JP2019140851A - Brake - Google Patents

Brake Download PDF

Info

Publication number
JP2019140851A
JP2019140851A JP2018024453A JP2018024453A JP2019140851A JP 2019140851 A JP2019140851 A JP 2019140851A JP 2018024453 A JP2018024453 A JP 2018024453A JP 2018024453 A JP2018024453 A JP 2018024453A JP 2019140851 A JP2019140851 A JP 2019140851A
Authority
JP
Japan
Prior art keywords
rotating body
magnet
rotation
conductive member
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018024453A
Other languages
Japanese (ja)
Other versions
JP7022613B2 (en
Inventor
田中 淳
Atsushi Tanaka
淳 田中
松田 宏
Hiroshi Matsuda
宏 松田
太久磨 守屋
Takuma Moriya
太久磨 守屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lixil Corp
Tok Inc
Original Assignee
Lixil Corp
Tok Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lixil Corp, Tok Inc filed Critical Lixil Corp
Priority to JP2018024453A priority Critical patent/JP7022613B2/en
Publication of JP2019140851A publication Critical patent/JP2019140851A/en
Application granted granted Critical
Publication of JP7022613B2 publication Critical patent/JP7022613B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Transmission Devices (AREA)
  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

To provide a brake capable of reducing the brake force imparted during low speed rotation, while obtaining sufficient brake force during high speed rotation of a body of rotation.SOLUTION: A brake 10 includes a housing 12, a first body of rotation 14 received rotatably in the housing 12, a second body of rotation 15 received rotatably in the housing 12 so as to be carried around the first body of rotation 14, a first conductive member 16a and a first magnet 18 placed oppositely to the rotational axis direction of the first and second bodies of rotation 14, 15, a second conductive member 16b and a second magnet 19 generating large resistance force against rotation of the second body of rotation 15 as the revolution of the second body of rotation 15 increases, and a movement mechanism for moving the second body of rotation 15 so that the interval of the first conductive member 16a and the first magnet 18 in the opposite direction decreases as the resistance force against rotation of the second body of rotation 15 increases.SELECTED DRAWING: Figure 2

Description

本発明は、制動装置に関する。   The present invention relates to a braking device.

従来より、導電性部材に生じる渦電流を利用して相対回転する固定体及び回転体に制動力を付与可能な制動装置が知られている。この種の制動装置では、通常、導電性部材に渦電流を生じさせるため、回転体の回転に連動して周方向での相対位置が変化するように導電性部材及び永久磁石が設けられる(たとえば、特許文献1参照)。   2. Description of the Related Art Conventionally, a stationary body that relatively rotates using an eddy current generated in a conductive member and a braking device that can apply a braking force to the rotating body are known. In this type of braking device, normally, in order to generate eddy current in the conductive member, the conductive member and the permanent magnet are provided so that the relative position in the circumferential direction changes in conjunction with the rotation of the rotating body (for example, , See Patent Document 1).

特開2001−20597号公報JP 2001-20597 A

本発明者は、特許文献1の制動装置に関して検討したところ、次の課題があるとの認識を得た。特許文献1の制動装置では、導電性部材と永久磁石が回転軸方向に対向して配置され、その回転軸方向での間隔が回転体の回転速度によらず一定である。この構造のもとでは、後述のように、制動装置の制動力は、回転体の回転速度の増大に伴い一次関数的に増加する。このような制動力が付与される場合、回転体の高速回転時に十分な制動力を得ようとすると、その低速回転時にも比較的に大きい制動力が付与されてしまう。これに伴い、制動装置による制動対象物を低速で動かすときに操作性の低下を招いてしまう。   When this inventor examined the brake device of patent document 1, it acquired recognition that there existed the following subject. In the braking device of Patent Document 1, the conductive member and the permanent magnet are arranged to face each other in the rotation axis direction, and the interval in the rotation axis direction is constant regardless of the rotation speed of the rotating body. Under this structure, as will be described later, the braking force of the braking device increases linearly as the rotational speed of the rotating body increases. When such a braking force is applied, if a sufficient braking force is to be obtained during high-speed rotation of the rotating body, a relatively large braking force is applied even during the low-speed rotation. In connection with this, when moving the braking target object by a braking device at low speed, the operativity will fall.

本発明のある態様は、このような課題に鑑みてなされ、その目的は、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる制動装置を提供することにある。   An aspect of the present invention has been made in view of such problems, and an object thereof is to provide a braking device that can obtain a sufficient braking force when the rotating body rotates at a high speed while reducing a braking force applied during the low-speed rotation. There is to do.

上記課題を解決するための本発明の第1態様は、ハウジングと、ハウジング内に回転可能に収容される第1回転体と、ハウジング内に、第1回転体と連れ回り可能に収容される第2回転体と、第1回転体及び第2回転体の回転軸方向に対向して配置される導電性部材及び磁石であって、導電性部材及び磁石の一方は第2回転体と一体的に回転可能に設けられ、それらの他方はハウジングに設けられる導電性部材及び磁石と、第2回転体の回転速度が大きくなるほど、第2回転体の回転に対して大きな抵抗力を発生する回転抵抗手段と、第2回転体の回転に対する抵抗力が大きくなるほど、導電性部材と磁石の対向方向での間隔が小さくなるように、第2回転体を移動させる移動機構とを備える制動装置である。   A first aspect of the present invention for solving the above problems includes a housing, a first rotating body that is rotatably accommodated in the housing, and a first rotating body that is rotatably accommodated in the housing with the first rotating body. A two-rotor, and a conductive member and a magnet disposed opposite to each other in the rotation axis direction of the first and second rotors, wherein one of the conductive member and the magnet is integrated with the second rotor. The other of them, the other of which is a conductive member and a magnet provided in the housing, and the rotation resistance means that generates a greater resistance force against the rotation of the second rotating body as the rotation speed of the second rotating body increases. And a moving mechanism that moves the second rotating body so that the distance between the conductive member and the magnet in the facing direction decreases as the resistance force against the rotation of the second rotating body increases.

本発明によれば、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる制動装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the braking device which can make small the braking force provided at the time of the low-speed rotation can be provided, obtaining sufficient braking force at the time of high-speed rotation of a rotary body.

回転体の回転速度と制動力の関係を示すグラフである。It is a graph which shows the relationship between the rotational speed of a rotary body, and braking force. 第1実施形態に係る制動装置を模式的に示す断面図である。It is sectional drawing which shows typically the braking device which concerns on 1st Embodiment. 第1回転体及び第2回転体の斜視図である。It is a perspective view of a 1st rotary body and a 2nd rotary body. 第1実施形態に係る制動装置の動作状態を模式的に示す断面図である。It is sectional drawing which shows typically the operation state of the braking device which concerns on 1st Embodiment. 第2実施形態に係る制動装置を模式的に示す断面図である。It is sectional drawing which shows typically the braking device which concerns on 2nd Embodiment. 第2実施形態に係る制動装置の動作状態を模式的に示す断面図である。It is sectional drawing which shows typically the operation state of the braking device which concerns on 2nd Embodiment.

まず、実施形態の制動装置の概要から説明する。実施形態の制動装置は、回転体の回転速度が大きくなるほど、導電性部材と磁石の対向方向での間隔が小さくなるように構成されている。ここでの「対向方向」とは、回転体の回転軸方向で導電性部材及び磁石が対向して設けられる方向をいう。   First, the outline of the braking device of the embodiment will be described. The braking device according to the embodiment is configured such that the spacing between the conductive member and the magnet in the facing direction decreases as the rotational speed of the rotating body increases. Here, the “opposing direction” refers to a direction in which the conductive member and the magnet are provided facing each other in the rotation axis direction of the rotating body.

