波領域において使用される高周波部品に適用される誘電体材料には、高周波領域において、誘電損失が小さく、比誘電率が高く、かつ共振周波数温度係数が小さいことが要求される。誘電損失の逆数は、無負荷品質係数Quとして表すことができるので、換言すれば、高周波領域において比誘電率および無負荷品質係数Quが高く、かつ所定の温度範囲において共振周波数温度係数が小さい誘電体材料が望まれている。 Therefore, the dielectric material applied to the high-frequency component used in the high-frequency region is required to have a small dielectric loss, a high relative permittivity, and a small resonance frequency temperature coefficient in the high-frequency region. Since the reciprocal of the dielectric loss can be expressed as the no-load quality coefficient Qu, in other words, the dielectric constant and the no-load quality coefficient Qu are high in the high frequency region, and the resonance frequency temperature coefficient is small in a predetermined temperature range. Body materials are desired.

従来、高周波数領域において高い誘電率を持つ材料としてはBi-Zn-Nb-O系酸化物が知られている。たとえば、特許文献1には、BiNbO相およびBi(Zn2/3Nb4/3)O相との混合物が開示されている。また、また、特許文献2には、Bi、ZnOおよびNbを所定の割合で混合し焼成して得られる焼結体が開示されている。 Conventionally, a Bi—Zn—Nb—O oxide is known as a material having a high dielectric constant in a high frequency region. For example, Patent Document 1 discloses a mixture of Bi 3 NbO 7 phase and Bi 2 (Zn 2/3 Nb 4/3 ) O 7 phase. Further, Patent Document 2 discloses a sintered body obtained by mixing Bi 2 O 3 , ZnO and Nb 2 O 5 at a predetermined ratio and firing them.

特表2009-537444号公報Special Table 2009-537444 Gazette 特開平4-285046号公報Japanese Unexamined Patent Publication No. 4-285046

しかしながら、特許文献1では、BiNbO相およびBi(Zn2/3Nb4/3)O相が1:1で混合された混合物について、誘電率の温度係数の絶対値が10ppm以下であるが、比誘電率は100以下、1GHzにおける誘電品質係数Qは1000程度であるため、高周波領域における誘電特性は十分ではなかった。 However, in Patent Document 1, the absolute value of the temperature coefficient of the dielectric constant is 10 ppm or less for a mixture in which the Bi 3 NbO 7 phase and the Bi 2 (Zn 2/3 Nb 4/3 ) O 7 phase are mixed at a ratio of 1: 1. However, since the relative permittivity is 100 or less and the dielectric quality coefficient Q at 1 GHz is about 1000, the dielectric property in the high frequency region is not sufficient.

また、特許文献2では、Bi、ZnOおよびNbを所定の割合で混合し焼成して得られる焼結体について、誘電率の温度係数の絶対値が100ppm以下、比誘電率は140以下、1GHzにおける無負荷Q値は400以下であるため、高周波領域における誘電特性は十分ではなかった。 Further, in Patent Document 2, the absolute value of the temperature coefficient of the dielectric constant is 100 ppm or less and the relative permittivity of the sintered body obtained by mixing Bi 2 O 3 , ZnO and Nb 2 O 5 at a predetermined ratio and firing. Is 140 or less, and the no-load Q value at 1 GHz is 400 or less, so that the dielectric property in the high frequency region was not sufficient.

本発明は、このような実状に鑑みてなされ、高周波領域において比誘電率εrおよび無負荷品質係数Quが高く、かつ所定の温度範囲において共振周波数温度係数τfの絶対値が小さい誘電体組成物を提供することを目的とする。 The present invention has been made in view of such circumstances, and a dielectric composition having a high relative permittivity εr and no-load quality coefficient Qu in a high frequency region and a small absolute value of resonance frequency temperature coefficient τf in a predetermined temperature range is provided. The purpose is to provide.

上記目的を達成するため、本発明は、
[1]ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、
複合酸化物を、組成式BiZnNb1.75+δで表した場合、x、yおよびzは、x+y+z=1.00、0.31≦y≦0.50、2/3≦x/z≦3/2である関係を満足することを特徴とする誘電体組成物である。
In order to achieve the above object, the present invention
[1] A dielectric composition having a composite oxide containing bismuth, zinc and niobium.
When the composite oxide is represented by the composition formula Bi x Zn y Nb z O 1.75 + δ , x, y and z are x + y + z = 1.00, 0.31 ≦ y ≦ 0.50, 2/3 ≦ x. It is a dielectric composition characterized by satisfying the relationship of / z ≦ 3/2.

[2]yが、0.40≦y≦0.50である関係を満足することを特徴とする[1]に記載の誘電体組成物である。 [2] The dielectric composition according to [1], wherein y satisfies the relationship of 0.40 ≦ y ≦ 0.50.

[3]xおよびzが、1.20≦x/z≦1.50である関係を満足することを特徴とする[1]または[2]に記載の誘電体組成物である。 [3] The dielectric composition according to [1] or [2], wherein x and z satisfy the relationship of 1.20 ≦ x / z ≦ 1.50.

[4]xおよびzが、0.90≦x/z≦1.10である関係を満足することを特徴とする[1]または[2]に記載の誘電体組成物である。 [4] The dielectric composition according to [1] or [2], wherein x and z satisfy the relationship of 0.90 ≦ x / z ≦ 1.10.

