JP7019421B2 - Plate for sliding nozzle Refractory and its manufacturing method - Google Patents

Plate for sliding nozzle Refractory and its manufacturing method Download PDF

Info

Publication number
JP7019421B2
JP7019421B2 JP2017548251A JP2017548251A JP7019421B2 JP 7019421 B2 JP7019421 B2 JP 7019421B2 JP 2017548251 A JP2017548251 A JP 2017548251A JP 2017548251 A JP2017548251 A JP 2017548251A JP 7019421 B2 JP7019421 B2 JP 7019421B2
Authority
JP
Japan
Prior art keywords
component
mass
less
refractory
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017548251A
Other languages
Japanese (ja)
Other versions
JPWO2018061731A1 (en
Inventor
経一郎 赤峰
太郎 牧野
善太 王丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Publication of JPWO2018061731A1 publication Critical patent/JPWO2018061731A1/en
Application granted granted Critical
Publication of JP7019421B2 publication Critical patent/JP7019421B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/14Closures
    • B22D41/22Closures sliding-gate type, i.e. having a fixed plate and a movable plate in sliding contact with each other for selective registry of their openings
    • B22D41/28Plates therefor
    • B22D41/30Manufacturing or repairing thereof
    • B22D41/32Manufacturing or repairing thereof characterised by the materials used therefor
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/101Refractories from grain sized mixtures
    • C04B35/103Refractories from grain sized mixtures containing non-oxide refractory materials, e.g. carbon

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Coating With Molten Metal (AREA)

Description

本発明は,製鋼プロセスで取鍋やタンディッシュ等の容器から溶鋼,特に溶鋼中のフリー酸素濃度が低い鋼を排出する際の,開閉及び流量制御に使用されるスライディングノズル用プレート(以下「プレート」ともいう。)耐火物及びその製造方法に関する。 The present invention is a plate for a sliding nozzle used for opening / closing and flow rate control when discharging molten steel, especially steel having a low free oxygen concentration in molten steel, from a container such as a ladle or a tundish in a steelmaking process (hereinafter referred to as "plate"). It also refers to fireproof materials and their manufacturing methods.

プレートの主要な損耗形態である摺動面の面荒れは,鋳造中に稼動面となる摺動面の組織が脆弱化し,摩耗,溶損,剥離などの現象を生じる現象である。この面荒れは化学的要因や物理的要因などいくつかの要素が複合的に影響を及ぼして生じると考えられている。多くの場合,酸化や脱炭が面荒れの起点となっていると考えられており,酸化は大気中の酸素による気相酸化や溶鋼中の酸素による液相酸化により生じ,脱炭は溶鋼への炭素の溶出によって生じると考えられている。このように酸化や脱炭により脆化した稼動面組織に,溶鋼や溶鋼中の成分,例えば介在物,スラグ等が浸潤,付着ないしは反応し,さらに浸潤,付着層が組織剥離することによって,面荒れが進行すると考えられている。 Rough surface of the sliding surface, which is the main form of wear of the plate, is a phenomenon in which the structure of the sliding surface, which is the moving surface, becomes weak during casting, causing phenomena such as wear, melting, and peeling. It is thought that this surface roughness is caused by a complex effect of several factors such as chemical factors and physical factors. In many cases, oxidation and decarburization are considered to be the starting point of surface roughness. Oxidation is caused by vapor phase oxidation by oxygen in the atmosphere and liquid phase oxidation by oxygen in molten steel, and decarburization is carried out to molten steel. It is believed to be caused by the elution of carbon. Components in molten steel and molten steel, such as inclusions and slag, infiltrate, adhere or react with the working surface structure embrittled by oxidation and decarburization, and the infiltration and adhesion layer peel off the structure, resulting in the surface. It is believed that the storm will progress.

一方,最近では単純な気相酸化や溶鋼中の酸素による液相酸化,溶鋼への炭素の溶出による脱炭とは異なる,酸化,脱炭のメカニズムが報告されている。
例えば,非特許文献1では,極低炭素Alキルド鋼(炭素濃度;20ppm),低炭素Alキルド鋼(炭素濃度;410ppm),極低炭素Siキルド鋼(炭素濃度;20ppm)の3種類の鋼を電気炉に入れ,真空置換を行ったAr雰囲気下,1560℃の温度条件で,アルミナ微粉と炭素から構成される単純系試料と反応させる試験を行い,界面の組織の評価と考察を行っている。その結果,極低炭素Alキルド鋼(炭素濃度;20ppm)との反応試験結果として,試料の稼動面で200μm程度の,脆化層の形成,すなわち炭素とAl粒の消失が確認されており,低炭素Alキルド鋼(炭素濃度;410ppm)でも同様に,炭素とAl粒が消失した100μm程度の脆化層の形成が確認されている。
また,非特許文献2では,Alキルド鋼等の溶鋼中のフリー酸素濃度が低い鋼を受鋼したプレートの摺動面を観察し,炭素とAl粒が消失した脆化層が形成されることを確認している。
On the other hand, recently, a mechanism of oxidation and decarburization, which is different from simple vapor phase oxidation, liquid phase oxidation by oxygen in molten steel, and decarburization by elution of carbon into molten steel, has been reported.
For example, in Non-Patent Document 1, there are three types of steel: ultra-low carbon Al killed steel (carbon concentration; 20 ppm), low carbon Al killed steel (carbon concentration; 410 ppm), and ultra-low carbon Si killed steel (carbon concentration; 20 ppm). Was placed in an electric furnace and reacted with a simple sample composed of alumina fine powder and carbon under a temperature condition of 1560 ° C. under an Ar atmosphere with vacuum substitution, and the texture of the interface was evaluated and considered. There is. As a result, as a result of the reaction test with ultra-low carbon Al killed steel (carbon concentration; 20 ppm), the formation of an embrittlement layer of about 200 μm on the working surface of the sample, that is, the disappearance of carbon and Al 2 O 3 grains was confirmed. Similarly, it has been confirmed that a low carbon Al killed steel (carbon concentration; 410 ppm) also forms an embrittlement layer of about 100 μm in which carbon and Al2O 3 grains have disappeared.
Further, in Non-Patent Document 2, the sliding surface of the plate receiving the steel having a low free oxygen concentration in the molten steel such as Al killed steel was observed, and an embrittlement layer in which carbon and Al 2 O 3 grains disappeared was formed. I have confirmed that it will be done.

このようにAlキルド鋼等の溶鋼中のフリー酸素濃度が低い鋼を受鋼する場合は,プレートの摺動面の溶鋼と接触する面又は内孔空間に曝される面(以下「稼働面」ともいう。)に脆化層が形成されることにより面荒れ現象が生じると考えられるが,その詳細なメカニズムやその改善方法等の検討は十分にはなされていなかった。 When receiving steel with a low free oxygen concentration in molten steel such as Al killed steel, the sliding surface of the plate is the surface that comes into contact with the molten steel or is exposed to the inner hole space (hereinafter referred to as the "operating surface"). It is considered that the surface roughness phenomenon occurs due to the formation of the embrittled layer in), but the detailed mechanism and improvement method thereof have not been sufficiently investigated.

第1回鉄鋼用耐火物委員会予稿集,2013年11月21日,p.180~p.187Proceedings of the 1st Refractory Committee for Steel, November 21, 2013, p. 180-p. 187 第3回鉄鋼用耐火物委員会予稿集,2015年11月26日,p.167~p.174Proceedings of the 3rd Refractory Committee for Steel, November 26, 2015, p. 167-p. 174

本発明が解決しようとする課題は,Alキルド鋼等を受鋼する場合において,摺動面に面荒れが生じ難いプレート耐火物及びその製造方法を提供することである。
また特に,溶鋼中のフリー酸素濃度が低い鋼を受鋼する場合に好適なプレート耐火物及びその製造方法を提供することである。
An object to be solved by the present invention is to provide a plate refractory material in which surface roughness is unlikely to occur on a sliding surface when receiving Al-killed steel or the like, and a method for manufacturing the same.
Further, in particular, it is an object of the present invention to provide a plate refractory material suitable for receiving steel having a low free oxygen concentration in molten steel and a method for producing the same.

本発明者らが,Alキルド鋼等,特に溶鋼中のフリー酸素濃度が低い鋼を受鋼する場合において摺動面に面荒れが生じるメカニズムについて検討を重ねた結果,前述の炭素とAl粒が消失した脆化層は耐火物中の炭素と酸化物等との酸化還元反応が生じることで形成され,その脆弱層が損傷することで面荒れが進行することがわかった。As a result of repeated studies by the present inventors on the mechanism of surface roughness on the sliding surface when receiving steel such as Al killed steel, which has a particularly low free oxygen concentration in molten steel, the above-mentioned carbon and Al 2O It was found that the embrittled layer in which the three grains disappeared was formed by the redox reaction between carbon and oxides in the refractory material, and the surface roughness progressed when the fragile layer was damaged.

より具体的に説明すると,耐火物中の炭素が,耐火物中の主たる構成物であるAl成分さらにはSiO成分,ZrO成分等の酸素(O)によって酸化されてCOガスとして気相となり消失し,脱炭する。またAl成分,SiO成分,ZrO成分等は炭素によって還元され,Alガス,AlOガス,SiOガス等の気相種や,ZrC,SiC等の炭化物を生成する。生成した気相種の多くは稼動面へ移動し溶鋼中へ溶出すると考えられる。またSiOガスの一部は耐火物組織中でSiCを生成すると考えられ,ZrCの生成と同様,酸化物から炭化物を生成するとその体積は収縮し,稼動面付近の耐火物組織中に多くの空隙を生じて脆化層を形成すると考えられる。More specifically, carbon in the refractory is oxidized by oxygen (O) such as Al 2 O 3 component, SiO 2 component, ZrO 2 component, etc., which are the main constituents in the refractory, as CO gas. It becomes a gas phase, disappears, and decarburizes. Further, the Al 2 O 3 component, the SiO 2 component, the ZrO 2 component and the like are reduced by carbon to generate gas phase species such as Al gas, Al 2 O gas and SiO gas, and carbides such as ZrC and SiC. It is considered that most of the generated gas phase species move to the working surface and elute into the molten steel. Further, it is considered that a part of SiO gas forms SiC in the refractory structure, and similar to the formation of ZrC, when carbide is formed from the oxide, its volume shrinks and many voids are formed in the refractory structure near the working surface. Is considered to form a brittle layer.

また,溶鋼の鋳造時のプレートの内孔には,開度を小さくする,すなわち絞ることで溶鋼が充満していない領域が発生し,その領域は絞りの程度が大きくなるほど,減圧の程度も大きくなり,一般的には鋳造時間が長くなる。このような減圧の領域に長時間曝される上プレートの摺動面の方が下プレートの摺動面よりも,その摺動面付近の組織は炭素とAl粒等が消失した脆化層が厚く,地金の浸潤も深く,面荒れが大きくなるケースがあることもわかった。In addition, in the inner hole of the plate during casting of molten steel, a region where the molten steel is not filled is generated by reducing the opening, that is, by squeezing, and the greater the degree of squeezing, the greater the degree of decompression in that region. In general, the casting time becomes longer. The structure near the sliding surface of the upper plate, which is exposed to such a reduced pressure region for a long time, is more brittle than the sliding surface of the lower plate, in which carbon and Al 2 O 3 grains have disappeared. It was also found that there are cases where the embrittlement layer is thick, the infiltration of the bare metal is deep, and the surface roughness becomes large.

