JP7024632B2 - Sedimentation tank and its control method, and solid material manufacturing method - Google Patents

Sedimentation tank and its control method, and solid material manufacturing method Download PDF

Info

Publication number
JP7024632B2
JP7024632B2 JP2018128404A JP2018128404A JP7024632B2 JP 7024632 B2 JP7024632 B2 JP 7024632B2 JP 2018128404 A JP2018128404 A JP 2018128404A JP 2018128404 A JP2018128404 A JP 2018128404A JP 7024632 B2 JP7024632 B2 JP 7024632B2
Authority
JP
Japan
Prior art keywords
filtrate
tank
supernatant
solid matter
level sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018128404A
Other languages
Japanese (ja)
Other versions
JP2020006302A (en
Inventor
範幸 長瀬
典久 土岐
達也 秋山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018128404A priority Critical patent/JP7024632B2/en
Publication of JP2020006302A publication Critical patent/JP2020006302A/en
Application granted granted Critical
Publication of JP7024632B2 publication Critical patent/JP7024632B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)
  • Electrolytic Production Of Metals (AREA)

Description

本発明は、各種ろ過工程から排出されるろ液に含有される漏れ固形物を回収するための沈降槽およびその制御方法に関する。また、本発明は、被処理液から該被処理液に含まれる固形物を抜き出すことによる固形物の製造方法に関する。 The present invention relates to a settling tank for recovering leaked solids contained in the filtrate discharged from various filtration steps and a control method thereof. The present invention also relates to a method for producing a solid substance by extracting the solid substance contained in the liquid to be treated from the liquid to be treated.

銅の電解精製においては、不純物を含有する粗銅板を陽極(アノード)とし、純銅、ステンレス、チタンなどの薄板を陰極(カソード)として、陽極と陰極とを交互に電解槽に装入し、一定範囲に温度管理された電解液を電解槽に供給しつつ通電し、陰極に所定の厚みの銅を電着させて、電気銅を得ている。 In the electrolytic purification of copper, a blister copper plate containing impurities is used as an anode (anode), and a thin plate made of pure copper, stainless steel, titanium, etc. is used as a cathode (cathode), and the anode and the cathode are alternately charged into the electrolytic tank to be constant. An electrolytic solution whose temperature is controlled in the range is supplied to the electrolytic tank and energized, and copper having a predetermined thickness is electrodeposited on the cathode to obtain electrolytic copper.

通電によって、陽極に含有されている銅が、銅イオンとして電解液中に溶出する。同時に、陽極に含有されている、ヒ素、ビスマス、アンチモン、ニッケルなどの不純物も電解液に溶出する。電解液中の銅イオンのみが陰極に電着し、高純度な電気銅が得られるが、不純物は電解液に残るため、その結果として、電解液の不純物濃度が上昇する。 When energized, the copper contained in the anode elutes into the electrolytic solution as copper ions. At the same time, impurities such as arsenic, bismuth, antimony, and nickel contained in the anode are also eluted in the electrolytic solution. Only copper ions in the electrolytic solution are electrodeposited on the cathode to obtain high-purity electrolytic copper, but impurities remain in the electrolytic solution, and as a result, the impurity concentration of the electrolytic solution increases.

電解精製の進行に伴って電解液の不純物濃度が高くなると、不純物が銅とともに共析して、電気銅の銅品位を低下させる、電解液の配管にスケールを生じさせて操業を阻害する、および、電解液の電気伝導度を低下させて電力コストを増加させるなどの問題が生じる。 When the concentration of impurities in the electrolytic solution increases with the progress of electrolytic refining, the impurities coagulate with copper to lower the copper grade of electrolytic copper, cause scale in the piping of the electrolytic solution, and hinder the operation. , Problems such as lowering the electrical conductivity of the electrolytic solution and increasing the power cost arise.

このため、電解液の一部を浄液工程に送って、不純物を除去したうえで、電解槽へ再度供給することが行われている。浄液工程では、電解液を真空蒸発して濃縮し、急冷することで過飽和となった銅を粗硫酸銅として析出させて除去する、濃縮および冷却工程、次いで、粗硫酸銅を回収した後のろ液である粗母液から、残留した銅、ヒ素、ビスマス、アンチモンをカソード上に析出させるなどして除去する、脱銅電解工程、さらに、脱銅後の含ニッケル溶液である脱銅終液から、ニッケルを粗硫酸ニッケルとして分離回収する、脱ニッケル工程などが行われる。 Therefore, a part of the electrolytic solution is sent to the purification process to remove impurities, and then the electrolytic cell is supplied again to the electrolytic cell. In the purification step, the electrolytic solution is vacuum-evaporated and concentrated, and the oversaturated copper is precipitated and removed as crude copper sulfate by quenching, and then the concentration and cooling steps are performed, and then the crude copper sulfate is recovered. From the copper-removing electrolytic step of removing residual copper, arsenic, bismuth, and antimon from the crude mother liquor, which is a filtrate, by precipitating it on the cathode, and from the copper-removing final solution, which is a nickel-containing solution after copper removal. , Copper sulfate is separated and recovered as crude nickel sulfate, and a denicking process is performed.

脱ニッケル工程では、最初に、あらかじめ昇温された脱銅終液を、ニッケル濃縮槽に給液し、このニッケル濃縮槽において、脱銅終液に黒鉛電極を浸漬して通電し、この脱銅終液をジュール熱により加熱濃縮する。次に、加熱濃縮された濃縮液を、冷却結晶槽に送り、濃縮による硫酸濃度の上昇に伴う共通イオン効果と、冷却による溶解度の減少により、この濃縮液から粗硫酸ニッケルを析出させる。さらに、析出した粗硫酸ニッケルを含むスラリーを、冷却結晶槽ポンプによりろ過器に送り、ろ過により粗硫酸ニッケルを固形物として回収し、かつ、ろ液を真空ポンプにより吸引して、レシーバタンクに溜め、適宜払い出している。 In the nickel removal step, first, a pre-heated decopper final solution is supplied to a nickel concentrating tank, and in this nickel concentrating tank, a graphite electrode is immersed in the decopper final solution to energize the copper. The final liquid is heated and concentrated by Joule heat. Next, the heat-concentrated concentrate is sent to a cooling crystal tank, and crude nickel sulfate is precipitated from this concentrate due to the common ion effect associated with the increase in sulfuric acid concentration due to concentration and the decrease in solubility due to cooling. Further, the slurry containing the precipitated nickel sulphate is sent to a filter by a cooling crystal tank pump, the nickel sulphate is recovered as a solid by filtration, and the filtrate is sucked by a vacuum pump and stored in a receiver tank. , Disbursed as appropriate.

このように、粗硫酸ニッケルの回収工程のみならず、一般的に溶解度の差を用いて固形化して固形物となった対象物を回収する工程では、加熱濃縮された濃縮液を、冷却結晶槽に送り、濃縮後の冷却による溶解度の減少により固形物を析出させ、この固形物が析出したスラリーを、ろ過工程に供給する。ろ過工程では、ろ布、ろ紙、メッシュスクリーンなどのろ材によって、スラリーを固形物(残渣)とろ液に分離する。特に、真空ろ過などの吸引ろ過では、ろ材よりろ液側を減圧することによってろ液を吸引することにより、分離を速やかに行うことが可能である。吸引したろ液は、レシーバタンクに溜め、適宜払い出している。 In this way, not only in the step of recovering the crude nickel sulfate, but also in the step of recovering the object which has become a solid by solidifying using the difference in solubility, the concentrated liquid heated and concentrated is generally used in the cooling crystal tank. The solid matter is precipitated by the decrease in solubility due to cooling after concentration, and the slurry in which the solid matter is precipitated is supplied to the filtration step. In the filtration step, the slurry is separated into a solid substance (residue) and a filtrate by a filter medium such as a filter cloth, a filter paper, and a mesh screen. In particular, in suction filtration such as vacuum filtration, separation can be performed quickly by sucking the filtrate by depressurizing the filtrate side of the filter medium. The sucked filtrate is stored in the receiver tank and discharged as appropriate.

払い出されるろ液には、溶解度により溶解状態にある対象物とろ過器からろ過漏れした微細な固形物(脱ニッケル工程においては、微細な粗硫酸ニッケル)が含有されており、これらは、回収ロスの原因となっている。 The filtrate to be discharged contains an object that is in a dissolved state due to its solubility and a fine solid substance (fine crude nickel sulfate in the denickelization step) that has leaked from the filter, and these are recovery losses. Is the cause of.

ろ過漏れを低減するために、ろ材の目を細かくする方法が考えられるが、この方法ではろ過速度が低下するため、ろ過器の能力に余裕がない場合には、固形物の生産量が低下するという問題が生ずる。 In order to reduce filtration leakage, it is conceivable to make the filter medium finer, but this method reduces the filtration rate, so if the capacity of the filter is not sufficient, the production of solid matter will decrease. The problem arises.

特開2009-114520号公報に記載の技術のように、ろ液の一部をレシーバタンクから冷却結晶槽に返送する方法もある。この方法では、ろ液を返送する量を増やすほど、ろ液漏れした微細な固形物を多く回収できるが、返送したろ液を再びろ過器で処理する必要があるため、ろ過器の能力に余裕がない場合には、固形物の生産量が低下するという問題が生ずる。また、ろ液の全体を返送するとろ過器で処理する量が時間とともに増え続けるため、レシーバタンクからろ液の一部だけしか返送することができない。このように、ろ過器からろ液漏れした微細な固形物を十分に回収することは困難である。 As in the technique described in JP-A-2009-114520, there is also a method of returning a part of the filtrate from the receiver tank to the cooling crystal tank. In this method, the more the amount of the filtrate returned is increased, the more fine solid matter leaked from the filtrate can be recovered. In the absence of, there arises the problem of reduced solids production. Further, when the entire filtrate is returned, the amount processed by the filter continues to increase with time, so that only a part of the filtrate can be returned from the receiver tank. As described above, it is difficult to sufficiently recover the fine solid matter leaked from the filtrate from the filter.

特開2009-114520号公報Japanese Unexamined Patent Publication No. 2009-114520

本発明の目的は、ろ過器からろ過漏れした微細な固形物を回収することにより、ろ過工程における固形物の回収率を向上させ、固形物の製造コストの低減を可能とする手段を提供することにある。 An object of the present invention is to provide a means for improving the recovery rate of a solid substance in a filtration step and reducing the production cost of the solid substance by recovering the fine solid substance leaked from the filter. It is in.

本発明者らは、前記課題を解決するために種々検討した結果、ろ過器の下流側に沈降槽を設けて、ろ過器からろ過漏れした微細な固形物を含有するろ液を沈降分離させて、微細な固形物を沈殿させることにより、効率的に微細な固形物を回収できるとの知見を得た。 As a result of various studies to solve the above problems, the present inventors provided a settling tank on the downstream side of the filter to settle and separate the filtrate containing the fine solid matter leaked from the filter. It was found that the fine solids can be efficiently recovered by precipitating the fine solids.

また、沈降槽の形状および制御についても種々検討した結果、沈降槽の底部の形状を工夫し、かつ、上澄みの抜き出しと固形物の底抜きを適切に制御することが可能な手段を設けることにより、より効率的にろ液漏れした微細な固形物を回収できるとの知見を得た。 In addition, as a result of various studies on the shape and control of the settling tank, by devising the shape of the bottom of the settling tank and providing means capable of appropriately controlling the extraction of the supernatant and the extraction of the bottom of the solid matter. , It was found that the fine solid matter that leaked from the filtrate can be recovered more efficiently.

本発明者らは、これらの知見に基づいて本発明を完成するに至った。 The present inventors have completed the present invention based on these findings.

本発明の沈降槽は、槽本体と、底部と、ろ液受け入れ用インレットと、上澄み抜き出し用アウトレットと、前記底部に設けられた固形物底抜き用アウトレットと、前記上澄み抜き出し用アウトレットに接続される槽内配管と、前記ろ液受け入れ用インレットを介して、ろ液を供給する手段と、前記槽内配管および前記上澄み抜き出し用アウトレットを介して、前記ろ液の沈降分離で生じた上澄みを抜き出す手段と、前記固形物底抜き用アウトレットを介して、前記ろ液の沈降分離で沈殿している固形物を底抜きする手段と、を備える。 The settling tank of the present invention is connected to a tank body, a bottom, an inlet for receiving a filtrate, an outlet for extracting the supernatant, an outlet for removing the bottom of solid matter provided at the bottom, and an outlet for extracting the supernatant. A means for supplying the filtrate through the in-tank pipe and the filtrate receiving inlet, and a means for extracting the supernatant generated by the sedimentation separation of the filtrate through the in-tank pipe and the supernatant extraction outlet. And a means for bottoming out the solid matter settled by the sedimentation separation of the filtrate via the solid matter bottoming out outlet.

