JP7022613B2 - Braking device - Google Patents

Braking device Download PDF

Info

Publication number
JP7022613B2
JP7022613B2 JP2018024453A JP2018024453A JP7022613B2 JP 7022613 B2 JP7022613 B2 JP 7022613B2 JP 2018024453 A JP2018024453 A JP 2018024453A JP 2018024453 A JP2018024453 A JP 2018024453A JP 7022613 B2 JP7022613 B2 JP 7022613B2
Authority
JP
Japan
Prior art keywords
rotating body
conductive member
magnet
rotation
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018024453A
Other languages
Japanese (ja)
Other versions
JP2019140851A (en
Inventor
淳 田中
宏 松田
太久磨 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Original Assignee
Lixil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp filed Critical Lixil Corp
Priority to JP2018024453A priority Critical patent/JP7022613B2/en
Publication of JP2019140851A publication Critical patent/JP2019140851A/en
Application granted granted Critical
Publication of JP7022613B2 publication Critical patent/JP7022613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、制動装置に関する。 The present invention relates to a braking device.

従来より、導電性部材に生じる渦電流を利用して相対回転する固定体及び回転体に制動力を付与可能な制動装置が知られている。この種の制動装置では、通常、導電性部材に渦電流を生じさせるため、回転体の回転に連動して周方向での相対位置が変化するように導電性部材及び永久磁石が設けられる(たとえば、特許文献1参照)。 Conventionally, there have been known a fixed body that rotates relative to each other by using an eddy current generated in a conductive member and a braking device that can apply a braking force to the rotating body. In this type of braking device, since an eddy current is usually generated in the conductive member, the conductive member and the permanent magnet are provided so that the relative position in the circumferential direction changes in conjunction with the rotation of the rotating body (for example,). , Patent Document 1).

特開2001-20597号公報Japanese Unexamined Patent Publication No. 2001-20597

本発明者は、特許文献1の制動装置に関して検討したところ、次の課題があるとの認識を得た。特許文献1の制動装置では、導電性部材と永久磁石が回転軸方向に対向して配置され、その回転軸方向での間隔が回転体の回転速度によらず一定である。この構造のもとでは、後述のように、制動装置の制動力は、回転体の回転速度の増大に伴い一次関数的に増加する。このような制動力が付与される場合、回転体の高速回転時に十分な制動力を得ようとすると、その低速回転時にも比較的に大きい制動力が付与されてしまう。これに伴い、制動装置による制動対象物を低速で動かすときに操作性の低下を招いてしまう。 As a result of examining the braking device of Patent Document 1, the present inventor has obtained the recognition that there are the following problems. In the braking device of Patent Document 1, the conductive member and the permanent magnet are arranged so as to face each other in the direction of the axis of rotation, and the interval in the direction of the axis of rotation is constant regardless of the rotation speed of the rotating body. Under this structure, as will be described later, the braking force of the braking device increases linearly as the rotational speed of the rotating body increases. When such a braking force is applied, if a sufficient braking force is to be obtained during high-speed rotation of the rotating body, a relatively large braking force is applied even during the low-speed rotation. Along with this, when the braking object by the braking device is moved at a low speed, the operability is deteriorated.

本発明のある態様は、このような課題に鑑みてなされ、その目的は、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる制動装置を提供することにある。 A certain aspect of the present invention has been made in view of such a problem, and an object thereof is to provide a braking device capable of obtaining a sufficient braking force at high speed rotation of a rotating body and reducing the braking force applied at the low speed rotation thereof. To do.

上記課題を解決するための本発明の第1態様は、ハウジングと、ハウジング内に回転可能に収容される第1回転体と、ハウジング内に、第1回転体と連れ回り可能に収容される第2回転体と、第1回転体及び第2回転体の回転軸方向に対向して配置される導電性部材及び磁石であって、導電性部材及び磁石の一方は第2回転体と一体的に回転可能に設けられ、それらの他方はハウジングに設けられる導電性部材及び磁石と、第2回転体の回転速度が大きくなるほど、第2回転体の回転に対して大きな抵抗力を発生する回転抵抗手段と、第2回転体の回転に対する抵抗力が大きくなるほど、導電性部材と磁石の対向方向での間隔が小さくなるように、第2回転体を移動させる移動機構とを備える制動装置である。 A first aspect of the present invention for solving the above problems is a housing, a first rotating body rotatably housed in the housing, and a first rotating body rotatably housed in the housing with the first rotating body. A two-rotating body and a conductive member and a magnet arranged so as to face each other in the rotation axis direction of the first rotating body and the second rotating body, and one of the conductive member and the magnet is integrally with the second rotating body. Rotatably provided, the other of them is a conductive member and a magnet provided in the housing, and a rotation resistance means that generates a larger resistance force against the rotation of the second rotating body as the rotation speed of the second rotating body increases. The braking device is provided with a moving mechanism for moving the second rotating body so that the distance between the conductive member and the magnet in the facing direction becomes smaller as the resistance to the rotation of the second rotating body becomes larger.

本発明によれば、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる制動装置を提供できる。 According to the present invention, it is possible to provide a braking device capable of obtaining a sufficient braking force during high-speed rotation of a rotating body and reducing the braking force applied during the low-speed rotation.

回転体の回転速度と制動力の関係を示すグラフである。It is a graph which shows the relationship between the rotational speed of a rotating body, and the braking force. 第1実施形態に係る制動装置を模式的に示す断面図である。It is sectional drawing which shows typically the braking device which concerns on 1st Embodiment. 第1回転体及び第2回転体の斜視図である。It is a perspective view of the 1st rotating body and the 2nd rotating body. 第1実施形態に係る制動装置の動作状態を模式的に示す断面図である。It is sectional drawing which shows typically the operation state of the braking device which concerns on 1st Embodiment. 第2実施形態に係る制動装置を模式的に示す断面図である。It is sectional drawing which shows typically the braking device which concerns on 2nd Embodiment. 第2実施形態に係る制動装置の動作状態を模式的に示す断面図である。It is sectional drawing which shows typically the operation state of the braking device which concerns on 2nd Embodiment.

まず、実施形態の制動装置の概要から説明する。実施形態の制動装置は、回転体の回転速度が大きくなるほど、導電性部材と磁石の対向方向での間隔が小さくなるように構成されている。ここでの「対向方向」とは、回転体の回転軸方向で導電性部材及び磁石が対向して設けられる方向をいう。 First, the outline of the braking device of the embodiment will be described. The braking device of the embodiment is configured so that the distance between the conductive member and the magnet in the facing direction becomes smaller as the rotation speed of the rotating body increases. The "opposing direction" here means a direction in which the conductive member and the magnet are provided facing each other in the rotation axis direction of the rotating body.

図1は、回転体の回転速度と制動力の関係を示すグラフである。本グラフでは、特許文献1に記載の制動装置により得られる制動力Fxと、実施形態の制動装置により得られる制動力Fyの一例を示す。特許文献1の制動装置では、回転体の回転速度の増大に伴い一次関数的に制動力が増加する。一方、実施形態の制動装置では、回転体の回転速度の増大に伴い加速度的に制動力が増加する。これらの理由を説明する。 FIG. 1 is a graph showing the relationship between the rotational speed of a rotating body and the braking force. This graph shows an example of the braking force Fx obtained by the braking device described in Patent Document 1 and the braking force Fy obtained by the braking device of the embodiment. In the braking device of Patent Document 1, the braking force increases linearly as the rotation speed of the rotating body increases. On the other hand, in the braking device of the embodiment, the braking force increases at an accelerating rate as the rotation speed of the rotating body increases. Explain these reasons.