[5][1]から[4]のいずれかに記載の誘電体組成物を備える電子部品である。 [5] An electronic component comprising the dielectric composition according to any one of [1] to [4].

本発明によれば、高周波領域において比誘電率εrおよび無負荷品質係数Quが高く、かつ所定の温度範囲において共振周波数温度係数τfの絶対値が小さい誘電体組成物を提供することができる。 According to the present invention, it is possible to provide a dielectric composition having a high relative permittivity εr and no-load quality coefficient Qu in a high frequency region and a small absolute value of the resonance frequency temperature coefficient τf in a predetermined temperature range.

図1は、本実施形態に係る電子部品としての単層キャパシタの斜視図である。FIG. 1 is a perspective view of a single-layer capacitor as an electronic component according to the present embodiment.

以下、本発明を、具体的な実施形態に基づき、以下の順序で詳細に説明する。
1.電子部品
1.1.単層キャパシタの全体構成
1.2.誘電体層
1.2.1.誘電体組成物
2.電子部品の製造方法
3.本実施形態における効果
4.変形例
Hereinafter, the present invention will be described in detail in the following order based on specific embodiments.
1. 1. Electronic components 1.1. Overall configuration of single-layer capacitor 1.2. Dielectric layer 1.2.1. Dielectric composition 2. Manufacturing method of electronic parts 3. Effect in this embodiment 4. Modification example

(1.電子部品)
まず、本実施形態に係る電子部品の一例として、単層キャパシタについて説明する。
(1. Electronic components)
First, a single-layer capacitor will be described as an example of the electronic components according to the present embodiment.

(1.1.単層キャパシタの全体構成)
図1に示すように、本実施形態に係る単層キャパシタ100は、円柱状の誘電体層11と、誘電体層11の両主面である一対の対向面に形成された一対の電極10A、10Bとを備えている。誘電体層11と、一対の電極10A、10Bとは、キャパシタ部を形成しており、一対の電極10A、10Bが外部回路に接続されて電圧が印加されると、誘電体層11が所定の静電容量を示し、キャパシタとしての機能を発揮することができる。
(1.1. Overall configuration of single-layer capacitor)
As shown in FIG. 1, the single-layer capacitor 100 according to the present embodiment includes a columnar dielectric layer 11 and a pair of electrodes 10A formed on a pair of facing surfaces which are both main surfaces of the dielectric layer 11. It is equipped with 10B. The dielectric layer 11 and the pair of electrodes 10A and 10B form a capacitor portion, and when the pair of electrodes 10A and 10B are connected to an external circuit and a voltage is applied, the dielectric layer 11 is predetermined. It shows the capacitance and can function as a capacitor.

電極10A、10Bに含有される導電材は特に限定されず、所望の特性、用途等に応じて任意に設定することができる。本実施形態では、たとえば、銀(Ag)、金(Au)、銅(Cu)および白金(Pt)等が例示される。 The conductive material contained in the electrodes 10A and 10B is not particularly limited, and can be arbitrarily set according to desired characteristics, applications, and the like. In this embodiment, for example, silver (Ag), gold (Au), copper (Cu), platinum (Pt) and the like are exemplified.

誘電体層11は、図1では円柱形状を有しているが、誘電体層11の形状は特に制限されず、所望の特性、用途等に応じて任意に設定することができる。また、誘電体層11の寸法も特に制限されず、所望の特性、用途等に応じて任意に設定することができる。 Although the dielectric layer 11 has a cylindrical shape in FIG. 1, the shape of the dielectric layer 11 is not particularly limited and can be arbitrarily set according to desired characteristics, applications, and the like. Further, the dimensions of the dielectric layer 11 are not particularly limited, and can be arbitrarily set according to desired characteristics, applications, and the like.

(1.2.誘電体層)
本実施形態では、誘電体層11は、以下に示す誘電体組成物から構成されている。
(1.2. Dielectric layer)
In this embodiment, the dielectric layer 11 is composed of the dielectric composition shown below.

(1.2.1.誘電体組成物)
本実施形態に係る誘電体組成物は、ビスマス(Bi)、亜鉛(Zn)およびニオブ(Nb)を含む複合酸化物を主成分として含有している。本実施形態では、主成分とは、誘電体組成物100質量%に対して、90質量%以上を占める成分である。
(1.2.1. Dielectric composition)
The dielectric composition according to the present embodiment contains a composite oxide containing bismuth (Bi), zinc (Zn) and niobium (Nb) as a main component. In the present embodiment, the main component is a component that occupies 90% by mass or more with respect to 100% by mass of the dielectric composition.