これらから,前述の脆化層の形成ないしは面荒れ現象は,溶鋼中の酸素濃度に加え,温度,時間,内孔空間の圧力に影響されることを知見した。そして溶鋼中のフリー酸素濃度は30ppm以下,温度は高温度ほど,時間は長時間であるほど,内孔空間の圧力は負圧の程度が大きいほど,脆化層の形成ないし面荒れの程度が大きくなることを知見した。 From these, it was found that the above-mentioned phenomenon of embrittlement layer formation or surface roughness is affected by temperature, time, and pressure in the inner pore space in addition to the oxygen concentration in the molten steel. The free oxygen concentration in the molten steel is 30 ppm or less, the higher the temperature, the longer the time, the larger the degree of negative pressure in the inner pore space, the more the embrittlement layer is formed or the degree of surface roughness is. It was found that it would grow.

さらに詳しく説明すると,稼動面付近の耐火物組織内では,Al粒以外にも低熱膨張性原料として添加されたAl-ZrO系原料及びZrO-mulliteなどの骨材粒子も顕著な変質を受けていることが観察され,この変質も長時間,絞り注入される条件では上プレートの方が下プレートと比較して大きい傾向にあることを確認した。さらに,Al-ZrO系原料は原料中のZrO粒子がZrCに変質し,ZrO-mulliteは,粒子のmullite領域のSiO成分が消失し,Alのみが残存し,SiO成分はガス化してZrO-mullite粒子表層に移動しSiCとして存在していることを確認した。また,変質が進行すると,mullite領域のSiO成分だけでなく,Al成分も消失することを確認した。さらに,ZrO粒子については,Al-ZrO系原料中のZrO粒子と同様,ZrO粒子はZrCに変質していることを確認した。More specifically, in the refractory structure near the working surface, in addition to Al 2 O 3 particles, Al 2 O 3 -ZrO 2 system raw materials added as low thermal expansion raw materials and aggregate particles such as ZrO 2 -mullite are added. It was also observed that the upper plate had undergone significant alteration, and it was confirmed that this alteration also tended to be larger in the upper plate than in the lower plate under the condition of being squeezed for a long time. Furthermore, in the Al 2 O 3 -ZrO 2 system raw material, the ZrO 2 particles in the raw material are transformed into ZrC, and in the ZrO 2 -mullite, the SiO 2 component in the mullite region of the particles disappears, and only Al 2 O 3 remains. , SiO 2 component was gasified and moved to the surface layer of ZrO 2 -mullite particles, and it was confirmed that they existed as SiC. It was also confirmed that as the alteration progressed, not only the SiO 2 component in the mullite region but also the Al 2 O 3 component disappeared. Furthermore, regarding the ZrO 2 particles, it was confirmed that the ZrO 2 particles were altered to ZrC in the same manner as the ZrO 2 particles in the Al2O3 - ZrO2 system raw material.

これらの現象はいずれも,耐火物組織中の主として炭素の還元作用により生じるものであるが,負圧条件となることでプレート耐火物組織中のSiO,ZrO,Al等の酸化物成分の炭素による還元反応がよりいっそう進行する。All of these phenomena are mainly caused by the reducing action of carbon in the refractory structure, but under negative pressure conditions, the oxidation of SiO 2 , ZrO 2 , Al 2 O 3 , etc. in the refractory structure of the plate The reduction reaction by carbon of the substance component proceeds further.

これらのメカニズムは,主に次の式1~式5の反応により示すことができる。
SiO(s)+3C(s)=SiC(s)+2CO(g) …式1
3Al・2SiO(s)+12C(s)
=3Al(s)+2SiC(s)+4CO(g)+12C(s) …式2
ZrO(s)+3C(s)=ZrC(s)+2CO(g) …式3
Al(s)+3C(s)=2Al(g)+3CO(g) …式4
Al(s)+2C(s)=AlO(g)+2CO(g) …式5
These mechanisms can be mainly shown by the reactions of the following formulas 1 to 5.
SiO 2 (s) + 3C (s) = SiC (s) + 2CO (g) ... Equation 1
3Al 2 O 3.2SiO 2 (s) + 12C (s)
= 3Al 2 O 3 (s) + 2SiC (s) + 4CO (g) + 12C (s) ... Expression 2
ZrO 2 (s) + 3C (s) = ZrC (s) + 2CO (g) ... Equation 3
Al 2 O 3 (s) + 3C (s) = 2Al (g) + 3CO (g) ... Equation 4
Al 2 O 3 (s) + 2C (s) = Al 2 O (g) + 2CO (g) ... Equation 5

これら式1~式5の反応を,熱力学計算ソフトFact Sageを用いて,1550℃の温度条件で計算した結果,負圧条件下で反応がより進行しやすくなることがわかった。またこれらの反応は(1)>(2)>(3)>(4)≒(5)の順で進行し易くなること,及び前述のプレート耐火物に一般的に用いられる原料は,mullite,ZrO-mullite>Al-ZrO>Alの順で変質し易いことがわかった。さらにこの計算によると,Alの炭素による還元反応(4),(5)は常圧である1atmでは進行しないが,少量のSiO成分を含むと,1atmから,極少量ではあるが反応を生じることがわかった。このことは,SiO成分を含む場合,鋳造時に大気圧又は正圧となる領域の摺動面でも前述の還元反応を生じて脆化層を形成し,面荒れを惹き起こすことを示している。As a result of calculating the reactions of the formulas 1 to 5 under the temperature condition of 1550 ° C. using the thermodynamic calculation software Fact Sage, it was found that the reaction was more likely to proceed under the negative pressure condition. Further, these reactions are likely to proceed in the order of (1)>(2)>(3)> (4) ≈ (5), and the raw materials generally used for the above-mentioned plate refractory are mullite. It was found that the deterioration was likely to occur in the order of ZrO 2 -mullite> Al 2 O 3 -ZrO 2 > Al 2 O 3 . Furthermore, according to this calculation, the reduction reactions (4) and (5) of Al 2 O 3 with carbon do not proceed at 1 atm, which is the normal pressure, but when a small amount of SiO 2 component is included, the amount is very small from 1 atm. It was found to produce a reaction. This indicates that when the SiO 2 component is contained, the above-mentioned reduction reaction occurs even on the sliding surface in the region where the atmospheric pressure or positive pressure is applied during casting to form an embrittled layer, which causes surface roughness. ..

これらの知見から,本発明のスライディングノズル用プレート耐火物は,主に次のような方針に基づく構成とした。
(1)炭素成分量を必要最小限度に留める。
(2)SiO成分量及びZrO成分量を必要最小限度に留める。
(3)金属Al成分量を必要最小限度に留める。
(4)耐火物組織を緻密化する。
なお,前記の「必要最小限度」とは,他の代替手段を採った上で,強度,耐熱衝撃性,耐食性等のバランス上,必要な概ね最少の相対的な量・程度をいう。
Based on these findings, the refractory plate for sliding nozzles of the present invention was mainly constructed based on the following policy.
(1) Keep the amount of carbon component to the minimum necessary.
(2) Keep the amount of SiO 2 component and the amount of ZrO 2 component to the minimum necessary.
(3) Keep the amount of metal Al component to the minimum necessary.
(4) The refractory structure is densified.
The above-mentioned "minimum required" refers to the relative minimum amount and degree required in terms of the balance of strength, heat impact resistance, corrosion resistance, etc., after taking other alternative means.

また,本発明のスライディングノズル用プレート耐火物にはAlC成分の他,Al成分を主成分として含有させる。Al成分,特にコランダムは,スライディングノズル用プレートとして必要な耐食性,耐摩耗性,耐熱性,熱膨張特性等の諸具備特性を最もバランスよく備えている。したがって,本発明のスライディングノズル用プレート耐火物もAl成分としてのコランダムを主要構成物とする。Further, the refractory plate for the sliding nozzle of the present invention contains the Al 2 O 3 component as the main component in addition to the Al 4 O 4 C component. The Al 2 O 3 component, especially corundum, has the most well-balanced characteristics such as corrosion resistance, wear resistance, heat resistance, and thermal expansion characteristics required for a plate for a sliding nozzle. Therefore, the refractory plate for sliding nozzles of the present invention also has corundum as an Al 2 O 3 component as a main component.

一方,前記(1)の炭素成分量を低減すると,脆化層の形成を抑制することができるが,反面,弾性率や熱膨張率が上昇する,鋳造中の受熱により焼結が進行する等により耐熱衝撃性が低下し,プレートのエッジ欠けや放射状亀裂等が生じて耐用性を低下させる原因ともなる。また,前記(2)のSiO成分量及びZrO成分量を低減すると,脆化層の形成を抑制することができるが,耐熱衝撃性が低下し,プレートのエッジ欠けや放射状亀裂等が生じて耐用性を低下させる要因となる。On the other hand, if the amount of carbon component in (1) is reduced, the formation of the embrittled layer can be suppressed, but on the other hand, the elastic modulus and thermal expansion rate increase, and sintering proceeds due to heat reception during casting. As a result, the thermal impact resistance is lowered, and the edge of the plate is chipped or radial cracks are generated, which causes the durability to be lowered. Further, by reducing the amount of the SiO 2 component and the amount of the ZrO 2 component in (2) above, the formation of the embrittlement layer can be suppressed, but the thermal impact resistance is lowered, and the edge of the plate is chipped and radial cracks are generated. This causes a decrease in durability.

そこで本発明では,コランダムよりも低熱膨張性であるAlC成分を15~45質量%含有させることで,耐熱衝撃性を高めることとした。AlC成分はアルミニウムオキシカーバイド組成物の主成分であり,熱膨張係数が約4×10-6/K程度と,コランダムの約半分程度であって熱膨張率の低減効果が高い。またAlC成分は次の式6に示すように炭素との共存下で還元される。
2AlC(s)+3C(s)
=2Al(s)+Al(s)+2CO(g) …式6
そしてこの式6の反応は,Fact Sageを用いた1550℃の温度条件での計算によると1atmでも生じることがわかった。
Therefore, in the present invention, it is decided to enhance the thermostable impact resistance by containing 15 to 45% by mass of the Al 4 O 4 C component, which has lower thermal expansion than corundum. The Al 4 O 4 C component is the main component of the aluminum oxycarbide composition, and has a thermal expansion coefficient of about 4 × 10-6 / K, which is about half that of corundum, and has a high effect of reducing the coefficient of thermal expansion. Further, the Al 4 O 4 C component is reduced in the coexistence with carbon as shown in the following formula 6.
2Al 4 O 4 C (s) + 3C (s)
= 2Al 2 O 3 (s) + Al 4 C 3 (s) + 2CO (g) ... Equation 6
Then, it was found that the reaction of this formula 6 occurred even at 1 atm according to the calculation under the temperature condition of 1550 ° C. using Fact Sage.