ここでは、説明を簡単にするため、導電性部材と磁石が回転軸方向に対向して配置され、回転体と一体的に磁石が回転することで、導電性部材と磁石の周方向での相対位置が変化する場合を例に説明する。これは、後述する図2の例を想定している。 Here, for the sake of simplicity, the conductive member and the magnet are arranged so as to face each other in the direction of the axis of rotation, and the magnet rotates integrally with the rotating body, so that the conductive member and the magnet are relative to each other in the circumferential direction. The case where the position changes will be described as an example. This assumes the example of FIG. 2 described later.

導電性部材に対して磁石が相対回転したとき、磁石が作る磁場の影響を受けて、電磁誘導により導電性部材に渦電流が生じ、その渦電流により導電性部材に磁極が生じる。この渦電流により生じる導電性部材の磁極と磁石の磁極の間には、磁荷に関するクーロンの法則に基づき、下記の式(1)で表されるクーロン力F1[N]が磁気力として作用する。このクーロン力F1は、回転体の回転方向とは反対方向に向かう制動力として磁石に作用する。なお、k1は係数、m1は導電性部材に生じる磁極の磁荷[Wb]、m2は磁石の磁荷[Wb]、rは導電性部材と磁石の間の対向方向(回転軸方向)での間隔[m]である。
F1=(k1×m1×m2)/r・・・(1)
When the magnet rotates relative to the conductive member, an eddy current is generated in the conductive member by electromagnetic induction under the influence of the magnetic field generated by the magnet, and the eddy current generates a magnetic pole in the conductive member. A Coulomb force F1 [N] represented by the following equation (1) acts as a magnetic force between the magnetic poles of the conductive member and the magnetic poles of the magnet generated by this eddy current, based on Coulomb's law regarding magnetic charges. .. This Coulomb force F1 acts on the magnet as a braking force in the direction opposite to the rotation direction of the rotating body. In addition, k1 is a coefficient, m1 is the magnetic charge [Wb] of the magnetic pole generated in the conductive member, m2 is the magnetic charge [Wb] of the magnet, and r is the facing direction (rotation axis direction) between the conductive member and the magnet. The interval [m].
F1 = (k1 × m1 × m2) / r 2 ... (1)

また、導電性部材に生じる渦電流には、電磁誘導によって、次の式(2)で表されるローレンツ力F2[N]が作用する。このローレンツ力F2は、回転体の回転方向とは反対方向に向かう制動力として磁石に付与される。なお、qは渦電流の電荷量[C]、vは導電性部材の運動速度[m/s]、Bは磁石が作る磁場の対向方向での磁束密度[Wb/m2]である。
F2=q×v×B ・・・ (2)
Further, the Lorentz force F2 [N] represented by the following equation (2) acts on the eddy current generated in the conductive member by electromagnetic induction. This Lorentz force F2 is applied to the magnet as a braking force in a direction opposite to the rotation direction of the rotating body. In addition, q is the charge amount [C] of the eddy current, v is the motion velocity [m / s] of the conductive member, and B is the magnetic flux density [Wb / m2] in the opposite direction of the magnetic field generated by the magnet.
F2 = q × v × B ・ ・ ・ (2)

導電性部材に対して磁石が回転したとき、磁石には前述のクーロン力F1とローレンツ力F2の合力Faが作用する。一方、導電性部材には、作用反作用の法則により、この合力Faとは逆向きに大きさの等しい力Fb(以下、反作用力Fbという)が作用する。かりに、磁石ではなく導電性部材が回転したときも同様である。この合力Fa又は反作用力Fbの何れかは、導電性部材及び磁石の何れかと一体的に回転する回転体に制動力として作用する。 When the magnet rotates with respect to the conductive member, the resultant force Fa of the Coulomb force F1 and the Lorentz force F2 described above acts on the magnet. On the other hand, according to the law of action and reaction, a force Fb having the same magnitude as the resultant force Fa (hereinafter referred to as a reaction force Fb) acts on the conductive member. The same applies when the conductive member rotates instead of the magnet. Either the resultant force Fa or the reaction force Fb acts as a braking force on the rotating body that rotates integrally with either the conductive member or the magnet.

ここで、磁荷に関するクーロンの法則から、磁石が作る磁場の磁束密度Bは、前述の間隔rの二乗に反比例した関係にあることが知られている。このことと、式(2)から、次の式(3)が導き出せる。式(3)のk3は係数である。式(1)と式(3)に示すように、クーロン力F1とローレンツ力F2の何れも、導電性部材と磁石の間の対向方向での間隔rの二乗に反比例した関係にある。
F2=(k3×v)/r ・・・ (3)
Here, from Coulomb's law regarding magnetic charges, it is known that the magnetic flux density B of the magnetic field generated by the magnet is inversely proportional to the square of the interval r described above. From this and the equation (2), the following equation (3) can be derived. K3 in equation (3) is a coefficient. As shown in the equations (1) and (3), both the Coulomb force F1 and the Lorentz force F2 are in inverse proportion to the square of the distance r in the opposite direction between the conductive member and the magnet.
F2 = (k3 × v) / r 2 ... (3)

ここで、特許文献1の制動装置では、導電性部材と磁石の間の対向方向での間隔rが変動しない。このため、導電性部材には、式(1)に示すように、一定のクーロン力F1の他に、式(3)に示すように、回転体の回転速度の増大に伴い一次関数的に増大するローレンツ力F2が付与される。この結果、図1の制動力Fxが得られる。 Here, in the braking device of Patent Document 1, the distance r between the conductive member and the magnet in the facing direction does not fluctuate. Therefore, in addition to the constant Lorentz force F1 as shown in the equation (1), the conductive member increases linearly as the rotational speed of the rotating body increases as shown in the equation (3). Lorentz force F2 is applied. As a result, the braking force Fx shown in FIG. 1 is obtained.

一方、実施形態の制動装置では、回転体の回転速度が大きくなるほど、導電性部材と磁石の間の対向方向での間隔rが小さくなる。このため、式(1)、(3)に示すように、回転体の回転速度の増大に伴い間隔rが小さくなるほど、クーロン力F1、ローレンツ力F2が加速度的に増大し、その合力Faや反作用力Fbを用いた制動力Fyも同様に加速度的に増大する。この結果、図1の制動力Fyが得られる。よって、図1に示すように、回転体の回転速度の増大に伴い一次関数的に制動力が増大する従来の制動装置と比べて、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくし易くなる。 On the other hand, in the braking device of the embodiment, as the rotation speed of the rotating body increases, the distance r between the conductive member and the magnet in the facing direction becomes smaller. Therefore, as shown in the equations (1) and (3), as the interval r becomes smaller as the rotation speed of the rotating body increases, the Coulomb force F1 and the Lorentz force F2 increase at an accelerating rate, and the resultant force Fa and the reaction The braking force Fy using the force Fb also increases at an accelerating rate. As a result, the braking force Fy shown in FIG. 1 is obtained. Therefore, as shown in FIG. 1, as compared with the conventional braking device in which the braking force increases linearly with the increase in the rotation speed of the rotating body, the braking force is obtained while the rotating body rotates at high speed. It becomes easy to reduce the braking force applied at low speed rotation.

以下、実施形態、変形例では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略したり、構成要素の寸法を適宜拡大、縮小して示す。 Hereinafter, in the embodiments and modifications, the same components are designated by the same reference numerals, and duplicate description will be omitted. Further, in each drawing, for convenience of explanation, some of the constituent elements are appropriately omitted, and the dimensions of the constituent elements are appropriately enlarged or reduced.