特に、本発明の沈降槽は、該沈降槽の槽内における前記ろ液のレベルをセンシング可能に配置された非接触式レベルセンサと、タイマーと、をさらに備える。 In particular, the settling tank of the present invention further includes a non-contact level sensor and a timer arranged so as to be able to sense the level of the filtrate in the settling tank.

前記底部は、前記固形物底抜き用アウトレットに向けて下傾している。該底部は、水平面からの傾斜角度が40度以上の傾斜を有することが好ましい。 The bottom portion is tilted downward toward the outlet for removing the bottom of the solid material. It is preferable that the bottom portion has an inclination angle of 40 degrees or more from the horizontal plane.

前記固形物底抜き用アウトレットは、前記底部の最底部に配置される。 The solid material bottoming outlet is arranged at the bottom of the bottom.

前記槽内配管は、前記上澄み抜き出し用アウトレットから前記底部の水平方向中間部および高さ方向中間部まで伸長し、下端部に開口を備える。必要に応じて、前記槽内配管は、前記上澄み抜き出し用アウトレットと前記底部の上端部との間において、前記槽本体の横断面における、前記非接触式レベルセンサがセンシングする範囲と干渉しない位置に配置されることが好ましい。 The in-tank pipe extends from the supernatant extraction outlet to the horizontal intermediate portion and the height intermediate portion of the bottom portion, and has an opening at the lower end portion. If necessary, the in-tank piping is located between the supernatant extraction outlet and the upper end of the bottom so as not to interfere with the range sensed by the non-contact level sensor in the cross section of the tank body. It is preferable to be arranged.

前記非接触式レベルセンサは、前記ろ液のレベルが、前記槽内のろ液受け入れ上限に達するまで、前記ろ液を供給する手段を作動させ、かつ、該ろ液が沈降分離し、前記上澄みを抜き出す手段の作動後において、前記上澄みのレベルを検知する。 The non-contact level sensor operates a means for supplying the filtrate until the level of the filtrate reaches the upper limit of accepting the filtrate in the tank, and the filtrate is settled and separated, and the supernatant is separated. After the operation of the means for extracting the supernatant, the level of the supernatant is detected.

前記タイマーは、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みを抜き出す手段の作動を停止し、かつ、前記固形物を底抜きする手段を作動させて、所定時間経過後に、前記固形物を底抜きする手段を停止させる。 The timer is activated when the level of the supernatant reaches the upper end of the bottom portion, and is a means for extracting the supernatant when a predetermined time elapses before the level of the supernatant reaches the opening of the pipe in the tank. The operation is stopped, and the means for bottoming out the solid matter is operated, and after a lapse of a predetermined time, the means for bottoming out the solid matter is stopped.

前記ろ液を供給する手段、前記上澄みを抜き出す手段、および、前記固形物を底抜きする手段のそれぞれは、配管、および、真空ポンプ、定量ポンプ、ラインポンプ、その他の公知のポンプを含む公知の流体移送装置により構成される。 Each of the means for supplying the filtrate, the means for extracting the supernatant, and the means for extracting the bottom of the solid matter is known to include piping and a vacuum pump, a metering pump, a line pump, and other known pumps. It consists of a fluid transfer device.

前記非接触式レベルセンサは、超音波式レベルセンサ、電波式レベルセンサ、および、レーザ式レベルセンサから選択される。 The non-contact level sensor is selected from an ultrasonic level sensor, a radio wave level sensor, and a laser level sensor.

前記底部は、コーン型(円錐)もしくは臼状の形状を有することが好ましい。 The bottom portion preferably has a cone shape or a mortar shape.

本発明の沈降槽の制御方法は、上記の本発明の沈降槽を用いる。 As the method for controlling the settling tank of the present invention, the above-mentioned settling tank of the present invention is used.

特に、本発明の沈降槽の制御方法では、
前記ろ液を供給する手段により、ろ液を受け入れ、前記非接触式レベルセンサが前記槽内の前記ろ液受け入れ上限を検知すると、前記ろ液の受け入れを停止する工程、
該沈降槽内で前記ろ液を沈降分離させ、固形物を前記底部に沈殿させる工程、
前記上澄みを抜き出す手段により、上澄みの抜き出しを開始し、前記非接触式レベルセンサが該上澄みのレベルを検知し、かつ、前記タイマーが、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みの抜き出しを停止する工程、
前記上澄みの抜き出しの停止と同時に、前記固形物を底抜きする手段により、前記固形物の底抜きを開始し、該固形物の底抜きの開始後の所定時間経過後、前記固形物の底抜きを停止する工程、
を備える。
In particular, in the method for controlling the settling tank of the present invention,
A step of receiving the filtrate by the means for supplying the filtrate and stopping the acceptance of the filtrate when the non-contact level sensor detects the upper limit of the filtrate acceptance in the tank.
A step of precipitating and separating the filtrate in the settling tank and settling the solid matter on the bottom.
When the supernatant is started to be extracted by the means for extracting the supernatant, the non-contact level sensor detects the level of the supernatant, and the timer reaches the upper end of the bottom. A step of operating and stopping the extraction of the supernatant when a predetermined time elapses before the level of the supernatant reaches the opening of the pipe in the tank.
At the same time as the extraction of the supernatant is stopped, the bottoming out of the solid matter is started by means for bottoming out the solid matter, and after a predetermined time has elapsed after the start of bottoming out of the solid matter, the bottoming out of the solid matter is performed. The process of stopping,
To prepare for.

本発明の固形物の製造方法は、
被処理液を加熱濃縮して濃縮液を得る濃縮工程と、
前記濃縮液を冷却して固形物を析出させて、該固形物を含むスラリーを得る冷却工程と、
前記スラリーをろ過して、前記固形物を回収するろ過工程と、
前記ろ過工程で得られ、ろ過漏れした固形物を含むろ液を、沈降槽に投入し、該ろ液中の固形物を前記沈降槽の底部に沈殿させ、かつ、前記沈降槽の底部に沈殿した固形物を抜き出して、前記冷却工程以前に繰り返す工程と、
を備える。
The method for producing a solid substance of the present invention is
A concentration process in which the liquid to be treated is heated and concentrated to obtain a concentrated liquid,
A cooling step of cooling the concentrate to precipitate a solid substance and obtaining a slurry containing the solid substance.
A filtration step of filtering the slurry to recover the solid matter,
The filtrate containing the solid matter obtained in the filtration step and leaked from filtration is put into a settling tank, and the solid matter in the filtrate is settled at the bottom of the settling tank and settled at the bottom of the settling tank. The process of extracting the solidified material and repeating it before the cooling process,
To prepare for.

特に、本発明の固形物の回収方法では、前記沈降槽を用いた工程において、本発明の沈降槽の制御方法を用いる。 In particular, in the solid matter recovery method of the present invention, the control method of the settling tank of the present invention is used in the step using the settling tank.

前記沈降槽を2基以上設け、該沈降槽のうちのいずれか1基への前記ろ液の投入と、前記沈降槽のうちの別の少なくとも1基での前記固形物の沈殿および/または抜き出しとを同時に行うことが好ましい。 Two or more of the settling tanks are provided, and the filtrate is charged into any one of the settling tanks, and the solid matter is settled and / or extracted in at least one of the settling tanks. It is preferable to perform and at the same time.

本発明により、ろ過器からろ過漏れした微細な固形物を含有するろ液を、所定時間、沈降槽にて滞留させることで、沈降分離により微細な固形物を沈降槽の底部に沈殿させ、沈降槽の底部に沈殿した固形物を、冷却結晶槽または濃縮槽に繰り返して、粒成長を経て、再びろ過することにより、固形物が系外に排出されることを抑制し、効率的に固形物を回収することができる。よって、被処理液からの固形物の回収率を飛躍的に向上させ、固形物あたりの製造コストを低減させることが可能となる。 According to the present invention, a filtrate containing fine solids leaked from a filter is retained in a settling tank for a predetermined time, so that the fine solids are settled at the bottom of the settling tank by sedimentation separation and settled. By repeating the solid matter settled at the bottom of the tank in a cooling crystal tank or a concentration tank, through grain growth, and filtering again, the solid matter is suppressed from being discharged to the outside of the system, and the solid matter is efficiently solidified. Can be recovered. Therefore, it is possible to dramatically improve the recovery rate of the solid matter from the liquid to be treated and reduce the manufacturing cost per solid matter.

図1は、本発明の固形物の回収装置を示す、設備フロー図である。FIG. 1 is an equipment flow diagram showing a solid matter recovery device of the present invention. 図2は、本発明の沈降槽を示す概略断面図である。FIG. 2 is a schematic cross-sectional view showing the settling tank of the present invention.

本発明は、銅の電解精製における脱銅終液からニッケルを粗硫酸ニッケルとして分離回収する脱ニッケル工程など、被処理液から固形物を回収する工程に関する。このような被処理液から固形物を回収する工程では、図1に示すように、基本的には、被処理液6を加熱濃縮して濃縮液7を得るための濃縮槽1と、濃縮槽1から送られた濃縮液7を冷却して固形物9を析出させて、固形物9を含むスラリー8を得るための冷却結晶槽2と、スラリー8をろ過して、固形物9を回収するろ過器3とを備える。 The present invention relates to a step of recovering a solid substance from a liquid to be treated, such as a denickel step of separating and recovering nickel as crude nickel sulfate from the decopperating final liquid in electrolytic refining of copper. In such a step of recovering a solid substance from a liquid to be treated, as shown in FIG. 1, basically, a concentration tank 1 for heating and concentrating the liquid to be treated 6 to obtain a concentrate 7 and a concentration tank 1 are used. The concentrated liquid 7 sent from 1 is cooled to precipitate the solid matter 9, and the cooling crystal tank 2 for obtaining the slurry 8 containing the solid matter 9 and the slurry 8 are filtered to recover the solid matter 9. A filter 3 is provided.

濃縮槽1には、被処理液6の沸点以上の温度で被処理液6を加熱可能であれば、任意の濃縮槽を適用することができる。たとえば、電気蒸発槽が適用可能である。電気蒸発槽は、槽内に、通電可能で、かつ、被処理液に浸漬される黒鉛電極棒が挿入配置されており、この黒鉛電極棒を介して、被処理液6に通電し、被処理液6をジュール熱により加熱して水分を蒸発させて、濃縮液7を得る。加熱温度は、被処理液の種類に応じるが、脱銅終液の場合は、約150℃~200℃の範囲にある温度とすることが好ましい。濃縮槽1としては、その他、重油バーナを用いて、被処理液を直接あるいは槽の周囲から間接的に加熱可能な構造も採り得る。 Any concentrating tank can be applied to the concentrating tank 1 as long as the liquid to be treated 6 can be heated at a temperature equal to or higher than the boiling point of the liquid to be treated 6. For example, an electric evaporator is applicable. In the electric evaporation tank, a graphite electrode rod that can be energized and is immersed in the liquid to be treated is inserted and arranged in the tank, and the liquid to be treated 6 is energized through the graphite electrode rod to be treated. The liquid 6 is heated by Joule heat to evaporate the water content to obtain a concentrated liquid 7. The heating temperature depends on the type of the liquid to be treated, but in the case of the decopperating final liquid, it is preferably a temperature in the range of about 150 ° C to 200 ° C. In addition, as the concentrating tank 1, a structure capable of heating the liquid to be treated directly or indirectly from the periphery of the tank by using a heavy oil burner can be adopted.

冷却結晶槽2についても、濃縮液7に含まれる溶質の種類に応じて、固形物9が十分に析出する温度、たとえば粗硫酸ニッケルの回収の場合には約50℃まで、濃縮液7を冷却可能な任意の構造を採り得る。たとえば、槽の周囲あるいは槽内にジャケットや蛇管を設置して、これらに冷媒を通す構造が、冷却結晶槽2に適用可能である。 Also in the cooling crystal tank 2, the concentrated solution 7 is cooled to a temperature at which the solid substance 9 is sufficiently precipitated, for example, about 50 ° C. in the case of recovery of crude nickel sulfate, depending on the type of solute contained in the concentrated solution 7. Any possible structure can be taken. For example, a structure in which a jacket or a serpentine tube is installed around or in the tank and a refrigerant is passed through them is applicable to the cooling crystal tank 2.

ろ過器3についても、自然ろ過、減圧ろ過、加圧ろ過、遠心ろ過などを用いたろ過器を用いることができる。また、ろ過器3に用いられるろ材としては、ろ布、ろ紙、メッシュスクリーンなどを用いることができる。ろ過器3としては、たとえば、真空ろ過器、遠心分離機、遠心沈降機などを用いることができるが、粗硫酸ニッケルの回収の場合には、通常、ろ過器3として、真空ろ過器が適用されている。 As for the filter 3, a filter using natural filtration, vacuum filtration, pressure filtration, centrifugal filtration, or the like can be used. Further, as the filter medium used in the filter 3, a filter cloth, a filter paper, a mesh screen or the like can be used. As the filter 3, for example, a vacuum filter, a centrifuge, a centrifuge, or the like can be used, but in the case of recovery of crude nickel sulfate, a vacuum filter is usually applied as the filter 3. ing.