図1は、回転体の回転速度と制動力の関係を示すグラフである。本グラフでは、特許文献1に記載の制動装置により得られる制動力Fxと、実施形態の制動装置により得られる制動力Fyの一例を示す。特許文献1の制動装置では、回転体の回転速度の増大に伴い一次関数的に制動力が増加する。一方、実施形態の制動装置では、回転体の回転速度の増大に伴い加速度的に制動力が増加する。これらの理由を説明する。   FIG. 1 is a graph showing the relationship between the rotational speed of the rotating body and the braking force. This graph shows an example of the braking force Fx obtained by the braking device described in Patent Document 1 and the braking force Fy obtained by the braking device of the embodiment. In the braking device disclosed in Patent Document 1, the braking force increases in a linear function as the rotational speed of the rotating body increases. On the other hand, in the braking device of the embodiment, the braking force increases in an accelerated manner as the rotational speed of the rotating body increases. These reasons will be described.

ここでは、説明を簡単にするため、導電性部材と磁石が回転軸方向に対向して配置され、回転体と一体的に磁石が回転することで、導電性部材と磁石の周方向での相対位置が変化する場合を例に説明する。これは、後述する図2の例を想定している。   Here, in order to simplify the explanation, the conductive member and the magnet are arranged to face each other in the rotation axis direction, and the magnet rotates integrally with the rotating body, so that the conductive member and the magnet are relatively aligned in the circumferential direction. A case where the position changes will be described as an example. This assumes the example of FIG.

導電性部材に対して磁石が相対回転したとき、磁石が作る磁場の影響を受けて、電磁誘導により導電性部材に渦電流が生じ、その渦電流により導電性部材に磁極が生じる。この渦電流により生じる導電性部材の磁極と磁石の磁極の間には、磁荷に関するクーロンの法則に基づき、下記の式(1)で表されるクーロン力F1[N]が磁気力として作用する。このクーロン力F1は、回転体の回転方向とは反対方向に向かう制動力として磁石に作用する。なお、k1は係数、m1は導電性部材に生じる磁極の磁荷[Wb]、m2は磁石の磁荷[Wb]、rは導電性部材と磁石の間の対向方向(回転軸方向)での間隔[m]である。
F1=(k1×m1×m2)/r・・・(1)
When the magnet rotates relative to the conductive member, an eddy current is generated in the conductive member by electromagnetic induction under the influence of a magnetic field generated by the magnet, and a magnetic pole is generated in the conductive member due to the eddy current. A Coulomb force F1 [N] expressed by the following equation (1) acts as a magnetic force between the magnetic pole of the conductive member generated by the eddy current and the magnetic pole of the magnet based on Coulomb's law related to the magnetic charge. . This Coulomb force F1 acts on the magnet as a braking force directed in the direction opposite to the rotation direction of the rotating body. Here, k1 is a coefficient, m1 is the magnetic charge [Wb] of the magnetic pole generated in the conductive member, m2 is the magnetic charge [Wb] of the magnet, and r is the facing direction (rotational axis direction) between the conductive member and the magnet. The interval [m].
F1 = (k1 × m1 × m2) / r 2 (1)

また、導電性部材に生じる渦電流には、電磁誘導によって、次の式(2)で表されるローレンツ力F2[N]が作用する。このローレンツ力F2は、回転体の回転方向とは反対方向に向かう制動力として磁石に付与される。なお、qは渦電流の電荷量[C]、vは導電性部材の運動速度[m/s]、Bは磁石が作る磁場の対向方向での磁束密度[Wb/m2]である。
F2=q×v×B ・・・ (2)
In addition, Lorentz force F2 [N] expressed by the following equation (2) acts on eddy current generated in the conductive member by electromagnetic induction. The Lorentz force F2 is applied to the magnet as a braking force directed in the direction opposite to the rotation direction of the rotating body. Note that q is the charge amount [C] of eddy current, v is the motion speed [m / s] of the conductive member, and B is the magnetic flux density [Wb / m2] in the opposite direction of the magnetic field generated by the magnet.
F2 = q × v × B (2)

導電性部材に対して磁石が回転したとき、磁石には前述のクーロン力F1とローレンツ力F2の合力Faが作用する。一方、導電性部材には、作用反作用の法則により、この合力Faとは逆向きに大きさの等しい力Fb(以下、反作用力Fbという)が作用する。かりに、磁石ではなく導電性部材が回転したときも同様である。この合力Fa又は反作用力Fbの何れかは、導電性部材及び磁石の何れかと一体的に回転する回転体に制動力として作用する。   When the magnet rotates relative to the conductive member, the resultant force Fa of the aforementioned Coulomb force F1 and Lorentz force F2 acts on the magnet. On the other hand, due to the law of action and reaction, a force Fb (hereinafter referred to as a reaction force Fb) having the same magnitude as that of the resultant force Fa acts on the conductive member. The same applies when the conductive member is rotated instead of the magnet. Either the resultant force Fa or the reaction force Fb acts as a braking force on a rotating body that rotates integrally with either the conductive member or the magnet.

ここで、磁荷に関するクーロンの法則から、磁石が作る磁場の磁束密度Bは、前述の間隔rの二乗に反比例した関係にあることが知られている。このことと、式(2)から、次の式(3)が導き出せる。式(3)のk3は係数である。式(1)と式(3)に示すように、クーロン力F1とローレンツ力F2の何れも、導電性部材と磁石の間の対向方向での間隔rの二乗に反比例した関係にある。
F2=(k3×v)/r ・・・ (3)
Here, it is known from the Coulomb's law regarding the magnetic charge that the magnetic flux density B of the magnetic field generated by the magnet is in a relationship inversely proportional to the square of the interval r described above. From this and equation (2), the following equation (3) can be derived. In equation (3), k3 is a coefficient. As shown in the equations (1) and (3), both the Coulomb force F1 and the Lorentz force F2 are in inverse proportion to the square of the distance r in the facing direction between the conductive member and the magnet.
F2 = (k3 × v) / r 2 (3)

ここで、特許文献1の制動装置では、導電性部材と磁石の間の対向方向での間隔rが変動しない。このため、導電性部材には、式(1)に示すように、一定のクーロン力F1の他に、式(3)に示すように、回転体の回転速度の増大に伴い一次関数的に増大するローレンツ力F2が付与される。この結果、図1の制動力Fxが得られる。   Here, in the brake device of patent document 1, the space | interval r in the opposing direction between an electroconductive member and a magnet does not change. For this reason, the conductive member increases in a linear function as the rotational speed of the rotating body increases as shown in Expression (3) in addition to the constant Coulomb force F1 as shown in Expression (1). Lorentz force F2 is applied. As a result, the braking force Fx shown in FIG. 1 is obtained.

一方、実施形態の制動装置では、回転体の回転速度が大きくなるほど、導電性部材と磁石の間の対向方向での間隔rが小さくなる。このため、式(1)、(3)に示すように、回転体の回転速度の増大に伴い間隔rが小さくなるほど、クーロン力F1、ローレンツ力F2が加速度的に増大し、その合力Faや反作用力Fbを用いた制動力Fyも同様に加速度的に増大する。この結果、図1の制動力Fyが得られる。よって、図1に示すように、回転体の回転速度の増大に伴い一次関数的に制動力が増大する従来の制動装置と比べて、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくし易くなる。   On the other hand, in the braking device of the embodiment, the distance r in the facing direction between the conductive member and the magnet decreases as the rotational speed of the rotating body increases. For this reason, as shown in equations (1) and (3), the Coulomb force F1 and the Lorentz force F2 increase at an accelerated rate as the interval r decreases as the rotational speed of the rotating body increases, and the resultant force Fa and reaction are increased. Similarly, the braking force Fy using the force Fb increases in an accelerated manner. As a result, the braking force Fy shown in FIG. 1 is obtained. Therefore, as shown in FIG. 1, compared with the conventional braking device in which the braking force increases in a linear function as the rotational speed of the rotating body increases, while obtaining a sufficient braking force at the time of high-speed rotation of the rotating body, It becomes easy to reduce the braking force applied during low-speed rotation.