(第1の実施の形態)
図2は、第1実施形態に係る制動装置10を模式的に示す断面図である。制動装置10は、固定体としてのハウジング12と、第1回転体14と、第2回転体15とを備える。
(First Embodiment)
FIG. 2 is a cross-sectional view schematically showing the braking device 10 according to the first embodiment. The braking device 10 includes a housing 12 as a fixed body, a first rotating body 14, and a second rotating body 15.

ハウジング12は、不図示の外部構造体に固定される。ハウジング12は、制動装置10の他の構成部品を収容する。ハウジング12は、筒状部12aと、筒状部12aの軸線方向の両端部をそれぞれ覆い塞ぐ底部12b及びキャップ部12cとを有する。 The housing 12 is fixed to an external structure (not shown). The housing 12 houses the other components of the braking device 10. The housing 12 has a cylindrical portion 12a, a bottom portion 12b and a cap portion 12c that cover and close both ends of the tubular portion 12a in the axial direction, respectively.

図3は、第1回転体14及び第2回転体15の斜視図である。第1回転体14は、ハウジング12内に、回転中心線La周りに回転可能に収容される。第1回転体14は、棒状の回転軸14aを有する。図2に示すように、回転軸14aは、ハウジング12のキャップ部12cに軸受26を介して回転自在に支持される。軸受26は、転がり軸受、滑り軸受等であってよい。本明細書では、第1回転体14および第2回転体15の回転中心線Laに沿った方向を「回転軸方向X」、その回転中心線Laを中心とする円の半径方向、円周方向を「径方向」、「周方向」として説明する。 FIG. 3 is a perspective view of the first rotating body 14 and the second rotating body 15. The first rotating body 14 is rotatably housed in the housing 12 around the rotation center line La. The first rotating body 14 has a rod-shaped rotating shaft 14a. As shown in FIG. 2, the rotary shaft 14a is rotatably supported by the cap portion 12c of the housing 12 via the bearing 26. The bearing 26 may be a rolling bearing, a sliding bearing, or the like. In the present specification, the direction of the first rotating body 14 and the second rotating body 15 along the rotation center line La is the "rotation axis direction X", and the radial direction and the circumferential direction of the circle centered on the rotation center line La. Will be described as "radial direction" and "circumferential direction".

第1回転体14はさらに、回転軸14aの中途に設けられたフランジ部14bと、第1回転体14のフランジ部14bに形成された第1カム部14cとを有する。フランジ部14bは、回転軸14aから径方向に張り出しており、第2回転体15の内部に収容可能な大きさに形成される。第1カム部14cは、後述する第2回転体15の第2カム部15cと係合するよう形成されたテーパ面を有する。 The first rotating body 14 further has a flange portion 14b provided in the middle of the rotating shaft 14a, and a first cam portion 14c formed on the flange portion 14b of the first rotating body 14. The flange portion 14b projects radially from the rotation shaft 14a and is formed in a size that can be accommodated inside the second rotating body 15. The first cam portion 14c has a tapered surface formed so as to engage with the second cam portion 15c of the second rotating body 15, which will be described later.

第2回転体15は、ハウジング12内に、回転中心線La周りに第1回転体14と連れ回り可能に収容される。図3に示すように、第2回転体15は、筒状部15aと、筒状部15aの内部に設けられた、第1回転体14の回転軸14aを挿通支持する回転軸支持部15bと、筒状部15aの内壁面に形成された第2カム部15cとを有する。第2カム部15cは、第1回転体14の第1カム部14cと係合するよう形成されたテーパ面を有する。 The second rotating body 15 is housed in the housing 12 so as to be rotatable around the rotation center line La with the first rotating body 14. As shown in FIG. 3, the second rotating body 15 includes a cylindrical portion 15a and a rotating shaft support portion 15b provided inside the tubular portion 15a that inserts and supports the rotating shaft 14a of the first rotating body 14. It has a second cam portion 15c formed on the inner wall surface of the tubular portion 15a. The second cam portion 15c has a tapered surface formed so as to engage with the first cam portion 14c of the first rotating body 14.

第1回転体14の回転軸14aが第2回転体15の回転軸支持部15bに挿通され、フランジ部14bが筒状部15a内に収容されると、第1カム部14cと第2カム部15cが係合する。第1カム部14cと第2カム部15cとが係合することにより、第2回転体15は第1回転体14に連れ回りする。回転により第1カム部14cと第2カム部15cのテーパ面間で滑りが生じると、第1回転体14と第2回転体15は回転軸方向Xで相対移動する。 When the rotating shaft 14a of the first rotating body 14 is inserted into the rotating shaft support portion 15b of the second rotating body 15 and the flange portion 14b is housed in the tubular portion 15a, the first cam portion 14c and the second cam portion 15c engages. By engaging the first cam portion 14c and the second cam portion 15c, the second rotating body 15 is rotated around the first rotating body 14. When slippage occurs between the tapered surfaces of the first cam portion 14c and the second cam portion 15c due to the rotation, the first rotating body 14 and the second rotating body 15 move relative to each other in the rotation axis direction X.

制動装置10はさらに、導電性部材16を備える。本実施形態において導電性部材16は有底筒状であり、底部の第1導電性部材16aと、筒状部の第2導電性部材16bとを有する。本実施形態において第1導電性部材16aと第2導電性部材16bは一体に形成されているが、第1導電性部材16aと第2導電性部材16bは別体であってもよい。導電性部材16は、第1導電性部材16aがハウジング12の底部12b上に設けられ、第2導電性部材16bがハウジング12の筒状部12aの内壁面に設けられるように、ハウジング12内に配置される。 The braking device 10 further includes a conductive member 16. In the present embodiment, the conductive member 16 has a bottomed tubular shape, and has a first conductive member 16a at the bottom and a second conductive member 16b at the tubular portion. In the present embodiment, the first conductive member 16a and the second conductive member 16b are integrally formed, but the first conductive member 16a and the second conductive member 16b may be separate bodies. The conductive member 16 is provided in the housing 12 so that the first conductive member 16a is provided on the bottom portion 12b of the housing 12 and the second conductive member 16b is provided on the inner wall surface of the tubular portion 12a of the housing 12. Be placed.

導電性部材16は、導電性を持つ素材であって、好ましくは非磁性体の素材である。非磁性体であれば磁石との間で磁気的吸引力が作用せず、その吸引力に起因する位置ずれを避けられる。このような素材として、たとえば、アルミニウム、銅等が用いられる。 The conductive member 16 is a material having conductivity, preferably a non-magnetic material. If it is a non-magnetic material, a magnetic attractive force does not act on the magnet, and the displacement due to the attractive force can be avoided. As such a material, for example, aluminum, copper and the like are used.

制動装置10はさらに、第1磁石18を備える。第1磁石18は、フェライト磁石、ネオジム磁石等の永久磁石であってよい。本実施形態において、第1磁石18は、第1導電性部材16aと回転軸方向Xに対向するように、第2回転体15の筒状部15aの端部に設けられる。第1磁石18は、第2回転体15と一体的に回転可能である。 The braking device 10 further includes a first magnet 18. The first magnet 18 may be a permanent magnet such as a ferrite magnet or a neodymium magnet. In the present embodiment, the first magnet 18 is provided at the end of the tubular portion 15a of the second rotating body 15 so as to face the first conductive member 16a in the rotation axis direction X. The first magnet 18 can rotate integrally with the second rotating body 15.

