JP7020737B1 - Charge control device - Google Patents

Charge control device Download PDF

Info

Publication number
JP7020737B1
JP7020737B1 JP2021151451A JP2021151451A JP7020737B1 JP 7020737 B1 JP7020737 B1 JP 7020737B1 JP 2021151451 A JP2021151451 A JP 2021151451A JP 2021151451 A JP2021151451 A JP 2021151451A JP 7020737 B1 JP7020737 B1 JP 7020737B1
Authority
JP
Japan
Prior art keywords
switch
secondary battery
power supply
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021151451A
Other languages
Japanese (ja)
Other versions
JP2023043692A (en
Inventor
西 徳 生 大
Original Assignee
大西 徳生
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大西 徳生 filed Critical 大西 徳生
Priority to JP2021151451A priority Critical patent/JP7020737B1/en
Application granted granted Critical
Publication of JP7020737B1 publication Critical patent/JP7020737B1/en
Publication of JP2023043692A publication Critical patent/JP2023043692A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Dc-Dc Converters (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

【課題】簡単な回路で通電損失の低減ができ、ドライブ回路構成が容易な昇降圧回路を構成すると共に、スイッチング信号に極狭のパルス幅を生じることなく、直流電源と二次電池との電圧関係に係わらず充電制御でき、必要に応じて直流電源と二次電池間での双方向充放電制御する充電制御装置を提供する。【解決手段】充電制御システムは、インダクタLに流れる電流idを検出し、基準電流Idrと一致させるためのPI制御器の出力vcと、最小値が零で波高値がVpの三角波と、この三角波をVpだけ直流レベルシフトした三角波を比較し、スイッチング信号の最少パルス幅以下にならないようにスイッチング信号を発生し、ドライブ回路Driverを通して2つのスイッチS1、S2をドライブする。【選択図】図10PROBLEM TO BE SOLVED: To construct a buck-boost circuit in which an energization loss can be reduced by a simple circuit and a drive circuit configuration is easy, and a voltage between a DC power supply and a secondary battery can be obtained without causing an extremely narrow pulse width in a switching signal. Provided is a charge control device capable of charge control regardless of the relationship and bidirectional charge / discharge control between a DC power supply and a secondary battery as needed. A charge control system detects an id of a current flowing through an inductor L, an output vc of a PI controller for matching with a reference current Idr, a triangular wave having a minimum value of zero and a peak value of Vp, and this triangular wave. Is compared with a triangular wave whose DC level is shifted by Vp, a switching signal is generated so as not to be less than the minimum pulse width of the switching signal, and the two switches S1 and S2 are driven through the drive circuit Driver. [Selection diagram] FIG. 10

Description

本発明は、直流電源から任意の動作電圧の二次電池に対して充電制御することができる昇降圧回路とその制御法に関する技術である。
The present invention is a technique relating to a buck-boost circuit capable of charging and controlling a secondary battery having an arbitrary operating voltage from a DC power source and a control method thereof.

リチウムイオン電池をはじめとする近年の二次蓄電池の著しい進歩と、電子回路制御技術やパワーエレクトロニクス技術の発達により、小容量から大容量に至るまでの極めて幅広い分野で充電式の電気製品の実用化されてきている。 Due to the remarkable progress of secondary storage batteries such as lithium-ion batteries in recent years and the development of electronic circuit control technology and power electronics technology, rechargeable electric products have been put into practical use in an extremely wide range of fields from small capacity to large capacity. Has been done.

二次電池を充電するための充電器としては、容量の大きいものでは、電気自動車の二次電池の充電用として、また太陽電池からの発電電力を一時的に蓄電したり、発電電力の平準化用や非常用電源として二次電池への充電するものなどがある。 As a charger for charging the secondary battery, if it has a large capacity, it can be used for charging the secondary battery of an electric vehicle, temporarily storing the generated power from the solar battery, or leveling the generated power. As an emergency power source, there is one that charges a secondary battery.

特に、電気自動車の充電スタンド用としての充電制御装置では、電気自動車に積載する蓄電池の総数によって様々な動作電圧の二次電池を対象に高効率で充電できることが望まれ、蓄電池によっては満充電電圧と終止電圧の幅広い電圧差にも対応できる必要がある。 In particular, in a charge control device for a charging stand of an electric vehicle, it is desired that secondary batteries having various operating voltages can be charged with high efficiency depending on the total number of storage batteries loaded in the electric vehicle. It is necessary to be able to handle a wide range of voltage differences between the final voltage and the final voltage.

一方、小容量で二次電池の充電や放電の制御として小型の携帯機器などでは、専用充電器では二次電池の公称電圧が決まっているが、リチウムイオンなどの場合は満充電電圧に対して終止電圧は40%程度も変化に対して高い効率で充電制御できるものが必要となっている。 On the other hand, in small portable devices that have a small capacity and control the charging and discharging of the secondary battery, the nominal voltage of the secondary battery is fixed in the dedicated charger, but in the case of lithium ion etc., the nominal voltage is relative to the full charge voltage. It is necessary to have a final voltage that can be charged and controlled with high efficiency against changes of about 40%.

直流電源の電圧に対して充電用二次電池の電圧が低い場合は、降圧動作により電流を制御しながら充電し、高い場合は昇圧動作により電流を制御しながら充電することができるが、両方のケースに対しても充電できる充電装置が必要になる。 When the voltage of the secondary battery for charging is low with respect to the voltage of the DC power supply, it can be charged while controlling the current by the step-down operation, and when it is high, it can be charged while controlling the current by the boosting operation. A charging device that can charge the case is also required.

そこで、充電を行う直流電源に対して、幅広い二次電池の電圧に対して充電制御ができるものとして、昇降動作と降圧動作ができる昇降圧回路が望まれるが、スイッチ素子1個で構成できる昇降圧回路は、単独の昇圧回路や単独の降圧回路に比べて効率が低くなる。 Therefore, a buck-boost circuit capable of raising / lowering operation and step-down operation is desired as a device that can control charging for a wide range of secondary battery voltages with respect to a DC power source for charging. The pressure circuit is less efficient than a single booster circuit or a single step-down circuit.

このため、直流電源にスイッチ回路とインダクタを介して負荷に導く回路にフリーフォイーリングダイオードを接続することにより構成できる一般的な降圧回路に対して、インダクタを介した後、インダクタにエネルギーを蓄積するための電流を流すスイッチ回路と負荷側から逆流防止ダイオードを接続した一般的な昇圧回路をインダクタを共有した構成の昇降圧回路が用いられている。 Therefore, in contrast to a general step-down circuit that can be configured by connecting a free foiling diode to a circuit that leads to a load via a switch circuit and an inductor in a DC power supply, energy is stored in the inductor after passing through the inductor. A buck-boost circuit having a configuration in which an inductor is shared with a switch circuit for passing a current for the current and a general booster circuit in which a backflow prevention diode is connected from the load side is used.

また、二次電池側から直流電源側に充電制御、二次電池においては放電制御もできる双方向充電回路は、インダクタを共通にして上記昇降圧回路のスイッチ素子に逆並列に対称的に逆方向にも接続することにより構成することができるHブリッジ形昇降圧回路も用いられている。
In addition, the bidirectional charging circuit that can control charging from the secondary battery side to the DC power supply side and discharge control in the secondary battery has a common inductor and is symmetrically opposite to the switch element of the buck-boost circuit. An H-bridge type buck-boost circuit that can be configured by connecting to is also used.