当該複合酸化物はパイロクロア型結晶構造を有している。パイロクロア型結晶構造は一般式Aで表される。パイロクロア型結晶構造においては、Aサイトを占める元素(Aサイト元素)に酸素が8配位しており、Bサイトを占める元素(Bサイト元素)に酸素が6配位している。そして、酸素から構成される八面体の中心にBサイト元素が位置するBO八面体が互いの頂点を共有した三次元ネットワークを構成し、このネットワークの間隙にAサイト元素が位置し、かつAサイト元素は、酸素から構成される六面体の中心に位置している。 The composite oxide has a pyrochlore-type crystal structure. The pyrochlore-type crystal structure is represented by the general formula A 2 B 2 O 7 . In the pyrochlore-type crystal structure, oxygen is eight-coordinated to the element occupying A site (A site element), and oxygen is six-coordinated to the element occupying B site (B site element). Then, the BO 6 octahedron in which the B-site element is located in the center of the octahedron composed of oxygen constitutes a three-dimensional network in which the vertices of each other are shared, and the A-site element is located in the gap of this network and A. The site element is located in the center of a hexahedron composed of oxygen.

本実施形態では、一般式Aは、組成式BiZnNb1.75+δで表すことができる。すなわち、上記の複合酸化物は、パイロクロア型結晶構造を有し、組成式BiZnNb1.75+δで表される。この組成式において、「x」、「y」および「z」は、x+y+z=1.00である。 In the present embodiment, the general formula A 2 B 2 O 7 can be represented by the composition formula Bi x Zn y Nb z O 1.75 + δ . That is, the above-mentioned composite oxide has a pyrochlore-type crystal structure and is represented by the composition formula Bi x Zn y Nb z O 1.75 + δ . In this composition formula, "x", "y" and "z" are x + y + z = 1.00.

また、当該複合酸化物では、酸素(O)量が化学量論比であってもよいし、化学量論比から若干偏倚してもよい。化学量論比からの偏倚量は、置換する元素の種類およびそれらの置換量に応じて変化し、上記の組成式において「δ」で表される。 Further, in the composite oxide, the amount of oxygen (O) may be a stoichiometric ratio or may be slightly deviated from the stoichiometric ratio. The amount of deviation from the stoichiometric ratio varies depending on the type of element to be substituted and the amount of substitution thereof, and is represented by "δ" in the above composition formula.

したがって、「x」は、上記の複合酸化物の組成式における金属元素のうち、Biの含有割合を示し、「y」は、上記の複合酸化物の組成式における金属元素のうち、Znの含有割合を示し、「z」は、上記の複合酸化物の組成式における金属元素のうち、Nbの含有割合を示す。 Therefore, "x" indicates the content ratio of Bi among the metal elements in the composition formula of the above composite oxide, and "y" is the content of Zn among the metal elements in the composition formula of the above composite oxide. The ratio is shown, and "z" indicates the content ratio of Nb among the metal elements in the composition formula of the above composite oxide.

上記の一般式において、BiはAサイトを占め、NbはBサイトを占める。一方、Znは、上記の一般式において、AサイトおよびBサイトのどちらも占めることができる。したがって、上記の複合酸化物のパイロクロア型結晶構造においては、Biに酸素が8配位した六面体およびNbに酸素が6配位した八面体に加えて、Znに酸素が8配位した六面体およびZnに酸素が6配位した八面体が存在する。 In the above general formula, Bi occupies the A site and Nb occupies the B site. On the other hand, Zn can occupy both A site and B site in the above general formula. Therefore, in the pyrochlore-type crystal structure of the above-mentioned composite oxide, in addition to the hexahedron in which oxygen is 8-coordinated to Bi and the octahedron in which oxygen is 6-coordinated to Nb, the hexahedron in which oxygen is 8-coordinated to Zn and Zn. There is an octahedron in which oxygen is coordinated in six.

Bi、ZnおよびNbを含み、パイロクロア型結晶構造を有する複合酸化物においては、Znに酸素が配位した多面体の割合が、パイロクロア型結晶構造の安定性に影響している。そこで、本実施形態では、Znの含有割合を示す「y」は、0.31以上0.50以下に制御している。また、「y」は0.40以上であることが好ましい。 In the composite oxide containing Bi, Zn and Nb and having a pyrochlore-type crystal structure, the proportion of the polyhedron in which oxygen is coordinated with Zn affects the stability of the pyrochlore-type crystal structure. Therefore, in the present embodiment, "y" indicating the Zn content ratio is controlled to 0.31 or more and 0.50 or less. Further, "y" is preferably 0.40 or more.

「y」を上記の範囲内とすることにより、パイロクロア型結晶構造において、Znに酸素が8配位した六面体およびZnに酸素が6配位した八面体の割合が増加し、結晶構造中における多面体構造のバラツキが抑制され、温度変化による構造変化が生じにくくなる。その結果、温度が変化しても、共振周波数が一定に保たれる傾向にあるので、共振周波数温度係数τfの絶対値(|τf|)を所定の範囲内とすることができる。 By setting "y" within the above range, the proportion of hexahedrons in which oxygen is 8-coordinated to Zn and octahedrons in which oxygen is 6-coordinated to Zn increases in the pyrochlorite crystal structure, and the polyhedra in the crystal structure. Structural variation is suppressed, and structural changes due to temperature changes are less likely to occur. As a result, the resonance frequency tends to be kept constant even if the temperature changes, so that the absolute value (| τf |) of the resonance frequency temperature coefficient τf can be set within a predetermined range.