第1導電性部材16a及び第1磁石18は、第2回転体15の回転に連動して周方向での相対位置が変化する。これに伴い、第1磁石18が作る磁界に対して第1導電性部材16aが相対回転することで第1導電性部材16aに電磁誘導により渦電流が生じ、その渦電流に起因する制動力が第2回転体15に付与される。 The relative positions of the first conductive member 16a and the first magnet 18 change in the circumferential direction in conjunction with the rotation of the second rotating body 15. Along with this, the first conductive member 16a rotates relative to the magnetic field created by the first magnet 18, so that an eddy current is generated in the first conductive member 16a by electromagnetic induction, and the braking force caused by the eddy current is generated. It is given to the second rotating body 15.

制動装置10はさらに、第2磁石19を備える。第2磁石19は、フェライト磁石、ネオジム磁石等の永久磁石であってよい。本実施形態において、第2磁石19は、第2導電性部材16bと径方向に対向するように、第2回転体15の筒状部15aの周側面に設けられる。第2磁石19は、第2回転体15と一体的に回転可能である。 The braking device 10 further includes a second magnet 19. The second magnet 19 may be a permanent magnet such as a ferrite magnet or a neodymium magnet. In the present embodiment, the second magnet 19 is provided on the peripheral side surface of the tubular portion 15a of the second rotating body 15 so as to face the second conductive member 16b in the radial direction. The second magnet 19 can rotate integrally with the second rotating body 15.

第2導電性部材16b及び第2磁石19は、第2回転体15の回転に連動して周方向での相対位置が変化する。これに伴い、第2磁石19が作る磁界に対して第2導電性部材16bが相対回転することで第2導電性部材16bに電磁誘導により渦電流が生じ、その渦電流に起因して、第2回転体15の回転を止めようとする抵抗力が第2回転体15に付与される。第2回転体15の回転速度が大きくなるほど、第2回転体15に付与される抵抗力は大きくなる。このように、本実施形態において第2導電性部材16b及び第2磁石19は、第2回転体15の回転速度が大きくなるほど、第2回転体15の回転に対して大きな抵抗力を発生する「回転抵抗手段」として機能する。 The relative positions of the second conductive member 16b and the second magnet 19 change in the circumferential direction in conjunction with the rotation of the second rotating body 15. Along with this, the second conductive member 16b rotates relative to the magnetic field created by the second magnet 19, and an eddy current is generated in the second conductive member 16b by electromagnetic induction. A resistance force for stopping the rotation of the second rotating body 15 is applied to the second rotating body 15. As the rotation speed of the second rotating body 15 increases, the resistance applied to the second rotating body 15 increases. As described above, in the present embodiment, the second conductive member 16b and the second magnet 19 generate a larger resistance force against the rotation of the second rotating body 15 as the rotation speed of the second rotating body 15 increases. It functions as a "rotational resistance means".

制動装置10はさらに、付勢部材34を備える。付勢部材34は、たとえば、コイルスプリング等の弾性体であってよい。付勢部材34は、回転軸方向Xにおいて第1導電性部材16aと第1磁石18とが離間する方向に第2回転体15を付勢する。 The braking device 10 further includes an urging member 34. The urging member 34 may be an elastic body such as a coil spring. The urging member 34 urges the second rotating body 15 in the direction in which the first conductive member 16a and the first magnet 18 are separated from each other in the rotation axis direction X.

本実施形態において、第1回転体14の第1カム部14cと、第2回転体15の第2カム部15cと、付勢部材34は、回転抵抗手段により付与される第2回転体15の回転に対する抵抗力が大きくなるほど、第1導電性部材16aと第1磁石18の対向方向での間隔が小さくなるように、第2回転体15を移動させる移動機構を構成している。この移動機能による第2回転体15の移動のメカニズムについては後述する。 In the present embodiment, the first cam portion 14c of the first rotating body 14, the second cam portion 15c of the second rotating body 15, and the urging member 34 are the second rotating body 15 provided by the rotation resistance means. A moving mechanism for moving the second rotating body 15 is configured so that the distance between the first conductive member 16a and the first magnet 18 in the facing direction becomes smaller as the resistance to rotation increases. The mechanism of movement of the second rotating body 15 by this movement function will be described later.

図4は、第1実施形態に係る制動装置10の動作状態を模式的に示す断面図である。以下、図2及び図4を参照して、制動装置10の動作について説明する。図2は、第1回転体14が低速で回転しているときの制動装置10の状態を示す。図4は、第1回転体14が高速で回転しているときの制動装置10の状態を示す。図2及び図4には、第1磁石18、第2磁石19が作る磁場の磁束線の一部が図示されている。 FIG. 4 is a cross-sectional view schematically showing an operating state of the braking device 10 according to the first embodiment. Hereinafter, the operation of the braking device 10 will be described with reference to FIGS. 2 and 4. FIG. 2 shows the state of the braking device 10 when the first rotating body 14 is rotating at a low speed. FIG. 4 shows the state of the braking device 10 when the first rotating body 14 is rotating at high speed. 2 and 4 show a part of the magnetic flux lines of the magnetic field generated by the first magnet 18 and the second magnet 19.

まず、図2を参照して、第1回転体14が低速で回転しているときの制動装置10の動作を説明する。第1回転体14が低速で回転しているとき、付勢部材34の付勢力により第2回転体15が第1回転体14に押し付けられ、第1回転体14が第2回転体15の筒状部15a内に完全に収容された状態となる。このとき、第1回転体14の第1カム部14cと第2回転体15の第2カム部15cは完全に係合した状態(言い換えると完全に噛み合った状態)となり、第1カム部14c及び第2カム部15cを介して、第1回転体14の回転力が第2回転体15に伝達される、又は、第2回転体15が受ける制動力が第1回転体14に伝達される。なお、第1カム部14cと第2カム部15cが完全に係合した状態とは、第1カム部14cのテーパ面の頂部が第2カム部15cのテーパ面の谷部と係合し、第1カム部14cのテーパ面の谷部が第2カム部15cのテーパ面の頂部と係合する状態である(図3参照)。 First, with reference to FIG. 2, the operation of the braking device 10 when the first rotating body 14 is rotating at a low speed will be described. When the first rotating body 14 is rotating at a low speed, the second rotating body 15 is pressed against the first rotating body 14 by the urging force of the urging member 34, and the first rotating body 14 is a cylinder of the second rotating body 15. It is completely contained in the shape portion 15a. At this time, the first cam portion 14c of the first rotating body 14 and the second cam portion 15c of the second rotating body 15 are in a completely engaged state (in other words, a completely meshed state), and the first cam portion 14c and The rotational force of the first rotating body 14 is transmitted to the second rotating body 15 or the braking force received by the second rotating body 15 is transmitted to the first rotating body 14 via the second cam portion 15c. The state in which the first cam portion 14c and the second cam portion 15c are completely engaged means that the top of the tapered surface of the first cam portion 14c is engaged with the valley portion of the tapered surface of the second cam portion 15c. The valley portion of the tapered surface of the first cam portion 14c is in a state of engaging with the top of the tapered surface of the second cam portion 15c (see FIG. 3).

第1回転体14の回転が低速のとき、付勢部材34の付勢力により第1導電性部材16aと第1磁石18の対向方向での間隔Lgが大きいので、図2に示すように、第1導電性部材16aには第1磁石18の磁界が実質的に作用しない。ここでの「実質的に作用しない」とは、第1磁石18の磁界が第1導電性部材16aに全く作用しない、又は、第1磁石18の磁界が第1導電性部材16aに作用しても、第1導電性部材16aに生じる渦電流に起因する制動力が第2回転体15に付与されない程度に僅かな磁界であることをいう。これにより、第1回転体14の回転速度が小さいときは、第1導電性部材16aに生じる渦電流に起因する制動力が第2回転体15に付与されなくなる。 When the rotation of the first rotating body 14 is low, the distance Lg between the first conductive member 16a and the first magnet 18 in the facing direction is large due to the urging force of the urging member 34. 1 The magnetic field of the first magnet 18 does not substantially act on the conductive member 16a. Here, "substantially no action" means that the magnetic field of the first magnet 18 does not act on the first conductive member 16a at all, or the magnetic field of the first magnet 18 acts on the first conductive member 16a. Also, it means that the magnetic field is so small that the braking force caused by the eddy current generated in the first conductive member 16a is not applied to the second rotating body 15. As a result, when the rotation speed of the first rotating body 14 is small, the braking force due to the eddy current generated in the first conductive member 16a is not applied to the second rotating body 15.