一方で,アルミニウムオキシカーバイド組成物を適用した複数のプレートの実使用後品の稼動面付近のミクロ組織を観察した結果,アルミニウムオキシカーバイド粒子表面付近のみに,厚さ数十μm程度のわずかな変質層を形成しているだけで,それより深部の組織は殆ど変質せずに残存していることを確認した。このことから前記の式6で示される反応は,稼動面表層のアルミニウムオキシカーバイド組成物の表層のみで生じていることがわかった。また,前記の変質層は前記の式6からAlとAlから構成されていると考えられ,AlとAlはともに炭素との共存下ではZrOやSiOよりも安定であり,アルミニウムオキシカーバイド組成物の保護層として機能していると考えられる。これらから,アルミニウムオキシカーバイド組成物は,Al-ZrO系,ZrO-mullite,Al-SiO系の組成物よりも,高温での還元雰囲気下での安定性が高く,低熱膨張特性を長時間持続することが可能で,かつ,組成物自体の変質による組織の脆化が進行し難いことがわかる。On the other hand, as a result of observing the microstructure near the working surface of the product after actual use of multiple plates to which the aluminum oxycarbide composition was applied, slight deterioration with a thickness of several tens of μm was observed only near the surface of the aluminum oxycarbide particles. It was confirmed that only the layer was formed, and the tissue deeper than it remained with almost no deterioration. From this, it was found that the reaction represented by the above formula 6 occurred only on the surface layer of the aluminum oxycarbide composition on the surface layer of the working surface. Further, it is considered that the altered layer is composed of Al 2 O 3 and Al 4 C 3 from the above formula 6, and both Al 2 O 3 and Al 4 C 3 are considered to be ZrO 2 or ZrO 2 in the coexistence with carbon. It is more stable than SiO 2 , and is considered to function as a protective layer for the aluminum oxycarbide composition. From these, the aluminum oxycarbide composition is more stable in a reducing atmosphere at a high temperature than the Al 2 O 3 -ZrO 2 system, ZrO 2 -mullite, and Al 2 O 3 -SiO 2 system compositions. It can be seen that the low thermal expansion characteristics can be maintained for a long time, and that the embrittlement of the structure due to the alteration of the composition itself does not easily proceed.

前記(3)の金属Al成分は,酸化して主として強度を高める効果があるが,強い還元作用もある。主として過度な酸化等の反応を抑制して耐熱衝撃性が低下することを抑制するとともに,酸化物の還元による脆化層の形成を抑制するために,金属Al成分量は,必要最小限度に留める。 The metal Al component of (3) has the effect of oxidizing and mainly increasing the strength, but also has a strong reducing action. The amount of metal Al component is kept to the minimum necessary in order to suppress the deterioration of thermal shock resistance mainly by suppressing the reaction such as excessive oxidation and to suppress the formation of the embrittled layer due to the reduction of the oxide. ..

前述の諸メカニズム(反応)は,耐火物内の気孔を介して進行するので,耐火物組織の緻密性を高めることが,脆化層の形成ないし面荒れの抑制に寄与する。しかし,気孔は耐火物組織の熱的,機械的応力の緩和機能等も担っていることから或る程度は必要であり,製造上も皆無にすることはできない。すなわち,前記(4)の耐火物組織の緻密化は,主として耐熱衝撃性とのバランスにおいて調整することが必要である。 Since the above-mentioned mechanisms (reactions) proceed through the pores in the refractory, increasing the denseness of the refractory structure contributes to the formation of the embrittlement layer or the suppression of surface roughness. However, since the pores also have the function of relaxing the thermal and mechanical stress of the refractory structure, they are necessary to some extent and cannot be eliminated in manufacturing. That is, it is necessary to adjust the densification of the refractory structure of (4) mainly in the balance with the thermostable impact resistance.

なお,タール,ピッチ又は熱硬化性樹脂を含浸して炭素源を補強し,緻密化することが一般に広く行われている。しかし,このようにして耐火物組織内に付加した炭素は活性であり,また過剰な炭素を存在させることにもなるので,脆化層の形成を促進する虞がある。またその緻密化に関しても,他の手段での実現が可能なので,本発明においては,このような含浸する工程を含まないことが好ましい。 It is generally widely practiced to impregnate tar, pitch or thermosetting resin to reinforce and densify the carbon source. However, the carbon added in the refractory structure in this way is active and also causes excess carbon to be present, which may promote the formation of the embrittlement layer. Further, since the densification can be realized by other means, it is preferable that the present invention does not include such an impregnation step.

以上の知見を基にした本発明は,次の1~のスライディングノズル用プレート耐火物及びスライディングノズル用プレート耐火物の製造方法である。
1.鋼の鋳造に用いるスライディングノズル用プレート耐火物であって,
AlC成分を15質量%以上45質量%以下,フリーの炭素成分を2.0質量%以上4.5質量%以下,SiO成分を0.5質量%以上4.0質量%以下,金属Al成分を1.0質量%以下(ゼロを含む),残部にAl成分を主成分として含有し,
摺動面となる面を含み当該摺動面となる面に対して垂直方向の通気率が5×10 -17 以上40×10-17以下,見掛け気孔率が8.0%以上11.0%以下である,スライディングノズル用プレート耐火物。
.1000℃非酸化雰囲気中での熱膨張率が0.5%以上0.6%以下,室温での曲げ強さが15MPa以上40MPa以下である,前記1に記載のスライディングノズル用プレート耐火物。
.前記の鋼は,鋳造時の溶鋼中のフリー酸素濃度が30ppm以下である,前記1又は前記2に記載のスライディングノズル用プレート耐火物。
.金属Al又はAl含有合金を含み,前記金属Al又はAl含有合金中の金属Al成分の総量が2.0質量%以上10.0質量%以下である坏土を成形し,非酸化雰囲気中で1000℃以上の温度で熱処理をして,耐火物中の金属Al成分の含有量を1.0質量%以下(ゼロを含む)とする工程を含む,前記1から前記のいずれかに記載のスライディングノズル用プレート耐火物の製造方法。
.タール,ピッチ又は熱硬化性樹脂を含浸する工程を含まない,前記に記載のスライディングノズル用プレート耐火物の製造方法。
Based on the above findings, the present invention is the following methods 1 to 5 for manufacturing a refractory plate for sliding nozzles and a refractory plate for sliding nozzles.
1. 1. A refractory plate for sliding nozzles used for steel casting.
Al 4 O 4 C component is 15% by mass or more and 45% by mass or less, free carbon component is 2.0% by mass or more and 4.5% by mass or less, SiO 2 component is 0.5% by mass or more and 4.0% by mass or less. , Metal Al component is 1.0% by mass or less (including zero), and the balance contains Al 2 O 3 component as the main component.
The air permeability in the direction perpendicular to the sliding surface including the sliding surface is 5 × 10 -17 m 2 or more and 40 × 10 -17 m 2 or less, and the apparent porosity is 8.0% or more. Refractory plate for sliding nozzles of 11.0% or less.
2 . The refractory plate for sliding nozzles according to 1 above, wherein the thermal expansion rate in a non-oxidizing atmosphere at 1000 ° C. is 0.5% or more and 0.6% or less, and the bending strength at room temperature is 15 MPa or more and 40 MPa or less.
3 . The refractory plate for a sliding nozzle according to 1 or 2 above, wherein the steel has a free oxygen concentration of 30 ppm or less in the molten steel at the time of casting.
4 . A clay containing a metallic Al or an Al-containing alloy and having a total amount of metallic Al components in the metallic Al or Al-containing alloy of 2.0% by mass or more and 10.0% by mass or less is formed, and 1000 in a non-oxidizing atmosphere. The sliding according to any one of 1 to 3 above, which comprises a step of heat-treating at a temperature of ° C. or higher to reduce the content of the metallic Al component in the refractory material to 1.0% by mass or less (including zero). How to manufacture a plate fireproof material for nozzles.
5 . The method for producing a refractory plate for a sliding nozzle according to 4 above, which does not include a step of impregnating with tar, pitch or a thermosetting resin.

なお,本発明において「溶鋼中のフリー酸素」とは溶鋼中の溶存酸素をいい,酸化物の形態で存在する溶鋼中の介在物に含まれる酸素は含まない。また,本発明において「フリーの炭素成分」とは,他の元素との化合物の形態で存在する炭素成分を除く,単独で存在する炭素成分をいい,結晶性や形状等の形態を問わない。 In the present invention, "free oxygen in molten steel" means dissolved oxygen in molten steel and does not include oxygen contained in inclusions in molten steel existing in the form of oxides. Further, in the present invention, the "free carbon component" refers to a carbon component existing alone, excluding the carbon component existing in the form of a compound with another element, regardless of the form such as crystallinity or shape.

本発明により,Alキルド鋼等の鋼の鋳造において,特に開度が小さく絞り程度が大きい場合や長時間に亘り鋳造される場合にも,スライディングノズル用プレートの摺動面の面荒れを顕著に減少させることができ,安定した高耐用性を得ることができる。
特に,従来は損傷が大きくなる傾向が観られた,溶鋼中のフリー酸素濃度が30ppm以下の鋼の鋳造において,スライディングノズル用プレートの摺動面の面荒れを顕著に減少させることができ,安定した高耐用性を得ることができる。
According to the present invention, in the casting of steel such as Al killed steel, the surface roughness of the sliding surface of the sliding nozzle plate becomes remarkable even when the opening is small and the drawing degree is large or when casting is performed for a long time. It can be reduced and stable high durability can be obtained.
In particular, in the casting of steel with a free oxygen concentration of 30 ppm or less in molten steel, which has tended to be more damaged in the past, the surface roughness of the sliding surface of the sliding nozzle plate can be significantly reduced and stable. High durability can be obtained.

本発明のプレート耐火物はAlC成分を15質量%以上45質量%以下含有する。AlC成分の含有量が15質量%未満の場合,熱膨張率の低減効果が小さく,耐熱衝撃性が不十分である。AlCの含有量が45質量%を超える場合は,プレート耐火物の熱膨張量が,当該プレート耐火物の外周に焼き嵌めされるメタル製のバンドの熱膨張量に対して相対的に小さくなって,プレート耐火物の拘束力が低下することから,亀裂発生ないし拡大を惹き起こし易くなる。またメタル製のバンドにずれを生じて,特にプレートを再使用する場合に,プレートの取り外し等の取り扱い時の作業性や安全性が低下する等の問題を生じ易くなる。The plate refractory of the present invention contains Al 4 O 4 C component in an amount of 15% by mass or more and 45% by mass or less. When the content of the Al 4 O 4 C component is less than 15% by mass, the effect of reducing the thermal expansion rate is small and the thermal impact resistance is insufficient. When the content of Al 4 O 4 C exceeds 45% by mass, the amount of thermal expansion of the plate refractory is relative to the amount of thermal expansion of the metal band shrink-fitted on the outer periphery of the plate refractory. As the size becomes smaller and the binding force of the refractory plate is reduced, cracks are likely to occur or expand. In addition, the metal band is displaced, and when the plate is reused, problems such as deterioration of workability and safety during handling such as removal of the plate are likely to occur.

本発明のプレート耐火物はフリーの炭素成分を2.0質量%以上4.5質量%以下含有する。フリーの炭素成分の含有量が2.0質量%未満の場合は,スラグ等の酸化物等と濡れ易くなることから,溶鋼中の酸化物系介在物やスラグが稼動面に付着,浸潤し,面荒れを促進し易くなる。また,酸化物同士の焼結を抑制して弾性率を低下させる又は上昇を抑制する効果が小さくなり,耐熱衝撃性が低下して亀裂発生ないし拡大を惹き起こし易くなる。フリーの炭素成分の含有量が4.5質量%を超える場合は,外気に曝される部分での酸化による炭素の消失による組織の脆化が大きくなり,さらには,前記の式1~5により,耐火物組織中の炭素と共に耐火物を構成する酸化物等も消失することから,組織の脆化がより一層進行しやすくなり,面荒れが促進され易くなる。 The plate refractory of the present invention contains a free carbon component of 2.0% by mass or more and 4.5% by mass or less. When the content of the free carbon component is less than 2.0% by mass, it becomes easy to get wet with oxides such as slag, so oxide-based inclusions and slag in the molten steel adhere to and infiltrate the moving surface. It becomes easy to promote surface roughness. In addition, the effect of suppressing the sintering of oxides to lower the elastic modulus or suppressing the rise is reduced, and the thermal impact resistance is lowered, so that cracking or expansion is likely to occur. When the content of the free carbon component exceeds 4.5% by mass, the embrittlement of the tissue due to the disappearance of carbon due to oxidation in the portion exposed to the outside air becomes large, and further, according to the above formulas 1 to 5. Since the oxides and the like constituting the fire-resistant material disappear together with the carbon in the fire-resistant structure, the embrittlement of the structure is more likely to proceed and the surface roughness is easily promoted.