以下、実施形態、変形例では、同一の構成要素に同一の符号を付し、重複する説明を省略する。また、各図面では、説明の便宜のため、構成要素の一部を適宜省略したり、構成要素の寸法を適宜拡大、縮小して示す。   Hereinafter, in the embodiment and the modification, the same reference numerals are given to the same components, and the duplicate description is omitted. In the drawings, for convenience of explanation, some of the components are omitted as appropriate, and the dimensions of the components are appropriately enlarged and reduced.

(第1の実施の形態)
図2は、第1実施形態に係る制動装置10を模式的に示す断面図である。制動装置10は、固定体としてのハウジング12と、第1回転体14と、第2回転体15とを備える。
(First embodiment)
FIG. 2 is a cross-sectional view schematically showing the braking device 10 according to the first embodiment. The braking device 10 includes a housing 12 as a fixed body, a first rotating body 14, and a second rotating body 15.

ハウジング12は、不図示の外部構造体に固定される。ハウジング12は、制動装置10の他の構成部品を収容する。ハウジング12は、筒状部12aと、筒状部12aの軸線方向の両端部をそれぞれ覆い塞ぐ底部12b及びキャップ部12cとを有する。   The housing 12 is fixed to an external structure (not shown). The housing 12 accommodates other components of the braking device 10. The housing 12 includes a cylindrical portion 12a, and a bottom portion 12b and a cap portion 12c that cover and close both ends of the cylindrical portion 12a in the axial direction.

図3は、第1回転体14及び第2回転体15の斜視図である。第1回転体14は、ハウジング12内に、回転中心線La周りに回転可能に収容される。第1回転体14は、棒状の回転軸14aを有する。図2に示すように、回転軸14aは、ハウジング12のキャップ部12cに軸受26を介して回転自在に支持される。軸受26は、転がり軸受、滑り軸受等であってよい。本明細書では、第1回転体14および第2回転体15の回転中心線Laに沿った方向を「回転軸方向X」、その回転中心線Laを中心とする円の半径方向、円周方向を「径方向」、「周方向」として説明する。   FIG. 3 is a perspective view of the first rotating body 14 and the second rotating body 15. The first rotating body 14 is accommodated in the housing 12 so as to be rotatable around the rotation center line La. The first rotating body 14 has a rod-shaped rotating shaft 14a. As shown in FIG. 2, the rotating shaft 14 a is rotatably supported by the cap portion 12 c of the housing 12 via a bearing 26. The bearing 26 may be a rolling bearing, a sliding bearing, or the like. In the present specification, the direction along the rotation center line La of the first rotating body 14 and the second rotating body 15 is referred to as “rotating axis direction X”, the radial direction of the circle centered on the rotating center line La, and the circumferential direction. Are described as “radial direction” and “circumferential direction”.

第1回転体14はさらに、回転軸14aの中途に設けられたフランジ部14bと、第1回転体14のフランジ部14bに形成された第1カム部14cとを有する。フランジ部14bは、回転軸14aから径方向に張り出しており、第2回転体15の内部に収容可能な大きさに形成される。第1カム部14cは、後述する第2回転体15の第2カム部15cと係合するよう形成されたテーパ面を有する。   The first rotating body 14 further includes a flange portion 14b provided in the middle of the rotating shaft 14a and a first cam portion 14c formed on the flange portion 14b of the first rotating body 14. The flange portion 14 b protrudes in the radial direction from the rotating shaft 14 a and is formed in a size that can be accommodated in the second rotating body 15. The 1st cam part 14c has a taper surface formed so that it might engage with the 2nd cam part 15c of the 2nd rotary body 15 mentioned later.

第2回転体15は、ハウジング12内に、回転中心線La周りに第1回転体14と連れ回り可能に収容される。図3に示すように、第2回転体15は、筒状部15aと、筒状部15aの内部に設けられた、第1回転体14の回転軸14aを挿通支持する回転軸支持部15bと、筒状部15aの内壁面に形成された第2カム部15cとを有する。第2カム部15cは、第1回転体14の第1カム部14cと係合するよう形成されたテーパ面を有する。   The second rotating body 15 is accommodated in the housing 12 so as to be able to rotate with the first rotating body 14 around the rotation center line La. As shown in FIG. 3, the second rotary body 15 includes a cylindrical portion 15a, and a rotary shaft support portion 15b provided inside the cylindrical portion 15a for inserting and supporting the rotary shaft 14a of the first rotary body 14. And a second cam portion 15c formed on the inner wall surface of the cylindrical portion 15a. The second cam portion 15 c has a tapered surface formed to engage with the first cam portion 14 c of the first rotating body 14.

第1回転体14の回転軸14aが第2回転体15の回転軸支持部15bに挿通され、フランジ部14bが筒状部15a内に収容されると、第1カム部14cと第2カム部15cが係合する。第1カム部14cと第2カム部15cとが係合することにより、第2回転体15は第1回転体14に連れ回りする。回転により第1カム部14cと第2カム部15cのテーパ面間で滑りが生じると、第1回転体14と第2回転体15は回転軸方向Xで相対移動する。   When the rotating shaft 14a of the first rotating body 14 is inserted into the rotating shaft support portion 15b of the second rotating body 15 and the flange portion 14b is accommodated in the cylindrical portion 15a, the first cam portion 14c and the second cam portion. 15c is engaged. When the first cam portion 14 c and the second cam portion 15 c are engaged, the second rotating body 15 rotates with the first rotating body 14. When slip occurs between the tapered surfaces of the first cam portion 14c and the second cam portion 15c due to the rotation, the first rotating body 14 and the second rotating body 15 move relative to each other in the rotation axis direction X.

制動装置10はさらに、導電性部材16を備える。本実施形態において導電性部材16は有底筒状であり、底部の第1導電性部材16aと、筒状部の第2導電性部材16bとを有する。本実施形態において第1導電性部材16aと第2導電性部材16bは一体に形成されているが、第1導電性部材16aと第2導電性部材16bは別体であってもよい。導電性部材16は、第1導電性部材16aがハウジング12の底部12b上に設けられ、第2導電性部材16bがハウジング12の筒状部12aの内壁面に設けられるように、ハウジング12内に配置される。   The braking device 10 further includes a conductive member 16. In the present embodiment, the conductive member 16 has a bottomed cylindrical shape, and includes a first conductive member 16a at the bottom and a second conductive member 16b at the cylindrical portion. In the present embodiment, the first conductive member 16a and the second conductive member 16b are integrally formed, but the first conductive member 16a and the second conductive member 16b may be separate. The conductive member 16 is formed in the housing 12 such that the first conductive member 16a is provided on the bottom 12b of the housing 12 and the second conductive member 16b is provided on the inner wall surface of the cylindrical portion 12a of the housing 12. Be placed.

導電性部材16は、導電性を持つ素材であって、好ましくは非磁性体の素材である。非磁性体であれば磁石との間で磁気的吸引力が作用せず、その吸引力に起因する位置ずれを避けられる。このような素材として、たとえば、アルミニウム、銅等が用いられる。   The conductive member 16 is a conductive material, preferably a non-magnetic material. If it is a non-magnetic material, a magnetic attraction force does not act between the magnets, and a displacement due to the attraction force can be avoided. As such a material, for example, aluminum, copper or the like is used.