特許第4049333号Patent No. 4049333 特開2002-238250号JP-A-2002-238250 特許第4094649号Patent No. 4094649 特許第5211678号Patent No. 5211678 特許第5966503号Patent No. 5966503 特許第5794982号Patent No. 5794982

充電制御装置においては、大きな電力を扱ったり限られた蓄電池のエネルギーを有効に活用するためには、通電電流による回路損失をできるだけ低減させることが重要であり、充電制御回路として現在までに用いられている回路に比べて少しでも低減でき、また、回路構成を複雑化することなく、スイッチ素子のドライブ制御回路の簡単化につながる昇降圧回路構成を提供することが本発明における課題の一つである。 In the charge control device, it is important to reduce the circuit loss due to the energizing current as much as possible in order to handle a large amount of electric power and effectively utilize the energy of the limited storage battery, and it has been used as a charge control circuit until now. One of the problems in the present invention is to provide a buck-boost circuit configuration that can be reduced as much as possible compared to the existing circuit and that leads to simplification of the drive control circuit of the switch element without complicating the circuit configuration. be.

次に、スイッチング制御による充電制御動作においては、一般にスイッチング素子の通流比制御が用いられるが、直流電源と充電用二次電池の電圧が近いときは、極狭いパルス幅のオン期間やオフ期間動作となり、制御の安定性やスイッチング素子での損失増加の原因となることが考えられることから、極狭パルスが避けられる制御手法の開発が本発明における第2の課題である。 Next, in the charge control operation by switching control, the flow ratio control of the switching element is generally used, but when the voltage of the DC power supply and the secondary battery for charging are close, the on period or off period of the extremely narrow pulse width is used. The second subject of the present invention is the development of a control method that avoids ultra-narrow pulses, because it becomes an operation and may cause control stability and an increase in loss in the switching element.

そして、スイッチング制御信号を発生させるとき、直流電源と充電用二次電池の動作関係によって、降圧動作か昇圧動作かを選択する制御方式だと、制御方式を切り換える場合に電圧検出の精度の影響を受けることが考えられるので、こうした電圧検出によらない制御手法の開発が、本発明の第3の課題である。 Then, when the switching control signal is generated, if it is a control method that selects a step-down operation or a step-up operation depending on the operation relationship between the DC power supply and the secondary battery for charging, the influence of the voltage detection accuracy when switching the control method is affected. The third subject of the present invention is the development of a control method that does not rely on such voltage detection.

さらには、直流電源から充電用二次電池への充電動作だけでなく、二次電池から直流電源側に放電制御できる回路においても、通電電流による回路損失をできるだけ低減できる双方向電流制御ができる充電回路の開発が第4の課題である。 Furthermore, not only the charging operation from the DC power supply to the secondary battery for charging, but also the charging that can perform bidirectional current control that can reduce the circuit loss due to the energizing current as much as possible in the circuit that can control the discharge from the secondary battery to the DC power supply side. The development of the circuit is the fourth issue.

(特許文献1)は、降圧回路と昇圧回路のインダクタを共通化して降圧チョッパ回路と昇圧チョッパ回路を組み合わせた回路であり、上述したスイッチ1個による昇降圧回路に比べて効率低下を抑えることができるので、一般的な一方向昇降圧制御充電回路として用いられている。 (Patent Document 1) is a circuit in which a step-down circuit and a step-up circuit inductor are shared and a step-down chopper circuit and a step-up chopper circuit are combined. Since it can be used, it is used as a general one-way buck-boost control charging circuit.

(特許文献2)は、一方向充電回路におけるダイオードとスイッチを逆並列に接続して対称回路構成にすることにより、双方向電流制御ができる双方向昇降圧制御充電回路であり、現在は、一般的なHブリッジ形昇降圧回路として用いられている。 (Patent Document 2) is a bidirectional buck-boost control charging circuit capable of bidirectional current control by connecting a diode and a switch in a one-way charging circuit in antiparallel to form a symmetrical circuit configuration. It is used as a typical H-bridge type buck-boost circuit.

しかし、昇降圧回路として、一般的な一方向昇降圧回路動作、双方向昇降圧回路のいずれの動作においてもダイオードまたはスイッチの素子が通電回路に2個直列に入る回路構成となっているので、これら素子に電流が流れることによる通電回路損失は2個の素子での電圧降下と通電電流積となるので、直列素子数を低減が望まれる。 However, as the buck-boost circuit, the circuit configuration is such that two diode or switch elements are inserted in series in the energization circuit in both the general one-way buck-boost circuit operation and the bidirectional buck-boost circuit operation. Since the energization circuit loss due to the current flowing through these elements becomes the voltage drop and the energization current product of the two elements, it is desired to reduce the number of series elements.

また、(特許文献1)~(特許文献5)のいずれの制御手法においても、これら昇降圧回路で降圧動作をさせるか昇圧動作をさせるかを、充電用二次電池の電圧を検出して選択制御する手法が採られており、(特許文献5)を除いては直流電源の電圧も検出し、充電用二次電池の電圧と比較して昇降圧制御の選択を行っており、上述した電圧検出の精度による課題が残るといえる。 Further, in any of the control methods of (Patent Document 1) to (Patent Document 5), whether to perform a step-down operation or a step-up operation by these buck-boost circuits is selected by detecting the voltage of the secondary battery for charging. A control method is adopted, and except for (Patent Document 5), the voltage of the DC power supply is also detected, and the buck-boost control is selected in comparison with the voltage of the secondary battery for charging, and the voltage described above is selected. It can be said that there remains a problem due to the accuracy of detection.

さらに、これら昇降圧回路のスイッチング信号の発生方法として、(特許文献4)、(特許文献5)は、電圧制御器からの誤差信号と2種の三角波を用いた2つの比較器でPWMスイッチング信号を得る手段が示されているが、(特許文献1)~(特許文献3)の場合も含めてPWMスイッチング信号の狭パルス幅の発生を回避する制御については述べられていない。
Further, as a method of generating a switching signal of these step-up / down circuits, (Patent Document 4) and (Patent Document 5) are a PWM switching signal with an error signal from a voltage controller and two comparators using two types of triangular waves. However, the control for avoiding the generation of the narrow pulse width of the PWM switching signal is not described including the cases of (Patent Document 1) to (Patent Document 3).

図1は、本発明による昇降圧回路あり、二つのスイッチの一端が共通して直流電源の負側に接続されており、図2では、スイッチS1がオンすると直流電源Edから二つのスイッチの一端が共通して直流電源の正側に接続されている回路構成となっている。 FIG. 1 shows a buck-boost circuit according to the present invention, in which one end of two switches is commonly connected to the negative side of the DC power supply. In FIG. 2, when the switch S1 is turned on, one end of the two switches is connected to the DC power supply Ed. Is a circuit configuration that is commonly connected to the positive side of the DC power supply.

図3は、図1に示す昇降圧回路動作を、降圧動作時の電流経路と昇圧動作時の電流経路を
示しており、降圧動作時は動作モード(1)、(2)、昇圧動作時は動作モード(3)、(4)の回路を形成するが、動作モード(1)と(4)は同じ回路となるので、昇降圧動作としては(1)~(3)の3つの動作モード間をスイッチ制御することとなる。
FIG. 3 shows the step-up / down circuit operation shown in FIG. 1, the current path during the step-down operation and the current path during the step-up operation. The circuits of the operation modes (3) and (4) are formed, but since the operation modes (1) and (4) are the same circuit, the step-up / down operation is between the three operation modes (1) to (3). Will be switch controlled.

同図から明らかなように、降圧動作での動作モード(1)においてはスイッチS1がオンのとき直流電源EdからインダクタL,二次電池EB、ダイオードD1とスイッチS1が直列に接続され、ダイオードD1とスイッチS1の2個の素子が直列に接続されるが、動作モード(2)ではスイッチS1がオフになると、1個のダイオードD2のみでフリーフォイーリング回路が形成できる。 As is clear from the figure, in the operation mode (1) in the step-down operation, when the switch S1 is on, the inductor L, the secondary battery EB, the diode D1 and the switch S1 are connected in series from the DC power supply Ed, and the diode D1. And the two elements of the switch S1 are connected in series, but in the operation mode (2), when the switch S1 is turned off, a free foiling circuit can be formed with only one diode D2.