また、第1回転体14の回転が低速のときには、図2に示すように、第2磁石19の磁界が第2導電性部材16bに作用する。上述したように、第2導電性部材16bに対して第2磁石19が回転すると、第2導電性部材16bに電磁誘導により渦電流が生じ、その渦電流に起因して、第2回転体15の回転を止めようとする抵抗力が第2回転体15に付与される。しかしながら、この抵抗力は回転速度に比例するため(図1の制動力Fxを参照)、回転速度が小さいときには抵抗力も小さくなる。 Further, when the rotation of the first rotating body 14 is low, the magnetic field of the second magnet 19 acts on the second conductive member 16b as shown in FIG. As described above, when the second magnet 19 rotates with respect to the second conductive member 16b, an eddy current is generated in the second conductive member 16b by electromagnetic induction, and the second rotating body 15 is caused by the eddy current. A resistance force for stopping the rotation of the second rotating body 15 is applied to the second rotating body 15. However, since this resistance force is proportional to the rotation speed (see the braking force Fx in FIG. 1), the resistance force becomes smaller when the rotation speed is small.

以上述べたように、第1回転体14の回転が低速のときには、第2回転体15が受ける制動力、抵抗力は非常に小さい。したがって、制動装置10による制動対象物(例えば障子や開き戸など)を低速で動かすとき、渦電流に起因する制動力を受けずに制動対象物を容易に動かせる。 As described above, when the rotation of the first rotating body 14 is low speed, the braking force and the resistance force received by the second rotating body 15 are very small. Therefore, when the braking object (for example, a shoji or a hinged door) is moved by the braking device 10 at a low speed, the braking object can be easily moved without receiving the braking force caused by the eddy current.

次に、図4を参照して、第1回転体14が高速で回転しているときの制動装置10の動作を説明する。第1回転体14の回転速度が大きくなると、第2磁石19の磁界により第2導電性部材16bに生じる渦電流に起因する抵抗力が大きくなり、第2回転体15の回転を止めようとする。その結果、回転しようとする第1回転体14の第1カム部14cが停止しようとする第2回転体15の第2カム部15cを押圧する力が増大し、付勢部材34による付勢力に抗して第2回転体15が第1導電性部材16aの方向に移動する。すなわち、第1導電性部材16aと第1磁石18の対向方向での間隔Lgが小さくなる。 Next, with reference to FIG. 4, the operation of the braking device 10 when the first rotating body 14 is rotating at high speed will be described. When the rotation speed of the first rotating body 14 increases, the resistance force due to the eddy current generated in the second conductive member 16b by the magnetic field of the second magnet 19 increases, and the rotation of the second rotating body 15 is stopped. .. As a result, the force that the first cam portion 14c of the first rotating body 14 that is about to rotate presses the second cam portion 15c of the second rotating body 15 that is about to stop increases, and the urging force by the urging member 34 increases. Against this, the second rotating body 15 moves in the direction of the first conductive member 16a. That is, the distance Lg between the first conductive member 16a and the first magnet 18 in the facing direction becomes smaller.

第1磁石18が第1導電性部材16aに近づく途中で第1導電性部材16aには第1磁石18の磁界が作用する。第1磁石18の磁界が第1導電性部材16aに作用すると、渦電流に起因する制動力が第2回転体15に付与される。この制動力は、前述の通り、回転速度が大きくなり、それに伴い第1導電性部材16aと第1磁石18の間隔Lgが狭まるにつれて加速度的に増大する(図1の制動力Fyを参照)。この制動力は、第1カム部14c及び第2カム部15cを介して、第1回転体14に伝達される。 The magnetic field of the first magnet 18 acts on the first conductive member 16a while the first magnet 18 approaches the first conductive member 16a. When the magnetic field of the first magnet 18 acts on the first conductive member 16a, a braking force due to the eddy current is applied to the second rotating body 15. As described above, this braking force increases at an accelerating rate as the rotation speed increases and the distance Lg between the first conductive member 16a and the first magnet 18 narrows (see the braking force Fy in FIG. 1). This braking force is transmitted to the first rotating body 14 via the first cam portion 14c and the second cam portion 15c.

制動力により第2回転体15の回転速度が小さくなると、第2回転体15が受ける抵抗力が小さくなる。これに伴い、付勢部材34の付勢力によって、第2回転体15は、第1回転体14の方向に移動し、図2に示す状態に戻る。 When the rotation speed of the second rotating body 15 becomes smaller due to the braking force, the resistance force received by the second rotating body 15 becomes smaller. Along with this, the second rotating body 15 moves in the direction of the first rotating body 14 due to the urging force of the urging member 34, and returns to the state shown in FIG.

以上説明したように、第1実施形態に係る制動装置10によれば、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる。 As described above, according to the braking device 10 according to the first embodiment, it is possible to obtain a sufficient braking force during high-speed rotation of the rotating body and reduce the braking force applied during the low-speed rotation.

第1実施形態に係る制動装置10によれば、回転軸方向に対向する第1導電性部材16a及び第1磁石18により発生する制動力に加えて、径方向に対向する第2導電性部材16b及び第2磁石19により発生する抵抗力が第2回転体15、ひいては第1回転体14に作用するので、回転軸方向に対向する導電性部材及び磁石により発生する制動力のみの制動装置と比較して、大きな制動力を回転体に作用させることができる。 According to the braking device 10 according to the first embodiment, in addition to the braking force generated by the first conductive member 16a and the first magnet 18 facing in the direction of the rotation axis, the second conductive member 16b facing in the radial direction. And since the resistance force generated by the second magnet 19 acts on the second rotating body 15 and eventually the first rotating body 14, it is compared with the braking device having only the braking force generated by the conductive member facing the rotation axis direction and the magnet. Therefore, a large braking force can be applied to the rotating body.

また、第1実施形態に係る制動装置10では、第1回転体14に形成した第1カム部14cと第2回転体15に形成した第2カム部15cから成るカム機構により、第1導電性部材16aと第1磁石18の間隔Lgを調整している。よって、第1導電性部材16aと第1磁石18の間の間隔Lgを調整するにあたり、第1導電性部材16aと第1磁石18を径方向に相対移動させるための空間を確保せずともよくなる。これにより、制動装置10の径方向寸法の小型化を図れる。 Further, in the braking device 10 according to the first embodiment, the first conductiveness is provided by the cam mechanism including the first cam portion 14c formed on the first rotating body 14 and the second cam portion 15c formed on the second rotating body 15. The distance Lg between the member 16a and the first magnet 18 is adjusted. Therefore, in adjusting the distance Lg between the first conductive member 16a and the first magnet 18, it is not necessary to secure a space for relative movement of the first conductive member 16a and the first magnet 18 in the radial direction. .. As a result, the radial dimension of the braking device 10 can be reduced.