制動装置10はさらに、第1磁石18を備える。第1磁石18は、フェライト磁石、ネオジム磁石等の永久磁石であってよい。本実施形態において、第1磁石18は、第1導電性部材16aと回転軸方向Xに対向するように、第2回転体15の筒状部15aの端部に設けられる。第1磁石18は、第2回転体15と一体的に回転可能である。   The braking device 10 further includes a first magnet 18. The first magnet 18 may be a permanent magnet such as a ferrite magnet or a neodymium magnet. In this embodiment, the 1st magnet 18 is provided in the edge part of the cylindrical part 15a of the 2nd rotary body 15 so that the 1st electroconductive member 16a may be opposed to the rotating shaft direction X. The first magnet 18 can rotate integrally with the second rotating body 15.

第1導電性部材16a及び第1磁石18は、第2回転体15の回転に連動して周方向での相対位置が変化する。これに伴い、第1磁石18が作る磁界に対して第1導電性部材16aが相対回転することで第1導電性部材16aに電磁誘導により渦電流が生じ、その渦電流に起因する制動力が第2回転体15に付与される。   The relative positions of the first conductive member 16 a and the first magnet 18 in the circumferential direction change in conjunction with the rotation of the second rotating body 15. Along with this, the first conductive member 16a rotates relative to the magnetic field generated by the first magnet 18 to generate eddy current by electromagnetic induction in the first conductive member 16a, and the braking force due to the eddy current is increased. It is given to the second rotating body 15.

制動装置10はさらに、第2磁石19を備える。第2磁石19は、フェライト磁石、ネオジム磁石等の永久磁石であってよい。本実施形態において、第2磁石19は、第2導電性部材16bと径方向に対向するように、第2回転体15の筒状部15aの周側面に設けられる。第2磁石19は、第2回転体15と一体的に回転可能である。   The braking device 10 further includes a second magnet 19. The second magnet 19 may be a permanent magnet such as a ferrite magnet or a neodymium magnet. In this embodiment, the 2nd magnet 19 is provided in the surrounding side surface of the cylindrical part 15a of the 2nd rotary body 15 so that the 2nd electroconductive member 16b may be opposed to radial direction. The second magnet 19 can rotate integrally with the second rotating body 15.

第2導電性部材16b及び第2磁石19は、第2回転体15の回転に連動して周方向での相対位置が変化する。これに伴い、第2磁石19が作る磁界に対して第2導電性部材16bが相対回転することで第2導電性部材16bに電磁誘導により渦電流が生じ、その渦電流に起因して、第2回転体15の回転を止めようとする抵抗力が第2回転体15に付与される。第2回転体15の回転速度が大きくなるほど、第2回転体15に付与される抵抗力は大きくなる。このように、本実施形態において第2導電性部材16b及び第2磁石19は、第2回転体15の回転速度が大きくなるほど、第2回転体15の回転に対して大きな抵抗力を発生する「回転抵抗手段」として機能する。   The relative positions of the second conductive member 16 b and the second magnet 19 in the circumferential direction change in conjunction with the rotation of the second rotating body 15. Along with this, the second conductive member 16b rotates relative to the magnetic field generated by the second magnet 19 to generate eddy current by electromagnetic induction in the second conductive member 16b. A resistance force for stopping the rotation of the two-rotor 15 is applied to the second rotor 15. As the rotation speed of the second rotating body 15 increases, the resistance force applied to the second rotating body 15 increases. Thus, in the present embodiment, the second conductive member 16b and the second magnet 19 generate a greater resistance force against the rotation of the second rotating body 15 as the rotation speed of the second rotating body 15 increases. It functions as "rotation resistance means".

制動装置10はさらに、付勢部材34を備える。付勢部材34は、たとえば、コイルスプリング等の弾性体であってよい。付勢部材34は、回転軸方向Xにおいて第1導電性部材16aと第1磁石18とが離間する方向に第2回転体15を付勢する。   The braking device 10 further includes an urging member 34. The biasing member 34 may be an elastic body such as a coil spring, for example. The biasing member 34 biases the second rotating body 15 in a direction in which the first conductive member 16a and the first magnet 18 are separated from each other in the rotation axis direction X.

本実施形態において、第1回転体14の第1カム部14cと、第2回転体15の第2カム部15cと、付勢部材34は、回転抵抗手段により付与される第2回転体15の回転に対する抵抗力が大きくなるほど、第1導電性部材16aと第1磁石18の対向方向での間隔が小さくなるように、第2回転体15を移動させる移動機構を構成している。この移動機能による第2回転体15の移動のメカニズムについては後述する。   In this embodiment, the 1st cam part 14c of the 1st rotary body 14, the 2nd cam part 15c of the 2nd rotary body 15, and the urging | biasing member 34 are the 2nd rotary body 15 provided by a rotation resistance means. A moving mechanism is configured to move the second rotating body 15 such that the greater the resistance to rotation, the smaller the distance between the first conductive member 16a and the first magnet 18 in the facing direction. A mechanism for moving the second rotating body 15 by this moving function will be described later.

図4は、第1実施形態に係る制動装置10の動作状態を模式的に示す断面図である。以下、図2及び図4を参照して、制動装置10の動作について説明する。図2は、第1回転体14が低速で回転しているときの制動装置10の状態を示す。図4は、第1回転体14が高速で回転しているときの制動装置10の状態を示す。図2及び図4には、第1磁石18、第2磁石19が作る磁場の磁束線の一部が図示されている。   FIG. 4 is a cross-sectional view schematically showing the operating state of the braking device 10 according to the first embodiment. Hereinafter, the operation of the braking device 10 will be described with reference to FIGS. 2 and 4. FIG. 2 shows a state of the braking device 10 when the first rotating body 14 is rotating at a low speed. FIG. 4 shows a state of the braking device 10 when the first rotating body 14 is rotating at a high speed. 2 and 4 show part of the magnetic flux lines of the magnetic field generated by the first magnet 18 and the second magnet 19.

まず、図2を参照して、第1回転体14が低速で回転しているときの制動装置10の動作を説明する。第1回転体14が低速で回転しているとき、付勢部材34の付勢力により第2回転体15が第1回転体14に押し付けられ、第1回転体14が第2回転体15の筒状部15a内に完全に収容された状態となる。このとき、第1回転体14の第1カム部14cと第2回転体15の第2カム部15cは完全に係合した状態(言い換えると完全に噛み合った状態)となり、第1カム部14c及び第2カム部15cを介して、第1回転体14の回転力が第2回転体15に伝達される、又は、第2回転体15が受ける制動力が第1回転体14に伝達される。なお、第1カム部14cと第2カム部15cが完全に係合した状態とは、第1カム部14cのテーパ面の頂部が第2カム部15cのテーパ面の谷部と係合し、第1カム部14cのテーパ面の谷部が第2カム部15cのテーパ面の頂部と係合する状態である(図3参照)。   First, the operation of the braking device 10 when the first rotating body 14 is rotating at a low speed will be described with reference to FIG. When the first rotating body 14 rotates at a low speed, the second rotating body 15 is pressed against the first rotating body 14 by the biasing force of the biasing member 34, and the first rotating body 14 is a cylinder of the second rotating body 15. It will be in the state accommodated completely in the shape part 15a. At this time, the first cam portion 14c of the first rotating body 14 and the second cam portion 15c of the second rotating body 15 are completely engaged (in other words, completely engaged), and the first cam portion 14c and The rotational force of the first rotating body 14 is transmitted to the second rotating body 15 or the braking force received by the second rotating body 15 is transmitted to the first rotating body 14 via the second cam portion 15c. The state in which the first cam portion 14c and the second cam portion 15c are completely engaged means that the top portion of the tapered surface of the first cam portion 14c is engaged with the valley portion of the tapered surface of the second cam portion 15c, The valley portion of the tapered surface of the first cam portion 14c is in a state of engaging with the top portion of the tapered surface of the second cam portion 15c (see FIG. 3).