また、昇圧動作での動作モード(3)においては、スイッチS1をオン状態のもとで、1個のスイッチS2をオンするときの通電回路素子は1個にでき、スイッチS2がオフになったときの動作モード(4)ではダイオードD1とスイッチS1の2個の素子が直列に接続される。 Further, in the operation mode (3) in the boost operation, the number of energizing circuit elements when one switch S2 is turned on can be one while the switch S1 is turned on, and the switch S2 is turned off. In the operating mode (4), the two elements of the diode D1 and the switch S1 are connected in series.

このため、降圧動作、昇圧動作いずれの動作においても一般の昇降圧回路と比べて通電時の素子数を低減することができるので、通電時の回路損失の低減に効果が期待できる。 Therefore, in both the step-down operation and the step-up operation, the number of elements at the time of energization can be reduced as compared with a general buck-boost circuit, so that the effect of reducing the circuit loss at the time of energization can be expected.

なお、図1に示す回路で、スイッチ素子としてNPNトランジスタ、IGBT,NMOSFETなどを用いると、2個のスイッチのエミッタあるいはソースと直流電源の負側のラインをコモンにできるのでドライブ回路構成も簡単化できる。 If NPN transistors, IGBTs, N MOSFETs, etc. are used as switch elements in the circuit shown in FIG. 1, the emitter or source of the two switches and the negative line of the DC power supply can be made common, which simplifies the drive circuit configuration. can.

上述したように本発明の昇降圧回路は、(1)~(3)の3つの動作モード間をスイッチ制御することとなるが、ここで、一方向昇降圧回路における降圧制御と昇圧制御時の通流経路を再掲してフリーフォイーリングダイオードD2 の両端電圧exの動作波形をもとにPWMスイッチングパルス幅と直流電源電圧と出力電圧の関係を考察する。 As described above, the buck-boost circuit of the present invention switches between the three operation modes (1) to (3). Here, the step-down control and the step-up control in the one-way buck-boost control are performed. The flow path is reprinted, and the relationship between the PWM switching pulse width, the DC power supply voltage, and the output voltage is considered based on the operating waveform of the voltage ex across the free foiling diode D2.

図4は、一方向昇降圧回路において、インダクタの電流が連続して流れているときのスイッチS1のオン、オフ動作による降圧制御時の通流経路とダイオードD2の両端電圧exの波形を示している。 FIG. 4 shows the waveform of the flow path and the voltage ex across the diode D2 during step-down control by on / off operation of the switch S1 when the inductor current is continuously flowing in the one-way buck-boost circuit. There is.

直流電源の電圧をEd,二次電池の電圧をEBとし、スイッチング周期をT,スイッチS1のオン期間をTon1、スイッチS1の通流比をα1とすると、インダクタの両端の平均電圧は零であるので、ダイオードD2の両端電圧exの平均電圧は二次電池の電圧に等しくなることから、

Figure 0007020737000002
で関係づけられる。 If the voltage of the DC power supply is Ed, the voltage of the secondary battery is EB, the switching cycle is T, the ON period of switch S1 is Ton1, and the flow ratio of switch S1 is α1, the average voltage across the inductor is zero. Therefore, since the average voltage of the voltage across the diode D2 ex is equal to the voltage of the secondary battery,
Figure 0007020737000002
Is related by.

また、スイッチS1のオフ期間Toff1のスイッチング周期Tに対する割合をβ1とおくと

Figure 0007020737000003
直流電源の電圧と二次電池の電圧EBが近い値のときは、α1は1に近い値となり、スイッチS1のオフ期間Toff1は、極めて狭いパルス幅となる。 Also, let β1 be the ratio of the off period Toff1 of the switch S1 to the switching period T.
Figure 0007020737000003
When the voltage of the DC power supply and the voltage EB of the secondary battery are close to each other, α1 has a value close to 1, and the off period Toff1 of the switch S1 has an extremely narrow pulse width.

図5は、一方向昇降圧回路において、インダクタの電流が連続して流れているときのスイッチS2のオン、オフ動作による昇圧制御時の通流経路とダイオードD2の両端電圧exの波形を示している。 FIG. 5 shows the waveforms of the flow path and the voltage ex across the diode D2 during boost control by on / off operation of the switch S2 when the inductor current is continuously flowing in the one-way buck-boost circuit. There is.

スイッチング周期をT,スイッチS2のオン期間をTon2、スイッチS2の通流比をα2とすると、ダイオードD2の両端電圧exの平均値が二次電池の電圧EBとなるので

Figure 0007020737000004

で関係づけられる。 Assuming that the switching cycle is T, the ON period of switch S2 is Ton2, and the flow ratio of switch S2 is α2, the average value of the voltage ex across the diode D2 is the voltage EB of the secondary battery.
Figure 0007020737000004

Is related by.

この場合は、直流電源の電圧と二次電池の電圧EBが近い値のときは、α2は0に近い値となり、スイッチS2のオン期間Toon2は極めて狭いパルス幅となる。 In this case, when the voltage of the DC power supply and the voltage EB of the secondary battery are close to each other, α2 becomes a value close to 0, and the ON period Toon2 of the switch S2 has an extremely narrow pulse width.

このように、降圧動作においても昇圧動作においても直流電圧Edと二次電池の電圧EBが近い値の関係にあるときは、スイッチS1あるいはスイッチS2のスイッチングパルス幅は極めて狭くなり、特に、スイッチング周期が短くなると、正確な通流比制御が難しくなる。 In this way, when the DC voltage Ed and the voltage EB of the secondary battery are in a close relationship in both the step-down operation and the step-up operation, the switching pulse width of the switch S1 or the switch S2 becomes extremely narrow, and in particular, the switching cycle. When becomes shorter, it becomes difficult to accurately control the flow ratio.

本発明では、直流電圧Edと二次電池の電圧EBが近くなったときは、スイッチングの1周期間で降圧動作モードと昇圧動作モードを働かせることにより、狭いパルス幅の発生の問題を防いでいる。 In the present invention, when the DC voltage Ed and the secondary battery voltage EB are close to each other, the step-down operation mode and the step-up operation mode are operated in one switching cycle to prevent the problem of narrow pulse width generation. ..

図6は、一方向昇降圧回路において、この昇降圧動作におけるインダクタの電流が連続して流れているときのスイッチS1とスイッチS2のオンオフ動作による通流経路とダイオードD2の両端電圧exの波形を示している。 FIG. 6 shows the waveforms of the flow path due to the on / off operation of the switch S1 and the switch S2 and the voltage ex across the diode D2 when the inductor current in the buck-boost operation is continuously flowing in the one-way buck-boost circuit. Shows.

スイッチング周期をT,スイッチS1のオフ期間をToff1,スイッチS2のオン期間をTon2とすると、ダイオードD2の両端電圧exの平均値がEBとなることから、次式を得ることができる。

Figure 0007020737000005
Assuming that the switching cycle is T, the off period of switch S1 is Toff1, and the on period of switch S2 is Ton2, the following equation can be obtained because the average value of the voltage ex across the diode D2 is EB.
Figure 0007020737000005

このとき、直流電圧Edと二次電池の電圧EBが等しいとき、スイッチS1のオフ期間Toff1とスイッチS2のオン期間Ton2の関係は

Figure 0007020737000006
となり等しくなる。 At this time, when the DC voltage Ed and the secondary battery voltage EB are equal, the relationship between the off period Toff1 of the switch S1 and the on period Ton2 of the switch S2 is.
Figure 0007020737000006
Will be equal.