「y」が小さすぎると、パイロクロア型結晶構造において、Biに酸素が8配位した六面体およびNbに酸素が6配位した八面体が占める割合が増え、多面体構造のバラツキが大きくなり、構造変化しやすい傾向にあるので、共振周波数温度係数τfが悪化する傾向にある。一方、「y」が大きすぎると、Znに酸素が配位した多面体の割合が多くなりすぎ、複合酸化物において比誘電率に寄与する成分が少なくなるため、比誘電率εrが悪化する傾向にある。 If "y" is too small, the proportion of the hexahedron in which oxygen is 8-coordinated to Bi and the octahedron in which oxygen is 6-coordinated to Nb increases in the pyrochlore type crystal structure, and the variation in the polyhedral structure becomes large, resulting in structural changes. Since it tends to be easy to do, the resonance frequency temperature coefficient τf tends to deteriorate. On the other hand, if "y" is too large, the proportion of the polyhedron in which oxygen is coordinated with Zn becomes too large, and the component that contributes to the relative permittivity in the composite oxide decreases, so that the relative permittivity εr tends to deteriorate. be.

また、本実施形態では、Nbの含有割合(「z」)に対するBiの含有割合(「x」)を示す「x/z」は、2/3以上3/2以下である。「x/z」を上記の範囲内とすることにより、Biの含有割合とNbの含有割合とが比較的に近づくため、パイロクロア型結晶構造における欠陥が少なくなり、無負荷品質係数Quを良好にすることができる。 Further, in the present embodiment, "x / z" indicating the Bi content ratio ("x") with respect to the Nb content ratio ("z") is 2/3 or more and 3/2 or less. By setting "x / z" to the above range, the Bi content ratio and the Nb content ratio are relatively close to each other, so that defects in the pyrochlore type crystal structure are reduced and the no-load quality coefficient Qu is improved. can do.

「x/z」は、1.20以上1.50以下であることが好ましい。上記の範囲内とすることにより、Aサイトにおいて結晶構造の乱れ(ディスオーダー)が適切な範囲内で生じるため、無負荷品質係数Quを良好に維持しつつ、このディスオーダーに起因して比誘電率εrをさらに良好にすることができる。「x/z」が大きすぎると、ディスオーダーが大きくなりすぎ、逆に、無負荷品質係数Quが低下する傾向にある。 "X / z" is preferably 1.20 or more and 1.50 or less. By setting it within the above range, the disorder of the crystal structure (disorder) occurs in the A site within an appropriate range. Therefore, while maintaining the no-load quality coefficient Qu well, the relative permittivity is caused by this disorder. The coefficient εr can be further improved. If "x / z" is too large, the disorder tends to be too large, and conversely, the no-load quality coefficient Qu tends to decrease.

また、「x/z」は、0.90以上1.10以下であることも好ましい。上記の範囲内とすることにより、Biの含有割合とNbの含有割合とがほぼ同程度となるため、パイロクロア型結晶構造における欠陥がさらに少なくなり、無負荷品質係数Quをさらに向上させることができる。 Further, it is also preferable that "x / z" is 0.90 or more and 1.10 or less. By setting the content within the above range, the Bi content ratio and the Nb content ratio are almost the same, so that the number of defects in the pyrochlore type crystal structure is further reduced, and the no-load quality coefficient Qu can be further improved. ..

上記の組成式において、「x」、「y」および「z」を上記の範囲内とすることにより、比誘電率εrと、無負荷品質係数Quと、共振周波数温度係数τfとを良好にすることができる。 By setting "x", "y" and "z" within the above ranges in the above composition formula, the relative permittivity εr, the no-load quality coefficient Qu, and the resonance frequency temperature coefficient τf are improved. be able to.

また、本実施形態に係る誘電体組成物は、本発明の効果を奏する範囲内において、微量な不純物、副成分等を含んでいてもよい。このような成分としては、たとえば、Mn、Ca、Ba等が例示される。 Further, the dielectric composition according to the present embodiment may contain a trace amount of impurities, subcomponents and the like within the range in which the effect of the present invention is exhibited. Examples of such a component include Mn, Ca, Ba and the like.

(2.電子部品の製造方法)
次に、電子部品の製造方法の一例として、図1に示す単層キャパシタ100の製造方法の一例について以下に説明する。
(2. Manufacturing method of electronic parts)
Next, as an example of the method of manufacturing the electronic component, an example of the method of manufacturing the single-layer capacitor 100 shown in FIG. 1 will be described below.

まず、誘電体組成物の出発原料を準備する。出発原料としては、上記の誘電体組成物を構成する複合酸化物に含まれる金属の酸化物やその混合物、複合酸化物を用いることができる。その他、焼成により上記した酸化物や複合酸化物となる各種化合物、たとえば炭酸塩、シュウ酸塩、硝酸塩、水酸化物、有機金属化合物等から適宜選択し、混合して用いることができる。たとえば、Bi粉末、ZnO粉末およびNb粉末を準備すればよい。なお、各粉末の平均粒子径は1.0μm以下であることが好ましい。 First, a starting material for the dielectric composition is prepared. As a starting material, a metal oxide contained in the composite oxide constituting the above-mentioned dielectric composition, a mixture thereof, or a composite oxide can be used. In addition, various compounds that become the above-mentioned oxides and composite oxides by firing, such as carbonates, oxalates, nitrates, hydroxides, and organic metal compounds, can be appropriately selected and mixed for use. For example, Bi 2 O 3 powder, Zn O powder and Nb 2 O 5 powder may be prepared. The average particle size of each powder is preferably 1.0 μm or less.