真空ろ過器の場合、ろ過器3において粗硫酸ニッケルなどの固形物9が回収され、ろ液10は、真空ポンプに吸引されて、通常はレシーバタンク4に貯留されて、適宜払い出される。 In the case of a vacuum filter, the solid substance 9 such as crude nickel sulfate is recovered in the filter 3, and the filtrate 10 is sucked into the vacuum pump, usually stored in the receiver tank 4, and discharged as appropriate.

本発明は、従来の装置に設けられていた、レシーバタンク4に代替して、あるいは、レシーバタンク4に追加して、沈降槽5が設けられている点に特徴がある。ろ過器3からろ過漏れした微細な固形物9aを含有するろ液10を、直接あるいはレシーバタンク4を介して、沈降槽5に投入し、微細な固形物9aを沈降槽5の底部14に沈殿させて、沈降槽5の底部14に沈殿した固形物9aを、底抜きして冷却結晶槽2または濃縮槽1に繰り返す。 The present invention is characterized in that a settling tank 5 is provided in place of or in addition to the receiver tank 4 provided in the conventional apparatus. The filtrate 10 containing the fine solid matter 9a that has leaked from the filter 3 is charged into the settling tank 5 directly or via the receiver tank 4, and the fine solid matter 9a is settled on the bottom 14 of the settling tank 5. Then, the solid material 9a settled in the bottom 14 of the settling tank 5 is bottomed out and repeated in the cooling crystal tank 2 or the concentration tank 1.

従来、ろ過器3から送られたろ液10は、レシーバタンク4に貯留され、適宜、ろ液10を全量払い出すか、あるいはその一部をそのまま冷却結晶槽2に返送していた。これに対して本発明では、沈降槽5においてろ液10を十分な時間保持して、微細な固形物9aを沈殿させ、沈殿した固形物9aを底抜きして、冷却結晶槽2または濃縮槽1に返送し、固形物9aの沈殿により生じた上澄み11のみを系外に一旦払い出して、電解液に添加して酸濃度の調整などに使用することができる。これにより、冷却結晶槽2または濃縮槽1への供給量を過剰にすることなく、主として微細な固形物9aを、系内循環により効果的に回収することができ、被処理液6からの固形物の回収率を飛躍的に向上させている。 Conventionally, the filtrate 10 sent from the filter 3 is stored in the receiver tank 4, and the entire amount of the filtrate 10 is discharged as appropriate, or a part of the filtrate 10 is returned to the cooling crystal tank 2 as it is. On the other hand, in the present invention, the filtrate 10 is held in the settling tank 5 for a sufficient time to precipitate the fine solid matter 9a, and the settled solid matter 9a is bottomed out to form a cooling crystal tank 2 or a concentration tank. It can be returned to No. 1 and only the supernatant 11 produced by the precipitation of the solid substance 9a can be once discharged out of the system and added to the electrolytic solution to be used for adjusting the acid concentration or the like. As a result, mainly fine solids 9a can be effectively recovered by in-system circulation without excessively supplying the cooling crystal tank 2 or the concentration tank 1, and the solids from the liquid to be treated 6 can be recovered. The recovery rate of goods has been dramatically improved.

本発明の実施形態の一例に係る沈降槽5の基本的な構造は、図2に示すように、槽本体13と、微細な固形物9aが沈殿する底部14と、ろ過器3あるいはレシーバタンク4などの上流側からろ液10を受け入れるためのろ液受け入れ用インレット15と、上澄み抜き出し用アウトレット16と、底部14に設けられた固形物底抜き用アウトレット17と、上澄み抜き出し用アウトレット16に接続される槽内配管18と、ろ液受け入れ用インレット15にろ液を供給する手段20と、上澄み抜き出し用アウトレット16からろ液10の沈降分離後の上澄み11を抜き出す手段21と、固形物底抜き用アウトレット17から沈殿した固形物9aを底抜きする手段12と、を備える。 As shown in FIG. 2, the basic structure of the settling tank 5 according to an example of the embodiment of the present invention is a tank body 13, a bottom 14 on which fine solids 9a settle, a filter 3 or a receiver tank 4. It is connected to an inlet 15 for receiving a filtrate for receiving the filtrate 10 from the upstream side such as, an outlet 16 for extracting the supernatant, an outlet 17 for removing the solid bottom provided at the bottom 14, and an outlet 16 for extracting the supernatant. The in-tank pipe 18, the means 20 for supplying the filtrate to the filtrate receiving inlet 15, the means 21 for extracting the supernatant 11 after the filtrate 10 is settled and separated from the supernatant extraction outlet 16, and the means for removing the bottom of the solid matter. A means 12 for bottoming out the solid substance 9a settled from the outlet 17 is provided.

沈降槽5の全体的な形状および大きさは、その底部14が、固形物底抜き用アウトレット17に向けて下傾している限り、基本的には周囲の設備などに応じた大きさでよく、任意である。固形物底抜き用アウトレット17に向けて下傾している底部14は、下へ行くほど狭まる形状である。このような底部14の形状は、底部14の容積のうち固形物底抜き用アウトレット17の真上部分の占める容積の割合が高まるので、沈殿した固形物9aを固形物底抜き用アウトレット17から抜き出すのに有利である。 The overall shape and size of the settling tank 5 may basically be a size according to the surrounding equipment and the like as long as the bottom portion 14 is tilted downward toward the outlet 17 for removing the bottom of the solid material. , Arbitrary. The bottom portion 14, which is tilted downward toward the outlet 17 for removing the bottom of the solid material, has a shape that narrows toward the bottom. With such a shape of the bottom 14, the ratio of the volume occupied by the portion directly above the outlet 17 for removing the bottom of the solid material from the volume of the bottom 14 increases, so that the precipitated solid material 9a is extracted from the outlet 17 for removing the bottom of the solid material. It is advantageous for.

沈降槽5の底部14の傾斜は、水平面からの傾斜角度を40度以上、好ましくは45度以上とすることにより、底部14に沈殿した固形物9aを速やかに底部14の最底部に寄せることができ、沈殿した固形物9aをスムーズに底抜きすることが可能となる。一方、底部14の傾斜について、水平面からの傾斜角度が40度未満では、底部14に沈殿した固形物9aが、底部14の最底部に流動するのに時間を要し、沈殿した固形物9aの粒子形状によっては底部14の底面に堆積してしまう可能性がある。沈降槽5の底部14に固形物9aの堆積が生じると、槽容量が減少して、ろ液10の滞留時間が短縮される、固形物9aが沈降槽5の内面に固着する、抜き取りラインが詰まるなどの問題が発生する原因となる。底部14の傾斜についての水平面からの傾斜角度の上限は、特にないが、沈降槽5の容積を確保する観点から60度以下とすることが好ましい。 The inclination of the bottom 14 of the settling tank 5 is such that the inclination angle from the horizontal plane is 40 degrees or more, preferably 45 degrees or more, so that the solid material 9a settled on the bottom 14 can be quickly brought to the bottom of the bottom 14. It is possible to smoothly bottom out the precipitated solid substance 9a. On the other hand, regarding the inclination of the bottom portion 14, when the inclination angle from the horizontal plane is less than 40 degrees, it takes time for the solid matter 9a settled on the bottom portion 14 to flow to the bottommost portion of the bottom portion 14, and the settled solid matter 9a Depending on the particle shape, it may deposit on the bottom surface of the bottom portion 14. When the solid matter 9a is deposited on the bottom 14 of the settling tank 5, the tank capacity is reduced and the residence time of the filtrate 10 is shortened, the solid matter 9a is fixed to the inner surface of the settling tank 5, and a sampling line is provided. It may cause problems such as clogging. There is no particular upper limit to the inclination angle of the bottom 14 from the horizontal plane, but it is preferably 60 degrees or less from the viewpoint of securing the volume of the settling tank 5.

沈降槽5の槽本体13の形状が円筒形である場合には、底部14の形状は、コーン型(円錐)もしくは臼状の形状を有することができる。このような形状により、底部14の中央部に最底部が配置され、底部14の中央部に沈殿した固形物9aが偏りなく集約され、底部14の中央部から固形物9aを底抜きすることが容易に可能となる。 When the shape of the tank body 13 of the settling tank 5 is cylindrical, the shape of the bottom 14 can have a cone shape (conical) or a mortar shape. Due to such a shape, the bottommost portion is arranged in the central portion of the bottom portion 14, and the solid matter 9a settled in the central portion of the bottom portion 14 is uniformly aggregated, and the solid matter 9a can be bottomed out from the central portion of the bottom portion 14. It is easily possible.

ろ液受け入れ用インレット15は、槽本体13の気相部に配置することにより、固形物9aによる閉塞を抑制することができる。具体的には、ろ液受け入れ用インレット15は、槽本体13の上端部あるいは天井部の任意の位置に設けられるが、槽本体13が天井部を有さない場合には、槽本体13の開口がろ液受け入れ用インレット15に相当する。ろ液10の受け入れ上限は、ろ液受け入れ用インレット15よりも下方に設定するのが適切である。 By arranging the filtrate receiving inlet 15 in the gas phase portion of the tank body 13, it is possible to suppress blockage due to the solid substance 9a. Specifically, the filtrate receiving inlet 15 is provided at an arbitrary position on the upper end portion of the tank body 13 or the ceiling portion, but when the tank body 13 does not have a ceiling portion, the opening of the tank body 13 is provided. It corresponds to the inlet 15 for receiving the filtrate. It is appropriate to set the upper limit of acceptance of the filtrate 10 below the inlet 15 for receiving the filtrate.

ろ液受け入れ用インレット15は、ろ過器3あるいはレシーバタンク4などの上流側からろ液10を移送するための、ろ液供給手段20に接続される。ろ液供給手段20は、配管、および、真空ポンプ、定量ポンプ、ラインポンプ、その他の公知のポンプを含む流体移送装置により構成される。本例では、真空ろ過を行うために、レシーバタンク4に設けられた真空ポンプ(VP)により、ろ過器3からろ液10が引き抜かれ、レシーバタンク4に貯留したろ液10を適宜、配管を通じて沈降槽5に移送している。このため、実質的に、レシーバタンク4に設けられた真空ポンプ(VP)が流体移送装置として機能する。なお、本発明において、ろ液供給手段20の配管の下流側一端部が、槽本体13の開口内または開口の鉛直上方に配置されている場合にも、ろ液供給手段20とろ液受け入れ用インレット15が接続しているものと解釈される。 The filtrate receiving inlet 15 is connected to the filtrate supply means 20 for transferring the filtrate 10 from the upstream side such as the filter 3 or the receiver tank 4. The filtrate supply means 20 includes piping and a fluid transfer device including a vacuum pump, a metering pump, a line pump, and other known pumps. In this example, the filtrate 10 is drawn from the filter 3 by a vacuum pump (VP) provided in the receiver tank 4 for vacuum filtration, and the filtrate 10 stored in the receiver tank 4 is appropriately passed through a pipe. It is transferred to the settling tank 5. Therefore, substantially, the vacuum pump (VP) provided in the receiver tank 4 functions as a fluid transfer device. In the present invention, even when the downstream end of the pipe of the filtrate supply means 20 is arranged in the opening of the tank body 13 or vertically above the opening, the filtrate supply means 20 and the filtrate receiving inlet It is interpreted that 15 is connected.

上澄み抜き出し用アウトレット16は、槽本体13のうち、ろ液10の受け入れ上限と、底部14の上端部(槽本体13と底部14との境界)との間の任意の箇所に設けられる。上澄み抜き出し用アウトレット16は、上澄み抜き出し手段21に接続されている。 The supernatant extraction outlet 16 is provided at an arbitrary position in the tank body 13 between the upper limit of receiving the filtrate 10 and the upper end portion of the bottom portion 14 (the boundary between the tank body 13 and the bottom portion 14). The supernatant extraction outlet 16 is connected to the supernatant extraction means 21.