第1回転体14の回転が低速のとき、付勢部材34の付勢力により第1導電性部材16aと第1磁石18の対向方向での間隔Lgが大きいので、図2に示すように、第1導電性部材16aには第1磁石18の磁界が実質的に作用しない。ここでの「実質的に作用しない」とは、第1磁石18の磁界が第1導電性部材16aに全く作用しない、又は、第1磁石18の磁界が第1導電性部材16aに作用しても、第1導電性部材16aに生じる渦電流に起因する制動力が第2回転体15に付与されない程度に僅かな磁界であることをいう。これにより、第1回転体14の回転速度が小さいときは、第1導電性部材16aに生じる渦電流に起因する制動力が第2回転体15に付与されなくなる。   When the rotation of the first rotating body 14 is low, the distance Lg in the facing direction of the first conductive member 16a and the first magnet 18 is large due to the biasing force of the biasing member 34. Therefore, as shown in FIG. The magnetic field of the first magnet 18 does not substantially act on the one conductive member 16a. Here, “substantially does not act” means that the magnetic field of the first magnet 18 does not act on the first conductive member 16a at all, or the magnetic field of the first magnet 18 acts on the first conductive member 16a. Also, it means that the braking force due to the eddy current generated in the first conductive member 16 a is a magnetic field that is so small that it is not applied to the second rotating body 15. Thereby, when the rotational speed of the first rotating body 14 is low, the braking force due to the eddy current generated in the first conductive member 16 a is not applied to the second rotating body 15.

また、第1回転体14の回転が低速のときには、図2に示すように、第2磁石19の磁界が第2導電性部材16bに作用する。上述したように、第2導電性部材16bに対して第2磁石19が回転すると、第2導電性部材16bに電磁誘導により渦電流が生じ、その渦電流に起因して、第2回転体15の回転を止めようとする抵抗力が第2回転体15に付与される。しかしながら、この抵抗力は回転速度に比例するため(図1の制動力Fxを参照)、回転速度が小さいときには抵抗力も小さくなる。   When the rotation of the first rotating body 14 is low, the magnetic field of the second magnet 19 acts on the second conductive member 16b as shown in FIG. As described above, when the second magnet 19 rotates with respect to the second conductive member 16b, an eddy current is generated in the second conductive member 16b by electromagnetic induction, and the second rotating body 15 is caused by the eddy current. A resistance force to stop the rotation is applied to the second rotating body 15. However, since this resistance force is proportional to the rotation speed (see the braking force Fx in FIG. 1), the resistance force also decreases when the rotation speed is low.

以上述べたように、第1回転体14の回転が低速のときには、第2回転体15が受ける制動力、抵抗力は非常に小さい。したがって、制動装置10による制動対象物(例えば障子や開き戸など)を低速で動かすとき、渦電流に起因する制動力を受けずに制動対象物を容易に動かせる。   As described above, when the rotation of the first rotating body 14 is low, the braking force and the resistance force received by the second rotating body 15 are very small. Therefore, when a braking object (for example, a shoji or a hinged door) by the braking device 10 is moved at a low speed, the braking object can be easily moved without receiving a braking force caused by eddy current.

次に、図4を参照して、第1回転体14が高速で回転しているときの制動装置10の動作を説明する。第1回転体14の回転速度が大きくなると、第2磁石19の磁界により第2導電性部材16bに生じる渦電流に起因する抵抗力が大きくなり、第2回転体15の回転を止めようとする。その結果、回転しようとする第1回転体14の第1カム部14cが停止しようとする第2回転体15の第2カム部15cを押圧する力が増大し、付勢部材34による付勢力に抗して第2回転体15が第1導電性部材16aの方向に移動する。すなわち、第1導電性部材16aと第1磁石18の対向方向での間隔Lgが小さくなる。   Next, the operation of the braking device 10 when the first rotating body 14 is rotating at high speed will be described with reference to FIG. When the rotation speed of the first rotating body 14 increases, the resistance force caused by the eddy current generated in the second conductive member 16b by the magnetic field of the second magnet 19 increases, and the rotation of the second rotating body 15 is stopped. . As a result, the force by which the first cam portion 14c of the first rotating body 14 to be rotated presses the second cam portion 15c of the second rotating body 15 to be stopped increases, and the biasing force by the biasing member 34 is increased. The second rotating body 15 moves against the first conductive member 16a. That is, the distance Lg between the first conductive member 16a and the first magnet 18 in the facing direction is reduced.

第1磁石18が第1導電性部材16aに近づく途中で第1導電性部材16aには第1磁石18の磁界が作用する。第1磁石18の磁界が第1導電性部材16aに作用すると、渦電流に起因する制動力が第2回転体15に付与される。この制動力は、前述の通り、回転速度が大きくなり、それに伴い第1導電性部材16aと第1磁石18の間隔Lgが狭まるにつれて加速度的に増大する(図1の制動力Fyを参照)。この制動力は、第1カム部14c及び第2カム部15cを介して、第1回転体14に伝達される。   While the first magnet 18 approaches the first conductive member 16a, the magnetic field of the first magnet 18 acts on the first conductive member 16a. When the magnetic field of the first magnet 18 acts on the first conductive member 16a, the braking force resulting from the eddy current is applied to the second rotating body 15. As described above, the braking force increases at an increasing speed as the rotational speed increases and the distance Lg between the first conductive member 16a and the first magnet 18 decreases accordingly (see the braking force Fy in FIG. 1). This braking force is transmitted to the first rotating body 14 via the first cam portion 14c and the second cam portion 15c.

制動力により第2回転体15の回転速度が小さくなると、第2回転体15が受ける抵抗力が小さくなる。これに伴い、付勢部材34の付勢力によって、第2回転体15は、第1回転体14の方向に移動し、図2に示す状態に戻る。   When the rotational speed of the second rotating body 15 is reduced by the braking force, the resistance force received by the second rotating body 15 is reduced. Accordingly, the second rotating body 15 moves in the direction of the first rotating body 14 by the biasing force of the biasing member 34 and returns to the state shown in FIG.

以上説明したように、第1実施形態に係る制動装置10によれば、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる。   As described above, according to the braking device 10 according to the first embodiment, the braking force applied during the low-speed rotation can be reduced while obtaining a sufficient braking force during the high-speed rotation of the rotating body.

第1実施形態に係る制動装置10によれば、回転軸方向に対向する第1導電性部材16a及び第1磁石18により発生する制動力に加えて、径方向に対向する第2導電性部材16b及び第2磁石19により発生する抵抗力が第2回転体15、ひいては第1回転体14に作用するので、回転軸方向に対向する導電性部材及び磁石により発生する制動力のみの制動装置と比較して、大きな制動力を回転体に作用させることができる。   According to the braking device 10 according to the first embodiment, in addition to the braking force generated by the first conductive member 16a and the first magnet 18 facing in the rotation axis direction, the second conductive member 16b facing in the radial direction. Since the resistance force generated by the second magnet 19 acts on the second rotating body 15, and thus the first rotating body 14, it is compared with a braking device that only has a braking force generated by the conductive member and the magnet facing each other in the rotation axis direction. Thus, a large braking force can be applied to the rotating body.

また、第1実施形態に係る制動装置10では、第1回転体14に形成した第1カム部14cと第2回転体15に形成した第2カム部15cから成るカム機構により、第1導電性部材16aと第1磁石18の間隔Lgを調整している。よって、第1導電性部材16aと第1磁石18の間の間隔Lgを調整するにあたり、第1導電性部材16aと第1磁石18を径方向に相対移動させるための空間を確保せずともよくなる。これにより、制動装置10の径方向寸法の小型化を図れる。   Further, in the braking device 10 according to the first embodiment, the first conductive property is provided by the cam mechanism including the first cam portion 14 c formed on the first rotating body 14 and the second cam portion 15 c formed on the second rotating body 15. The distance Lg between the member 16a and the first magnet 18 is adjusted. Therefore, in adjusting the distance Lg between the first conductive member 16a and the first magnet 18, it is not necessary to secure a space for relatively moving the first conductive member 16a and the first magnet 18 in the radial direction. . As a result, the radial dimension of the braking device 10 can be reduced.