本発明のプレート耐火物はSiO成分を0.5質量%以上4.0質量%以下含有する。SiO成分は,その出発原料ないしは存在形態によっては,耐火物の強度向上や組織の緻密化等にも寄与する。また金属Al成分は,耐食性や耐酸化性の向上や組織の緻密化等に寄与するが,特に鋳造時の受熱によりAlを生成し,このAlが水和して組織を崩壊させることがある。このAlの水和抑制のためにSiO成分が有効である。そしてAlの水和抑制のためにはSiO成分は0.5質量%以上含有することが必要である,0.5質量%未満では十分な水和抑制効果を得ることができない。一方でSiO成分は,前記の式1及び式2に示されるように,高温条件下,一部は炭素と反応してSiCとして析出するとともにSiO(g)として消失するが,SiC化は体積減少を伴う変質であることから,組織を劣化させる一つの要因でもある。また前述のとおり,Alの炭素による前記の式4及び式5に示す還元反応は,Fact Sageを用いた計算によると,常圧である1atmでは進行しないが少量のSiO成分を含むと,極少量ではあるが1atmから反応を生じる。このAlの還元反応は,耐火物組織の脆化を促進させる一つの要因となる。このようなSiO成分及びAl成分の還元反応ないしは消失による組織劣化を抑制するためにはSiO成分の含有量は4.0質量%以下とする必要がある。The plate refractory of the present invention contains a SiO 2 component of 0.5% by mass or more and 4.0% by mass or less. The SiO 2 component also contributes to the improvement of the strength of the refractory and the densification of the structure depending on the starting material or the form of existence. In addition, the metallic Al component contributes to the improvement of corrosion resistance and oxidation resistance and the densification of the structure. In particular, Al 4 C 4 is generated by heat reception during casting, and this Al 4 C 4 is hydrated to form a structure. May collapse. The SiO 2 component is effective for suppressing the hydration of Al 4 C 4 . In order to suppress the hydration of Al 4 C 4 , it is necessary to contain 0.5% by mass or more of the SiO 2 component, and if it is less than 0.5% by mass, a sufficient hydration suppressing effect cannot be obtained. On the other hand, as shown in the above formulas 1 and 2, the SiO 2 component partially reacts with carbon to precipitate as SiC and disappears as SiO (g) under high temperature conditions, but the conversion to SiC is volumetric. Since it is a deterioration accompanied by a decrease, it is also one of the factors that deteriorate the tissue. Further, as described above, the reduction reaction represented by the above formulas 4 and 5 by the carbon of Al 2 O 3 does not proceed at 1 atm, which is the normal pressure, but contains a small amount of SiO 2 components, according to the calculation using Fact Sage. And, although it is a very small amount, a reaction occurs from 1 atm. This reduction reaction of Al 2 O 3 is one factor that promotes the embrittlement of the refractory structure. In order to suppress the tissue deterioration due to the reduction reaction or disappearance of the SiO 2 component and the Al 2 O 3 component, the content of the SiO 2 component needs to be 4.0% by mass or less.

本発明のプレート耐火物において金属Al成分の含有量は1.0質量%以下(ゼロを含む)とする。金属Al成分の含有量が1.0質量%以下であれば,使用時の受熱により耐火物組織を大きく変化することなく,耐火物組織中のフリーの炭素成分やAlC成分の酸化を抑制する効果や,耐食性の向上や耐火物組織の緻密化等に寄与する。しかし,金属Al成分の含有量が1.0質量%を超えると,鋳造時間や,鋼種,使用回数などの使用条件によっては耐火物組織の安定性を確保することが困難となり,むしろ耐用性を低下させることにもなる。The content of the metallic Al component in the refractory plate of the present invention is 1.0% by mass or less (including zero). When the content of the metal Al component is 1.0% by mass or less, the refractory structure is not significantly changed by the heat received during use, and the free carbon component and the Al 4 O 4 C component in the refractory structure are oxidized. It contributes to the effect of suppressing the corrosion resistance, the improvement of corrosion resistance, and the densification of the refractory structure. However, if the content of the metallic Al component exceeds 1.0% by mass, it becomes difficult to secure the stability of the refractory structure depending on the usage conditions such as casting time, steel type, and number of uses, and rather the durability is improved. It will also reduce it.

本発明のプレート耐火物において前述の各成分以外の残部は,コランダムとしてのAl成分を主体とする。これは,コランダムとしてのAlの融点が2060℃と耐熱性に優れ,FeO等の外来成分に対して耐食性が優れているからである。また残部にはAl成分のほか,酸化防止を目的として,少量のSiC,BC,Al等の炭化物成分やSi,BN,AlN等の窒化物成分,金属Si,Al合金中のMg等の金属成分等を含有することができる。これらも酸化や変質等で耐火物組織の緻密性や耐食性等を劣化させることもあるので,総量で7.0質量%以下程度であることが好ましい。In the plate refractory of the present invention, the rest other than the above - mentioned components is mainly composed of the Al2O3 component as corundum. This is because Al 2 O 3 as corundum has an excellent heat resistance of 2060 ° C. and excellent corrosion resistance to foreign components such as FeO. In addition to the Al 2 O 3 component, a small amount of carbide components such as SiC, B 4 C, Al 4 C 3 and nitride components such as Si 3 N 4 , BN and Al N, and metals are used for the purpose of preventing oxidation. It can contain a metal component such as Mg in Si and Al alloys. Since these may also deteriorate the fineness and corrosion resistance of the refractory structure due to oxidation and alteration, the total amount is preferably about 7.0% by mass or less.

本発明のプレート耐火物では,前述のように成分を特定することとともに,組織の緻密性が重要な要素である。特に,高温度側であって外来成分の影響を受け易く,また還元反応等の変質の程度が大きい摺動面側,特に稼働面となる部分の組織が緻密であることが重要である。この緻密性は,摺動面となる面を含み当該摺動面となる面に対して垂直方向の通気率と見掛け気孔率で評価ないしは特定することができる。すなわち本発明のプレート耐火物は,摺動面となる面を含み当該摺動面となる面に対して垂直方向の通気率が40×10-17以下,見掛け気孔率が11.0%以下であることが必要である。この通気率が40×10-17を超える場合,又は見掛け気孔率が11.0%を超える場合は,耐火物内部からの分解ガスが移動し易くなり,さらに外来成分の浸潤も進行し易くなり,耐火物組織の劣化や摺動面の損傷(面荒れ)が大きくなる。ただし,耐火物組織が過度に緻密化すると,弾性率の上昇を招き,耐熱衝撃性が低下する虞があるので,通気率の下限値は5×10-17,見掛け気孔率の下限値は8.0%であることが好ましい。In the plate refractory of the present invention, the fineness of the structure is an important factor as well as the identification of the components as described above. In particular, it is important that the structure of the sliding surface side, which is on the high temperature side and is easily affected by foreign components and has a large degree of deterioration such as reduction reaction, especially the working surface, is dense. This denseness can be evaluated or specified by the air permeability and the apparent porosity in the direction perpendicular to the surface to be the sliding surface including the surface to be the sliding surface. That is, the plate refractory of the present invention has an air permeability of 40 × 10 -17 m 2 or less in the direction perpendicular to the sliding surface including the surface to be the sliding surface, and an apparent porosity of 11.0%. It is necessary that: When this air permeability exceeds 40 × 10 -17 m 2 , or when the apparent porosity exceeds 11.0%, the decomposed gas from the inside of the refractory tends to move, and the infiltration of foreign components also progresses. It becomes easier, and deterioration of the refractory structure and damage to the sliding surface (rough surface) increase. However, if the refractory structure is excessively densified, the elastic modulus may increase and the thermal impact resistance may decrease. Therefore, the lower limit of the air permeability is 5 × 10 -17 m 2 , and the lower limit of the apparent porosity. Is preferably 8.0%.

また本発明のプレート耐火物は,1000℃非酸化雰囲気中での熱膨張率が0.5%以上0.6%以下であることが好ましい。プレート耐火物では内孔を高温の溶鋼が通過することから耐熱衝撃性が要求される。特にスライディングノズル装置内にセットされ,抑え金物などによる拘束条件下で使用される場合には,鋳造時に発生する熱応力を低減するために,プレート耐火物の熱膨張率を低減することが重要である。一般にプレートの形状が大きくなるほど,熱応力による破壊傾向が強くなるが,これまでのほぼ最大形状のプレートでの経験から,1000℃での熱膨張率が0.6%程度以下であれば,顕著な破壊は免れる。一方で,鋳造中のプレート耐火物の熱膨張量が小さすぎると,プレートの周囲方向のメタル製バンドによる拘束力が低下し,メタル製バンドの熱膨張量よりも小さい場合は拘束力が無くなる。するとプレート耐火物に亀裂が発生し易くなる,亀裂が拡大し易くなる,鋳造後のプレートを取り外す際にメタル製バンドが大きくずれ解体作業が困難になる等の問題を生じ易くなる。このようなことから1000℃での熱膨張率は0.5%程度以上であることが好ましい。 Further, the plate refractory of the present invention preferably has a thermal expansion rate of 0.5% or more and 0.6% or less in a non-oxidizing atmosphere at 1000 ° C. In plate refractory materials, heat impact resistance is required because high-temperature molten steel passes through the inner holes. It is important to reduce the thermal expansion rate of the plate refractory in order to reduce the thermal stress generated during casting, especially when it is set in the sliding nozzle device and used under restraint conditions such as holding hardware. be. Generally, the larger the shape of the plate, the stronger the tendency of fracture due to thermal stress, but from the experience with the plate of almost the maximum shape so far, it is remarkable if the thermal expansion rate at 1000 ° C is about 0.6% or less. Escape from such destruction. On the other hand, if the thermal expansion amount of the plate refractory during casting is too small, the binding force of the metal band in the peripheral direction of the plate decreases, and if it is smaller than the thermal expansion amount of the metal band, the binding force is lost. Then, cracks are likely to occur in the refractory plate, cracks are likely to expand, and the metal band is greatly displaced when the plate after casting is removed, making dismantling work difficult. Therefore, the thermal expansion rate at 1000 ° C. is preferably about 0.5% or more.