槽本体13の内部では、槽内配管18の下流側の端部(上端部)が上澄み抜き出し用アウトレット16に接続されている。槽内配管18の上流側の端部(下端部)は、底部14の水平方向中間部かつ高さ方向中間部に配置される。すなわち、槽内配管18の下端部開口を、底部14内の当該位置に配置することで上澄みを下から一度に回収でき、かつ、ろ液10の沈降分離後に壁面に堆積している固形物9aを避けて上澄みを回収できる。具体的には、槽内配管18の配置は、底部14の形状や一回の処理により生じる固形物9aの量などに応じて適宜設定される。槽内配管18により、上澄み抜き出し用アウトレット16と底部14の水平方向中間部かつ高さ方向中間部との間が連通され、上澄み11のみが、上澄み抜き出し手段21により系外に抜き出されることが可能となっている。なお、後述するように、非接触式レベルセンサの種類に応じて、必要により、槽内配管18は、上澄み抜き出し用アウトレット16と底部14の上端部との間において、槽本体13の横断面における、非接触式レベルセンサ19がセンシングする範囲と干渉しない位置に配置される。 Inside the tank body 13, the downstream end (upper end) of the in-tank pipe 18 is connected to the supernatant extraction outlet 16. The upstream end (lower end) of the in-tank pipe 18 is arranged at the horizontal intermediate portion and the height intermediate portion of the bottom portion 14. That is, by arranging the lower end opening of the in-tank pipe 18 at the relevant position in the bottom portion 14, the supernatant can be recovered at once from the bottom, and the solid substance 9a deposited on the wall surface after the filtrate 10 is settled and separated. The supernatant can be recovered by avoiding. Specifically, the arrangement of the in-tank pipe 18 is appropriately set according to the shape of the bottom portion 14 and the amount of solid matter 9a generated by one treatment. The in-tank pipe 18 communicates between the supernatant extraction outlet 16 and the horizontal intermediate portion and the height intermediate portion of the bottom portion 14, and only the supernatant 11 is extracted to the outside of the system by the supernatant extraction means 21. It is possible. As will be described later, depending on the type of the non-contact level sensor, the in-tank pipe 18 may be used in the cross section of the tank body 13 between the supernatant extraction outlet 16 and the upper end of the bottom portion 14. , The non-contact level sensor 19 is arranged at a position that does not interfere with the sensing range.

固形物底抜き用アウトレット17を、底部14の最底部に設けることによって、固形物9aを最大限に底抜きすることが可能となっている。底部14がコーン型(円錐)もしくは臼状の形状を有する場合には、固形物底抜き用アウトレット17は、底部14の径方向中央部に設けられる。固形物底抜き用アウトレット17は、固形物底抜き手段12に接続されている。ろ液10の沈降分離で沈殿している固形物9aは、上澄み11の抜き出し後に、固形物底抜き用アウトレット17および固形物底抜き手段12を介して、冷却結晶槽2または濃縮槽1に繰り返される。 By providing the outlet 17 for removing the bottom of the solid material at the bottom of the bottom portion 14, it is possible to remove the bottom of the solid material 9a to the maximum extent. When the bottom portion 14 has a cone-shaped (conical) or mortar-shaped shape, the solid material bottom-extracting outlet 17 is provided at the radial center portion of the bottom portion 14. The solid material bottoming outlet 17 is connected to the solid material bottoming means 12. After extracting the supernatant 11, the solid material 9a precipitated by the sedimentation separation of the filtrate 10 is repeated in the cooling crystal tank 2 or the concentration tank 1 via the solid material bottoming outlet 17 and the solid material bottoming means 12. Is done.

なお、上澄み抜き出し手段21および固形物底抜き手段12についても、ろ液供給手段20と同様に、配管、および、真空ポンプ、定量ポンプ、ラインポンプ、その他の公知のポンプを含む流体移送装置により構成される。 The supernatant extraction means 21 and the solid material bottom extraction means 12 are also composed of piping and a fluid transfer device including a vacuum pump, a metering pump, a line pump, and other known pumps, similarly to the filtrate supply means 20. Will be done.

本発明において、上澄み抜き出し手段21または固形物底抜き手段12を構成する流体移送装置としては、被搬送物や搬送高さなどに応じて適宜選択可能であるが、特に、定量ポンプ23を用いることが好ましい。定量ポンプ23としては、歯車ポンプ、ベローズダイヤフラムを用いた容積式ポンプであるベローズポンプ、プランジャを往復動させて液体を吸い込み側から吐出側に押し出す容積式ポンプであるプランジャポンプ、回転数比例で定量性のあるホースポンプなどを用いることができる。定量ポンプを適用することにより、沈殿した固形物9aの粒度、水分率などによっては、流量が若干変化した場合でも、流量を一定に保つことができる。 In the present invention, the fluid transfer device constituting the supernatant extraction means 21 or the solid material bottom extraction means 12 can be appropriately selected depending on the object to be conveyed, the transfer height, and the like, and in particular, the metering pump 23 is used. Is preferable. The metering pump 23 includes a gear pump, a bellows pump which is a positive displacement pump using a bellows diaphragm, a plunger pump which is a positive displacement pump which reciprocates a plunger to push out liquid from a suction side to a discharge side, and quantifies in proportion to the number of rotations. A hose pump or the like having a property can be used. By applying the metering pump, the flow rate can be kept constant even if the flow rate changes slightly depending on the particle size, water content, etc. of the precipitated solid substance 9a.

本発明の実施形態の一例に係る沈降槽5は、非接触式レベルセンサ19と、タイマー22をさらに備える。 The settling tank 5 according to an example of the embodiment of the present invention further includes a non-contact level sensor 19 and a timer 22.

非接触式レベルセンサ19は、超音波式レベルセンサ、電波式レベルセンサ、および、レーザ式レベルセンサから選択可能である。これらの非接触式レベルセンサ19は、超音波、電波、あるいはレーザが、液面から反射して戻ってくる時間を測定することで、沈降槽5内のろ液のレベルを判定する。非接触式で測定できるため、液体の種類に依存することなく、かつ、ろ液などによる腐食にも強いという特徴を有する。 The non-contact level sensor 19 can be selected from an ultrasonic level sensor, a radio wave level sensor, and a laser level sensor. These non-contact level sensors 19 determine the level of the filtrate in the settling tank 5 by measuring the time when the ultrasonic wave, the radio wave, or the laser is reflected from the liquid surface and returns. Since it can be measured in a non-contact manner, it does not depend on the type of liquid and is resistant to corrosion due to filtrate or the like.

ただし、超音波式レベルセンサおよび電波式レベルセンサは、スポット径が比較的大きいため、沈降槽5の内面の形状や障害物の影響を受けやすい。このため、非接触式レベルセンサ19として、超音波式レベルセンサあるいは電波式レベルセンサを用いる場合には、非接触式レベルセンサ19を、沈降槽5のうち、槽内のセンシング可能な範囲と最上部に設けた不感帯とを、を避けるように槽内配管18を配置する必要がある。 However, since the ultrasonic level sensor and the radio wave level sensor have a relatively large spot diameter, they are easily affected by the shape of the inner surface of the settling tank 5 and obstacles. Therefore, when an ultrasonic level sensor or a radio wave level sensor is used as the non-contact level sensor 19, the non-contact level sensor 19 is the maximum in the settling tank 5 that can be sensed in the tank. It is necessary to arrange the in-tank pipe 18 so as to avoid the dead zone provided in the upper part.

具体的には、槽内配管18のうち、底部14の上端部よりも上側に配置される部分については、槽本体13の内周面に沿って配置し、底部14に配置される部分については、沈殿した固形物9aの表面近傍に配置することが好ましい。この場合、非接触式レベルセンサ19は、沈降槽5の天井部あるいは開口部のうち、中心から径方向に外れた位置に配置して、槽内配管18が非接触式レベルセンサ19のセンシング範囲に入らないようにすることが好ましい。槽内配管18のうち、底部14に配置される部分は、沈殿した固形物9aに近づくほど非接触式レベルセンサ19がセンシングする範囲に入る可能性が小さくなる一方で、沈殿した固形物9aから遠ざかるほど沈殿した固形物9aに埋没する可能性が小さくなる。そこで、槽内配管18のうち、底部14に配置される部分は、非接触式レベルセンサ19がセンシングする範囲と干渉せず、かつ、沈殿した固形物9aに隙間なく埋没することを防止できる位置に配置される。 Specifically, of the in-tank pipe 18, the portion arranged above the upper end portion of the bottom portion 14 is arranged along the inner peripheral surface of the tank main body 13, and the portion arranged on the bottom portion 14 is arranged. , It is preferable to arrange it in the vicinity of the surface of the precipitated solid substance 9a. In this case, the non-contact level sensor 19 is arranged at a position radially off the center of the ceiling or opening of the settling tank 5, and the in-tank pipe 18 is in the sensing range of the non-contact level sensor 19. It is preferable not to enter. The portion of the in-tank pipe 18 arranged at the bottom 14 is less likely to fall within the sensing range of the non-contact level sensor 19 as it approaches the settled solid material 9a, but from the settled solid material 9a. The farther away, the less likely it is to be buried in the precipitated solid 9a. Therefore, the portion of the in-tank pipe 18 arranged at the bottom 14 does not interfere with the range sensed by the non-contact level sensor 19, and is at a position where it can be prevented from being buried in the settled solid 9a without a gap. Is placed in.

一方、非接触式レベルセンサ19として、レーザ式レベルセンサを用いる場合には、レーザ式レベルセンサのスポット径が小さいため、槽内配管18と非接触式レベルセンサ19の配置上の制約は緩和されるが、管理コストも含めて高コストであるため、その適用は限定される可能性がある。 On the other hand, when a laser level sensor is used as the non-contact level sensor 19, since the spot diameter of the laser level sensor is small, restrictions on the arrangement of the in-tank pipe 18 and the non-contact level sensor 19 are relaxed. However, its application may be limited due to its high cost including management cost.

なお、レベルセンサには、浮きなどを利用したフロート式レベルセンサ、電極間に電圧を印加して液体の有無による電流の流れを検知する電極式レベルセンサなどの、接触式レベルセンサもあるが、ろ液中の固形物の固着による影響が生じる。たとえば、電極式レベルセンサでは、電極棒の先端部に沈殿した固形物が固着して、短絡した状態となって、正確な検知ができない場合がある。よって、本発明では、これらの接触式レベルセンサを用いることは実質的に困難である。 The level sensor also includes a contact type level sensor such as a float type level sensor that uses a float and an electrode type level sensor that applies a voltage between electrodes to detect the current flow depending on the presence or absence of liquid. The effect of sticking solids in the filtrate occurs. For example, in an electrode type level sensor, a solid matter settled on the tip of an electrode rod may be stuck and short-circuited, so that accurate detection may not be possible. Therefore, in the present invention, it is practically difficult to use these contact level sensors.

非接触式レベルセンサ19によるろ液10のレベルのセンシングは、センシング可能な範囲が沈降槽5の底部14の上端部から上方向に広がっている。これは、本発明の実施形態の一例では、底部が水平面から40度以上の傾斜角度を有するように傾斜しているため、ろ液10のレベルが底部14の上端部の高さ位置を下回ると、適切なセンシングができないためである。特に、底部14の形状がコーン型(円錐)もしくは臼状の形状を有する場合、底部14が非接触式レベルセンサ19の検知距離および検知角内にあると、非接触式レベルセンサ19が誤指示を行う可能性が高い。このため、非接触式レベルセンサ19は、ろ液10のレベルが底部14の上端部の高さに達すると同時に、そのセンシングを終了するように設定する、あるいは、次述するタイマー22を作動させて、タイマー22を用いた工程管理に移行するようにすることが望ましい。 The sensing of the level of the filtrate 10 by the non-contact level sensor 19 extends upward from the upper end of the bottom 14 of the settling tank 5. This is because, in one example of the embodiment of the present invention, the bottom portion is inclined so as to have an inclination angle of 40 degrees or more from the horizontal plane, so that the level of the filtrate 10 is lower than the height position of the upper end portion of the bottom portion 14. This is because proper sensing cannot be performed. In particular, when the shape of the bottom portion 14 has a cone-shaped (conical) or mortar-shaped shape, if the bottom portion 14 is within the detection distance and detection angle of the non-contact level sensor 19, the non-contact level sensor 19 erroneously indicates. Is likely to do. Therefore, the non-contact level sensor 19 is set to end the sensing at the same time when the level of the filtrate 10 reaches the height of the upper end portion of the bottom portion 14, or the timer 22 described below is activated. Therefore, it is desirable to shift to process control using the timer 22.

本発明の実施形態の一例では、非接触式レベルセンサ19に加えて、タイマー22を設置している。本例では、底部14におけるろ液10のレベルを測定するかわりに、タイマー22を用いて、底部14に存在する上澄み11の抜き取り時間と固形物9aの底抜き時間を制御している。 In an example of the embodiment of the present invention, a timer 22 is installed in addition to the non-contact level sensor 19. In this example, instead of measuring the level of the filtrate 10 at the bottom 14, a timer 22 is used to control the extraction time of the supernatant 11 existing in the bottom 14 and the bottom extraction time of the solid material 9a.