(第2実施形態)
図5は、第2実施形態に係る制動装置100を模式的に示す断面図である。第2実施形態に係る制動装置100は、第2回転体15の回転速度が大きくなるほど、第2回転体15の回転に対して大きな抵抗力を発生する「回転抵抗手段」として、ハウジング12内に封入された粘性流体102を用いている点が、第1実施形態に係る制動装置10と異なる。制動装置100においては、ハウジング12の底部12bに設けられる導電性部材116は板状体であり、第1実施形態に係る制動装置10における第2導電性部材16b及び該第2導電性部材16bと径方向に対向配置される第2磁石19は設けられていない。
(Second Embodiment)
FIG. 5 is a cross-sectional view schematically showing the braking device 100 according to the second embodiment. The braking device 100 according to the second embodiment is provided in the housing 12 as “rotation resistance means” that generates a greater resistance force against the rotation of the second rotating body 15 as the rotation speed of the second rotating body 15 increases. The point which uses the enclosed viscous fluid 102 differs from the braking device 10 which concerns on 1st Embodiment. In the braking device 100, the conductive member 116 provided on the bottom 12b of the housing 12 is a plate-like body, and the second conductive member 16b and the second conductive member 16b in the braking device 10 according to the first embodiment The second magnet 19 disposed to face the radial direction is not provided.

図6は、第2実施形態に係る制動装置100の動作状態を模式的に示す断面図である。以下、図5及び図6を参照して、制動装置100の動作について説明する。図5は、第1回転体14が低速で回転しているときの制動装置100の状態を示す。図6は、第1回転体14が高速で回転しているときの制動装置100の状態を示す。図5及び図6には、磁石118が作る磁場の磁束線の一部が図示されている。   FIG. 6 is a cross-sectional view schematically showing an operating state of the braking device 100 according to the second embodiment. Hereinafter, the operation of the braking device 100 will be described with reference to FIGS. 5 and 6. FIG. 5 shows a state of the braking device 100 when the first rotating body 14 is rotating at a low speed. FIG. 6 shows a state of the braking device 100 when the first rotating body 14 is rotating at a high speed. 5 and 6 show part of the magnetic flux lines of the magnetic field created by the magnet 118. FIG.

まず、図5を参照して、第1回転体14が低速で回転しているときの制動装置100の動作を説明する。第1回転体14が低速で回転しているとき、付勢部材34の付勢力により第2回転体15が第1回転体14に押し付けられ、第1回転体14が第2回転体15の筒状部15a内に完全に収容された状態となる。このとき、第1回転体14の第1カム部14cと第2回転体15の第2カム部15cは完全に係合した状態となり、第1カム部14c及び第2カム部15cを介して、第1回転体14の回転力が第2回転体15に伝達される、又は、第2回転体15が受ける制動力が第1回転体14に伝達される。   First, the operation of the braking device 100 when the first rotating body 14 is rotating at a low speed will be described with reference to FIG. When the first rotating body 14 rotates at a low speed, the second rotating body 15 is pressed against the first rotating body 14 by the biasing force of the biasing member 34, and the first rotating body 14 is a cylinder of the second rotating body 15. It will be in the state accommodated completely in the shape part 15a. At this time, the first cam portion 14c of the first rotating body 14 and the second cam portion 15c of the second rotating body 15 are completely engaged, and the first cam portion 14c and the second cam portion 15c are interposed, The rotational force of the first rotating body 14 is transmitted to the second rotating body 15, or the braking force received by the second rotating body 15 is transmitted to the first rotating body 14.

第1回転体14の回転が低速のとき、付勢部材34の付勢力により導電性部材116と磁石118の対向方向での間隔Lgが大きいので、図5に示すように、導電性部材116には第2回転体15に設けられた磁石118の磁界が実質的に作用しない。これにより、第1回転体14の回転速度が小さいときは、導電性部材116に生じる渦電流に起因する制動力が第2回転体15に付与されなくなる。   When the rotation of the first rotating body 14 is low, the gap Lg between the conductive member 116 and the magnet 118 is large due to the biasing force of the biasing member 34. Therefore, as shown in FIG. The magnetic field of the magnet 118 provided on the second rotating body 15 does not substantially act. Thereby, when the rotational speed of the first rotating body 14 is low, the braking force due to the eddy current generated in the conductive member 116 is not applied to the second rotating body 15.

上述したように、本実施形態に係る制動装置100では、ハウジング12内に粘性流体102が封入されている。この粘性流体102は、第2回転体15の回転を止めようとする抵抗力を生じる。しかしながら、粘性流体102による抵抗力は回転体の回転速度が小さいときには殆ど無視できる程度に小さくなる。したがって、第1回転体14の回転が低速のときには、第2回転体15が受ける制動力、抵抗力は非常に小さいので、制動装置100による制動対象物を低速で動かすとき、渦電流に起因する制動力を受けずに制動対象物を容易に動かせる。   As described above, in the braking device 100 according to this embodiment, the viscous fluid 102 is sealed in the housing 12. The viscous fluid 102 generates a resistance force that tries to stop the rotation of the second rotating body 15. However, the resistance force due to the viscous fluid 102 is small enough to be ignored when the rotational speed of the rotating body is small. Therefore, when the rotation of the first rotating body 14 is low, the braking force and resistance force received by the second rotating body 15 are very small. Therefore, when the object to be braked by the braking device 100 is moved at low speed, it is caused by eddy current. The object to be braked can be easily moved without receiving a braking force.

次に、図6を参照して、第1回転体14が高速で回転しているときの制動装置100の動作を説明する。第1回転体14の回転速度が大きくなると、粘性流体102に起因する抵抗力が大きくなり、第2回転体15の回転を止めようとする。その結果、回転しようとする第1回転体14の第1カム部14cが停止しようとする第2回転体15の第2カム部15cを押圧する力が増大し、付勢部材34による付勢力に抗して第2回転体15が導電性部材116の方向に移動する。すなわち、導電性部材116と磁石118の対向方向での間隔Lgが小さくなる。   Next, the operation of the braking device 100 when the first rotating body 14 is rotating at high speed will be described with reference to FIG. When the rotation speed of the first rotating body 14 increases, the resistance force due to the viscous fluid 102 increases, and the rotation of the second rotating body 15 is stopped. As a result, the force by which the first cam portion 14c of the first rotating body 14 to be rotated presses the second cam portion 15c of the second rotating body 15 to be stopped increases, and the biasing force by the biasing member 34 is increased. The second rotating body 15 moves against the conductive member 116 against this. That is, the distance Lg between the conductive member 116 and the magnet 118 in the facing direction is reduced.

磁石118が導電性部材116に近づく途中で導電性部材116には磁石118の磁界が作用する。磁石118の磁界が導電性部材116に作用すると、渦電流に起因する制動力が第2回転体15に付与される。この制動力は、前述の通り、回転速度が大きくなり、それに伴い導電性部材116と磁石118の間隔Lgが狭まるにつれて加速度的に増大する(図1の制動力Fyを参照)。この制動力は、第1カム部14c及び第2カム部15cを介して、第1回転体14に伝達される。   While the magnet 118 approaches the conductive member 116, the magnetic field of the magnet 118 acts on the conductive member 116. When the magnetic field of the magnet 118 acts on the conductive member 116, a braking force due to eddy current is applied to the second rotating body 15. As described above, the braking force increases at an increasing speed as the rotational speed increases and the distance Lg between the conductive member 116 and the magnet 118 decreases accordingly (see the braking force Fy in FIG. 1). This braking force is transmitted to the first rotating body 14 via the first cam portion 14c and the second cam portion 15c.