また本発明のプレート耐火物は,室温での曲げ強さが15MPa以上40MPa以下であることが好ましい。プレートはスライディングノズル装置内にセットされ,厚さ方向には面圧による拘束を,周囲からは抑え金物などによる拘束を受ける。このように拘束されるプレート耐火物の機械的強度が低い場合は,拘束力によって破壊を生じてしまう。プレート耐火物の室温での曲げ強さが15MPa未満の場合は,スライディングノズル装置内へのセットないし固定時又は面圧負荷時に亀裂を生じやすいことを,本発明者らは経験上知見している。したがって室温での曲げ強さは15MPa以上であることが好ましい。一方で,常温の曲げ強さが高くなると弾性率も高くなり,耐熱衝撃性を低下させる要因となる。室温での曲げ強さが45MPaを超えると弾性率が過度に高くなり易く,熱衝撃による亀裂を生じ易くなることを,本発明者らは経験上知見している。よって,室温での曲げ強さは15MPa以上45MPa以下であることが好ましい。 Further, the plate refractory of the present invention preferably has a bending strength of 15 MPa or more and 40 MPa or less at room temperature. The plate is set in the sliding nozzle device and is constrained by surface pressure in the thickness direction and by restraining hardware from the surroundings. When the mechanical strength of the plate refractory that is restrained in this way is low, the restraining force causes fracture. The present inventors have empirically found that when the bending strength of the refractory plate at room temperature is less than 15 MPa, cracks are likely to occur when the plate refractory is set or fixed in the sliding nozzle device or when a surface pressure load is applied. .. Therefore, the bending strength at room temperature is preferably 15 MPa or more. On the other hand, as the bending strength at room temperature increases, the elastic modulus also increases, which is a factor that lowers the thermal impact resistance. The present inventors have empirically found that when the bending strength at room temperature exceeds 45 MPa, the elastic modulus tends to be excessively high and cracks due to thermal shock are likely to occur. Therefore, the bending strength at room temperature is preferably 15 MPa or more and 45 MPa or less.

次に,本発明のプレート耐火物の製造方法について説明する。 Next, a method for manufacturing the plate refractory of the present invention will be described.

一般的にプレート耐火物は,次の工程を含む製造方法により製造することができる。
(a)プレート耐火物の各成分源となる原料を所定量配合し混和して原料配合物を得る。
(b)この原料配合物に,熱処理後に炭素結合を生じ,かつ成形時の坏土の湿潤状態の調整剤としても使用可能な樹脂,さらには必要に応じて溶剤等を添加し混練して坏土を得る。
(c)この坏土を任意の方法,圧力で加圧し成形して成形体を得る。
(d)この成形体を乾燥し非酸化雰囲気中で熱処理(焼成)する。
(e)必要に応じて,研磨,メタルバンドを巻く等の加工を行う。
Generally, a plate refractory can be manufactured by a manufacturing method including the following steps.
(A) A predetermined amount of a raw material to be a source of each component of a plate refractory is mixed and mixed to obtain a raw material mixture.
(B) A resin that forms carbon bonds after heat treatment and can also be used as an agent for adjusting the wet state of the clay during molding, and if necessary, a solvent or the like is added to this raw material formulation and kneaded to make the complex. Get the soil.
(C) This clay is pressed and molded by an arbitrary method and pressure to obtain a molded body.
(D) This molded product is dried and heat-treated (baked) in a non-oxidizing atmosphere.
(E) If necessary, perform processing such as polishing and winding a metal band.

このような一般的なプレート耐火物の製造方法において本発明のプレート耐火物の製造方法は,坏土中の金属Al成分の含有量が2.0質量%以上10.0質量%以下となるように調整し,この坏土を成形し,非酸化雰囲気中で1000℃以上の温度で熱処理をして,耐火物中の金属Al成分の含有量が1.0質量%以下(ゼロを含む)となるようにすることを特徴とする。 In such a general method for producing a plate refractory, the method for producing a plate refractory of the present invention has a content of the metal Al component in the soil of 2.0% by mass or more and 10.0% by mass or less. The clay is formed into a non-oxidizing atmosphere and heat-treated at a temperature of 1000 ° C or higher so that the content of the metallic Al component in the refractory is 1.0% by mass or less (including zero). It is characterized by being.

坏土中の金属Al成分の含有量が2.0質量%未満の場合は,熱処理後に緻密化した組織を得ることができない。言い換えれば,金属Al成分を2.0質量%以上含有する坏土の成形体を,非酸化雰囲気中で1000℃以上の温度で熱処理すると,成形体内の金属Al成分が他の諸成分と反応してAlN,Al,AlOC,AlC,Al等の生成物を生成し,この反応物生成に伴う体積膨張により組織が緻密化する。金属Al成分源(原料)としての金属Alの形状は,アトマイズ状の粒子やフレーク状の粒子,ファイバー等とすることができる。また,金属Al単体の他に,Al-Si,Al-Mg等の合金として使用することも可能である。When the content of the metallic Al component in the clay is less than 2.0% by mass, a densified structure cannot be obtained after the heat treatment. In other words, when a molded body of clay containing 2.0% by mass or more of the metal Al component is heat-treated at a temperature of 1000 ° C. or higher in a non-oxidizing atmosphere, the metal Al component in the molded body reacts with other components. Then, products such as AlN, Al 4 C 3 , Al 2 OC, Al 4 O 4 C, and Al 2 O 3 are produced, and the structure is densified by the volume expansion accompanying the formation of the reactants. The shape of the metal Al as the metal Al component source (raw material) can be atomized particles, flake-shaped particles, fibers, or the like. In addition to the metal Al alone, it can also be used as an alloy such as Al—Si and Al—Mg.

一方,坏土中の金属Al成分の含有量が10.0質量%を超える場合は,熱処理後の耐火物(製品としてのプレート耐火物)中の金属Al成分量が1.0質量%を超える可能性が高くなる。なお,坏土中の金属Al成分の含有量が2.0質量%以上10.0質量%以下であっても,熱処理条件や,金属Al成分源(原料)としての金属Al又はAl合金の形態等によっては,熱処理後の耐火物中には金属Al成分が残存しないこともある。そのような場合を含め,本発明では熱処理後の耐火物中の金属Al成分の含有量が1.0質量%以下(ゼロを含む)となるようにする。 On the other hand, when the content of the metal Al component in the clay exceeds 10.0% by mass, the amount of the metal Al component in the refractory (plate refractory as a product) after the heat treatment exceeds 1.0% by mass. The possibility is high. Even if the content of the metal Al component in the clay is 2.0% by mass or more and 10.0% by mass or less, the heat treatment conditions and the form of the metal Al or Al alloy as the metal Al component source (raw material) Depending on the above, the metallic Al component may not remain in the refractory material after the heat treatment. Including such a case, in the present invention, the content of the metallic Al component in the refractory after the heat treatment is set to 1.0% by mass or less (including zero).

また,金属Alの融点は660℃であるが,例えば金属Alの形態が粒子表層を酸化皮膜で覆われたアトマイズ粒子や形状が比較的大きいファイバー形状の場合は,熱処理温度が金属Alの融点以上の温度であっても,1000℃未満の場合は金属Al成分が多く残存することがある。よって,1000℃以上の高温で焼成し,金属Al成分を他の諸成分と十分に反応させることが,組織を緻密化するためには必要である。 The melting point of the metal Al is 660 ° C. For example, when the form of the metal Al is atomized particles whose particle surface layer is covered with an oxide film or a fiber shape having a relatively large shape, the heat treatment temperature is higher than the melting point of the metal Al. If the temperature is lower than 1000 ° C., a large amount of metallic Al component may remain. Therefore, it is necessary to sufficiently react the metallic Al component with other components by firing at a high temperature of 1000 ° C. or higher in order to densify the structure.

また,熱処理は非酸化雰囲気中で行う必要があるが,非酸化雰囲気中の熱処理としては,窒素雰囲気やアルゴン雰囲気,コークスに埋め込んで熱処理するCO雰囲気の他,SiC製の容器やSUS等の金属製の容器内部に成形体を配置して,容器外部からバーナーなどで加熱する,簡易的なCO雰囲気で熱処理することも可能である。これに対して,大気雰囲気等,酸化雰囲気中で熱処理をすると,成形体の炭素が酸化されてしまうだけでなく,AlN,Al,AlOC,AlC等が生成されず,組織を緻密化することができない。The heat treatment must be performed in a non-oxidizing atmosphere, but the heat treatment in a non-oxidizing atmosphere includes a nitrogen atmosphere, an argon atmosphere, a CO atmosphere in which the heat treatment is performed by embedding in coke, a SiC container, and a metal such as SUS. It is also possible to place the molded body inside the manufactured container and heat it from the outside of the container with a burner or the like in a simple CO atmosphere. On the other hand, when heat treatment is performed in an oxidizing atmosphere such as an atmospheric atmosphere, not only the carbon of the molded body is oxidized, but also AlN, Al 4 C 3 , Al 2 OC, Al 4 O 4 C and the like are generated. Therefore, the structure cannot be densified.

本発明において,稼動面となる面を含み当該摺動面となる面に対して垂直方向の通気率を40×10-17以下にするためには,前述のように諸原料等の構成,特に,金属Alの形態,量,さらには熱処理条件等を調整すればよい。熱処理条件においては,非酸化雰囲気中で1000℃以上の温度(例えば酸素濃度が100ppm以下の窒素雰囲気下で1200℃以上の温度)で焼成するが,その際の温度領域ごとの酸素濃度,窒素やCOの分圧等を微調整する等の方法も有効である。
さらに,例えばAlC含有原料については,好ましくはアーク溶融法で製造されたAlC含有原料を使用する等,各原料はできる限り緻密なものを選定し,オイルプレス又はフリクションプレスで,100MPa以上の圧力で成形する等の方法を採ることができる。
また,坏土の,特に微粉域の粒度構成を密な充填傾向になるように,例えば微粉域を小径化する,大・中・小各粒度域の構成割合を調整する,成形時に加える圧力を高める,絞め回数を増やす,加圧時の速度等を調整する等の方法によっても,前述の通気率に合致させることができる。
見掛け気孔率の調整もこれら手法と同様である。
なお,見掛け気孔率だけでは組織の緻密性を正確に把握・表現できない側面もあるので,通気率との総合的な評価によって緻密性を判断する必要がある。
In the present invention, in order to reduce the air permeability in the direction perpendicular to the sliding surface including the working surface to 40 × 10 -17 m 2 or less, the components of various raw materials and the like are configured as described above. In particular, the form and amount of the metal Al, the heat treatment conditions, and the like may be adjusted. Under the heat treatment conditions, firing is performed at a temperature of 1000 ° C. or higher in a non-oxidizing atmosphere (for example, a temperature of 1200 ° C. or higher in a nitrogen atmosphere with an oxygen concentration of 100 ppm or less). A method such as finely adjusting the partial pressure of CO is also effective.
Further, for the Al 4 O 4 C-containing raw material, for example, the Al 4 O 4 C-containing raw material produced by the arc melting method is preferably used, and each raw material is selected as as precise as possible, and oil press or friction. A method such as molding with a pressure of 100 MPa or more can be adopted by a press.
In addition, for example, the diameter of the fine powder area should be reduced, the composition ratio of each of the large, medium, and small particle size areas should be adjusted, and the pressure applied during molding should be applied so that the particle size composition of the clay, especially the fine powder area, tends to be densely filled. It is also possible to match the above-mentioned air permeability by methods such as increasing, increasing the number of times of tightening, and adjusting the speed at the time of pressurization.
The adjustment of the apparent porosity is similar to these methods.
In addition, since there is an aspect that the fineness of the tissue cannot be accurately grasped and expressed only by the apparent porosity, it is necessary to judge the fineness by comprehensive evaluation with the aeration rate.