すなわち、タイマー22が、ろ液10のレベルが、底部14のうち、沈殿した固形物9aが存在する領域の高さよりわずかに上方の位置、言い換えると、槽内配管18の上流側の端部(下端部)の開口が存在する高さ位置に到達するまでを、時間によって制御して、上澄み抜き出し手段21を構成するポンプが空転する前にその作動を停止させる。このように、タイマー22は、ろ液10のレベルが所定の位置となった時点で、たとえば非接触式レベルセンサ19によるセンシングにより、ろ液10のレベルが底部14の上端部に達した時点で時間測定を開始して、ろ液10のレベルが槽内配管18の下端部に到達する頃(直前)である所定時間経過時に、上澄み抜き出し手段21の作動を停止する。 That is, the timer 22 is located at a position where the level of the filtrate 10 is slightly above the height of the region of the bottom 14 where the precipitated solid 9a is present, in other words, the upstream end of the in-tank pipe 18. The time until the opening of the lower end portion) reaches the existing height position is controlled by time, and the operation of the pump constituting the supernatant extraction means 21 is stopped before idling. As described above, the timer 22 is set when the level of the filtrate 10 reaches a predetermined position, for example, when the level of the filtrate 10 reaches the upper end of the bottom 14 by sensing by the non-contact level sensor 19. When the time measurement is started and a predetermined time elapses when the level of the filtrate 10 reaches the lower end of the in-tank pipe 18 (immediately before), the operation of the supernatant extraction means 21 is stopped.

タイマー22は、次に、固形物底抜き手段12を作動させて、固形物9aの底抜きを開始し、固形物9aの底抜きの開始後の所定時間経過後、すなわち、固形物9aが十分に底抜きされるが、固形物底抜き手段12を構成するポンプが空転により過熱する前に、固形物底抜き手段12の作動を停止する。 Next, the timer 22 activates the solid matter bottoming means 12 to start bottoming out of the solid matter 9a, and after a predetermined time elapses after the start of bottoming out of the solid matter 9a, that is, the solid matter 9a is sufficient. However, the operation of the solid material bottoming means 12 is stopped before the pump constituting the solid material bottoming means 12 overheats due to idling.

タイマーの作動時間については、上澄み抜き出し手段21あるいは固形物底抜き手段12を構成する流体移送装置の構成に応じて、沈殿した固形物9aと上澄み11を抜き出すのに要する時間をそれぞれ調べることにより、適宜決定される。特に、流体移送装置として、定量ポンプを用いた場合には、ろ液10の容量として、ろ液10のレベルが所定の位置(底部14の上端部)にある時点から槽内配管18の下端部までの容量、並びに、槽内配管18の下端部から底部14の最底部までの容量は計算により求めることができるから、タイマーの作動時間を決めるための予備試験は不要となる。 Regarding the operating time of the timer, the time required to extract the precipitated solid substance 9a and the supernatant 11 is examined according to the configuration of the fluid transfer device constituting the supernatant extraction means 21 or the solid substance bottom extraction means 12, respectively. It will be decided as appropriate. In particular, when a metering pump is used as the fluid transfer device, the lower end of the in-tank pipe 18 starts from the time when the level of the filtrate 10 is at a predetermined position (upper end of the bottom 14) as the capacity of the filtrate 10. Since the capacity up to and the capacity from the lower end of the in-tank pipe 18 to the bottom of the bottom 14 can be obtained by calculation, a preliminary test for determining the operating time of the timer is unnecessary.

非接触式レベルセンサ19およびタイマー22による、ろ液供給手段20、上澄み抜き出し手段21、および、固形物底抜き手段12の作動の管理については、非接触式レベルセンサ19およびタイマー22が有するスイッチ機構を利用することができる。あるいは、コンピュータ、制御機器などを別に設けて、これらを介して、非接触式レベルセンサ19、タイマー22、ろ液供給手段20、上澄み抜き出し手段21、および、固形物底抜き手段12の全体の作動を管理および制御することもできる。 The non-contact level sensor 19 and the timer 22 have a switch mechanism for controlling the operation of the filtrate supply means 20, the supernatant extraction means 21, and the solid matter bottom extraction means 12 by the non-contact level sensor 19 and the timer 22. Can be used. Alternatively, a computer, a control device, or the like is separately provided, and the non-contact level sensor 19, the timer 22, the filtrate supply means 20, the supernatant extraction means 21, and the solid material bottom removal means 12 are operated as a whole through these. Can also be managed and controlled.

本発明の沈降槽は、以下のように制御される。 The settling tank of the present invention is controlled as follows.

まず、ろ液供給手段20により、ろ液10を受け入れ、非接触式レベルセンサ19が、ろ液受け入れ上限まで、ろ液10のレベルが到達したことを検知すると、ろ液供給手段20の作動を停止して、ろ液10の受け入れを終了する。非接触式レベルセンサ19は、少なくとも槽本体13におけるろ液10のレベルを検知できるように配置される。非接触式レベルセンサ19の種類に応じて、センシング範囲に不感帯が存在する場合には、少なくとも、槽本体13の最上部に存在する不感帯の最低レベルと底部14の上端部との高さ方向範囲についてセンシング可能に配置される。なお、この場合、ろ液受け入れ上限は、不感帯の最低レベルよりも下方の位置、好ましくは不感帯の最低レベルのわずか下方の位置に設定される。 First, the filtrate supply means 20 receives the filtrate 10, and when the non-contact level sensor 19 detects that the level of the filtrate 10 has reached the upper limit of the filtrate acceptance, the filtrate supply means 20 is activated. Stop and finish accepting the filtrate 10. The non-contact level sensor 19 is arranged so as to be able to detect at least the level of the filtrate 10 in the tank body 13. Depending on the type of non-contact level sensor 19, if there is a dead zone in the sensing range, at least the height range between the lowest level of the dead zone present at the top of the tank body 13 and the top of the bottom 14. Is arranged so that it can be sensed. In this case, the upper limit of the filtrate acceptance is set at a position below the lowest level of the dead zone, preferably slightly below the lowest level of the dead zone.

その後、ろ液10の所定の滞留時間を設けて、沈降槽5内でろ液10を沈降分離させ、固形物9aを沈殿させる。 After that, the filtrate 10 is settled and separated in the settling tank 5 with a predetermined residence time, and the solid 9a is settled.

所定の滞留時間経過後、上澄み抜き出し手段21により、沈降分離によって生じた上澄み11の抜き出しを開始し、非接触式レベルセンサ19が、少なくとも、そのセンシングに関する高さ方向範囲の下限、すなわち、底部14の最上部まで、ろ液10のレベルのセンシングを継続する。 After the lapse of a predetermined residence time, the supernatant extraction means 21 starts extracting the supernatant 11 generated by sedimentation separation, and the non-contact level sensor 19 is at least the lower limit of the height range with respect to its sensing, that is, the bottom 14. Continue sensing the level of filtrate 10 to the top of the.

非接触式レベルセンサ19によるセンシングの停止と同時あるいはろ液10のレベルが所定の位置となった時点において、タイマー22が始動し、上澄み11の抜き出しを継続し、ろ液10のレベルが槽内配管18の下端部に到達する頃(直前)である所定時間経過後に、上澄み抜き出し手段21の作動を停止し、上澄み11の抜き出しを終了する。 Simultaneously with the stop of sensing by the non-contact level sensor 19, or when the level of the filtrate 10 reaches a predetermined position, the timer 22 starts, the supernatant 11 is continuously extracted, and the level of the filtrate 10 is in the tank. After a predetermined time elapses when the lower end of the pipe 18 is reached (immediately before), the operation of the supernatant extraction means 21 is stopped, and the extraction of the supernatant 11 is completed.

上澄みの抜き出しの停止と実質的に同時に、固形物底抜き手段12が作動し、固形物底抜き手段12が、タイマー22が停止するまで、所定時間、固形物9aの底抜きを継続する。 Substantially at the same time as the stoppage of the extraction of the supernatant, the solid matter bottoming out means 12 operates, and the solid matter bottoming out means 12 continues the bottoming out of the solid matter 9a for a predetermined time until the timer 22 is stopped.

このようにして、固形物底抜き手段12によって、沈降槽5内で沈殿濃縮された固形物9aをスラリー状態のまま、前工程の所定の場所、すなわち、冷却結晶槽2あるいは濃縮槽1に繰り返す。固形物9aの全量を抜き終えた後、上述のように、タイマー22が停止して、固形物底抜き手段12の作動を停止させて、ろ液10の沈降分離並びに上澄み11と固形物9aの抜き出しの1サイクルを完了させる。 In this way, the solid matter 9a precipitated and concentrated in the settling tank 5 is repeated in a predetermined place in the previous step, that is, the cooling crystal tank 2 or the concentration tank 1 in a slurry state by the solid matter bottoming means 12. .. After the total amount of the solid material 9a has been removed, the timer 22 is stopped to stop the operation of the solid material bottoming means 12, and the filtrate 10 is separated by sedimentation and the supernatant 11 and the solid material 9a are separated. Complete one cycle of extraction.

本発明において、沈降槽5において、粗硫酸ニッケルなどの微細な固形物9aの沈殿を得るためには、微細な固形物を含有するろ液10を、所定の時間沈降させることが重要である。沈降槽5に送られたろ液10から微細な固形物9aを沈降させて、固形物9aの沈殿を十分に得るためには、沈降槽5へのろ液10の投入を停止してからの沈降槽5での滞留時間を15分以上とすることが好ましく、固形物9aの90%以上を確実に沈殿させるためには、沈降槽5での滞留時間を20分以上確保することが好ましい。 In the present invention, in order to obtain the precipitation of fine solid matter 9a such as crude nickel sulfate in the settling tank 5, it is important to settle the filtrate 10 containing the fine solid matter for a predetermined time. In order to settle the fine solid substance 9a from the filtrate 10 sent to the settling tank 5 and sufficiently obtain the precipitate of the solid substance 9a, the settling after stopping the charging of the filtrate 10 into the settling tank 5. The residence time in the tank 5 is preferably 15 minutes or more, and in order to reliably precipitate 90% or more of the solid matter 9a, it is preferable to secure the residence time in the sedimentation tank 5 for 20 minutes or more.

この滞留時間は、15分以上、好ましくは20分以上であれば上限は限定されないが、この滞留時間が長くなるほど時間当たり処理液量が低下する。よって、ろ過器3から送り出されたろ液10の保有に大型の沈降槽5が必要とされる。これらの事情を勘案すると、滞留時間は50分以下、好ましくは、40分以下とすることが望ましい。 The upper limit of the residence time is not limited as long as it is 15 minutes or more, preferably 20 minutes or more, but the longer the residence time, the lower the amount of the treatment liquid per hour. Therefore, a large settling tank 5 is required to hold the filtrate 10 sent out from the filter 3. Considering these circumstances, it is desirable that the residence time is 50 minutes or less, preferably 40 minutes or less.

また、本発明においては、沈降槽5へのろ液10の受け入れと、固形物9aの沈降および底抜きとを明確に区別して行うこと、すなわち、沈降槽5へのろ液10の投入を停止した後で、固形物9aの沈降および底抜きを行うことが重要である。本発明を効果的に実施するためには、ろ過器3でろ過されたろ液10を、レシーバタンク4を介して間欠的に沈降槽5に送ることがよい。これによって、ろ過器3でろ過を連続的に行いつつ、すなわち、ろ過器3への通液量を大きく保った状態で、沈降槽5において、ろ液10の受け入れと、固形物9aの沈降および底抜きを時間的に区別して行うことが可能となる。 Further, in the present invention, the acceptance of the filtrate 10 into the settling tank 5 and the sedimentation and bottom removal of the solid material 9a are clearly distinguished, that is, the charging of the filtrate 10 into the settling tank 5 is stopped. After that, it is important to settle and bottom out the solid 9a. In order to effectively carry out the present invention, the filtrate 10 filtered by the filter 3 may be intermittently sent to the settling tank 5 via the receiver tank 4. As a result, in the settling tank 5, the filtrate 10 is received, the solid matter 9a is settled, and the solid matter 9a is settled, while the filtration is continuously performed by the filter 3, that is, the amount of liquid flowing through the filter 3 is kept large. It is possible to distinguish the bottom in terms of time.