制動力により第2回転体15の回転速度が小さくなると、第2回転体15が粘性流体102から受ける抵抗力が小さくなる。これに伴い、付勢部材34の付勢力によって、第2回転体15は、第1回転体14の方向に移動し、図5に示す状態に戻る。   When the rotational speed of the second rotating body 15 decreases due to the braking force, the resistance force that the second rotating body 15 receives from the viscous fluid 102 decreases. Accordingly, the second rotating body 15 moves in the direction of the first rotating body 14 by the biasing force of the biasing member 34 and returns to the state shown in FIG.

以上説明したように、第2実施形態に係る制動装置100によっても、回転体の高速回転時には十分な制動力を得つつ、その低速回転時に付与される制動力を小さくできる。   As described above, the braking device 100 according to the second embodiment can also reduce the braking force applied during the low-speed rotation while obtaining a sufficient braking force during the high-speed rotation of the rotating body.

第2実施形態に係る制動装置100によれば、回転軸方向に対向する導電性部材116及び磁石118により発生する制動力に加えて、粘性流体102により発生する抵抗力が第2回転体15、ひいては第1回転体14に作用するので、回転軸方向に対向する導電性部材及び磁石により発生する制動力のみの制動装置と比較して、大きな制動力を回転体に作用させることができる。   According to the braking device 100 according to the second embodiment, in addition to the braking force generated by the conductive member 116 and the magnet 118 facing each other in the rotation axis direction, the resistance force generated by the viscous fluid 102 is the second rotating body 15. As a result, since it acts on the 1st rotary body 14, compared with the braking device only of the braking force which generate | occur | produces with the electroconductive member and magnet which oppose the rotating shaft direction, a big braking force can be made to act on a rotary body.

以上、本発明の実施形態の例や変形例について詳細に説明した。前述した実施形態や変形例は、いずれも本発明を実施するにあたっての具体例を示したものにすぎない。実施形態や変形例の内容は、本発明の技術的範囲を限定するものではなく、請求の範囲に規定された発明の思想を逸脱しない範囲において、構成要素の変更、追加、削除等の多くの設計変更が可能である。前述の実施形態では、このような設計変更が可能な内容に関して、「実施形態の」「実施形態では」等との表記を付して強調しているが、そのような表記のない内容でも設計変更が許容される。また、図面の断面に付したハッチングは、ハッチングを付した対象の材質を限定するものではない。   Heretofore, examples and modifications of the embodiment of the present invention have been described in detail. The above-described embodiments and modification examples are only specific examples for carrying out the present invention. The contents of the embodiments and the modifications do not limit the technical scope of the present invention, and many changes, additions, deletions, etc. of the constituent elements do not depart from the spirit of the invention defined in the claims. Design changes are possible. In the above-described embodiment, contents that can be changed in this way are emphasized with the notation of “embodiment”, “in the embodiment”, etc. Changes are allowed. Moreover, the hatching given to the cross section of drawing does not limit the material of the hatched object.

上述の実施形態では、回転軸方向に対向して配置される導電性部材及び磁石のうち、導電性部材をハウジングに設け、磁石を第2回転体に設けた例を説明した。しかしながら、これとは逆に、回転軸方向に対向して配置される導電性部材及び磁石のうち、磁石をハウジングに設け、導電性部材を第2回転体に設けてもよい。   In the above-described embodiment, the example in which the conductive member is provided in the housing and the magnet is provided in the second rotating body among the conductive members and magnets arranged to face the rotation axis direction has been described. However, conversely, among the conductive members and magnets arranged facing the rotation axis direction, the magnets may be provided in the housing and the conductive members may be provided in the second rotating body.

また、上述の第1実施形態では、第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石のうち、第2導電性部材をハウジングに設け、第2磁石を第2回転体に設けた例を説明した。しかしながら、これとは逆に、第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石のうち、第2磁石をハウジングに設け、第2導電性部材を第2回転体に設けてもよい。   In the first embodiment, the second conductive member is provided in the housing among the second conductive member and the second magnet that are arranged opposite to each other in the radial direction of the second rotating body, and the second magnet is The example provided in the 2nd rotary body was demonstrated. However, conversely, of the second conductive member and the second magnet that are arranged opposite to each other in the radial direction of the second rotating body, the second magnet is provided in the housing, and the second conductive member is the second conductive member. You may provide in a rotary body.

また、上述の実施形態では、第2回転体を移動させる移動機構としてカム機構を用いた例を説明した。しかしながら、移動機構はカム機構に限定されず、他の構成を用いることができる。   In the above-described embodiment, the example in which the cam mechanism is used as the moving mechanism that moves the second rotating body has been described. However, the moving mechanism is not limited to the cam mechanism, and other configurations can be used.

また、上述の実施形態では、磁石として永久磁石を用いたが、電磁石が用いられてもよい。   Moreover, in the above-mentioned embodiment, although the permanent magnet was used as a magnet, an electromagnet may be used.

以上の実施形態、変形例により具体化される発明を一般化すると、以下の技術的思想が導かれる。以下、発明が解決しようとする課題に記載の態様を用いて説明する。   Generalizing the invention embodied by the above embodiments and modifications leads to the following technical idea. Hereinafter, description will be made by using aspects described in the problems to be solved by the invention.

第2態様の制動装置は、第1態様において、回転抵抗手段は、第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石を備え、導電性部材及び第2磁石の一方は回転体の周側面に設けられ、それらの他方はハウジングの内壁面に設けられてもよい。   The braking device according to a second aspect is the braking device according to the first aspect, wherein the rotation resistance means includes a second conductive member and a second magnet arranged to face each other in the radial direction of the second rotating body. One of the magnets may be provided on the peripheral side surface of the rotating body, and the other of them may be provided on the inner wall surface of the housing.

第3態様の制動装置は、第1態様において、回転抵抗手段は、ハウジング内に封入された粘性流体を備えてもよい。   In the braking device of the third aspect, in the first aspect, the rotation resistance means may include a viscous fluid sealed in the housing.

第4態様の制動装置は、第1〜第3態様において、移動機構は、第1回転体に設けられる第1カム部と、第2回転体に設けられ、第1カム部と係合する第2カム部と、導電性部材と磁石とが離間する方向に第2回転体を付勢する付勢部材とを備えてもよい。   The braking device according to a fourth aspect is the first to third aspects, in which the moving mechanism is a first cam portion provided in the first rotating body and a second cam provided in the second rotating body and engaged with the first cam portion. You may provide the 2 cam part and the urging member which urges | biases a 2nd rotary body in the direction which an electroconductive member and a magnet space apart.

第5態様の制動装置は、第4態様において、移動機構は、回転抵抗手段により付与される抵抗力が大きくなるほど、第1カム部が第2カム部を押圧する力が増大し、付勢部材による付勢力に抗して第2回転体が移動するよう構成されてもよい。   The braking device of the fifth aspect is the biasing member according to the fourth aspect, in which the moving mechanism increases the force with which the first cam portion presses the second cam portion as the resistance force applied by the rotation resistance means increases. The second rotating body may be moved against the urging force of.

10,100 制動装置、 12 ハウジング、 14 第1回転体、 14c 第1カム部、 15 第2回転体、 15c 第2カム部、 16a 第1導電性部材、 16b 第2導電性部材、 18 第1磁石、 19 第2磁石、 34 付勢部材、 102 粘性流体, 116 導電性部材、 118 磁石。   DESCRIPTION OF SYMBOLS 10,100 Braking device, 12 Housing, 14 1st rotary body, 14c 1st cam part, 15 2nd rotary body, 15c 2nd cam part, 16a 1st electroconductive member, 16b 2nd electroconductive member, 18 1st Magnet, 19 second magnet, 34 biasing member, 102 viscous fluid, 116 conductive member, 118 magnet.