したがって、スイッチS1のオフ期間Toff1とスイッチS2のオン期間Ton2のパルス幅が最少のパルス幅Tmin以上に設定することで、スイッチング制御における極狭パルスの問題は解消することができる。 Therefore, by setting the pulse width of the switch S1 off period Toff1 and the switch S2 on period Ton2 to the minimum pulse width Tmin or more, the problem of extremely narrow pulse in switching control can be solved.

しかし、直流電圧Edと二次電池の電圧EBに近いが、EdがEBに対して±ΔEだけ電圧差(プラス(+) のとき降圧動作、マイナス(-)のとき昇圧動作となる)があるとき、

Figure 0007020737000007
However, although it is close to the DC voltage Ed and the secondary battery voltage EB, there is a voltage difference of ± ΔE with respect to EB (step-down operation when positive (+), boost operation when negative (-)). When
Figure 0007020737000007

このため、EBのEdに対する電圧偏差が降圧動作(+ΔE)になるときは

Figure 0007020737000008
スイッチS2のオンパルス幅Ton2が狭くなるので、最少パルス幅をTminとおくと、 (Ton2>Tmin)を確保する必要があり、スイッチS1のオフパルス幅は
Figure 0007020737000009
となる。 Therefore, when the voltage deviation of EB with respect to Ed becomes step-down operation (+ ΔE),
Figure 0007020737000008
Since the on-pulse width Ton2 of the switch S2 becomes narrow, if the minimum pulse width is set to Tmin, it is necessary to secure (Ton2> Tmin), and the off-pulse width of the switch S1 is
Figure 0007020737000009
Will be.

また、EBのEdに対する電圧偏差が昇圧動作(-ΔE)になるときは

Figure 0007020737000010
スイッチS1のオフパルス幅Toff1が狭くなるので、最少パルス幅をTminとおくと、(Toff1>Tmin)を確保する必要があり、スイッチS2のオンパルス幅を決める通流比α2は
Figure 0007020737000011
となる。 Also, when the voltage deviation of EB with respect to Ed becomes boosting operation (-ΔE),
Figure 0007020737000010
Since the off-pulse width Toff1 of the switch S1 becomes narrow, if the minimum pulse width is set to Tmin, it is necessary to secure (Toff1> Tmin), and the flow ratio α2 that determines the on-pulse width of the switch S2 is
Figure 0007020737000011
Will be.

そして、EBのEdに対する電圧偏差が (+ΔE)を超えるときに単独の降圧動作モードあるいは単独の昇圧動作モードに入るようにスイッチング制御信号の発生方法を切り替えることとなる。 Then, when the voltage deviation of the EB with respect to Ed exceeds (+ ΔE), the switching control signal generation method is switched so as to enter the single step-down operation mode or the single step-up operation mode.

このとき、単独の降圧動作モードにおけるスイッチS1のオフ期間Toff1で、最少パルス幅Tm 以上確保するとき、

Figure 0007020737000012
At this time, when the minimum pulse width Tm or more is secured in the off period Toff1 of the switch S1 in the single step-down operation mode,
Figure 0007020737000012

また、単独の昇圧動作モードにおけるスイッチS2のオン期間Ton2が、最少パルス幅Tm 以上で働かせる必要があるので

Figure 0007020737000013
Also, since the ON period Ton2 of the switch S2 in the single boost operation mode needs to work with the minimum pulse width Tm or more.
Figure 0007020737000013

以上より、降圧動作におけるスイッチS1のスイッチングオフ信号のパルス幅が狭くなり、最少パルス幅Tmになったときに、昇降圧動作モードに切り換えると、スイッチS1のスイッチングオフ信号のパルス幅は2Tmとなり、スイッチS2のオン期間のパルス幅はTm となり、極狭パルスの発生を防ぐことができる。 From the above, when the pulse width of the switching off signal of the switch S1 in the step-down operation becomes narrow and the minimum pulse width reaches Tm, when the buck-boost operation mode is switched, the pulse width of the switching off signal of the switch S1 becomes 2 Tm. The pulse width during the ON period of switch S2 is Tm, which can prevent the generation of extremely narrow pulses.

また、昇圧動作におけるスイッチS2のスイッチングオン信号のパルス幅が狭くなり、最少パルス幅Tmになったときに、昇降圧動作モードに切り換えると、スイッチS2のスイッチングオン信号のパルス幅は2Tmとなり、スイッチS1のオン期間のパルス幅はTm となり、極狭パルスの発生を防ぐことができる。 In addition, when the pulse width of the switching on signal of the switch S2 in the boost operation becomes narrow and the minimum pulse width becomes Tm, when the buck-boost operation mode is switched, the pulse width of the switching on signal of the switch S2 becomes 2 Tm, and the switch. The pulse width during the on period of S1 is Tm, which can prevent the generation of extremely narrow pulses.

以上は、本発明による直流電源から充電用二次電池を充電制御するため、一方向昇降圧回路で制御システムを構成したときの説明であったが、充電されている二次電池から直流電源や外部電源に電気エネルギーを取り出すための放電制御法について述べる。 The above has been described when the control system is configured with a one-way buck-boost circuit in order to charge and control the secondary battery for charging from the DC power supply according to the present invention. A discharge control method for extracting electric energy to an external power source will be described.

図7は、図1に示した一方向充電回路におけるスイッチとダイオードに対して逆並列にダイオードとスイッチを接続した対称回路構成にすることにより、直流電源から充電用二次電池への充電経路に対して、二次電池から直流電源側に放電制御する経路を設けた双方向昇降圧回路の主回路構成例を示している。 FIG. 7 shows a charging path from a DC power supply to a secondary battery for charging by forming a symmetric circuit configuration in which the diode and the switch are connected in antiparallel to the switch and the diode in the one-way charging circuit shown in FIG. On the other hand, an example of a main circuit configuration of a bidirectional buck-boost circuit provided with a path for discharge control from the secondary battery to the DC power supply side is shown.

図8は、この双方向昇降圧回路による直流電源から二次電池への充電制御動作における降圧動作時の電流経路と昇圧動作時の電流経路を示しており、降圧動作時は動作モード(1)、(2)、昇圧動作時は動作モード(3)、(4)の回路を形成するが、この場合も、動作モード(1)と(4)は同じ回路となるので、昇降圧動作としては(1)~(3)の3つの動作モード間をスイッチ制御することとなる。 FIG. 8 shows the current path during the step-down operation and the current path during the step-down operation in the charge control operation from the DC power supply to the secondary battery by this bidirectional buck-boost circuit, and shows the operation mode (1) during the step-down operation. , (2), During boosting operation, the circuits of operation modes (3) and (4) are formed, but in this case as well, the operation modes (1) and (4) are the same circuit, so the buck-boost operation is as follows. Switch control is performed between the three operation modes (1) to (3).

そして、図7に示す双方向昇降圧回路は、二次電池から直流電源側に放電制御することができ、図9に降圧動作時による電流経路と昇圧動作による電流経路を示しており、インダクタに流れる電流が逆方向に流れており、二次電池側から直流電源側への放電経路が形成できることが分かる。 The bidirectional buck-boost circuit shown in FIG. 7 can control the discharge from the secondary battery to the DC power supply side, and FIG. 9 shows the current path during the step-down operation and the current path during the step-up operation, and the inductor It can be seen that the flowing current flows in the opposite direction, and a discharge path can be formed from the secondary battery side to the DC power supply side.