なお,金属Al成分の含有量が2.0質量%以上10.0質量%以下となるように調整した成形体を,熱処理後に耐火物中の金属Al成分の含有量を1.0質量%以下(ゼロを含む)となるようにするための具体的な方法としては.前述のそれぞれの方法ごとに,例えば,温度,酸素分圧等のガス成分,ガスの供給速度等を最適に調整する等が挙げられる。 The molded body adjusted so that the content of the metal Al component is 2.0% by mass or more and 10.0% by mass or less is heat-treated, and the content of the metal Al component in the refractory material is 1.0% by mass or less. As a concrete method to make it (including zero). For each of the above-mentioned methods, for example, the temperature, the gas component such as oxygen partial pressure, the gas supply speed, and the like are optimally adjusted.

前述のとおりプレート耐火物の製造においては,組織の緻密化等を目的に,タール,ピッチ又は熱硬化性樹脂を含浸することが一般的に行われているが,本発明のプレート耐火物の製造方法においては,タール,ピッチ又は熱硬化性樹脂を含浸する工程を必ずしも必要としない。 As described above, in the production of a plate refractory material, it is generally impregnated with tar, pitch or a thermosetting resin for the purpose of densifying the structure, etc., but the production of the plate fireproof material of the present invention The method does not necessarily require a step of impregnating with tar, pitch or thermosetting resin.

タール,ピッチ,熱硬化性樹脂はいずれも最終的には炭素を残留する。このうち熱硬化性樹脂は,リジッドな非晶質で連続的な炭素の組織を形成し,強度向上効果はあるものの,耐熱衝撃性の低下を惹き起こし易い。一方,タールとピッチは室温では固形で数十℃~百数十℃の熱間で軟化して液体となり,高温で熱処理した場合の炭化率が高く,熱処理後は結晶質の炭素となる。よって,タール又はピッチを所定の温度条件下でプレート耐火物に含浸すると,通気率や見掛け気孔率を大きく低下させる緻密化効果があり,炭化後も緻密性を維持し,結晶質のソフトカーボンとなることから弾性率の上昇を抑え,耐熱衝撃性を低下させる弊害が少ない。しかしながら,タール,ピッチ又は熱硬化性樹脂を含浸すると,いずれも耐火物組織中の空隙を埋めるように炭素が存在することとなるから,耐火物中のフリーの炭素成分量が高くなってAl粒等の酸化物原料の周囲に炭素が多く存在することとなり,長時間の鋳造条件ではでAl粒やZrO,mulliteなどの酸化物原料をいわば高い効率で還元することとなる。よって,稼動面近傍でこれらの酸化物原料等の消失又は変質による脆化層をよりいっそう形成し易くなり,摺動面の損傷をより促進する要因となり易い。したがって,本発明のプレート耐火物の製造方法では,タール,ピッチ又は熱硬化性樹脂などを含浸しないことが好ましい。Tar, pitch, and thermosetting resins all retain carbon in the end. Of these, thermosetting resins form a rigid, amorphous, continuous carbon structure, and although they have the effect of improving strength, they tend to cause a decrease in heat impact resistance. On the other hand, tar and pitch are solid at room temperature and soften in the heat of several tens to several tens of degrees Celsius to become liquid, and have a high carbonization rate when heat-treated at high temperature, and become crystalline carbon after heat treatment. Therefore, when tar or pitch is impregnated into a plate refractory under predetermined temperature conditions, it has a densifying effect that greatly reduces the air permeability and apparent porosity, maintains the densification even after carbonization, and becomes crystalline soft carbon. Therefore, there is little adverse effect of suppressing the increase in elastic modulus and reducing the thermal shock resistance. However, when impregnated with tar, pitch or thermosetting resin, carbon is present so as to fill the voids in the refractory structure, so that the amount of free carbon component in the refractory increases and Al 2 A large amount of carbon is present around the oxide raw material such as O 3 grains, and under long casting conditions, the oxide raw materials such as Al 2 O 3 grains, ZrO 2 , and mullite can be reduced with high efficiency. Become. Therefore, it becomes easier to form an embrittled layer due to the disappearance or alteration of these oxide raw materials in the vicinity of the working surface, and it tends to be a factor that further promotes damage to the sliding surface. Therefore, in the method for producing a plate refractory of the present invention, it is preferable not to impregnate tar, pitch, thermosetting resin or the like.

表1に本発明の実施例及び比較例を示す。表1の各例では,それぞれ所定の原料構成,粒度構成となるように原料を秤量,混和した後に,有機系バインダーを加え混練して得た坏土を,所定の成形条件でプレート形状に一軸成形した。この成形体を所定の温度,雰囲気で熱処理を行ってプレート耐火物を作製し,かさ比重,見掛け気孔率,通気率,曲げ強さ,弾性率及び熱膨張率について評価を行うとともに,化学成分の評価として,AlC成分,Al成分,SiO成分及びフリーの炭素について定量化を行った。また,高周波誘導炉を用いて溶鋼との反応試験及び溶銑との反応試験を行い,脆化層形成の評価を行った。さらに,同じく高周波誘導炉を用いて耐熱衝撃性の評価を行った。これら評価の方法は以下のとおりである。Table 1 shows examples and comparative examples of the present invention. In each example of Table 1, the raw materials are weighed and mixed so as to have a predetermined raw material composition and particle size composition, and then the clay obtained by adding an organic binder and kneading is uniaxially formed into a plate shape under predetermined molding conditions. Molded. This molded body is heat-treated at a predetermined temperature and atmosphere to prepare a plate refractory, and the bulk specific density, apparent porosity, air permeability, bending strength, elastic modulus and thermal expansion rate are evaluated, and the chemical components are evaluated. As an evaluation, the Al 4 O 4 C component, the Al 2 O 3 component, the SiO 2 component, and the free carbon were quantified. In addition, a reaction test with molten steel and a reaction test with hot metal were conducted using a high-frequency induction furnace to evaluate the formation of the embrittlement layer. Furthermore, the thermostable impact resistance was evaluated using the same high-frequency induction furnace. The methods of these evaluations are as follows.

かさ比重及び見掛け気孔率はJIS-R2205に準じて測定した。かさ比重及び見掛け気孔率測定用のサンプルは,プレート耐火物の摺動面となる面を含みかつ当該摺動面となる面に対して垂直の方向に40mm×40mm×40mmの形状に切り出したものを使用した。なお,プレート耐火物の形状が小さい場合は,同様に30mm×30mm×30mmの形状に切り出したサンプルを評価することができる。 The bulk specific density and the apparent porosity were measured according to JIS-R2205. The sample for measuring the bulk specific gravity and the apparent porosity is cut out in a shape of 40 mm × 40 mm × 40 mm in the direction perpendicular to the surface to be the sliding surface of the plate refractory, including the surface to be the sliding surface. It was used. If the shape of the refractory plate is small, a sample cut into a shape of 30 mm × 30 mm × 30 mm can be evaluated in the same manner.

通気率はJIS-R2115:2008に準じて測定した。通気率測定用のサンプルは,プレート耐火物の摺動面となる面を含むφ50mmの大きさで,その摺動面となる面に対して垂直の方向に20mmの厚さの形状に切り出したものを使用した。このサンプルの,前記摺動面となる面と前記20mmの厚さ側の面とは平行とした。そしてこのサンプルの,前記摺動面となる面に対して垂直方向の通気率を測定した。 The air permeability was measured according to JIS-R2115: 2008. The sample for measuring the air permeability is φ50 mm including the surface of the refractory plate, which is the sliding surface, and is cut out into a shape with a thickness of 20 mm in the direction perpendicular to the sliding surface. It was used. In this sample, the surface to be the sliding surface and the surface on the thickness side of 20 mm were made parallel. Then, the air permeability of this sample in the direction perpendicular to the sliding surface was measured.

曲げ強さは20mm×20mm×80mmの形状に切り出したサンプルを用いて,JIS-R2213(1995)に準じて測定した。 The bending strength was measured according to JIS-R2213 (1995) using a sample cut into a shape of 20 mm × 20 mm × 80 mm.

弾性率は超音波法により測定した。具体的には20mm×20mm×80mmの形状に切り出したサンプルの両端に端子をあて音速を測定し,JIS-R2205に準じて測定したかさ比重との関係式を計算し弾性率を算出した。 The elastic modulus was measured by the ultrasonic method. Specifically, the sound velocity was measured by applying terminals to both ends of a sample cut into a shape of 20 mm × 20 mm × 80 mm, and the relational expression with the bulk specific gravity measured according to JIS-R2205 was calculated to calculate the elastic modulus.

熱膨張率はJIS-R2207-1に記載された非接触法により,窒素雰囲気下で1000℃まで測定を行った。 The thermal expansion rate was measured up to 1000 ° C. in a nitrogen atmosphere by the non-contact method described in JIS-R2207-1.

化学成分のうちAlC成分,Al成分及び金属Al成分については,X線回折を用いてリードベルト法により定量化を行った。標準サンプルがあれば,同じくX線回折法による内部標準法で定量化を行うこともできる。通常の蛍光X線や湿式法による分析では,AlCとAlを分離して定量化することは非常に困難であることから,X線回折法による定量化を行うことが好ましい。同じく,金属Al成分の定量化に関しても,AlC成分を含有する場合は,湿式法により原子吸光やICPなどで分析すると,分離して定量化することは現実的に不可能であり,X線回折法による定量化を行うことが望ましい。
SiO成分については,JIS-R2216による蛍光X線回折法により定量化を行った
フリーの炭素成分(表1では「F.C.」と表記)については,JIS-R2011に規定の方法に準拠して定量化を行った。
Of the chemical components, the Al 4 O 4 C component, the Al 2 O 3 component, and the metallic Al component were quantified by the lead belt method using X-ray diffraction. If there is a standard sample, it can also be quantified by the internal standard method by the X-ray diffraction method. Since it is very difficult to separate and quantify Al 4 O 4 C and Al 2 O 3 by analysis by ordinary fluorescent X-ray or wet method, it is possible to perform quantification by X-ray diffraction method. preferable. Similarly, regarding the quantification of the metal Al component, when the Al 4 O 4 C component is contained, it is practically impossible to separate and quantify it by analyzing it by atomic absorption spectrometry or ICP by a wet method. , It is desirable to perform quantification by X-ray diffraction method.
The SiO 2 component is quantified by the fluorescent X-ray diffraction method using JIS-R2216, and the free carbon component (denoted as "FC" in Table 1) conforms to the method specified in JIS-R2011. And quantified.