(第2実施形態)
図5は、第2実施形態に係る制動装置100を模式的に示す断面図である。第2実施形態に係る制動装置100は、第2回転体15の回転速度が大きくなるほど、第2回転体15の回転に対して大きな抵抗力を発生する「回転抵抗手段」として、ハウジング12内に封入された粘性流体102を用いている点が、第1実施形態に係る制動装置10と異なる。制動装置100においては、ハウジング12の底部12bに設けられる導電性部材116は板状体であり、第1実施形態に係る制動装置10における第2導電性部材16b及び該第2導電性部材16bと径方向に対向配置される第2磁石19は設けられていない。
(Second Embodiment)
FIG. 5 is a cross-sectional view schematically showing the braking device 100 according to the second embodiment. The braking device 100 according to the second embodiment is provided in the housing 12 as a "rotational resistance means" that generates a larger resistance force against the rotation of the second rotating body 15 as the rotation speed of the second rotating body 15 increases. It differs from the braking device 10 according to the first embodiment in that the enclosed viscous fluid 102 is used. In the braking device 100, the conductive member 116 provided on the bottom portion 12b of the housing 12 is a plate-like body, and the second conductive member 16b and the second conductive member 16b in the braking device 10 according to the first embodiment. The second magnet 19 which is arranged so as to face each other in the radial direction is not provided.

図6は、第2実施形態に係る制動装置100の動作状態を模式的に示す断面図である。以下、図5及び図6を参照して、制動装置100の動作について説明する。図5は、第1回転体14が低速で回転しているときの制動装置100の状態を示す。図6は、第1回転体14が高速で回転しているときの制動装置100の状態を示す。図5及び図6には、磁石118が作る磁場の磁束線の一部が図示されている。 FIG. 6 is a cross-sectional view schematically showing an operating state of the braking device 100 according to the second embodiment. Hereinafter, the operation of the braking device 100 will be described with reference to FIGS. 5 and 6. FIG. 5 shows the state of the braking device 100 when the first rotating body 14 is rotating at a low speed. FIG. 6 shows the state of the braking device 100 when the first rotating body 14 is rotating at high speed. 5 and 6 show a part of the magnetic flux lines of the magnetic field generated by the magnet 118.

まず、図5を参照して、第1回転体14が低速で回転しているときの制動装置100の動作を説明する。第1回転体14が低速で回転しているとき、付勢部材34の付勢力により第2回転体15が第1回転体14に押し付けられ、第1回転体14が第2回転体15の筒状部15a内に完全に収容された状態となる。このとき、第1回転体14の第1カム部14cと第2回転体15の第2カム部15cは完全に係合した状態となり、第1カム部14c及び第2カム部15cを介して、第1回転体14の回転力が第2回転体15に伝達される、又は、第2回転体15が受ける制動力が第1回転体14に伝達される。 First, with reference to FIG. 5, the operation of the braking device 100 when the first rotating body 14 is rotating at a low speed will be described. When the first rotating body 14 is rotating at a low speed, the second rotating body 15 is pressed against the first rotating body 14 by the urging force of the urging member 34, and the first rotating body 14 is a cylinder of the second rotating body 15. It is completely contained in the shape portion 15a. At this time, the first cam portion 14c of the first rotating body 14 and the second cam portion 15c of the second rotating body 15 are in a completely engaged state, and the first cam portion 14c and the second cam portion 15c are interposed therein. The rotational force of the first rotating body 14 is transmitted to the second rotating body 15, or the braking force received by the second rotating body 15 is transmitted to the first rotating body 14.

第1回転体14の回転が低速のとき、付勢部材34の付勢力により導電性部材116と磁石118の対向方向での間隔Lgが大きいので、図5に示すように、導電性部材116には第2回転体15に設けられた磁石118の磁界が実質的に作用しない。これにより、第1回転体14の回転速度が小さいときは、導電性部材116に生じる渦電流に起因する制動力が第2回転体15に付与されなくなる。 When the rotation of the first rotating body 14 is low, the distance Lg between the conductive member 116 and the magnet 118 in the facing direction is large due to the urging force of the urging member 34. Therefore, as shown in FIG. 5, the conductive member 116 has a large distance. Does not substantially act on the magnetic field of the magnet 118 provided on the second rotating body 15. As a result, when the rotation speed of the first rotating body 14 is small, the braking force caused by the eddy current generated in the conductive member 116 is not applied to the second rotating body 15.

上述したように、本実施形態に係る制動装置100では、ハウジング12内に粘性流体102が封入されている。この粘性流体102は、第2回転体15の回転を止めようとする抵抗力を生じる。しかしながら、粘性流体102による抵抗力は回転体の回転速度が小さいときには殆ど無視できる程度に小さくなる。したがって、第1回転体14の回転が低速のときには、第2回転体15が受ける制動力、抵抗力は非常に小さいので、制動装置100による制動対象物を低速で動かすとき、渦電流に起因する制動力を受けずに制動対象物を容易に動かせる。 As described above, in the braking device 100 according to the present embodiment, the viscous fluid 102 is enclosed in the housing 12. The viscous fluid 102 creates a resistance force that tries to stop the rotation of the second rotating body 15. However, the resistance force due to the viscous fluid 102 becomes almost negligible when the rotation speed of the rotating body is small. Therefore, when the rotation of the first rotating body 14 is low speed, the braking force and the resistance force received by the second rotating body 15 are very small, and therefore, when the braking object by the braking device 100 is moved at a low speed, it is caused by the eddy current. The object to be braked can be easily moved without receiving braking force.

次に、図6を参照して、第1回転体14が高速で回転しているときの制動装置100の動作を説明する。第1回転体14の回転速度が大きくなると、粘性流体102に起因する抵抗力が大きくなり、第2回転体15の回転を止めようとする。その結果、回転しようとする第1回転体14の第1カム部14cが停止しようとする第2回転体15の第2カム部15cを押圧する力が増大し、付勢部材34による付勢力に抗して第2回転体15が導電性部材116の方向に移動する。すなわち、導電性部材116と磁石118の対向方向での間隔Lgが小さくなる。 Next, with reference to FIG. 6, the operation of the braking device 100 when the first rotating body 14 is rotating at high speed will be described. When the rotation speed of the first rotating body 14 increases, the resistance force caused by the viscous fluid 102 increases, and the rotation of the second rotating body 15 is stopped. As a result, the force that the first cam portion 14c of the first rotating body 14 that is about to rotate presses the second cam portion 15c of the second rotating body 15 that is about to stop increases, and the urging force by the urging member 34 increases. Against this, the second rotating body 15 moves in the direction of the conductive member 116. That is, the distance Lg between the conductive member 116 and the magnet 118 in the facing direction becomes small.

磁石118が導電性部材116に近づく途中で導電性部材116には磁石118の磁界が作用する。磁石118の磁界が導電性部材116に作用すると、渦電流に起因する制動力が第2回転体15に付与される。この制動力は、前述の通り、回転速度が大きくなり、それに伴い導電性部材116と磁石118の間隔Lgが狭まるにつれて加速度的に増大する(図1の制動力Fyを参照)。この制動力は、第1カム部14c及び第2カム部15cを介して、第1回転体14に伝達される。 The magnetic field of the magnet 118 acts on the conductive member 116 while the magnet 118 approaches the conductive member 116. When the magnetic field of the magnet 118 acts on the conductive member 116, a braking force due to the eddy current is applied to the second rotating body 15. As described above, this braking force increases at an accelerating rate as the rotational speed increases and the distance Lg between the conductive member 116 and the magnet 118 narrows accordingly (see the braking force Fy in FIG. 1). This braking force is transmitted to the first rotating body 14 via the first cam portion 14c and the second cam portion 15c.