Claims (5)

ハウジングと、
前記ハウジング内に回転可能に収容される第1回転体と、
前記ハウジング内に、前記第1回転体と連れ回り可能に収容される第2回転体と、
前記第1回転体及び前記第2回転体の回転軸方向に対向して配置される導電性部材及び磁石であって、前記導電性部材及び前記磁石の一方は前記第2回転体と一体的に回転可能に設けられ、それらの他方は前記ハウジングに設けられる導電性部材及び磁石と、
前記第2回転体の回転速度が大きくなるほど、前記第2回転体の回転に対して大きな抵抗力を発生する回転抵抗手段と、
前記第2回転体の回転に対する抵抗力が大きくなるほど、前記導電性部材と前記磁石の対向方向での間隔が小さくなるように、前記第2回転体を移動させる移動機構と、
を備えることを特徴とする制動装置。
A housing;
A first rotating body rotatably accommodated in the housing;
A second rotating body housed in the housing so as to be able to rotate with the first rotating body;
A conductive member and a magnet disposed opposite to each other in a rotation axis direction of the first rotating body and the second rotating body, wherein one of the conductive member and the magnet is integrally formed with the second rotating body. A conductive member and a magnet provided on the housing, the other of which is rotatably provided;
Rotation resistance means for generating a greater resistance force to the rotation of the second rotating body as the rotation speed of the second rotating body increases;
A moving mechanism that moves the second rotating body such that the greater the resistance to rotation of the second rotating body, the smaller the gap between the conductive member and the magnet in the facing direction;
A braking device comprising:
前記回転抵抗手段は、前記第2回転体の径方向に対向して配置される第2導電性部材及び第2磁石を備え、
前記導電性部材及び前記第2磁石の一方は前記回転体の周側面に設けられ、それらの他方は前記ハウジングの内壁面に設けられることを特徴とする請求項1に記載の制動装置。
The rotation resistance means includes a second conductive member and a second magnet that are arranged to face each other in the radial direction of the second rotating body,
2. The braking device according to claim 1, wherein one of the conductive member and the second magnet is provided on a peripheral side surface of the rotating body, and the other is provided on an inner wall surface of the housing.
前記回転抵抗手段は、前記ハウジング内に封入された粘性流体を備えることを特徴とする請求項1に記載の制動装置。   The braking device according to claim 1, wherein the rotation resistance unit includes a viscous fluid sealed in the housing. 前記移動機構は、
前記第1回転体に設けられる第1カム部と、
前記第2回転体に設けられ、前記第1カム部と係合する第2カム部と、
前記導電性部材と前記磁石とが離間する方向に前記第2回転体を付勢する付勢部材と、
を備えることを特徴とする請求項1から3のいずれかに記載の制動装置。
The moving mechanism is
A first cam portion provided on the first rotating body;
A second cam portion provided on the second rotating body and engaged with the first cam portion;
A biasing member that biases the second rotating body in a direction in which the conductive member and the magnet are separated from each other;
The braking device according to any one of claims 1 to 3, further comprising:
前記移動機構は、前記回転抵抗手段により付与される抵抗力が大きくなるほど、前記第1カム部が前記第2カム部を押圧する力が増大し、前記付勢部材による付勢力に抗して前記第2回転体が移動するよう構成されることを特徴とする請求項4に記載の制動装置。   As the resistance force applied by the rotation resistance means increases, the moving mechanism increases the force with which the first cam portion presses the second cam portion, and resists the biasing force by the biasing member. The braking device according to claim 4, wherein the second rotating body is configured to move.
JP2018024453A 2018-02-14 2018-02-14 Braking device Active JP7022613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024453A JP7022613B2 (en) 2018-02-14 2018-02-14 Braking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024453A JP7022613B2 (en) 2018-02-14 2018-02-14 Braking device

Publications (2)

Publication Number Publication Date
JP2019140851A true JP2019140851A (en) 2019-08-22
JP7022613B2 JP7022613B2 (en) 2022-02-18

Family

ID=67694606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024453A Active JP7022613B2 (en) 2018-02-14 2018-02-14 Braking device

Country Status (1)

Country Link
JP (1) JP7022613B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252800A (en) * 1992-02-28 1993-09-28 Fuji Oozx Kk Control method and equipment for power transmission equipment using eddy current joint
JPH09317315A (en) * 1996-05-29 1997-12-09 Miwa Lock Co Ltd Door closer
JP2001020597A (en) * 1999-07-08 2001-01-23 Miwa Lock Co Ltd Sliding door damping device
JP2003314604A (en) * 2002-03-28 2003-11-06 Arturo Salice Spa Brake device for moving furniture component
JP2012132492A (en) * 2010-12-20 2012-07-12 Tok Bearing Co Ltd Velocity dependence type rotary damper
WO2015093983A1 (en) * 2013-12-16 2015-06-25 Eddy Current Limited Partnership An assembly to control or govern relative speed of movement between parts
JP2016108920A (en) * 2014-05-02 2016-06-20 立川ブラインド工業株式会社 Shielding device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05252800A (en) * 1992-02-28 1993-09-28 Fuji Oozx Kk Control method and equipment for power transmission equipment using eddy current joint
JPH09317315A (en) * 1996-05-29 1997-12-09 Miwa Lock Co Ltd Door closer
JP2001020597A (en) * 1999-07-08 2001-01-23 Miwa Lock Co Ltd Sliding door damping device
JP2003314604A (en) * 2002-03-28 2003-11-06 Arturo Salice Spa Brake device for moving furniture component
JP2012132492A (en) * 2010-12-20 2012-07-12 Tok Bearing Co Ltd Velocity dependence type rotary damper
WO2015093983A1 (en) * 2013-12-16 2015-06-25 Eddy Current Limited Partnership An assembly to control or govern relative speed of movement between parts
CN105993120A (en) * 2013-12-16 2016-10-05 涡流有限合伙公司 An assembly to control or govern relative speed of movement between parts
JP2016108920A (en) * 2014-05-02 2016-06-20 立川ブラインド工業株式会社 Shielding device

Also Published As

Publication number Publication date
JP7022613B2 (en) 2022-02-18

Similar Documents

Publication Publication Date Title
JP7194457B2 (en) Permanent magnet motor with passively controlled aligned variable rotor/stator
PH12019502754A1 (en) Pre-warped rotors for control of magnet-stator gap in axial flux machines
JP4916500B2 (en) Electric machine with a magnetic brake directly on the rotor
JP2014202234A (en) Attenuation device
US20220077741A1 (en) Inner-rotor motor
US20210044165A1 (en) Permanent Magnet Motor with Passively Controlled Variable Rotor/Stator Alignment
US20040074718A1 (en) Simplified loading device
JP2015143450A (en) Resistance generator used in drive unit
JP2019140851A (en) Brake
JP6009427B2 (en) Electric motor with brake
JP2009192041A (en) Thrust force generation device, electromagnetic machine applying thrust force generation device
WO2018034247A1 (en) Electric motor device
US6823971B2 (en) Simplified loading device
JP2013046430A (en) Rotor structure of rotary electric machine
JP7061486B2 (en) Braking device
RU2697636C2 (en) Hybrid magnetic bearing
JP2001320868A (en) Linear actuator
JP2018189110A (en) Rotary damper
JP6326234B2 (en) Rotating shaft brake device
JP5819034B1 (en) Rotating electric machine
JP6912353B2 (en) Rotational braking device
JP2011172380A (en) Electric linear motion actuator and electric braking device
JP2018128055A (en) Rotary damper
SU1005243A1 (en) Electric machine with magnetic suspension of rotor
JP2013165580A (en) Power generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210122

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20210127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220207

R150 Certificate of patent or registration of utility model

Ref document number: 7022613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350