このため、図7に示す双方向昇降圧回路による制御システムでは、二次蓄電池への充電制御動作と逆方向の電流制御による放電制御動作が、インダクタの電流制御における電流基準の正負によって容易に切り替えることができる。 Therefore, in the control system using the bidirectional buck-boost circuit shown in FIG. 7, the charge control operation for the secondary storage battery and the discharge control operation by the current control in the opposite direction are easily switched depending on whether the current reference is positive or negative in the current control of the inductor. be able to.

次に、本発明の充電制御装置における狭いパルス幅を発生させない具体的なのスイッチング制御信号の発生手法を述べる。 Next, a specific method for generating a switching control signal that does not generate a narrow pulse width in the charge control device of the present invention will be described.

図10は、本発明による一方向昇降圧制御回路を用いて、直流電源Edから充電用二次電池EBへの充電制御を行う制御システムを示している。 FIG. 10 shows a control system that controls charging from the DC power source Ed to the charging secondary battery EB using the one-way buck-boost control circuit according to the present invention.

この制御システムでは、インダクタLに流れる電流idを検出し、基準電流Idrと一致させるためのPI制御器の出力vcと、最小値が零で波高値がVpの三角波vtr1と、この三角波をVpだけ直流レベルシフトした三角波Vtr2とを比較することにより、単独の降圧動作時や単独の昇圧動作時のスイッチS1とスイッチS2のスイッチング信号を発生するが、PI制御器の出力vcと三角波の波高値Vpと差Δvが小さくなってきたとき、2つの三角波の大きさやレベルをシフトしてPI制御器の出力と比較し、1スイッチング周期内に降圧動作と昇圧動作をさせるスイッチングパルスを発生することにより、スイッチング信号の最少パルス幅Tm以下にならないように制御している。 In this control system, the output vc of the PI controller for detecting the current id flowing through the inductor L and matching it with the reference current Idr, the triangular wave vtr1 with the minimum value of zero and the peak value of Vp, and this triangular wave with only Vp. By comparing with the DC level-shifted triangular wave Vtr2, the switching signal of the switch S1 and the switch S2 is generated during the single step-down operation or the single step-up operation, but the output vc of the PI controller and the peak value Vp of the triangular wave are generated. When the difference Δv becomes smaller, the magnitude and level of the two triangular waves are shifted and compared with the output of the PI controller, and a switching pulse that causes a step-down operation and a step-up operation is generated within one switching cycle. It is controlled so that it does not become less than the minimum pulse width Tm of the switching signal.

図中、三角波比較器への入力としてPI制御器の出力vcと三角波vtおよび2つの三角波vtr1の最小値付近の波形とvtr2の最大値付近の波形が重なる程度を決める制御量kとを入力としてスイッチング信号を発生し、ドライブ回路を通して2つのスイッチS1,S2をドライブする構成となっている。 In the figure, as inputs to the triangle wave comparator, the output vc of the PI controller, the triangle wave vt, and the control amount k that determines the degree of overlap between the waveform near the minimum value of the two triangle waves vtr1 and the waveform near the maximum value of vtr2 are used as inputs. It is configured to generate a switching signal and drive two switches S1 and S2 through a drive circuit.

ここで、制御量kは、単独の降圧動作や昇圧動作時にスイッチS1のオフ期間Toff1やスイッチS2のオン期間Ton2が最少パルス幅Tm以下にならないように設定する。 Here, the control amount k is set so that the off period Toff1 of the switch S1 and the on period Ton2 of the switch S2 do not become less than the minimum pulse width Tm during a single step-down operation or step-up operation.

また、基準電流Idrは、充電用二次電池の電圧や流れ込む電流、積算電力量など、二次電池の充電の状態量をもとに演算設定する。 Further, the reference current Idr is calculated and set based on the charge state amount of the secondary battery such as the voltage of the secondary battery for charging, the current flowing in, and the integrated electric energy amount.

なお、本発明の昇降圧制御回路の制御システムでは、単独の降圧動作と単独の昇圧動作および昇降圧動作の各動作モードの切り換えは、インダクタに流れる電流idが基準電流Idrと一致させるためのPI制御器の出力vcのレベルによって、自動的に行うことができるため、各動作モードの切り換えのために直流電源の電圧Edや充電用二次電機の電圧EBを検出する必要がなく、電圧検出精度の問題も解消することができる。 In the control system of the buck-boost control circuit of the present invention, the PI for switching the operation modes of the single step-down operation, the single step-up operation, and the step-up / down pressure operation so that the current id flowing through the inductor matches the reference current Idr. Since it can be performed automatically depending on the level of the output vc of the controller, it is not necessary to detect the voltage Ed of the DC power supply or the voltage EB of the secondary electric machine for charging to switch each operation mode, and the voltage detection accuracy. The problem of can be solved.

これにより、本発明の充電制御装置は、直流電源と充電用二次電池の電圧の大小関係に係わらず、電流制御システムだけで自動的に降圧動作、昇圧動作あるいは昇降圧動作が切り換えられ充電制御ができる優れた特徴を有している。 As a result, the charge control device of the present invention automatically switches between step-down operation, boost-up operation, and buck-boost operation only by the current control system regardless of the magnitude relationship between the DC power supply and the voltage of the secondary battery for charging. It has excellent characteristics that can be used.

図11及び図12は、直流電源電圧と充電用二次電池の電圧EBが近いときに、単独の降圧制御動作や単独の昇圧動作だけでスイッチング信号を発生した時の動作波形を示している。 11 and 12 show operation waveforms when a switching signal is generated only by a single step-down control operation or a single step-up operation when the DC power supply voltage and the voltage EB of the secondary battery for charging are close to each other.

このときの、単独の降圧動作だけでスイッチング制御をかけると、図11に示すようにスイッチS1のオフ期間Toff1が極めて狭くなってしまうことが分かる。 At this time, if switching control is applied only by a single step-down operation, it can be seen that the off period Toff1 of the switch S1 becomes extremely narrow as shown in FIG.

また、図12は、単独の昇圧動作だけでスイッチング制御をかけたときの制御動作波形を示しており、り、スイッチS2のオン期間Ton2が極めて狭くなってしまうことを示している。 Further, FIG. 12 shows a control operation waveform when switching control is applied only by a single boosting operation, and shows that the ON period Ton2 of the switch S2 becomes extremely narrow.

これに対して、図13は、直流電源電圧と充電用二次電池の電圧EBが近いときに、スイッチング周期内に昇圧動作パルスと降圧動作パルスを入れる昇降圧動作をさせたときの制御動作波形を示しており、直流電源電圧Edと充電用二次電池電圧EBが等しくなっても、一定にパルス幅のスイッチング信号を発生しており、極狭パルスを発生することなく制御システムが動作できることが分かる。 On the other hand, FIG. 13 shows a control operation waveform when a step-up / down operation is performed in which a step-up operation pulse and a step-down operation pulse are input within the switching cycle when the DC power supply voltage and the voltage EB of the secondary battery for charging are close to each other. Even if the DC power supply voltage Ed and the charging secondary battery voltage EB are equal, a switching signal with a constant pulse width is generated, and the control system can operate without generating an extremely narrow pulse. I understand.

図14および図15は、直流電源電圧と充電用二次電圧の電圧が近くなったときの昇降圧動作モードを決める上記の制御量kによって、単独の降圧動作および単独の昇圧動作における最少パルス幅を設定したときの動作波形例を示している。
14 and 15 show the minimum pulse width in the single step-down operation and the single step-up operation by the above-mentioned control amount k that determines the step-up / down pressure operation mode when the DC power supply voltage and the secondary charging voltage are close to each other. An example of the operation waveform when is set is shown.