脆化層形成の評価は,前述のとおり高周波誘導炉を用いた溶鋼との反応試験及び溶銑との反応試験により行った。
具体的にはプレート耐火物の摺動面となる面が高周波誘導炉の炉内面になるように高周波誘導炉に内張りし,溶鋼又は溶銑との反応試験により形成された脆化層を評価した。
溶鋼中の酸素によるプレート摺動面の脆化層(溶鋼に関しては酸化,脱炭が主要因である)の評価方法としては,溶鋼としてSS400を用いて試験中のフリー酸素濃度が30~50ppmの範囲になるようにSi及びカーボンを添加して調整した。
耐火物内部の還元反応を主とする脆化層形成の評価方法としては,鋼中に殆ど酸素を含有しない,炭素含有量が約4質量%の溶銑を用い,評価中の酸素濃度が安定して5ppm以下となることを確認した。
反応試験は,それぞれ1600℃で3時間行った。反応試験後,高周波誘導炉の内張りを解体し,前記プレート耐火物の摺動面となる面(高周波誘導炉の炉内面)に形成された脆化層の厚みを測定した。表1では,実施例1の脆化層の厚みを100とする指数で表記した。この指数が小さいほど脆化層の厚みが小さく,耐面荒れ性に優れているということである。なお,前述の溶銑との反応試験は,前記非特許文献2に記載されているように,Alキルド鋼等の溶鋼中のフリー酸素濃度が低い鋼を受鋼する場合の摺動面の組織を良く再現できる試験である。
The evaluation of the embrittlement layer formation was carried out by a reaction test with molten steel and a reaction test with hot metal using a high-frequency induction furnace as described above.
Specifically, the embrittlement layer formed by the reaction test with molten steel or hot metal was evaluated by lining the high-frequency induction furnace so that the sliding surface of the plate refractory would be the inner surface of the high-frequency induction furnace.
As a method for evaluating the embrittled layer of the plate sliding surface due to oxygen in molten steel (oxidation and decarburization are the main factors for molten steel), SS400 is used as molten steel and the free oxygen concentration during the test is 30 to 50 ppm. It was adjusted by adding Si and carbon so as to be within the range.
As a method for evaluating the formation of the embrittled layer mainly due to the reduction reaction inside the refractory, a hot metal containing almost no oxygen in the steel and having a carbon content of about 4% by mass was used to stabilize the oxygen concentration during the evaluation. It was confirmed that the amount was 5 ppm or less.
The reaction tests were carried out at 1600 ° C. for 3 hours each. After the reaction test, the lining of the high-frequency induction furnace was disassembled, and the thickness of the embrittlement layer formed on the surface to be the sliding surface of the plate refractory (the inner surface of the high-frequency induction furnace) was measured. In Table 1, it is expressed as an index with the thickness of the embrittled layer of Example 1 as 100. The smaller this index is, the smaller the thickness of the embrittlement layer is, and the better the surface roughness resistance is. In the reaction test with the above-mentioned hot metal, as described in Non-Patent Document 2, the structure of the sliding surface when receiving a steel having a low free oxygen concentration in the molten steel such as Al killed steel is used. This is a test that can be reproduced well.

耐熱衝撃性は,高周波誘導炉内の前記溶銑中にサンプルを浸漬し,冷却後のサンプルの亀裂の程度を評価する所謂,浸漬熱衝撃試験により評価を行った。具体的にはプレート耐火物から40mm×40mm×180mmのサンプルを切り出し,これを1600℃の溶銑に3分間浸漬した後に30分空冷する一連の試験を3回繰り返し,試験後のサンプルの亀裂の程度を観察した。 The thermostable impact resistance was evaluated by a so-called immersion thermal impact test in which a sample was immersed in the hot metal in a high-frequency induction furnace and the degree of cracking of the sample after cooling was evaluated. Specifically, a series of tests of 40 mm × 40 mm × 180 mm cut out from a refractory plate, immersed in hot metal at 1600 ° C for 3 minutes, and then air-cooled for 30 minutes were repeated three times, and the degree of cracking in the sample after the test. Was observed.

また,一部の実施例及び比較例は実機テスト(実操業)に供した。実機テストでは高酸素含有鋼(溶鋼中のフリー酸素濃度が30ppm超の鋼)と低酸素含有鋼(溶鋼中のフリー酸素濃度が30ppm以下の鋼)の2種類の鋼を受鋼し,プレート耐火物の損傷状態等から総合的に,○(優),△(良),×(不良)の3段階で評価した。 In addition, some examples and comparative examples were used for actual machine test (actual operation). In the actual machine test, two types of steel, high oxygen-containing steel (steel with a free oxygen concentration of more than 30 ppm in molten steel) and low oxygen-containing steel (steel with a free oxygen concentration of 30 ppm or less in molten steel), were received and plate fire resistance was received. Comprehensively evaluated from the damage state of the object, etc., on a scale of ○ (excellent), △ (good), and × (poor).

Figure 0007019421000001
Figure 0007019421000001

表1中,実施例1~3は,AlC成分の含有量が15.0~45.0質量%,SiO成分の含有量が2.0質量%,フリーの炭素成分の含有量が3.0質量%,金属Al成分の含有量が1.0質量%以下と,いずれも本発明の範囲内であり,見掛け気孔率,通気率,曲げ強さ,熱膨張率などの特性も本発明の範囲内である。よって,溶鋼,溶銑との反応試験結果も脆化層の形成が軽微であり,耐熱衝撃性の評価も良好であった。この実施例1~3の材質を実機でテストした結果,良好な耐用性を得た。
これに対して比較例1はAlC成分の含有量が13.0質量%と少なく,熱膨張率の低減効果が小さいことから,耐熱衝撃性の評価結果は亀裂が大きく,良好な耐用性を期待できない。また比較例2はAlC成分の含有量が48.0質量%と多いことから,熱膨張率が著しく低くなり,実使用後プレートをスライディングノズル装置から取り外す際に,プレートの外周に焼き嵌めしたバンド(HB)がずれ,解体性が悪く,亀裂も拡大し,再生使用することが困難となり不良であった。
In Table 1, Examples 1 to 3 have an Al 4 O 4 C component content of 15.0 to 45.0% by mass, a SiO 2 component content of 2.0% by mass, and a free carbon component content. The amount is 3.0% by mass and the content of the metallic Al component is 1.0% by mass or less, both of which are within the range of the present invention, and have characteristics such as apparent pore ratio, air permeability, bending strength, and thermal expansion ratio. Is also within the scope of the present invention. Therefore, in the reaction test results with molten steel and hot metal, the formation of the embrittlement layer was slight, and the evaluation of thermal impact resistance was also good. As a result of testing the materials of Examples 1 to 3 with an actual machine, good durability was obtained.
On the other hand, in Comparative Example 1, the content of the Al 4 O 4 C component is as small as 13.0% by mass, and the effect of reducing the thermal expansion rate is small. Durability cannot be expected. Further, in Comparative Example 2, since the content of the Al 4 O 4 C component is as high as 48.0% by mass, the thermal expansion rate becomes extremely low, and when the plate is removed from the sliding nozzle device after actual use, it is formed on the outer periphery of the plate. The band (HB) that was shrink-fitted was displaced, the dismantability was poor, the cracks expanded, and it was difficult to recycle, which was a defect.

実施例4,実施例5はフリーの炭素成分の含有量が,それぞれ2.0質量%,4.5質量%,また,AlC成分の含有量が30.0質量%,SiO成分の含有量が2.0質量%,金属Al成分の含有量が1.0質量%以下と,本発明の範囲内であり,見掛け気孔率,通気率,曲げ強さ,熱膨張率などの特性も本発明の範囲内である。よって,溶鋼,溶銑との反応試験結果も脆化層の形成が軽微であり,耐熱衝撃性の評価も良好であった。
これに対して比較例3はフリーの炭素成分の含有量が1.0質量%と少ないことから,弾性率が高くなり,耐熱衝撃性の評価結果が劣ることから,実機においても良好な耐用性を得ることは期待できない。また比較例4はフリーの炭素成分が5.0質量%と多いことから,溶鋼,溶銑との反応試験結果では脆化層の形成が厚く,実機においても良好な耐用性を得ることは期待できない。
In Examples 4 and 5, the content of the free carbon component is 2.0% by mass and 4.5% by mass, respectively, and the content of the Al 4 O 4 C component is 30.0% by mass, SiO 2 The content of the component is 2.0% by mass and the content of the metallic Al component is 1.0% by mass or less, which are within the range of the present invention. The properties are also within the scope of the present invention. Therefore, in the reaction test results with molten steel and hot metal, the formation of the embrittlement layer was slight, and the evaluation of thermal impact resistance was also good.
On the other hand, in Comparative Example 3, since the content of the free carbon component is as small as 1.0% by mass, the elastic modulus is high and the evaluation result of thermal shock resistance is inferior, so that the durability is good even in an actual machine. You can't expect to get it. Further, in Comparative Example 4, since the free carbon component is as large as 5.0% by mass, the formation of the embrittlement layer is thick in the reaction test results with molten steel and hot metal, and it cannot be expected that good durability can be obtained even in an actual machine. ..

実施例6,実施例7は,SiO成分の含有量がそれぞれ0.5質量%,4.0質量%,また,AlC成分の含有量が30.0質量%,フリーの炭素成分の含有量が3.0質量%,金属Al成分の含有量が1.0質量%以下と,本発明の範囲内であり,見掛け気孔率,通気率,曲げ強さ,熱膨張率などの特性も本発明の範囲内である。よって,溶鋼,溶銑との反応試験結果も脆化層の形成が軽微であり,耐熱衝撃性の評価も良好であった。
これに対して比較例5はSiO成分を含有しないことから,実使用後に回収し再生使用するために加工する際及び加工後に消化し,再生することができなかった。また比較例6はSiO成分の含有量が4.5質量%と多いことから,溶銑との反応試験で脆化層の形成が顕著であった。
In Examples 6 and 7, the content of the SiO 2 component is 0.5% by mass and 4.0% by mass, respectively, and the content of the Al 4 O 4 C component is 30.0% by mass, and free carbon. The content of the component is 3.0% by mass and the content of the metallic Al component is 1.0% by mass or less, which are within the range of the present invention. The properties are also within the scope of the present invention. Therefore, in the reaction test results with molten steel and hot metal, the formation of the embrittlement layer was slight, and the evaluation of thermal impact resistance was also good.
On the other hand, since Comparative Example 5 did not contain the SiO 2 component, it could not be digested and regenerated when it was recovered after actual use and processed for recycling and after processing. Further, in Comparative Example 6, since the content of the SiO 2 component was as high as 4.5% by mass, the formation of the embrittlement layer was remarkable in the reaction test with the hot metal.

実施例8,実施例9は,AlC成分の含有量が30.0質量%,SiO成分の含有量が2.0質量%,フリーの炭素成分の含有量が3.0質量%,金属Al成分の含有量が1.0質量%以下と,本発明の範囲内であり,見掛け気孔率,通気率,曲げ強さ,熱膨張率などの特性も本発明の範囲内である。ただし,実施例8,実施例9は高圧成形により作製したため,実施例8では見掛け気孔率が7.8%と低く,実施例9では見掛け気孔率が7.0%,通気率が8×10-17と低く,いずれも弾性率が高くなっている。よって,溶鋼,溶銑との反応試験結果では脆化層の形成は極軽微であるが,耐熱衝撃性がやや低下する傾向にあった。また実機テストでも,摺動面の損傷は軽微であったが,ノズル孔からの放射状亀裂がやや大きい傾向にあった。しかし,総合的には比較の従来品よりも良好な結果を得た。In Examples 8 and 9, the content of the Al 4 O 4 C component is 30.0% by mass, the content of the SiO 2 component is 2.0% by mass, and the content of the free carbon component is 3.0% by mass. %, The content of the metallic Al component is 1.0% by mass or less, which is within the range of the present invention, and the characteristics such as apparent pore ratio, air permeability, bending strength, and thermal expansion ratio are also within the scope of the present invention. .. However, since Examples 8 and 9 were produced by high-pressure molding, the apparent porosity was as low as 7.8% in Example 8, and the apparent porosity was 7.0% and the air permeability was 8 × 10 in Example 9. It is as low as -17 m 2 , and the elastic modulus is high in both cases. Therefore, according to the reaction test results with molten steel and hot metal, the formation of the embrittled layer was extremely slight, but the thermal impact resistance tended to decrease slightly. In the actual machine test, the damage to the sliding surface was slight, but the radial cracks from the nozzle holes tended to be slightly larger. However, overall, better results were obtained than the conventional products for comparison.