さらに、本発明では、沈降槽5は、ろ液10の受け入れ後、あるいは、固形物9aの底抜きおよび上澄み11の抜き出しの前に、ろ液10の沈降分離のみを行う待機時間を設ける機能を有する。沈降槽5のこのような機能が確保できる限り、沈降槽5は1基設置すれば十分である。ただし、十分な滞留時間を確保するには、沈降槽5を2基以上設置することが有効である。たとえば、図1に示すように沈降槽5を2基設けて、第1の工程として、このうちの1基でろ液10の受け入れを行い、別の1基で固形物9aの沈殿および底抜き、並びに、上澄み11の抜き出しを行い、第2の工程として、ろ液10の受け入れを行っていた1基を固形物9aの沈殿および底抜き、並びに、上澄み11の抜き出しに切り替えて、これらを行い、固形物9aの沈殿および底抜き、並びに、上澄み11の抜き出しを行っていた別の1基では、これらの代わりにろ液10の受け入れを行うようにして、第1の工程と第2の工程とをそれぞれ交互に行うことが好ましい。これにより、ろ液10の受け入れ後、あるいは、固形物9aの底抜きおよび上澄み11の抜き出しの前に、ろ液10の沈降分離のみを行う待機時間を十分に設けることが可能となり、固形物9aの沈降および底抜きの時間的な区別が確実になされる。2基以上の沈降槽5へ液を振り分けるには、三方弁を沈降槽5の上流に配置すれよいが、この態様に限らない。 Further, in the present invention, the settling tank 5 has a function of providing a waiting time for only settling and separating the filtrate 10 after receiving the filtrate 10 or before removing the bottom of the solid 9a and extracting the supernatant 11. Have. As long as such a function of the settling tank 5 can be ensured, it is sufficient to install one settling tank 5. However, in order to secure a sufficient residence time, it is effective to install two or more sedimentation tanks 5. For example, as shown in FIG. 1, two settling tanks 5 are provided, and as the first step, one of them accepts the filtrate 10 and the other one setstles and bottoms out the solid material 9a. In addition, the supernatant 11 was extracted, and as a second step, one unit that had received the filtrate 10 was switched to the precipitation and bottom extraction of the solid material 9a, and the extraction of the supernatant 11 to perform these operations. In another unit that was performing the precipitation and bottom removal of the solid material 9a and the extraction of the supernatant 11, the filtrate 10 was accepted instead of these, and the first step and the second step were performed. It is preferable to perform each of these alternately. This makes it possible to provide a sufficient waiting time for only the sedimentation separation of the filtrate 10 after receiving the filtrate 10 or before the bottom removal of the solid 9a and the extraction of the supernatant 11. A temporal distinction between settling and bottoming out is made. In order to distribute the liquid to two or more settling tanks 5, a three-way valve may be arranged upstream of the settling tank 5, but the present invention is not limited to this mode.

ろ液10の滞留時間を十分に確保でき、かつ、ろ液10の受け入れと、固形物9aの沈降および底抜き、並びに、上澄み11の抜き出しとが明確に区別され、かつ、固形物9aの沈降および底抜きが時間的に区別して行われる限り、レシーバタンク4を省略することが可能である。たとえば、ろ液10の滞留時間と、固形物9aの底抜きおよび上澄み11の抜き出しの時間との合計が、ろ液10の受け入れ時間より短い場合は、レシーバタンク4を省略しても、2基の沈降槽5を切り替えながら、ろ過器3から連続的にろ液10を送り出すことができる。 A sufficient residence time of the filtrate 10 can be secured, and the acceptance of the filtrate 10 and the sedimentation and bottom removal of the solid substance 9a and the extraction of the supernatant 11 are clearly distinguished, and the sedimentation of the solid substance 9a is made. The receiver tank 4 can be omitted as long as the bottoming is performed separately in time. For example, if the total of the residence time of the filtrate 10 and the time for bottoming out the solid 9a and extracting the supernatant 11 is shorter than the receiving time of the filtrate 10, even if the receiver tank 4 is omitted, two units are used. The filtrate 10 can be continuously delivered from the filter 3 while switching the settling tank 5 of the above.

沈降槽5からの固形物9aの底抜きおよび上澄み11の抜き出しを行う工程では、沈降槽5の下部から、固形物底抜き手段12に設けた定量ポンプ23により、固形物9aの沈殿を底抜きして、冷却結晶槽2または濃縮槽1(図1の例では、冷却結晶槽2)への繰り返し、および、上澄み11の沈降槽5の上部からの払い出しを行う。上澄み11は、硫酸を多く含むため、電解液に添加して酸濃度の調整に使うことができる。 In the step of bottoming out the solid matter 9a from the settling tank 5 and extracting the supernatant 11, the sedimentation of the solid matter 9a is bottomed out from the lower part of the settling tank 5 by the metering pump 23 provided in the solid matter bottoming out means 12. Then, the process is repeated in the cooling crystal tank 2 or the concentration tank 1 (cooling crystal tank 2 in the example of FIG. 1), and the supernatant 11 is discharged from the upper part of the settling tank 5. Since the supernatant 11 contains a large amount of sulfuric acid, it can be added to the electrolytic solution and used for adjusting the acid concentration.

ろ過器3からのろ液10に粒度の大きい固形物9aの粒子が含まれている場合は、この粒子は沈降槽5に到達する前にレシーバタンク4内で沈殿することがある。このため、レシーバタンク4でのろ液10の滞留時間を適切に調整することによって、固形物9aの粒子のほぼ全量を沈降槽5に送ることが好ましい。 When the filtrate 10 from the filter 3 contains particles of a solid substance 9a having a large particle size, the particles may settle in the receiver tank 4 before reaching the settling tank 5. Therefore, it is preferable to send almost all the particles of the solid substance 9a to the settling tank 5 by appropriately adjusting the residence time of the filtrate 10 in the receiver tank 4.

以下、実施例により、本発明についてさらに詳細に説明する。実施例においては、被処理液として銅の電解精製において生ずる脱銅終液、固形物として、脱銅終液からの脱ニッケル工程において析出および回収される粗硫酸ニッケルを取り扱うが、本発明は以下の実施例に限定されることはない。 Hereinafter, the present invention will be described in more detail by way of examples. In the examples, the decopperating final liquid generated in the electrolytic refining of copper is treated as the liquid to be treated, and the crude nickel sulfate precipitated and recovered in the denickeling step from the decoppering final liquid is treated as a solid substance. It is not limited to the embodiment of.

(実施例1)
図1および図2に示す、濃縮槽1、冷却結晶槽2、ろ過器3、レシーバタンク4、および、2基の沈降槽5(いずれも、容積800L、内径1m、槽本体13の高さ0.9m、底部14の高さ0.5m)により構成される、粗硫酸ニッケルの回収装置を用いた。
(Example 1)
Concentration tank 1, cooling crystal tank 2, filter 3, receiver tank 4, and two settling tanks 5 (all have a volume of 800 L, an inner diameter of 1 m, and a height of the tank body 13 are 0, as shown in FIGS. 1 and 2. A crude nickel sulfate recovery device composed of 9.9 m and a bottom 14 height of 0.5 m) was used.

沈降槽5としては、槽本体13と、底部14を備え、底部14は、コーン型の形状を有し、水平面からの傾斜角度が45度となるように、底部14の径方向中心部にある最底部に向けて傾斜している、沈降槽を用いた。 The settling tank 5 includes a tank body 13 and a bottom portion 14, and the bottom portion 14 has a cone-shaped shape and is located at the radial center portion of the bottom portion 14 so that the inclination angle from the horizontal plane is 45 degrees. A settling tank was used, which was inclined toward the bottom.

槽本体13の天井部の一部に、ろ液受け入れ用インレット15を、槽本体13の側壁の上部に、上澄み抜き出し用アウトレット16を、底部14の最底部に固形物底抜き用アウトレット17をそれぞれ設けた。ろ液受け入れ用インレット15に、レシーバタンク4からろ液10を供給するためのろ液供給手段20を、上澄み抜き出し用アウトレット16に、槽内から上澄み11を系外に抜き出すための上澄み抜き出し手段21を、固形物底抜き用アウトレット17に、固形物9aを槽内から底抜きし、冷却結晶槽2に戻すための固形物底抜き手段12をそれぞれ接続した。ろ液供給手段20、上澄み抜き出し手段21、固形物底抜き手段12は、いずれも配管と定量ポンプにより構成した。 A filtrate receiving inlet 15 is provided in a part of the ceiling of the tank body 13, a supernatant extraction outlet 16 is provided in the upper part of the side wall of the tank body 13, and a solid material bottom extraction outlet 17 is provided in the bottom of the bottom 14. Provided. The filtrate supply means 20 for supplying the filtrate 10 from the receiver tank 4 to the filtrate receiving inlet 15, and the supernatant extraction means 21 for extracting the supernatant 11 from the inside of the tank to the supernatant extraction outlet 16. The solid material bottom removing means 12 for removing the bottom of the solid material 9a from the tank and returning it to the cooling crystal tank 2 was connected to the solid material bottoming out outlet 17. The filtrate supply means 20, the supernatant extraction means 21, and the solid matter bottom extraction means 12 were all configured by piping and a metering pump.

槽内配管18の下流側の端部(上端部)を上澄み抜き出し用アウトレット16に接続した。槽内配管18の上端部から中間部までを、槽本体13(円筒部)と底部14の境界まで、内周面に沿って、内周面の近傍に配置した。槽内配管18を中間部で屈曲させて、槽内配管18の上流側の端部(下端部)を槽本体13の内周面近傍から径方向中心部に向けて突出させ、底部14の高さ方向中間部で径方向中心部に槽内配管18の下端部開口を開口させた。 The downstream end (upper end) of the in-tank pipe 18 was connected to the supernatant extraction outlet 16. From the upper end to the middle of the in-tank pipe 18, the tank main body 13 (cylindrical portion) and the bottom portion 14 were arranged in the vicinity of the inner peripheral surface along the inner peripheral surface. The in-tank pipe 18 is bent at an intermediate portion, and the upstream end (lower end) of the in-tank pipe 18 is projected from the vicinity of the inner peripheral surface of the tank body 13 toward the radial center, and the height of the bottom 14 is increased. An opening at the lower end of the in-tank pipe 18 was opened at the center in the radial direction at the middle portion in the radial direction.

槽本体13の天井部で径方向中心部から外れた位置で、槽内配管18と径方向反対側の箇所に、超音波式レベルセンサである非接触式レベルセンサ19(横河電機株式会社製、SUN61)を設置した。 Non-contact level sensor 19 (manufactured by Yokogawa Electric Co., Ltd.), which is an ultrasonic level sensor, is located on the ceiling of the tank body 13 away from the radial center and on the opposite side of the tank pipe 18 in the radial direction. , SUN61) was installed.

このように構成された沈降槽5を組み込んだ、粗硫酸ニッケルの回収装置を以下のように操業した。 The crude nickel sulfate recovery device incorporating the settling tank 5 configured as described above was operated as follows.

最初に、銅0g/L、ニッケル30g/L~40g/Lの脱銅終液である被処理液6を濃縮槽1に供給した。濃縮槽1の液温は、黒鉛電極のジュール熱により150℃~170℃の範囲内の温度を維持した。 First, the liquid to be treated 6 which is the final liquid for removing copper of 0 g / L of copper and 30 g / L to 40 g / L of nickel was supplied to the concentration tank 1. The liquid temperature of the concentrating tank 1 was maintained in the range of 150 ° C. to 170 ° C. by Joule heat of the graphite electrode.

濃縮槽1からオーバーフローにより濃縮液7を冷却結晶槽2に払い出し、冷却結晶槽2での液温が60℃以下となるように、強制冷却した。この冷却は、冷却結晶槽2内に設けた蛇管に工業用水を流入させることで行った。 The concentrated liquid 7 was discharged from the concentrated tank 1 to the cooled crystal tank 2 by overflow, and was forcibly cooled so that the liquid temperature in the cooled crystal tank 2 was 60 ° C. or lower. This cooling was performed by flowing industrial water into a serpentine tube provided in the cooling crystal tank 2.

生成した粗硫酸ニッケルを含有するスラリー8は、レシーバタンク4に設けられた真空ポンプ(VP)を用い、冷却結晶槽2の液位を一定に保つように、連続的に真空ろ過器であるろ過器3に供給し、粗硫酸ニッケルである固形物9を回収した。ろ過漏れした残留粗硫酸ニッケルを含むろ液10を、レシーバタンク4に供給した。 The generated slurry 8 containing crude nickel sulfate is continuously filtered by a vacuum filter so as to keep the liquid level of the cooling crystal tank 2 constant by using a vacuum pump (VP) provided in the receiver tank 4. It was supplied to the vessel 3 and the solid substance 9 which was crude nickel sulfate was recovered. The filtrate 10 containing the residual nickel sulfate that leaked through the filtration was supplied to the receiver tank 4.

ろ液供給手段20および非接触式レベルセンサ19である超音波式レベルセンサを作動させ、ろ液供給手段20を介して、レシーバタンク4から沈降槽5のうちの1基へのろ液10の送液を開始し、ろ液10のレベルが受け入れ上限まで到達したことを非接触式レベルセンサ19が検知すると、ろ液供給手段20の作動を停止して、ろ液10の受け入れを停止した。 The filtrate 10 is operated from the filtrate supply means 20 and the ultrasonic level sensor, which is a non-contact level sensor 19, and the filtrate 10 is sent from the receiver tank 4 to one of the settling tanks 5 via the filtrate supply means 20. When the non-contact level sensor 19 detects that the level of the filtrate 10 has reached the upper limit of acceptance after starting the feeding, the operation of the filtrate supply means 20 is stopped and the acceptance of the filtrate 10 is stopped.