準備した出発原料を最終組成が所望の組成となるように秤量した後混合し、混合物とする。混合する方法としては湿式混合でもよいし、乾式混合でもよい。湿式混合の場合、混合時の分散媒は特に制限されないが、たとえば、水、低級アルコール類等を用いることができる。また、これらを混合して用いてもよい。 The prepared starting materials are weighed so that the final composition has a desired composition, and then mixed to obtain a mixture. As a method of mixing, wet mixing or dry mixing may be used. In the case of wet mixing, the dispersion medium at the time of mixing is not particularly limited, but for example, water, lower alcohols and the like can be used. Further, these may be mixed and used.

湿式混合の場合、混合物を乾燥し混合粉を得る。得られた混合粉に対して、通常、仮焼きを行う。仮焼きは焼成温度よりも低温で熱処理を行う。 In the case of wet mixing, the mixture is dried to obtain a mixed powder. The obtained mixed powder is usually calcined. The calcining is performed at a temperature lower than the firing temperature.

得られた仮焼き粉末が凝集している場合には、ボールミル等を用いて、所定時間仮焼き粉末の粗粉砕を行い、粉砕粉とすることが好ましい。粗粉砕粉の平均粒径は、0.5~3.0μm程度であればよい。湿式粉砕を行う場合、上記の湿式混合で用いられる分散媒を1種以上混合して用いればよい。 When the obtained calcination powder is agglomerated, it is preferable to roughly pulverize the calcination powder for a predetermined time using a ball mill or the like to obtain pulverized powder. The average particle size of the coarsely pulverized powder may be about 0.5 to 3.0 μm. When wet pulverization is performed, one or more dispersion media used in the above wet mixing may be mixed and used.

粉砕粉を成形する方法は特に制限されない。通常は、粉砕粉100重量部に対して2.0~5.0重量部程度のバインダを加えて混合した後、加圧成形を行えばよい。バインダとしては通常ポリビニルアルコール等が用いられる。加圧成形は、適当なサイズの金型にバインダ等を混合した粉砕粉を充填し、成形圧2~5t/cm程度の条件で行えばよい。 The method for forming the pulverized powder is not particularly limited. Usually, about 2.0 to 5.0 parts by weight of a binder may be added to 100 parts by weight of the crushed powder and mixed, and then pressure molding may be performed. As the binder, polyvinyl alcohol or the like is usually used. The pressure molding may be carried out under the condition that a mold of an appropriate size is filled with crushed powder mixed with a binder or the like and the molding pressure is about 2 to 5 t / cm 2 .

続いて、得られた成形体を焼成する。焼成条件は特に制限されない。たとえば、昇温速度を50~300℃/h程度とし、焼成温度を1000℃~1100℃程度とし、保持時間を12時間程度とし、雰囲気を大気中等の酸素雰囲気とすればよい。 Subsequently, the obtained molded product is fired. The firing conditions are not particularly limited. For example, the temperature rise rate may be about 50 to 300 ° C./h, the firing temperature may be about 1000 ° C. to 1100 ° C., the holding time may be about 12 hours, and the atmosphere may be an oxygen atmosphere such as in the atmosphere.

得られた焼結体の主表面に、端子電極を印刷し、必要に応じて焼き付けて電極を形成する。電極を形成する方法は特に制限されず、蒸着、スパッタリング等で電極を形成してもよい。 Terminal electrodes are printed on the main surface of the obtained sintered body and baked as necessary to form electrodes. The method for forming the electrode is not particularly limited, and the electrode may be formed by vapor deposition, sputtering, or the like.

以上の工程を経ることにより、図1に示す単層キャパシタを得ることができる。 By going through the above steps, the single-layer capacitor shown in FIG. 1 can be obtained.

(3.本実施形態における効果)
本実施形態では、パイロクロア型結晶構造を有する複合酸化物として、Bi-Zn-Nb-O系酸化物に着目している。この複合酸化物においては、Znは、AサイトおよびBサイトのどちらも占めることができ、2種類の多面体を形成する。本発明者らは、この2種類の多面体の割合を増やすことにより、パイロクロア型結晶構造が安定化し、温度変化による構造変化が生じにくくなることを見出した。そこで、本実施形態では、パイロクロア型結晶構造中のZnの含有割合を上記の範囲内とすることにより、共振周波数温度係数τfを良好にしている。
(3. Effect in this embodiment)
In this embodiment, Bi-Zn-Nb-O-based oxides are focused on as a composite oxide having a pyrochlore-type crystal structure. In this composite oxide, Zn can occupy both A-sites and B-sites, forming two types of polyhedra. The present inventors have found that by increasing the ratio of these two types of polyhedra, the pyrochlore-type crystal structure is stabilized and structural changes due to temperature changes are less likely to occur. Therefore, in the present embodiment, the resonance frequency temperature coefficient τf is improved by setting the Zn content ratio in the pyrochlore-type crystal structure within the above range.