一方向昇降圧制御回路(直流電源の負側コモン)One-way buck-boost control circuit (negative side common of DC power supply) 一方向昇降圧制御回路(直流電源の正側コモン)One-way buck-boost control circuit (common on the positive side of DC power supply) 一方向昇降圧制御回路の降圧動作と昇圧動作における電流経路Current path in step-down operation and step-up operation of one-way buck-boost control circuit 一方向昇降圧制御回路の降圧動作時の通電経路と動作波形Energization path and operation waveform during step-down operation of one-way buck-boost control circuit 一方向昇降圧制御回路の昇圧動作時の通電経路と動作波形Energization path and operation waveform during boost operation of one-way buck-boost control circuit 一方向昇降圧制御回路の昇降圧動作時の通電経路と動作波形Energization path and operation waveform during buck-boost operation of one-way buck-boost control circuit 双方向昇降圧制御回路Bidirectional buck-boost control circuit 双方向昇降圧制御回路の充電制御時の通電経路Energization path during charge control of the bidirectional buck-boost control circuit 双方向昇降圧制御回路の放電制御時の通電経路Energization path during discharge control of the bidirectional buck-boost control circuit 一方向昇降圧回路による充電制御システムCharge control system with one-way buck-boost circuit 単独の降圧動作時におけるスイッチングパルス波形Switching pulse waveform during single step-down operation 単独の昇圧動作時におけるスイッチングパルス波形Switching pulse waveform during single boost operation 昇降圧動作時におけるスイッチングパルス波形Switching pulse waveform during buck-boost operation 昇降圧組み合わせ制御降圧動作時におけるスイッチングパルス波形Switching pulse waveform during buck-boost combination control step-down operation 昇降圧組み合わせ制御昇圧動作時におけるスイッチングパルス波形Buck-boost combination control Switching pulse waveform during boost-up operation 半導体スイッチング素子(IGBT,MOSFET)による一方向昇降圧制御回路の構成例Configuration example of one-way buck-boost control circuit using semiconductor switching elements (IGBT, MOSFET) IGBTスイッチによる双方向昇降圧制御回路の構成例Configuration example of bidirectional buck-boost control circuit using IGBT switch 一方向昇降圧制御回路の均等充電回路の電流源としての適用回路例Example of application circuit as a current source of a uniform charging circuit of a one-way buck-boost control circuit MOSFETスイッチによる一方向昇降圧回路の充電制御システムの実施例Example of Charge Control System of One-way Buck-Boost Circuit by MOSFET Switch シミュレーション条件と回路 (a) 二次電池、(b) 抵抗負荷Simulation conditions and circuit (a) Secondary battery, (b) Resistive load 降圧動作条件下(Ed=100V,EB=96V)でのシミュレーション波形Simulation waveform under step-down operation conditions (Ed = 100V, EB = 96V) 昇圧動作条件下(Ed=100V,EB=104V)でのシミュレーション波形Simulation waveform under boosted operating conditions (Ed = 100V, EB = 104V) 昇降圧動作条件下(Ed=100V,EB=100V)でのシミュレーション波形Simulation waveform under buck-boost operating conditions (Ed = 100V, EB = 100V) 出力電圧基準変化(0~200V)に対する抵抗負荷(R=10ohm)時のシミュレーション波形Simulation waveform at resistance load (R = 10ohm) for output voltage reference change (0 to 200V)

図16は、本発明による図1に示す昇降圧回路の具体的な実施回路構成例であり、同図(a)は、スイッチ素子としてIGBTを用いた回路例、同図(b)とはNMOSFETを用いた回路例を示している。 FIG. 16 is a specific implementation circuit configuration example of the buck-boost circuit shown in FIG. 1 according to the present invention, FIG. 16A is a circuit example using an IGBT as a switch element, and FIG. 16B is an N MOSFET. An example of a circuit using the above is shown.

図示するように、半導体スイッチとして2個のIGBTを用いた場合はエミッタが、2個のNMOSFETを用いた場合はソースがいずれも直流電源の負側とコモン接続ができるので、ドライブ回路の構成が容易となる。 As shown in the figure, when two IGBTs are used as semiconductor switches, the emitter can be connected to the negative side of the DC power supply in common, and when two N MOSFETs are used, both sources can be connected to the negative side of the DC power supply. It will be easy.

図17は、本発明による図7に示した双方向昇降圧回路の4個のスイッチをIGBTで構成した実施回路例であり、IGBTと逆並列に接続したスイッチングアームを直列に接続したスイッチングレグを2個用いて構成することができる。 FIG. 17 is an example of an implementation circuit in which four switches of the bidirectional buck-boost circuit shown in FIG. 7 according to the present invention are configured by an IGBT, and a switching leg in which a switching arm connected in anti-parallel to the IGBT is connected in series is shown. It can be configured by using two.

本発明による二次電池の充電制御装置は、小型の携帯機器など小容量蓄電池の充電や数多くの二次蓄電池セルを直列に接続されていても組蓄電池や二次蓄電池セル単位で別途の均等充電等の管理制御がなされている場合など、一括充電制御する目的としても適している。 The secondary battery charge control device according to the present invention can be used to charge a small-capacity storage battery such as a small portable device, or even if a large number of secondary storage battery cells are connected in series, the assembled storage battery or the secondary storage battery cell is separately charged separately. It is also suitable for the purpose of batch charge control, such as when management control is performed.

二次電池セルの管理制御手段が必要な場合の、本発明の充電装置の適用例を示す。 An application example of the charging device of the present invention is shown when a management control means for a secondary battery cell is required.

(特許文献6)は、数多くの二次蓄電池を直列に接続して用いられる場合の組蓄電池単位の均等充放電制御を目的に、簡単化主回路構成で組蓄電池単位での二次電池の充電制御委を行った後、一括充電制御するものである。 (Patent Document 6) has a simplified main circuit configuration for charging a secondary battery in a built-in storage battery unit for the purpose of uniform charge / discharge control in a built-in storage battery unit when a large number of secondary storage batteries are connected in series. After performing a control committee, batch charging control is performed.

図18は、このようなケースにおける本発明の一方向昇降圧充電装置の適用例の一つとして、(特許文献6)に示されている二次蓄電池の充電用電流源と用いた時の主回路構成を示している。
FIG. 18 shows, as one of the application examples of the one-way buck-boost charging device of the present invention in such a case, mainly when used as a charging current source for a secondary storage battery shown in (Patent Document 6). The circuit configuration is shown.

図19は、本発明による一方向昇降圧制御回路のスイッチにNMOSFTEを用いて構成し、インダクタに流れる電流が基準電流と一致させるPI制御器の出力と、狭いパルスを発生させない2組の三角波と比較して、各スイッチ素子に対するスイッチング信号を発生する図10に示した制御システムに充電用二次蓄電池の電圧制御ループを付加した制御システムである。 FIG. 19 shows a PI controller output in which the switch of the one-way buck-boost control circuit according to the present invention is configured by using NMOS FTE and the current flowing through the inductor matches the reference current, and two sets of triangular waves that do not generate a narrow pulse. In comparison, it is a control system in which a voltage control loop of a secondary storage battery for charging is added to the control system shown in FIG. 10 that generates a switching signal for each switch element.

ここで、インダクタに流れる電流の基準値は、充電用二次蓄電池の電圧が充電完了電圧基準と一致するようにPI制御器の出力を飽和回路を介して出力より得ており、飽和回路により過電流抑制しながら充電した後は、二次電池が充電完了電圧でフローティング充電することができる。 Here, the reference value of the current flowing through the inductor is such that the output of the PI controller is obtained from the output via the saturation circuit so that the voltage of the secondary storage battery for charging matches the charge completion voltage reference, and is excessive due to the saturation circuit. After charging while suppressing the current, the secondary battery can be floatingly charged at the charge completion voltage.