沈降槽5内におけるろ液10の滞留時間を40分として、ろ液10を沈降分離させ、残留粗硫酸ニッケルである固形物9aを底部14に沈殿させた。本例では、2つの沈降槽5のうちの別の1基は稼働させず、次のろ液10の受け入れまで、レシーバタンク4からろ液10を系外に排出した。 The filtrate 10 was settled and separated with the residence time of the filtrate 10 in the settling tank 5 being 40 minutes, and the solid substance 9a, which was residual crude nickel sulfate, was settled on the bottom 14. In this example, another one of the two settling tanks 5 was not operated, and the filtrate 10 was discharged from the receiver tank 4 to the outside of the system until the next filtrate 10 was received.

上澄み抜き出し手段21および非接触式レベルセンサ19を作動させて、上澄み抜き出し手段21により、沈降分離で生じた上澄みを抜き出しながら、非接触式レベルセンサ19が、ろ液10のレベルのセンシングを行い、ろ液10のレベルが底部14の最上部まで到達した時点で、タイマー22を作動させると同時に、センシングを停止した。 The supernatant extraction means 21 and the non-contact level sensor 19 are operated, and the non-contact level sensor 19 senses the level of the filtrate 10 while extracting the supernatant generated by the sediment separation by the supernatant extraction means 21. When the level of the filtrate 10 reached the top of the bottom 14, the timer 22 was activated and at the same time the sensing was stopped.

タイマー22は、作動してから120秒が経過した時点で、上澄み抜き出し手段21を停止すると同時に、固形物底抜き手段12を作動させて固形物9aを冷却結晶槽2に返送した。タイマー22は、固形物底抜き手段12の作動から180秒後に、固形物底抜き手段12の作動を停止させた。なお、上澄みは電解液の一部として電解槽に送って使用した。 When 120 seconds have passed since the timer 22 was operated, the supernatant extraction means 21 was stopped, and at the same time, the solid material bottom extraction means 12 was operated to return the solid material 9a to the cooling crystal tank 2. The timer 22 stopped the operation of the solid material bottoming means 12 180 seconds after the operation of the solid material bottoming means 12. The supernatant was sent to an electrolytic cell for use as a part of the electrolytic solution.

レシーバタンク4から系外に排出した液量は、沈降槽5へ送った液量とほぼ同じであった。すなわち本例では、ろ液10の沈降槽5での処理率は、実質的に50%であった。以上の試験操業を3ヶ月間行い、月ごとの粗硫酸ニッケルの回収率を求めた。その結果、粗硫酸ニッケルの回収率は、平均して83%であった。 The amount of liquid discharged from the receiver tank 4 to the outside of the system was almost the same as the amount of liquid sent to the settling tank 5. That is, in this example, the treatment rate of the filtrate 10 in the settling tank 5 was substantially 50%. The above test operation was carried out for 3 months, and the monthly recovery rate of crude nickel sulfate was determined. As a result, the recovery rate of crude nickel sulfate was 83% on average.

(実施例2)
実施例1とは異なり、2基の沈降槽5を使用した。レシーバタンク4から沈降槽5のうちの1基(第1槽)に、沈降槽5内のろ液10が受け入れ上限になるまで供給し、供給停止後に、ろ液10の供給先を沈降槽5の別の1基(第2槽)に切り替え、同様にろ液10の供給を行った。第2槽にろ液10を供給している間は、第1槽におけるろ液10の滞留時間を40分とした後、第1槽から上澄み11の抜き出しと固形物(残留粗硫酸ニッケル)9aの底抜きを行った。底抜きの完了後、第1槽へろ液10の供給を再開した。第1槽にろ液10を供給している間は、第2槽についても同様に、ろ液10の滞留時間40分の後、上澄み11の抜き出しと固形物9aの底抜きを行った。底抜きの完了後、第2槽へろ液10の供給を再開した。2基の沈降槽5の制御については、実施例1と同様に行った。これらの工程を順次繰り返して、粗硫酸ニッケルの回収を操業した。
(Example 2)
Unlike Example 1, two settling tanks 5 were used. The receiver tank 4 supplies one of the settling tanks 5 (first tank) until the filtrate 10 in the settling tank 5 reaches the upper limit of acceptance, and after the supply is stopped, the filtrate 10 is supplied to the settling tank 5. It was switched to another one (second tank) of the above, and the filtrate 10 was supplied in the same manner. While the filtrate 10 is being supplied to the second tank, the residence time of the filtrate 10 in the first tank is set to 40 minutes, and then the supernatant 11 is extracted from the first tank and the solid substance (residual crude nickel sulfate) 9a. The bottom was removed. After the bottoming was completed, the supply of the filtrate 10 to the first tank was restarted. While the filtrate 10 was being supplied to the first tank, the supernatant 11 was extracted and the solid 9a was bottomed out after the residence time of the filtrate 10 was 40 minutes in the second tank as well. After the bottoming was completed, the supply of the filtrate 10 to the second tank was restarted. The control of the two settling tanks 5 was performed in the same manner as in Example 1. These steps were repeated in sequence to operate the recovery of crude nickel sulfate.

なお、レシーバタンク4の液量が少ない場合は、液量が一定以上に達してからレシーバタンク4から沈降槽5への送液を行った。 When the amount of liquid in the receiver tank 4 was small, the liquid was sent from the receiver tank 4 to the settling tank 5 after the amount of liquid reached a certain level or higher.

本例では、ろ液10の全量を沈降槽5で処理でき、沈降槽5での処理率は、実質的に100%であった。以上の試験操業を3ヶ月間行い、月ごとの粗硫酸ニッケルの回収率を求めた。その結果、粗硫酸ニッケルの回収率は、平均して87%であった。 In this example, the entire amount of the filtrate 10 could be treated in the settling tank 5, and the treatment rate in the settling tank 5 was substantially 100%. The above test operation was carried out for 3 months, and the monthly recovery rate of crude nickel sulfate was determined. As a result, the recovery rate of crude nickel sulfate was 87% on average.

(比較例1)
沈降槽5を用いずに、真空ろ過器であるろ過器3でろ過されレシーバタンク4に溜められたろ液10をそのまま払い出したこと以外は、実施例1と同様に、試験操業を3ヶ月間行って、月ごとの粗硫酸ニッケルの回収率を求めた。その結果、粗硫酸ニッケルの回収率は80%であった。
(Comparative Example 1)
The test operation was carried out for 3 months in the same manner as in Example 1 except that the filtrate 10 filtered by the filter 3 which is a vacuum filter and stored in the receiver tank 4 was discharged as it was without using the settling tank 5. The monthly recovery rate of crude nickel sulfate was calculated. As a result, the recovery rate of crude nickel sulfate was 80%.

(比較例2)
超音波式レベルセンサ(非接触式レベルセンサ19)およびタイマーに代替して、接触式レベルセンサである電極式レベルセンサを用い、電極式レベルセンサの電極棒の先端が、槽内配管18の下端部と同じ高さに配されるように、電極式レベルセンサを設置したこと以外は、実施例1と同様に試験操業を行った。
(Comparative Example 2)
Instead of the ultrasonic level sensor (non-contact level sensor 19) and the timer, an electrode type level sensor which is a contact type level sensor is used, and the tip of the electrode rod of the electrode type level sensor is the lower end of the tank pipe 18. The test operation was carried out in the same manner as in Example 1 except that the electrode type level sensor was installed so as to be arranged at the same height as the part.

ろ液10の受け入れから固形物9aの底抜きの完了までを数日繰り返した時点で、電極式レベルセンサによる上澄み11の抜き出しの下限が検出できなくなり、上澄み抜き出し手段21のポンプが長時間空転する事態が発生した。沈降槽5を開けて中を確認したところ、残留粗硫酸ニッケルが電極棒とその間に固着していた。電極棒から粗硫酸ニッケルを取り除いたところ、電極棒に変色や亀裂が見られた。ろ液10の受け入れの際に、電極棒の周りでろ液の流れが悪くなって、電極棒の周囲に沈降した残留粗硫酸ニッケルが堆積するとともに粗硫酸ニッケルが新たに析出して、短絡したことが原因であると考えられる。 When the process from receiving the filtrate 10 to completing the bottom removal of the solid material 9a is repeated for several days, the lower limit of the extraction of the supernatant 11 by the electrode type level sensor cannot be detected, and the pump of the supernatant extraction means 21 idles for a long time. A situation has occurred. When the settling tank 5 was opened and the inside was checked, residual nickel sulfate was found to be stuck to the electrode rod and between them. When crude nickel sulfate was removed from the electrode rod, discoloration and cracks were observed in the electrode rod. When the filtrate 10 was received, the flow of the filtrate became poor around the electrode rod, and residual nickel crude sulfate that had settled around the electrode rod was deposited, and nickel sulfate was newly deposited, resulting in a short circuit. Is thought to be the cause.

(考察)
粗硫酸ニッケルの回収率は、ろ過器3から回収したニッケルの量を、濃縮槽1へのニッケルの供給量(被処理液6に含まれていたニッケルの全体量)で割って求めている。沈降槽5を非使用の比較例1に対して、沈降槽5を使用した実施例1では、ろ過漏れした残留粗硫酸ニッケルが回収され、3%の粗硫酸ニッケルの回収率の向上が見られたことになる。また、ろ液10の全量を沈降槽5で処理した実施例2では、ろ過漏れした残留粗硫酸ニッケルがより多く回収され、7%の粗硫酸ニッケルの回収率の向上が見られたことになる。これら回収率の向上はろ過漏れを回収したことに起因するため、上澄み11に溶存したままの硫酸ニッケルの量にかかわらず、安定して回収率を向上させることができる。
(Discussion)
The recovery rate of crude nickel sulfate is determined by dividing the amount of nickel recovered from the filter 3 by the amount of nickel supplied to the concentrating tank 1 (the total amount of nickel contained in the liquid to be treated 6). In Example 1 in which the settling tank 5 was used, the residual nickel crude sulfate that had not been filtered was recovered, and the recovery rate of the crude nickel sulfate was improved by 3%, as opposed to Comparative Example 1 in which the settling tank 5 was not used. It will be. Further, in Example 2 in which the entire amount of the filtrate 10 was treated in the settling tank 5, more residual nickel sulfate leaked from the filtration was recovered, and the recovery rate of the crude nickel sulfate was improved by 7%. .. Since these improvements in the recovery rate are due to the recovery of filtration leaks, the recovery rate can be stably improved regardless of the amount of nickel sulfate remaining dissolved in the supernatant 11.

1 濃縮槽
2 冷却結晶槽
3 ろ過器
4 レシーバタンク
5 沈降槽
6 被処理液(脱銅終液)
7 濃縮液
8 スラリー
9 固形物(粗硫酸ニッケル)
10 ろ液
11 上澄み
12 固形物底抜き手段
13 槽本体(円筒部側)
14 底部
15 ろ液受け入れ用インレット
16 上澄み抜き出し用アウトレット
17 固形物底抜き用アウトレット
18 槽内配管
19 非接触式レベルセンサ(超音波式レベルセンサ)
20 ろ液供給手段
21 上澄み抜き出し手段
22 タイマー
23 定量ポンプ
1 Concentration tank 2 Cooling crystal tank 3 Filter 4 Receiver tank 5 Sedimentation tank 6 Treatment liquid (copper removal final liquid)
7 Concentrate 8 Slurry 9 Solid (crude nickel sulfate)
10 Filtrate 11 Supernatant 12 Solid material bottom punching means 13 Tank body (cylindrical part side)
14 Bottom 15 Inlet for receiving filtrate 16 Outlet for extracting supernatant 17 Outlet for extracting solid bottom 18 Piping in tank 19 Non-contact level sensor (ultrasonic level sensor)
20 Filtrate supply means 21 Clearance extraction means 22 Timer 23 Metering pump

Claims (8)