また、本発明者らは、Aサイトを占めるBiの含有割合と、Bサイトを占めるNbの含有割合とを比較的に近づけることにより、パイロクロア型結晶構造の欠陥を減らし、その結果、無負荷品質係数Quが向上することも見出した。そこで、本実施形態では、Biの含有割合とNbの含有割合との比率を上記の範囲内とすることにより、高い無負荷品質係数Quを得ている。 In addition, the present inventors reduced the defects of the pyrochlore-type crystal structure by making the content of Bi occupying the A site and the content of Nb occupying the B site relatively close to each other, resulting in no-load quality. We also found that the coefficient Qu is improved. Therefore, in the present embodiment, a high no-load quality coefficient Qu is obtained by setting the ratio of the Bi content ratio and the Nb content ratio within the above range.

具体的には、本実施形態に係る誘電体組成物は、2GHz以上の高周波領域であっても150以上の高い比誘電率εrと、2500以上の高い無負荷品質係数Quを示し、しかも、共振周波数温度係数τfの絶対値を30ppm/℃以下とすることができる。 Specifically, the dielectric composition according to the present embodiment exhibits a high relative permittivity εr of 150 or more and a high no-load quality coefficient Qu of 2500 or more even in a high frequency region of 2 GHz or more, and also resonates. The absolute value of the frequency temperature coefficient τf can be 30 ppm / ° C. or less.

さらに、x/zの値を変化させることにより、高い比誘電率εrが得られることを重視した誘電体組成物と、高い無負荷品質係数Quが得られることを重視した誘電体組成物と、を用途に応じて得ることができる。 Further, a dielectric composition that emphasizes obtaining a high relative permittivity εr by changing the value of x / z, and a dielectric composition that emphasizes obtaining a high no-load quality coefficient Qu. Can be obtained according to the application.

(4.変形例)
上述した実施形態では、電子部品として、誘電体層が単層である単層キャパシタについて説明したが、電子部品は積層キャパシタであってもよい。このような積層キャパシタは、上述した誘電体組成物から構成される複数の誘電体層と内部電極層とが交互に積層された構成の積層体を有する。この積層体の両端部には、内部電極層と各々導通する一対の端子電極が形成してある。積層体の形状に特に制限はないが、通常、直方体状とされる。また、その寸法にも特に制限はなく、用途に応じて適当な寸法とすればよい。
(4. Modification example)
In the above-described embodiment, the single-layer capacitor in which the dielectric layer is a single layer has been described as the electronic component, but the electronic component may be a laminated capacitor. Such a laminated capacitor has a laminated body having a structure in which a plurality of dielectric layers composed of the above-mentioned dielectric composition and internal electrode layers are alternately laminated. A pair of terminal electrodes conducting with the internal electrode layer are formed at both ends of the laminated body. The shape of the laminated body is not particularly limited, but it is usually a rectangular parallelepiped shape. Further, the dimensions are not particularly limited, and may be appropriate dimensions according to the intended use.

また、電子部品は、薄膜キャパシタであってもよい。この場合には、薄膜キャパシタの誘電体層を上述した誘電体組成物で構成すればよい。この薄膜キャパシタの誘電体層は、たとえば、薄膜形成法等を用いて、上述した誘電体組成物を構成する元素を基板上に堆積させて形成することができる。薄膜形成法としては、スパッタリング法、化学気相蒸着法等の公知の気相成長法が好ましい。 Further, the electronic component may be a thin film capacitor. In this case, the dielectric layer of the thin film capacitor may be composed of the above-mentioned dielectric composition. The dielectric layer of this thin film capacitor can be formed by depositing the elements constituting the above-mentioned dielectric composition on a substrate by using, for example, a thin film forming method or the like. As the thin film forming method, a known vapor phase growth method such as a sputtering method or a chemical vapor deposition method is preferable.

以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に何ら限定されるものではなく、本発明の範囲内において種々の態様で改変しても良い。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above embodiments, and may be modified in various ways within the scope of the present invention.

以下、実施例及び比較例を用いて、本発明をさらに詳細に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, the present invention is not limited to the following examples.

まず、誘電体組成物の主成分である複合酸化物の出発原料として、酸化ビスマス(Bi)、酸化亜鉛(ZnO)および酸化ニオブ(Nb)の粉末を準備した。なお、各粉末の平均粒子径は1.0μm以下であった。焼成後の誘電体組成物(焼結体)が、表1に示す組成を有するように、上記の出発原料を秤量した。 First, powders of bismuth oxide (Bi 2 O 3 ), zinc oxide (Zn O) and niobium oxide (Nb 2 O 5 ) were prepared as starting materials for the composite oxide which is the main component of the dielectric composition. The average particle size of each powder was 1.0 μm or less. The above starting materials were weighed so that the dielectric composition (sintered body) after firing had the composition shown in Table 1.

次に、秤量した各出発原料粉末を、分散媒としてのエタノールを用いてボールミルにより16時間湿式混合し、混合物を乾燥して混合原料粉末を得た。その後、得られた混合原料粉末を、大気中において保持温度800℃、保持時間2時間の条件で熱処理を行い、仮焼き粉末を得た。 Next, each weighed starting raw material powder was wet-mixed with a ball mill for 16 hours using ethanol as a dispersion medium, and the mixture was dried to obtain a mixed raw material powder. Then, the obtained mixed raw material powder was heat-treated in the air under the conditions of a holding temperature of 800 ° C. and a holding time of 2 hours to obtain a calcined powder.