本発明の実施例として、図20に動作確認をシミュレーション解析により行った主回路構成と回路条件を示す。 As an embodiment of the present invention, FIG. 20 shows a main circuit configuration and circuit conditions for which operation confirmation was performed by simulation analysis.

同図(a)は、直流電圧源(Ed=100V)から二次蓄電池電圧 (EB-100V±4V)に対してシミュレーション解析における回路条件であり、同図(b)は抵抗負荷(R-10 ohm)に対して、出力電圧の基準値Vorを0~200Vまでランプ状に変化させたときのシミュレーション解析における回路条件を示している。 Fig. (A) shows the circuit conditions in the simulation analysis from the DC voltage source (Ed = 100V) to the secondary storage battery voltage (EB-100V ± 4V), and Fig. (B) shows the resistance load (R-10). For ohm), the circuit conditions in the simulation analysis when the reference value Vor of the output voltage is changed in a ramp shape from 0 to 200V are shown.

図21、図22は直流電源の電圧をEd-100V一定のもと、充電用二次電池の電圧が96Vと104Vのときの動作波形を示しており、前者はEd(100V)>EB(96V)であり、自動的に単独の降圧動作によりインダクタの電流idが一定の基準値(Idr=20A)に制御できており、後者はEd(100V)<EB(104V)であるために、自動的に単独の昇圧動作が行われている様子が確認できる。 FIGS. 21 and 22 show the operating waveforms when the voltage of the DC power supply is constant at Ed-100V and the voltage of the secondary battery for charging is 96V and 104V. The former shows Ed (100V)> EB (96V). ), And the current id of the inductor can be automatically controlled to a constant reference value (Idr = 20A) by a single step-down operation, and the latter is automatically because Ed (100V) <EB (104V). It can be confirmed that the step-up operation is performed independently.

これらに対し、図23は直流電源電圧Edと充電用二次電池の電圧EBが共に100Vとしたときの動作波形であり、スイッチング信号として狭いパルス幅を発生することなく、自動的に昇降圧動作モードに移行してインダクタの電流idが一定の基準値(Idr=20A)に制御できていることが分かる。 On the other hand, FIG. 23 shows the operation waveform when the DC power supply voltage Ed and the voltage EB of the secondary battery for charging are both 100 V, and the buck-boost operation is automatically performed without generating a narrow pulse width as a switching signal. It can be seen that the current id of the inductor can be controlled to a constant reference value (Idr = 20A) by shifting to the mode.

図24は、二次電池の代わりに大幅な出力電圧制御動作を確認するために、抵抗負荷(R=10ohm)を接続して,出力電圧の基準値を0~200Vへと大幅に変化させたときの動作波形であり、出力電圧が100V近辺で降圧動作から自動的に昇降圧動作を経て昇圧動作へと移行しながら、出力電圧voは、基準値に沿って電圧が上昇できていることが確認できる。 In FIG. 24, in order to confirm a large output voltage control operation instead of the secondary battery, a resistance load (R = 10 ohm) was connected and the reference value of the output voltage was changed significantly from 0 to 200 V. It is an operation waveform at the time, and it is that the output voltage vo can rise along the reference value while the output voltage is around 100V and the step-down operation automatically shifts to the step-up operation via the step-up / down operation. You can check it.

なお、インダクタの電流idは基準値が出力電圧の制御器からその基準値が決まるために、変化しており、昇圧動作になると急減に上昇しているのは、一定の抵抗負荷に対して電圧が上昇するため負荷の消費電力が出力電圧の2乗に比例するためである。
The current id of the inductor is changing because the reference value is determined by the controller of the output voltage, and it is the voltage for a certain resistance load that suddenly increases in the boost operation. This is because the power consumption of the load is proportional to the square of the output voltage.

100 … 直流電源
200 … 昇降圧制御回路
300 … 二次電池
400 … 制御システム部
410 … 三角波比較スイッチング信号発生部
420 … 電流制御部
430 … 電圧制御部
100 ... DC power supply 200 ... Buck-boost control circuit 300 ... Secondary battery 400 ... Control system unit 410 ... Triangle wave comparison switching signal generation unit 420 ... Current control unit 430 ... Voltage control unit

Claims (5)

直流電源の一端からインダクタ、二次電池、第1のダイオード、第1のスイッチを直列に接続して前記直流電源の他端に戻る回路と、第2のダイオードを前記二次電池と前記第1のダイオードの接続点と前記直流電源と前記インダクタの接続点の間に接続する回路、さらに、第2のスイッチを前記インダクタと前記二次電池の接続点と前記直流電源と前記第1のスイッチの接続点の間に接続する回路により昇降圧回路を構成して
前記インダクタに流れる電流が、基準電流値と一致するように前記第1のスイッチと前記第2のスイッチの通流幅を制御することにより、
昇降圧制御動作時の電流の通流経路におけるダイオード、スイッチの直列素子数の低減化と、前記第1のスイッチと前記第2のスイッチが共通に接続できることによる両スイッチのドライブ回路構成の簡単化ができ、前記直流電源と前記二次電池の電圧の大小関係にかかわらず、前記直流電源から前記二次電池に充電制御することができることを特徴とする充電制御装置。
A circuit that connects an inductor, a secondary battery, a first diode, and a first switch in series from one end of the DC power supply to return to the other end of the DC power supply, and a second diode is the secondary battery and the first. A circuit that connects the connection point of the diode and the connection point of the DC power supply and the connection point of the inductor, and further, the second switch of the connection point of the inductor and the secondary battery, the DC power supply, and the first switch. A buck-boost circuit is configured by a circuit connected between the connection points, and the flow width of the first switch and the second switch is controlled so that the current flowing through the inductor matches the reference current value. By
The number of series elements of diodes and switches in the current flow path during buck-boost control operation has been reduced, and the drive circuit configuration of both switches has been simplified by allowing the first switch and the second switch to be connected in common. A charge control device capable of controlling charging from the DC power supply to the secondary battery regardless of the magnitude relationship between the DC power supply and the voltage of the secondary battery.
請求項1記載の充電制御装置におけるスイッチング制御方法として、
前記直流電源の電圧が充電される前記二次電池より高いときは、前記第2のスイッチをオフ状態とし、前記第1のスイッチの通流幅により降圧動作で前記インダクタの電流制御を、
前記直流電源の電圧が充電される前記二次電池より低いときは、前記第1のスイッチにオン信号を与え、前記第2のスイッチの通流幅により昇圧動作で前記インダクタの電流制御を、
前記直流電源の電圧が充電される前記二次電池と近いときは、前記第1のスイッチと前記第2のスイッチの通流幅を互いに同期して昇圧動作期間と降圧動作期間を設ける昇降圧動作により前記インダクタの電流制御をかけることで、
極狭いパルス幅のスイッチング制御動作を伴うことなく、前記二次電池に充電制御できることを特徴とする充電制御装置。
As a switching control method in the charge control device according to claim 1,
When the voltage of the DC power supply is higher than that of the secondary battery to be charged, the second switch is turned off, and the current control of the inductor is performed by step-down operation according to the flow width of the first switch.
When the voltage of the DC power supply is lower than that of the secondary battery to be charged, an on signal is given to the first switch, and the current control of the inductor is performed by boosting operation by the flow width of the second switch.
When the voltage of the DC power supply is close to that of the secondary battery to be charged, a step-up / down operation in which the flow widths of the first switch and the second switch are synchronized with each other to provide a step-up operation period and a step-down operation period. By controlling the current of the inductor with
A charge control device characterized in that the secondary battery can be charged and controlled without a switching control operation having an extremely narrow pulse width.
請求項1から請求項2記載の充電制御装置におけるスイッチング制御信号の発生方法として、前記インダクタに流れる電流を充電用二次電池の電圧や流れ込む電流、積算電力量である二次電池の状態をもとに設定する基準電流値と一致させるためのPI制御器の出力と最小値が零の三角波の最大値と、その三角波を直流シフトさせた三角波の最小値が同じとなる2つの三角波との比較信号をもとに、前記第1のスイッチと前記第2のスイッチに対するスイッチング信号を発生するとき、
前記PI制御器の出力レベルが、前記直流シフトレベルに近いときは、比較する前記2つの三角波の振幅を少し大きくして、一つの三角波の最大値と他の三角波の最小値を少しオーバーラップさせることより、極狭いパルス幅のスイッチング信号を発生することなく、前記二次電池に充電制御できることを特徴とする充電制御装置。
As a method of generating a switching control signal in the charge control device according to claims 1 to 2, the current flowing through the inductor is also the voltage of the secondary battery for charging, the current flowing in, and the state of the secondary battery which is the integrated power amount. Comparison between the maximum value of the triangular wave whose minimum value is zero and the output of the PI controller to match the reference current value set in and, and the two triangular waves where the minimum value of the triangular wave obtained by DC-shifting the triangular wave is the same. When a switching signal for the first switch and the second switch is generated based on the signal,
When the output level of the PI controller is close to the DC shift level, the amplitudes of the two triangle waves to be compared are slightly increased so that the maximum value of one triangle wave and the minimum value of the other triangle wave are slightly overlapped. Therefore, the charge control device is characterized in that the secondary battery can be charged and controlled without generating a switching signal having an extremely narrow pulse width.
請求項1記載の充電制御装置において、第1のダイオードに逆並列に第3のスイッチを、第1のスイッチに逆並列に第3のダイオードを、第2のダイオードに逆並列に第4のスイッチを接続する回路構成として、
前記第3のスイッチと前記第4のスイッチをオフ状態として、前記第1のスイッチと前記第2のスイッチの通流幅制御により、前記直流電源から前記二次電池を充電制御できる請求項1記載の動作に加えて
前記第1のスイッチと前記第2のスイッチをオフ状態として、前記インダクタに流れる電流が、基準電流値と一致するように前記第3のスイッチと前記第4のスイッチの通流幅を制御することにより、
前記二次電池から前記直流電源への電流制御ができることを特徴とする充電制御装置。
In the charge control device according to claim 1, a third switch is connected to the first diode in antiparallel, a third switch is connected to the first switch in antiparallel, and a fourth switch is connected to the second diode in antiparallel. As a circuit configuration to connect
The first aspect of claim 1, wherein the secondary battery can be charged and controlled from the DC power supply by controlling the flow width of the first switch and the second switch with the third switch and the fourth switch turned off. In addition to the operation of, the first switch and the second switch are turned off, and the flow of the third switch and the fourth switch so that the current flowing through the inductor matches the reference current value. By controlling the width
A charge control device characterized in that the current can be controlled from the secondary battery to the DC power source.
請求項4記載の充電制御装置において、請求項2から3記載の前記直流電源側から前記二次電池側への充電制御技術を、前記直流電源と前記二次電池の対応関係を入れ替えて前記二次電池側から前記直流電源側への電流制御もできるように制御システムを構成して、前記基準電流の極性を切り替えることにより、前記直流電源から前記二次電池側への充電制御と前記二次電池から前記直流電源側への充電制御が双方向に電流制御できることを特徴とする充電制御装置。