制動力により第2回転体15の回転速度が小さくなると、第2回転体15が粘性流体102から受ける抵抗力が小さくなる。これに伴い、付勢部材34の付勢力によって、第2回転体15は、第1回転体14の方向に移動し、図5に示す状態に戻る。 When the rotation speed of the second rotating body 15 becomes smaller due to the braking force, the resistance force that the second rotating body 15 receives from the viscous fluid 102 becomes smaller. Along with this, the second rotating body 15 moves in the direction of the first rotating body 14 due to the urging force of the urging member 34, and returns to the state shown in FIG.

以上説明したように、第2実施形態に係る制動装置100によっても、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる。 As described above, the braking device 100 according to the second embodiment can also obtain a sufficient braking force during high-speed rotation of the rotating body and reduce the braking force applied during the low-speed rotation.

第2実施形態に係る制動装置100によれば、回転軸方向に対向する導電性部材116及び磁石118により発生する制動力に加えて、粘性流体102により発生する抵抗力が第2回転体15、ひいては第1回転体14に作用するので、回転軸方向に対向する導電性部材及び磁石により発生する制動力のみの制動装置と比較して、大きな制動力を回転体に作用させることができる。 According to the braking device 100 according to the second embodiment, in addition to the braking force generated by the conductive member 116 and the magnet 118 facing in the direction of the rotation axis, the resistance force generated by the viscous fluid 102 is the second rotating body 15. As a result, since it acts on the first rotating body 14, a large braking force can be applied to the rotating body as compared with a braking device having only a braking force generated by the conductive member and the magnet facing in the rotation axis direction.

以上、本発明の実施形態の例や変形例について詳細に説明した。前述した実施形態や変形例は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態や変形例の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態の」「実施形態では」等との表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。また、図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。 The examples and modifications of the embodiments of the present invention have been described in detail above. The above-mentioned embodiments and modifications are merely specific examples for carrying out the present invention. The contents of the embodiments and modifications do not limit the technical scope of the present invention, and many of the components are changed, added, deleted, etc. within the range not deviating from the idea of the invention defined in the claims. The design can be changed. In the above-mentioned embodiment, the contents that can be changed in such a design are emphasized by adding notations such as "in the embodiment" and "in the embodiment", but the design is made even if the contents do not have such a notation. Changes are allowed. Further, the hatching attached to the cross section of the drawing does not limit the material of the object to which the hatching is attached.

上述の実施形態では、回転軸方向に対向して配置される導電性部材及び磁石のうち、導電性部材をハウジングに設け、磁石を第2回転体に設けた例を説明した。しかしながら、これとは逆に、回転軸方向に対向して配置される導電性部材及び磁石のうち、磁石をハウジングに設け、導電性部材を第2回転体に設けてもよい。 In the above-described embodiment, among the conductive members and magnets arranged so as to face each other in the direction of the rotation axis, an example in which the conductive member is provided in the housing and the magnet is provided in the second rotating body has been described. However, on the contrary, among the conductive members and magnets arranged so as to face each other in the direction of the rotation axis, the magnet may be provided in the housing and the conductive member may be provided in the second rotating body.

また、上述の第1実施形態では、第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石のうち、第2導電性部材をハウジングに設け、第2磁石を第2回転体に設けた例を説明した。しかしながら、これとは逆に、第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石のうち、第2磁石をハウジングに設け、第2導電性部材を第2回転体に設けてもよい。 Further, in the above-mentioned first embodiment, of the second conductive member and the second magnet arranged so as to face each other in the radial direction of the second rotating body, the second conductive member is provided in the housing and the second magnet is provided. An example provided in the second rotating body has been described. However, on the contrary, of the second conductive member and the second magnet arranged so as to face each other in the radial direction of the second rotating body, the second magnet is provided in the housing and the second conductive member is provided in the second. It may be provided on a rotating body.

また、上述の実施形態では、第2回転体を移動させる移動機構としてカム機構を用いた例を説明した。しかしながら、移動機構はカム機構に限定されず、他の構成を用いることができる。 Further, in the above-described embodiment, an example in which a cam mechanism is used as a moving mechanism for moving the second rotating body has been described. However, the moving mechanism is not limited to the cam mechanism, and other configurations can be used.

また、上述の実施形態では、磁石として永久磁石を用いたが、電磁石が用いられてもよい。 Further, in the above-described embodiment, a permanent magnet is used as the magnet, but an electromagnet may be used.

以上の実施形態、変形例により具体化される発明を一般化すると、以下の技術的思想が導かれる。以下、発明が解決しようとする課題に記載の態様を用いて説明する。 The following technical ideas can be derived by generalizing the invention embodied by the above embodiments and modifications. Hereinafter, the aspects described in the problem to be solved by the invention will be described.

第2態様の制動装置は、第1態様において、回転抵抗手段は、第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石を備え、導電性部材及び第2磁石の一方は回転体の周側面に設けられ、それらの他方はハウジングの内壁面に設けられてもよい。 In the braking device of the second aspect, in the first aspect, the rotation resistance means includes a second conductive member and a second magnet arranged so as to face each other in the radial direction of the second rotating body, and the conductive member and the second. One of the magnets may be provided on the peripheral side surface of the rotating body, and the other of them may be provided on the inner wall surface of the housing.

第3態様の制動装置は、第1態様において、回転抵抗手段は、ハウジング内に封入された粘性流体を備えてもよい。 In the braking device of the third aspect, in the first aspect, the rotation resistance means may include a viscous fluid enclosed in a housing.

第4態様の制動装置は、第1~第3態様において、移動機構は、第1回転体に設けられる第1カム部と、第2回転体に設けられ、第1カム部と係合する第2カム部と、導電性部材と磁石とが離間する方向に第2回転体を付勢する付勢部材とを備えてもよい。 In the first to third aspects of the braking device of the fourth aspect, the moving mechanism is provided on the first cam portion provided on the first rotating body and the second cam portion provided on the second rotating body and engages with the first cam portion. The two cam portions may be provided with an urging member that urges the second rotating body in a direction in which the conductive member and the magnet are separated from each other.

第5態様の制動装置は、第4態様において、移動機構は、回転抵抗手段により付与される抵抗力が大きくなるほど、第1カム部が第2カム部を押圧する力が増大し、付勢部材による付勢力に抗して第2回転体が移動するよう構成されてもよい。 In the braking device of the fifth aspect, in the fourth aspect, as the resistance force applied by the rotation resistance means increases, the force with which the first cam portion presses the second cam portion increases, and the urging member. The second rotating body may be configured to move against the urging force of.

10,100 制動装置、 12 ハウジング、 14 第1回転体、 14c 第1カム部、 15 第2回転体、 15c 第2カム部、 16a 第1導電性部材、 16b 第2導電性部材、 18 第1磁石、 19 第2磁石、 34 付勢部材、 102 粘性流体, 116 導電性部材、 118 磁石。 10,100 Braking device, 12 Housing, 14 1st rotating body, 14c 1st cam part, 15 2nd rotating body, 15c 2nd cam part, 16a 1st conductive member, 16b 2nd conductive member, 18 1st Magnet, 19 second magnet, 34 urging member, 102 viscous fluid, 116 conductive member, 118 magnet.