得られた仮焼き粉末を粗粉砕し、分散媒としてのエタノールを用いてボールミルにより湿式粉砕を行い、粉砕粉を得た。 The obtained calcined powder was roughly pulverized and wet-pulverized with a ball mill using ethanol as a dispersion medium to obtain pulverized powder.

得られた粉砕粉にバインダとしてポリビニルアルコールを加えて、公知の方法により混合および造粒した。得られた造粒粉をプレス成形機により、直径12mm、高さ8mmの円柱状に加工成形し、成形体を得た。得られた成形体を、1000℃、12時間の条件で焼成し誘電体組成物(焼結体)を得た。得られた焼結体の両端面を研磨し、電極を形成して試料を作製した。 Polyvinyl alcohol was added as a binder to the obtained pulverized powder, and the mixture was mixed and granulated by a known method. The obtained granulated powder was processed and molded into a cylinder having a diameter of 12 mm and a height of 8 mm by a press molding machine to obtain a molded product. The obtained molded product was fired at 1000 ° C. for 12 hours to obtain a dielectric composition (sintered product). Both end faces of the obtained sintered body were polished to form electrodes, and a sample was prepared.

得られた試料に対して、平行導体板型誘電体共振器法により測定周波数2~5GHzにおける比誘電率εrおよび無負荷品質係数Quを測定した。本実施例では、比誘電率εrが150以上である試料を良好とし、無負荷品質係数Quが2500以上である試料を良好とした。共振周波数温度係数τfは、25℃および80℃における共振周波数を測定し、25℃における値を基準として算出した。本実施例では、共振周波数温度係数τfの絶対値(|τf|)が30ppm以下である試料を良好とした。得られた結果を表1に示す。 The relative permittivity εr and the no-load quality coefficient Qu at a measurement frequency of 2 to 5 GHz were measured for the obtained sample by the parallel conductor plate type dielectric resonator method. In this example, a sample having a relative permittivity εr of 150 or more was good, and a sample having a no-load quality coefficient Qu of 2500 or more was good. The resonance frequency temperature coefficient τf was calculated by measuring the resonance frequency at 25 ° C. and 80 ° C. and using the value at 25 ° C. as a reference. In this embodiment, a sample having an absolute value (| τf |) of the resonance frequency temperature coefficient τf of 30 ppm or less is considered to be good. The results obtained are shown in Table 1.

Figure 0007028020000001
Figure 0007028020000001

表1より、Bi、ZnおよびNbを含む複合酸化物において、「x」、「y」および「z」の関係が上述した範囲内である試料は、高周波領域(2GHz)において高い比誘電率εr(150以上)、高い無負荷品質係数Qu(2500以上)、および、良好な温度特性(|τf|≦30ppm/℃)を有することが確認できた。 From Table 1, in the composite oxide containing Bi, Zn and Nb, the sample in which the relationship of “x”, “y” and “z” is within the above-mentioned range has a high relative permittivity εr in the high frequency region (2 GHz). It was confirmed that it had (150 or more), a high no-load quality coefficient Qu (2500 or more), and good temperature characteristics (| τf | ≦ 30 ppm / ° C.).

さらに、Znの含有割合(「y」)を限定することにより、高い比誘電率εrおよび高い無負荷品質係数Quを維持しつつ、さらに良好な温度特性(|τf|≦15ppm/℃)を有することが確認できた。 Further, by limiting the Zn content ratio (“y”), it has better temperature characteristics (| τf | ≦ 15 ppm / ° C.) while maintaining a high relative permittivity εr and a high no-load quality coefficient Qu. I was able to confirm that.

また、「x/z」を大きくする、すなわち、Biの含有割合を大きくすることにより、高い無負荷品質係数Quおよび良好な温度特性を維持しつつ、より高い比誘電率εr(180以上)が得られることが確認できた。 Further, by increasing "x / z", that is, increasing the content ratio of Bi, a higher relative permittivity εr (180 or more) can be obtained while maintaining a high no-load quality coefficient Qu and good temperature characteristics. It was confirmed that it could be obtained.

また、「x/z」を1に近づける、すなわち、Biの含有割合とNbの含有割合とをほぼ同程度とすることにより、高い比誘電率εrおよび良好な温度特性を維持しつつ、より高い無負荷品質係数Qu(3000以上)が得られることが確認できた。 Further, by making "x / z" close to 1, that is, by making the Bi content ratio and the Nb content ratio almost the same, the relative permittivity εr and the good temperature characteristics are maintained and higher. It was confirmed that the no-load quality coefficient Qu (3000 or more) can be obtained.

本発明によれば、高周波領域において比誘電率およびQuが高く、かつ所定の温度範囲において共振周波数温度係数が小さい誘電体組成物が得られる。このような誘電体組成物は、高周波用の電子部品、たとえば、バラン、カプラ、フィルタ、あるいは、フィルタを組み合わせたデュプレクサ、ダイプレクサ等に好適である。 According to the present invention, it is possible to obtain a dielectric composition having a high relative permittivity and Qu in a high frequency region and a small resonance frequency temperature coefficient in a predetermined temperature range. Such a dielectric composition is suitable for high frequency electronic components such as baluns, couplers, filters, or duplexers and diplexers combined with filters.