In the charge control device according to claim 4, the charge control technique from the DC power supply side to the secondary battery side according to claims 2 to 3 is performed by exchanging the correspondence between the DC power supply and the secondary battery. By configuring a control system so that the current can be controlled from the secondary battery side to the DC power supply side and switching the polarity of the reference current, charge control from the DC power supply to the secondary battery side and the secondary battery can be performed. A charge control device characterized in that the charge control from the battery to the DC power supply side can control the current in both directions.




JP2021151451A 2021-09-16 2021-09-16 Charge control device Active JP7020737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021151451A JP7020737B1 (en) 2021-09-16 2021-09-16 Charge control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021151451A JP7020737B1 (en) 2021-09-16 2021-09-16 Charge control device

Publications (2)

Publication Number Publication Date
JP7020737B1 true JP7020737B1 (en) 2022-02-16
JP2023043692A JP2023043692A (en) 2023-03-29

Family

ID=80948509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021151451A Active JP7020737B1 (en) 2021-09-16 2021-09-16 Charge control device

Country Status (1)

Country Link
JP (1) JP7020737B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977771A (en) * 2024-03-29 2024-05-03 苏州元脑智能科技有限公司 Battery charge and discharge control circuit, charge and discharge control method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047238A (en) 2001-04-17 2003-02-14 Matsushita Electric Ind Co Ltd Battery-driven electronic apparatus and mobile communication apparatus
JP2009146828A (en) 2007-12-17 2009-07-02 Tokyo Electric Power Co Inc:The Step-up/down type power control circuit and discharge lamp lighting device
WO2011142369A2 (en) 2010-05-11 2011-11-17 国立大学法人徳島大学 Power supply device and charge circuit

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047238A (en) 2001-04-17 2003-02-14 Matsushita Electric Ind Co Ltd Battery-driven electronic apparatus and mobile communication apparatus
JP2009146828A (en) 2007-12-17 2009-07-02 Tokyo Electric Power Co Inc:The Step-up/down type power control circuit and discharge lamp lighting device
WO2011142369A2 (en) 2010-05-11 2011-11-17 国立大学法人徳島大学 Power supply device and charge circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117977771A (en) * 2024-03-29 2024-05-03 苏州元脑智能科技有限公司 Battery charge and discharge control circuit, charge and discharge control method and device
CN117977771B (en) * 2024-03-29 2024-06-04 苏州元脑智能科技有限公司 Battery charge and discharge control circuit, charge and discharge control method and device

Also Published As

Publication number Publication date
JP2023043692A (en) 2023-03-29

Similar Documents

Publication Publication Date Title
US9455641B2 (en) DC/DC converter
JP3747381B2 (en) Power supply control circuit for electronic devices with built-in batteries
US10158316B2 (en) Motor control apparatus, power conversion device, auxiliary power source device, and method for controlling auxiliary power source device
US7439708B2 (en) Battery charger with control of two power supply circuits
US10374447B2 (en) Power converter circuit including at least one battery
KR20110054041A (en) Bi-directional inverter-charger
CN104218646A (en) Charging circuit for power bank
WO2016112784A1 (en) Uninterrupted power supply and control method thereof
JP6185860B2 (en) Bidirectional converter
US8988039B2 (en) Power converter circuit
US20240146211A1 (en) Power Supply and Method of Supplying Power To Load
JP7020737B1 (en) Charge control device
CN108233739B (en) Converter device for energy harvesting, use thereof and energy generator
MX2011004632A (en) Low voltage power supply.
Lawu et al. Charging supercapacitor mechanism based-on bidirectional DC-DC converter for electric ATV motor application
JP2011211797A (en) Step-up dc-dc converter
WO2008064767A1 (en) Power supply system for a vehicle, and method
KR102077026B1 (en) Apparatus for charging solar energy and control method thereof
JP2004282835A (en) Dc-dc converter
Merrouche et al. PWM buck converter used in PV controller
US20240195304A1 (en) Buck/boost conversion device and control circuit for bidirectional buck/boost converter
CN215894496U (en) High-voltage narrow-pulse ultrasonic drive circuit
KR102077022B1 (en) Apparatus for charging solar energy and control method thereof
KR102077023B1 (en) Apparatus for charging solar energy and control method thereof
KR102077025B1 (en) Apparatus for charging solar energy and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210922

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220127

R150 Certificate of patent or registration of utility model

Ref document number: 7020737

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150