槽本体と、底部と、ろ液受け入れ用インレットと、上澄み抜き出し用アウトレットと、前記底部に設けられた固形物底抜き用アウトレットと、前記上澄み抜き出し用アウトレットに接続される槽内配管と、前記ろ液受け入れ用インレットを介して、ろ液を供給する手段と、前記槽内配管および前記上澄み抜き出し用アウトレットを介して、前記ろ液の沈降分離で生じた上澄みを抜き出す手段と、前記固形物底抜き用アウトレットを介して、前記ろ液の沈降分離で沈殿している固形物を底抜きする手段と、を備えた沈降槽であって、
該沈降槽は、該沈降槽の槽内における前記ろ液のレベルをセンシング可能に配置された非接触式レベルセンサと、タイマーと、をさらに備え、
前記底部は、前記固形物底抜き用アウトレットに向けて下傾しており、
前記固形物底抜き用アウトレットは、前記底部の最底部に配置されており、
前記槽内配管は、前記上澄み抜き出し用アウトレットから前記底部の水平方向中間部および高さ方向中間部まで伸長し、下端部に開口を備えており、
前記非接触式レベルセンサは、前記ろ液のレベルが、前記槽内のろ液受け入れ上限に達するまで、前記ろ液を供給する手段を作動させ、かつ、該ろ液が沈降分離し、前記上澄みを抜き出す手段の作動後において、前記上澄みのレベルを検知し、および、
前記タイマーは、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みを抜き出す手段の作動を停止し、かつ、前記固形物を底抜きする手段を作動させて、所定時間経過後に、前記固形物を底抜きする手段を停止させる、
沈降槽。
The tank body, the bottom, the inlet for receiving the filtrate, the outlet for extracting the supernatant, the outlet for removing the bottom of the solid matter provided at the bottom, the pipe in the tank connected to the outlet for extracting the supernatant, and the filter. A means for supplying the filtrate through the liquid receiving inlet, a means for extracting the supernatant generated by the sedimentation separation of the filtrate via the in-tank pipe and the outlet for extracting the supernatant, and the means for removing the bottom of the solid material. A settling tank provided with a means for bottoming out the solid matter settled by the settling separation of the filtrate via the outlet for.
The settling tank further comprises a non-contact level sensor and a timer arranged so as to be able to sense the level of the filtrate in the settling tank.
The bottom portion is tilted downward toward the outlet for removing the bottom of the solid material.
The outlet for removing the bottom of the solid material is arranged at the bottom of the bottom.
The in-tank pipe extends from the supernatant extraction outlet to the horizontal intermediate portion and the height intermediate portion of the bottom portion, and has an opening at the lower end portion.
The non-contact level sensor operates a means for supplying the filtrate until the level of the filtrate reaches the upper limit of accepting the filtrate in the tank, and the filtrate is settled and separated, and the supernatant is separated. After the actuation of the means for extracting the supernatant, the level of the supernatant is detected, and
The timer is activated when the level of the supernatant reaches the upper end of the bottom portion, and is a means for extracting the supernatant when a predetermined time elapses before the level of the supernatant reaches the opening of the pipe in the tank. The operation is stopped, and the means for bottoming out the solid matter is operated, and after a lapse of a predetermined time, the means for bottoming out the solid matter is stopped.
Sedimentation tank.
前記非接触式レベルセンサは、超音波式レベルセンサ、電波式レベルセンサ、および、レーザ式レベルセンサから選択される、請求項1に記載の沈降槽。 The settling tank according to claim 1, wherein the non-contact level sensor is selected from an ultrasonic level sensor, a radio wave level sensor, and a laser level sensor. 前記底部は、コーン型もしくは臼状の形状を有する、請求項1または2に記載の沈降槽。 The sedimentation tank according to claim 1 or 2, wherein the bottom portion has a cone-shaped or mortar-shaped shape. 前記底部は、水平面からの傾斜角度が40度以上の傾斜を有する、請求項1~3のいずれかに記載の沈降槽。 The sedimentation tank according to any one of claims 1 to 3, wherein the bottom portion has an inclination angle of 40 degrees or more from a horizontal plane. 前記槽内配管は、前記上澄み抜き出し用アウトレットと前記底部の上端部との間において、前記槽本体の横断面における、前記非接触式レベルセンサがセンシングする範囲と干渉しない位置に配置されている、請求項1~4のいずれかに記載の沈降槽。 The in-tank pipe is arranged between the supernatant extraction outlet and the upper end of the bottom at a position in the cross section of the tank body that does not interfere with the range sensed by the non-contact level sensor. The settling tank according to any one of claims 1 to 4. 請求項1~5のいずれかに記載の沈降槽を用い、
前記ろ液を供給する手段により、ろ液を受け入れ、前記非接触式レベルセンサが前記槽内の前記ろ液受け入れ上限を検知すると、前記ろ液の受け入れを停止する工程、
該沈降槽内で前記ろ液を沈降分離させて固形物を前記底部に沈殿させる工程、
前記上澄みを抜き出す手段により、上澄みの抜き出しを開始し、前記非接触式レベルセンサが該上澄みのレベルを検知し、かつ、前記タイマーが、前記上澄みのレベルが前記底部の上端部に達した際に作動し、前記上澄みのレベルが前記槽内配管の前記開口に到達する以前の所定時間経過時に、前記上澄みの抜き出しを停止する工程、
前記上澄みの抜き出しの停止と同時に、前記固形物を底抜きする手段により、前記固形物の底抜きを開始し、該固形物の底抜きの開始後の所定時間経過後、前記固形物の底抜きを停止する工程、
を備える、
沈降槽の制御方法。
Using the settling tank according to any one of claims 1 to 5,
A step of receiving the filtrate by the means for supplying the filtrate and stopping the acceptance of the filtrate when the non-contact level sensor detects the upper limit of the filtrate acceptance in the tank.
A step of precipitating and separating the filtrate in the settling tank to settle the solid matter on the bottom.
When the supernatant is started to be extracted by the means for extracting the supernatant, the non-contact level sensor detects the level of the supernatant, and the timer reaches the upper end of the bottom. A step of operating and stopping the extraction of the supernatant when a predetermined time elapses before the level of the supernatant reaches the opening of the pipe in the tank.
At the same time as the extraction of the supernatant is stopped, the bottoming out of the solid matter is started by means for bottoming out the solid matter, and after a predetermined time has elapsed after the start of bottoming out of the solid matter, the bottoming out of the solid matter is performed. The process of stopping,
To prepare
Control method of settling tank.
被処理液を加熱濃縮して濃縮液を得る濃縮工程と、
前記濃縮液を冷却して固形物を析出させて、該固形物を含むスラリーを得る冷却工程と、
前記スラリーをろ過して、前記固形物を回収するろ過工程と、
前記ろ過工程で得られ、ろ過漏れした固形物を含むろ液を、沈降槽に投入し、該ろ液中の固形物を前記沈降槽の底部に沈殿させ、かつ、前記沈降槽の底部に沈殿した固形物を抜き出して、前記冷却工程以前に繰り返す工程と、
を備え、
前記沈降槽を用いた工程において、請求項6に記載の沈降槽の制御方法を用いる、
固形物の製造方法。
A concentration process in which the liquid to be treated is heated and concentrated to obtain a concentrated liquid,
A cooling step of cooling the concentrate to precipitate a solid substance and obtaining a slurry containing the solid substance.
A filtration step of filtering the slurry to recover the solid matter,
The filtrate containing the solid matter obtained in the filtration step and leaked from filtration is put into a settling tank, and the solid matter in the filtrate is settled at the bottom of the settling tank and settled at the bottom of the settling tank. The process of extracting the solidified material and repeating it before the cooling process,
Equipped with
In the step using the settling tank, the control method for the settling tank according to claim 6 is used.
Manufacturing method for solids.
前記沈降槽を2基以上設け、該沈降槽のうちのいずれか1基への前記ろ液の投入と、前記沈降槽のうちの別の少なくとも1基での前記固形物の沈殿および/または抜き出しとを同時に行う、請求項7に記載の固形物の製造方法。 Two or more of the settling tanks are provided, and the filtrate is charged into any one of the settling tanks, and the solid matter is settled and / or extracted in at least one of the settling tanks. The method for producing a solid substance according to claim 7, wherein the above is performed at the same time.
JP2018128404A 2018-07-05 2018-07-05 Sedimentation tank and its control method, and solid material manufacturing method Active JP7024632B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018128404A JP7024632B2 (en) 2018-07-05 2018-07-05 Sedimentation tank and its control method, and solid material manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018128404A JP7024632B2 (en) 2018-07-05 2018-07-05 Sedimentation tank and its control method, and solid material manufacturing method

Publications (2)

Publication Number Publication Date
JP2020006302A JP2020006302A (en) 2020-01-16
JP7024632B2 true JP7024632B2 (en) 2022-02-24

Family

ID=69149701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018128404A Active JP7024632B2 (en) 2018-07-05 2018-07-05 Sedimentation tank and its control method, and solid material manufacturing method

Country Status (1)

Country Link
JP (1) JP7024632B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259516B2 (en) * 2019-04-24 2023-04-18 住友金属鉱山株式会社 Sedimentation tank and solids recovery method
JP2022022852A (en) * 2020-07-08 2022-02-07 住友金属鉱山株式会社 Collection method and collection device of solid matter
CN112717482A (en) * 2020-11-27 2021-04-30 中国恩菲工程技术有限公司 A subside device and processing system for zinc electrodeposition anode mud is handled

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045529A (en) 2010-08-30 2012-03-08 Masanori Watanabe Purifying device for drainage after treatment of starch-containing food
JP2013208548A (en) 2012-03-30 2013-10-10 Kurita Water Ind Ltd Wastewater treatment apparatus and method
JP2014101546A (en) 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Nickel removal method from copper removal electrolytic solution
JP2015016442A (en) 2013-07-12 2015-01-29 株式会社ネオナイト Equipment and method for water quality clarification treatment
US20160288021A1 (en) 2015-03-31 2016-10-06 ClearCove Systems, Inc. System for processing food process waste water including purification and optional recycling of purified waste water

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0771674B2 (en) * 1987-04-22 1995-08-02 株式会社明電舎 Clear water discharge device for batch type waste water treatment equipment
JPH06233993A (en) * 1993-02-10 1994-08-23 Shokuhin Sangyo Clean Eko Syst Gijutsu Kenkyu Kumiai Method for discharging excess sludge in supernatant and device therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012045529A (en) 2010-08-30 2012-03-08 Masanori Watanabe Purifying device for drainage after treatment of starch-containing food
JP2013208548A (en) 2012-03-30 2013-10-10 Kurita Water Ind Ltd Wastewater treatment apparatus and method
JP2014101546A (en) 2012-11-20 2014-06-05 Sumitomo Metal Mining Co Ltd Nickel removal method from copper removal electrolytic solution
JP2015016442A (en) 2013-07-12 2015-01-29 株式会社ネオナイト Equipment and method for water quality clarification treatment
US20160288021A1 (en) 2015-03-31 2016-10-06 ClearCove Systems, Inc. System for processing food process waste water including purification and optional recycling of purified waste water

Also Published As

Publication number Publication date
JP2020006302A (en) 2020-01-16

Similar Documents

Publication Publication Date Title
JP7024632B2 (en) Sedimentation tank and its control method, and solid material manufacturing method
JP5176493B2 (en) Method and apparatus for nickel removal from copper removal electrolyte
US20140144788A1 (en) System and process for the continuous recovery of metals
CN207404874U (en) A kind of high pollution waste water is distilled to recover equipment
CN105849318A (en) Metal recovery reactor and metal recovery system
US6451183B1 (en) Method and apparatus for electrowinning powder metal from solution
CN106513173A (en) Ferromagnetic particle contained working liquid separating device circulating liquid phases and collecting solid phases
KR101416429B1 (en) Reactor for Recovering Metal and System for Recovering Metal
JP7259516B2 (en) Sedimentation tank and solids recovery method
KR101611951B1 (en) Method for Recovering Metal
US6221232B1 (en) Electrolytic refining method for gallium and apparatus for use in the method
JP3927706B2 (en) Method and apparatus for electrolytic purification of gallium
CN208200643U (en) A kind of novel salt-making mother liquor separator
CN112717482A (en) A subside device and processing system for zinc electrodeposition anode mud is handled
CN207575952U (en) A kind of Phosphate Fertilizer Production removes system with acid non-soluble substance
WO2024026905A1 (en) Waste liquid separation treatment system
US20150152518A1 (en) Method for Reprocessing an Emulsion Formed During Hydrometallurgical Recovery of a Metal
CN103961932B (en) A kind of pollution treatment method of titanium ingot founding vacuum system and device
KR100691080B1 (en) Method and apparatus for electrowinning powder metal from solution
CN214597384U (en) A subside device and processing system for zinc electrodeposition anode mud is handled
JP2022022852A (en) Collection method and collection device of solid matter
CN109264888A (en) Electrolytic etching of metal acid-bearing wastewater is concentrated and separated recovery process and device and waste water treatment system
JP2022026613A (en) Method of and device for collecting solid matter
KR101461502B1 (en) System for Recovering Metal using Electrolysis Apparatus and Method for Recovering Metal using Electrolysis Apparatus
CN216320008U (en) Evaporator discharging system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220124

R150 Certificate of patent or registration of utility model

Ref document number: 7024632

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150