100… 単層キャパシタ
10A、10B… 端子電極
11… 誘電体層
100 ... Single-layer capacitor 10A, 10B ... Terminal electrode 11 ... Dielectric layer

Claims (4)

ビスマスと亜鉛とニオブとを含む複合酸化物を有する誘電体組成物であって、
前記複合酸化物を、組成式BiZnNb1.75+δで表した場合、前記x、yおよびzは、x+y+z=1.00、0.40≦y≦0.50、2/3≦x/z≦3/2である関係を満足することを特徴とする誘電体組成物。
A dielectric composition having a composite oxide containing bismuth, zinc and niobium.
When the composite oxide is represented by the composition formula Bi x Zn y Nb z O 1.75 + δ , the x, y and z are x + y + z = 1.00, 0.40 ≦ y ≦ 0.50, 2/3. A dielectric composition characterized by satisfying the relationship of ≦ x / z ≦ 3/2.
前記xおよびzが、1.20≦x/z≦1.50である関係を満足することを特徴とする請求項1に記載の誘電体組成物。 The dielectric composition according to claim 1, wherein x and z satisfy the relationship of 1.20 ≦ x / z ≦ 1.50. 前記xおよびzが、0.90≦x/z≦1.10である関係を満足することを特徴とする請求項1に記載の誘電体組成物。 The dielectric composition according to claim 1, wherein x and z satisfy the relationship of 0.90 ≦ x / z ≦ 1.10. 請求項1からのいずれかに記載の誘電体組成物を含む誘電体層を備える電子部品。 An electronic component comprising a dielectric layer containing the dielectric composition according to any one of claims 1 to 3 .
JP2018062930A 2018-03-28 2018-03-28 Dielectric compositions and electronic components Active JP7028020B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018062930A JP7028020B2 (en) 2018-03-28 2018-03-28 Dielectric compositions and electronic components
PCT/JP2019/011580 WO2019188617A1 (en) 2018-03-28 2019-03-19 Dielectric composition and electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018062930A JP7028020B2 (en) 2018-03-28 2018-03-28 Dielectric compositions and electronic components

Publications (2)

Publication Number Publication Date
JP2019175702A JP2019175702A (en) 2019-10-10
JP7028020B2 true JP7028020B2 (en) 2022-03-02

Family

ID=68058318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018062930A Active JP7028020B2 (en) 2018-03-28 2018-03-28 Dielectric compositions and electronic components

Country Status (2)

Country Link
JP (1) JP7028020B2 (en)
WO (1) WO2019188617A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111902883B (en) * 2018-03-28 2022-04-08 Tdk株式会社 Dielectric composition and electronic component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129232A (en) 2005-11-03 2007-05-24 Samsung Electro Mech Co Ltd Method for manufacturing printed circuit board with thin film capacitor embedded therein, and printed circuit board manufactured thereby

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04285046A (en) * 1991-03-12 1992-10-09 Matsushita Electric Ind Co Ltd Dielectric porcelain composition
JP6179544B2 (en) * 2015-03-23 2017-08-16 Tdk株式会社 Dielectric porcelain composition, electronic component and communication device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007129232A (en) 2005-11-03 2007-05-24 Samsung Electro Mech Co Ltd Method for manufacturing printed circuit board with thin film capacitor embedded therein, and printed circuit board manufactured thereby

Also Published As

Publication number Publication date
WO2019188617A1 (en) 2019-10-03
JP2019175702A (en) 2019-10-10

Similar Documents

Publication Publication Date Title
JP6523930B2 (en) Dielectric ceramic composition and multilayer ceramic capacitor including the same
JP2012140258A (en) Dielectric ceramic composition and electronic component
JP5835012B2 (en) Dielectric porcelain composition and electronic component
JPH0920555A (en) Ceramic of dielectric material, its production and electronic part using the same
JP5910317B2 (en) Dielectric porcelain composition and electronic component
TWI586626B (en) Dielectric composition and electronic component
JP7028020B2 (en) Dielectric compositions and electronic components
JP2005008516A (en) Piezoelectric ceramic composition and piezoelectric element using the same
CN111902883B (en) Dielectric composition and electronic component
JP4465663B2 (en) Dielectric porcelain composition
JP4419889B2 (en) Dielectric porcelain composition
US11508494B2 (en) Dielectric composition and electronic component
JP2022111642A (en) Dielectric composition and electronic component
JP5605120B2 (en) Dielectric ceramics for tunable devices
JP4765367B2 (en) Dielectric porcelain composition
JP7363535B2 (en) Dielectric compositions and electronic components
JP4370135B2 (en) Piezoelectric ceramic composition
JP5035278B2 (en) Dielectric porcelain composition and electronic component
JP2000281443A (en) Piezoelectric ceramic composition
JP7211182B2 (en) Dielectric compositions and electronic components
JP4467168B2 (en) Piezoelectric ceramic and piezoelectric element
JP2008056536A (en) Dielectric ceramic composition
JP6415474B2 (en) Dielectric ceramic composition and dielectric element having the same
JP5206673B2 (en) Piezoelectric ceramic composition and piezoelectric component
JP3185528B2 (en) Dielectric porcelain composition and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201229

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7028020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150