Claims (3)

ハウジングと、
前記ハウジング内に回転可能に収容される第1回転体と、
前記ハウジング内に、前記第1回転体と連れ回り可能に収容される第2回転体と、
前記第1回転体及び前記第2回転体の回転軸方向に対向して配置される導電性部材及び磁石であって、前記導電性部材及び前記磁石の一方は前記第2回転体と一体的に回転可能に設けられ、それらの他方は前記ハウジングに設けられる導電性部材及び磁石と、
前記第2回転体の回転速度が大きくなるほど、前記第2回転体の回転に対して大きな抵抗力を発生する回転抵抗手段と、
前記第2回転体の回転に対する抵抗力が大きくなるほど、前記導電性部材と前記磁石の対向方向での間隔が小さくなるように、前記第2回転体を移動させる移動機構と、
を備え
前記回転抵抗手段は、前記第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石を備え、
前記導電性部材及び前記第2磁石の一方は前記回転体の周側面に設けられ、それらの他方は前記ハウジングの内壁面に設けられることを特徴とする制動装置。
With the housing
A first rotating body rotatably housed in the housing,
A second rotating body, which is housed in the housing so as to be able to rotate with the first rotating body,
A conductive member and a magnet arranged so as to face each other in the rotation axis direction of the first rotating body and the second rotating body, and one of the conductive member and the magnet is integrally with the second rotating body. Rotatably provided, the other of which is a conductive member and a magnet provided in the housing,
As the rotation speed of the second rotating body increases, the rotation resistance means that generates a larger resistance force against the rotation of the second rotating body, and the rotation resistance means.
A moving mechanism that moves the second rotating body so that the distance between the conductive member and the magnet in the facing direction becomes smaller as the resistance to the rotation of the second rotating body becomes larger.
Equipped with
The rotation resistance means includes a second conductive member and a second magnet arranged so as to face each other in the radial direction of the second rotating body.
A braking device characterized in that one of the conductive member and the second magnet is provided on the peripheral side surface of the rotating body, and the other of them is provided on the inner wall surface of the housing .
ハウジングと、
前記ハウジング内に回転可能に収容される第1回転体と、
前記ハウジング内に、前記第1回転体と連れ回り可能に収容される第2回転体と、
前記第1回転体及び前記第2回転体の回転軸方向に対向して配置される導電性部材及び磁石であって、前記導電性部材及び前記磁石の一方は前記第2回転体と一体的に回転可能に設けられ、それらの他方は前記ハウジングに設けられる導電性部材及び磁石と、
前記第2回転体の回転速度が大きくなるほど、前記第2回転体の回転に対して大きな抵抗力を発生する回転抵抗手段と、
前記第2回転体の回転に対する抵抗力が大きくなるほど、前記導電性部材と前記磁石の対向方向での間隔が小さくなるように、前記第2回転体を移動させる移動機構と、
を備え、
前記移動機構は、
前記第1回転体に設けられる第1カム部と、
前記第2回転体に設けられ、前記第1カム部と係合する第2カム部と、
前記導電性部材と前記磁石とが離間する方向に前記第2回転体を付勢する付勢部材と、
を備えることを特徴とする制動装置。
With the housing
A first rotating body rotatably housed in the housing,
A second rotating body, which is housed in the housing so as to be able to rotate with the first rotating body,
A conductive member and a magnet arranged so as to face each other in the rotation axis direction of the first rotating body and the second rotating body, and one of the conductive member and the magnet is integrally with the second rotating body. Rotatably provided, the other of which is a conductive member and a magnet provided in the housing,
As the rotation speed of the second rotating body increases, the rotation resistance means that generates a larger resistance force against the rotation of the second rotating body, and the rotation resistance means.
A moving mechanism that moves the second rotating body so that the distance between the conductive member and the magnet in the facing direction becomes smaller as the resistance to the rotation of the second rotating body becomes larger.
Equipped with
The moving mechanism is
The first cam portion provided on the first rotating body and
A second cam portion provided on the second rotating body and engaging with the first cam portion, and a second cam portion.
An urging member that urges the second rotating body in a direction in which the conductive member and the magnet are separated from each other.
A braking device characterized by being provided with.
前記移動機構は、前記回転抵抗手段により付与される抵抗力が大きくなるほど、前記第1カム部が前記第2カム部を押圧する力が増大し、前記付勢部材による付勢力に抗して前記第2回転体が移動するよう構成されることを特徴とする請求項に記載の制動装置。 In the moving mechanism, as the resistance force applied by the rotation resistance means increases, the force with which the first cam portion presses the second cam portion increases, and the force is resisted by the urging member. The braking device according to claim 2 , wherein the second rotating body is configured to move.
JP2018024453A 2018-02-14 2018-02-14 Braking device Active JP7022613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024453A JP7022613B2 (en) 2018-02-14 2018-02-14 Braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024453A JP7022613B2 (en) 2018-02-14 2018-02-14 Braking device

Publications (2)

Publication Number Publication Date
JP2019140851A JP2019140851A (en) 2019-08-22
JP7022613B2 true JP7022613B2 (en) 2022-02-18

Family

ID=67694606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024453A Active JP7022613B2 (en) 2018-02-14 2018-02-14 Braking device

Country Status (1)

Country Link
JP (1) JP7022613B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020597A (en) 1999-07-08 2001-01-23 Miwa Lock Co Ltd Sliding door damping device
JP2003314604A (en) 2002-03-28 2003-11-06 Arturo Salice Spa Brake device for moving furniture component
JP2012132492A (en) 2010-12-20 2012-07-12 Tok Bearing Co Ltd Velocity dependence type rotary damper
WO2015093983A1 (en) 2013-12-16 2015-06-25 Eddy Current Limited Partnership An assembly to control or govern relative speed of movement between parts
JP2016108920A (en) 2014-05-02 2016-06-20 立川ブラインド工業株式会社 Shielding device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252800A (en) * 1992-02-28 1993-09-28 Fuji Oozx Kk Control method and equipment for power transmission equipment using eddy current joint
JP3784462B2 (en) * 1996-05-29 2006-06-14 美和ロック株式会社 Door closer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001020597A (en) 1999-07-08 2001-01-23 Miwa Lock Co Ltd Sliding door damping device
JP2003314604A (en) 2002-03-28 2003-11-06 Arturo Salice Spa Brake device for moving furniture component
JP2012132492A (en) 2010-12-20 2012-07-12 Tok Bearing Co Ltd Velocity dependence type rotary damper
WO2015093983A1 (en) 2013-12-16 2015-06-25 Eddy Current Limited Partnership An assembly to control or govern relative speed of movement between parts
CN105993120A (en) 2013-12-16 2016-10-05 涡流有限合伙公司 An assembly to control or govern relative speed of movement between parts
JP2016108920A (en) 2014-05-02 2016-06-20 立川ブラインド工業株式会社 Shielding device

Also Published As

Publication number Publication date
JP2019140851A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
JP7194457B2 (en) Permanent magnet motor with passively controlled aligned variable rotor/stator
CN107636943B (en) Eddy current type speed reduction device
US10400861B2 (en) Speed reducer for vehicle
JP6104678B2 (en) Attenuator
US9473011B2 (en) Resistance generating device
US9539873B2 (en) Rotary damper
JP6820009B2 (en) Rotating damper
US9461532B2 (en) Resistance generating device for drive unit
JP7022613B2 (en) Braking device
US20040074718A1 (en) Simplified loading device
JP6331426B2 (en) Door check device
JP6116304B2 (en) Rotating shaft brake device
JP7061486B2 (en) Braking device
CN109565219B (en) Motor device
US6823971B2 (en) Simplified loading device
US6731025B2 (en) Motor with linear and rotary motion
JPWO2018020554A1 (en) Reverse rotation prevention mechanism and motor with reduction gear
JPS62262649A (en) Linear pulse motor
JP2020072485A (en) motor
JP2001320868A (en) Linear actuator
WO2021166136A1 (en) Compressor
JPH07229536A (en) Vibration limiting device
JP6863579B2 (en) Simple rotating damper
JPS62262651A (en) Linear pulse motor
JP2014011857A (en) Actuator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350