実施例10は,熱処理温度が1000℃,AlC成分の含有量が30.0質量%,SiO成分の含有量が2.0質量%,フリーの炭素成分の含有量が2.0質量%,金属Al成分の含有量が1.0質量%以下と,本発明の範囲内であり,見掛け気孔率,通気率,曲げ強さ,熱膨張率などの特性も本発明の範囲内である。よって,溶鋼,溶銑との反応試験結果も脆化層の形成が軽微であり,耐熱衝撃性の評価も良好であった。
これに対して比較例7は,焼成温度が900℃と低いため,高圧成形を行ったにもかかわらず熱処理中の金属Alの反応が少なく緻密化が不十分で,金属Al成分の含有量が1.0質量%超であった。よって,溶鋼,溶銑との反応試験結果も脆化層の形成が顕著であり,実機テストでも顕著な面荒れが生じ良好な耐用性は得られなかった。
In Example 10, the heat treatment temperature was 1000 ° C., the content of the Al 4 O 4 C component was 30.0% by mass, the content of the SiO 2 component was 2.0% by mass, and the content of the free carbon component was 2. 0% by mass and the content of the metallic Al component is 1.0% by mass or less, which is within the range of the present invention, and characteristics such as apparent pore ratio, air permeability, bending strength, and thermal expansion ratio are also within the scope of the present invention. Is. Therefore, in the reaction test results with molten steel and hot metal, the formation of the embrittlement layer was slight, and the evaluation of thermal impact resistance was also good.
On the other hand, in Comparative Example 7, since the firing temperature is as low as 900 ° C., the reaction of the metallic Al during the heat treatment is small and the densification is insufficient even though the high pressure molding is performed, and the content of the metallic Al component is high. It was over 1.0% by mass. Therefore, the formation of the embrittlement layer was remarkable in the reaction test results with molten steel and hot metal, and the surface roughness was remarkable even in the actual machine test, and good durability could not be obtained.

比較例8は,プレート耐火物の成形時の成形圧力を調整し,かさ密度を低く設定したものである。このため比較例8は,焼成温度が1200℃,AlC成分の含有量が30.0質量%,SiO成分の含有量が2.0質量%,フリーの炭素成分の含有量が2.0質量%,金属Al成分の含有量が1.0質量%以下と,これらは本発明の範囲内であるが,見掛け気孔率が12.1%,通気率が43×10-17と緻密さが不足しており曲げ強さも14MPaと低い。よって,溶鋼,溶銑との反応試験結果も脆化層の形成が顕著であり,実機で良好な耐用性を期待することはできない。また,強度不足のため実機テストでは,通常の熱応力で生じる放射状亀裂等と異なる特異な亀裂を発生し,耐用性が低下した。In Comparative Example 8, the bulk density is set low by adjusting the molding pressure at the time of molding the refractory plate. Therefore, in Comparative Example 8, the firing temperature is 1200 ° C., the content of the Al 4 O 4 C component is 30.0% by mass, the content of the SiO 2 component is 2.0% by mass, and the content of the free carbon component is 2.0% by mass and the content of the metallic Al component are 1.0% by mass or less, which are within the range of the present invention, but the apparent pore ratio is 12.1% and the air permeability is 43 × 10 -17 m. The precision is insufficient as 2 and the bending strength is as low as 14 MPa. Therefore, the formation of the embrittlement layer is remarkable in the reaction test results with molten steel and hot metal, and good durability cannot be expected in the actual machine. In addition, due to insufficient strength, in the actual machine test, peculiar cracks different from the radial cracks caused by normal thermal stress were generated, and the durability was lowered.

実施例11はピッチ含浸を行ったもので,本発明の範囲内であるがフリーの炭素成分の含有量が多くなり,しかも耐火物組織中に炭素成分が均一に存在することから,溶銑との反応試験では,耐火物組織中の還元反応が進行し,やや脆化層の形成が厚い傾向にあった。ただし,溶鋼との反応試験では脆化層の形成は軽微であった。実機テストでは,高酸素含有鋼では摺動面の損傷は軽微であったが,低酸素含有鋼を受鋼すると摺動面の損傷がやや大きくなる傾向にあった。しかし,総合的には比較の従来品よりも良好な結果を得た。 In Example 11, pitch impregnation was performed, and although it was within the scope of the present invention, the content of the free carbon component was high, and the carbon component was uniformly present in the refractory structure. In the reaction test, the reduction reaction in the refractory structure proceeded, and the formation of the embrittled layer tended to be thick. However, in the reaction test with molten steel, the formation of the embrittlement layer was slight. In the actual machine test, the damage to the sliding surface was slight for the high oxygen-containing steel, but the damage to the sliding surface tended to be slightly larger when the low oxygen-containing steel was received. However, overall, better results were obtained than the conventional products for comparison.

Claims (5)

鋼の鋳造に用いるスライディングノズル用プレート耐火物であって,
AlC成分を15質量%以上45質量%以下,フリーの炭素成分を2.0質量%以上4.5質量%以下,SiO成分を0.5質量%以上4.0質量%以下,金属Al成分を1.0質量%以下(ゼロを含む),残部にAl成分を主成分として含有し,
摺動面となる面を含み当該摺動面となる面に対して垂直方向の通気率が5×10 -17 以上40×10-17以下,見掛け気孔率が8.0%以上11.0%以下である,スライディングノズル用プレート耐火物。
A refractory plate for sliding nozzles used for steel casting.
Al 4 O 4 C component is 15% by mass or more and 45% by mass or less, free carbon component is 2.0% by mass or more and 4.5% by mass or less, SiO 2 component is 0.5% by mass or more and 4.0% by mass or less. , Metal Al component is 1.0% by mass or less (including zero), and the balance contains Al 2 O 3 component as the main component.
The air permeability in the direction perpendicular to the sliding surface including the sliding surface is 5 × 10 -17 m 2 or more and 40 × 10 -17 m 2 or less, and the apparent porosity is 8.0% or more. Refractory plate for sliding nozzles of 11.0% or less.
1000℃非酸化雰囲気中での熱膨張率が0.5%以上0.6%以下,室温での曲げ強さが15MPa以上40MPa以下である,請求項1に記載のスライディングノズル用プレート耐火物。 The refractory plate for a sliding nozzle according to claim 1 , wherein the thermal expansion rate in a non-oxidizing atmosphere at 1000 ° C. is 0.5% or more and 0.6% or less, and the bending strength at room temperature is 15 MPa or more and 40 MPa or less. 前記の鋼は,鋳造時の溶鋼中のフリー酸素濃度が30ppm以下である,請求項1又は請求項2に記載のスライディングノズル用プレート耐火物。 The refractory plate for a sliding nozzle according to claim 1 or 2 , wherein the steel has a free oxygen concentration of 30 ppm or less in the molten steel at the time of casting. 金属Al又はAl含有合金を含み,前記金属Al又はAl含有合金中の金属Al成分の総量が2.0質量%以上10.0質量%以下である坏土を成形し,非酸化雰囲気中で1000℃以上の温度で熱処理をして,耐火物中の金属Al成分の含有量を1.0質量%以下(ゼロを含む)とする工程を含む,請求項1から請求項のいずれかに記載のスライディングノズル用プレート耐火物の製造方法。 A clay containing a metallic Al or an Al-containing alloy and having a total amount of the metallic Al component in the metallic Al or Al-containing alloy of 2.0% by mass or more and 10.0% by mass or less is formed, and 1000 in a non-oxidizing atmosphere. 7 . How to make a plate fireproof material for sliding nozzles. タール,ピッチ又は熱硬化性樹脂を含浸する工程を含まない,請求項に記載のスライディングノズル用プレート耐火物の製造方法。 The method for producing a refractory plate for a sliding nozzle according to claim 4 , which does not include a step of impregnating with tar, pitch or a thermosetting resin.
JP2017548251A 2016-09-27 2017-09-11 Plate for sliding nozzle Refractory and its manufacturing method Active JP7019421B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016188363 2016-09-27
JP2016188363 2016-09-27
PCT/JP2017/032680 WO2018061731A1 (en) 2016-09-27 2017-09-11 Fire-resistant plating for sliding nozzle, and method of manufacturing same

Publications (2)

Publication Number Publication Date
JPWO2018061731A1 JPWO2018061731A1 (en) 2019-07-18
JP7019421B2 true JP7019421B2 (en) 2022-02-15

Family

ID=61760349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017548251A Active JP7019421B2 (en) 2016-09-27 2017-09-11 Plate for sliding nozzle Refractory and its manufacturing method

Country Status (4)

Country Link
JP (1) JP7019421B2 (en)
CA (1) CA3037462C (en)
UA (1) UA124020C2 (en)
WO (1) WO2018061731A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021117742A1 (en) * 2019-12-10 2021-06-17 黒崎播磨株式会社 Refractory material
US20230028785A1 (en) * 2019-12-10 2023-01-26 Krosakiharima Corporation Refractory product

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119683A1 (en) 2008-03-25 2009-10-01 黒崎播磨株式会社 Plate brick and manufacturing method therefor
JP2011104596A (en) 2009-11-12 2011-06-02 Kurosaki Harima Corp Sliding nozzle plate
JP2015193511A (en) 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP2015193512A (en) 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06117960A (en) * 1992-10-01 1994-04-28 Kurosaki Refract Co Ltd Crack detecting method for refractories
JP3351998B2 (en) * 1997-08-19 2002-12-03 川崎炉材株式会社 Sliding nozzle plate and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009119683A1 (en) 2008-03-25 2009-10-01 黒崎播磨株式会社 Plate brick and manufacturing method therefor
JP2011104596A (en) 2009-11-12 2011-06-02 Kurosaki Harima Corp Sliding nozzle plate
JP2015193511A (en) 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP2015193512A (en) 2014-03-31 2015-11-05 黒崎播磨株式会社 Refractory for casting, nozzle for casting using the same and plate for sliding nozzle

Also Published As

Publication number Publication date
CA3037462A1 (en) 2018-04-05
UA124020C2 (en) 2021-07-07
JPWO2018061731A1 (en) 2019-07-18
WO2018061731A1 (en) 2018-04-05
CA3037462C (en) 2021-04-27

Similar Documents

Publication Publication Date Title
JP5565907B2 (en) Plate brick and manufacturing method thereof
EP2977126B1 (en) Refractory material and nozzle for casting
JP4681456B2 (en) Low carbon magnesia carbon brick
JP6978404B2 (en) Refractory for steel casting and plates for sliding nozzle equipment
KR101246813B1 (en) Process for producing plate brick, and plate brick
JP7019421B2 (en) Plate for sliding nozzle Refractory and its manufacturing method
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP6193793B2 (en) Cast refractories, and casting nozzle and sliding nozzle plate using the same
WO2017150333A1 (en) Refractory for casting, and plate for sliding nozzle device
WO2011058811A1 (en) Sliding nozzle plate
JP5737503B2 (en) Plate refractory for sliding nozzle
JP2010082653A (en) Basic plate refractory for sliding nozzle apparatus
JP6541607B2 (en) Method of manufacturing carbon-containing plate refractories for sliding nozzle
JP6348071B2 (en) Magnesia refractory
JP6860805B1 (en) Method for manufacturing carbon-containing slide plate refractory
TWI762076B (en) refractory
JP6855646B1 (en) Refractory for sliding nozzle plate and its manufacturing method
JP2018114507A (en) Slide plate refractory
JP2022129790A (en) Method for producing carbon-containing slide plate refractory
JP2018144088A (en) Slide plate refractory
JP2017001889A (en) Un-fired plate refractory
JP2016185890A (en) Refractory and plate for sliding nozzle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211013

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220202

R150 Certificate of patent or registration of utility model

Ref document number: 7019421

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150