JP6348071B2 - Magnesia refractory - Google Patents

Magnesia refractory Download PDF

Info

Publication number
JP6348071B2
JP6348071B2 JP2015018560A JP2015018560A JP6348071B2 JP 6348071 B2 JP6348071 B2 JP 6348071B2 JP 2015018560 A JP2015018560 A JP 2015018560A JP 2015018560 A JP2015018560 A JP 2015018560A JP 6348071 B2 JP6348071 B2 JP 6348071B2
Authority
JP
Japan
Prior art keywords
refractory
mass
magnesia
carbon
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015018560A
Other languages
Japanese (ja)
Other versions
JP2016141595A (en
Inventor
雄史 筒井
雄史 筒井
宏治 景山
宏治 景山
河野 幸次
幸次 河野
誠司 花桐
誠司 花桐
博之 淵本
博之 淵本
知幸 寺坂
知幸 寺坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Krosaki Harima Corp
Original Assignee
Nippon Steel Corp
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Krosaki Harima Corp filed Critical Nippon Steel Corp
Priority to JP2015018560A priority Critical patent/JP6348071B2/en
Publication of JP2016141595A publication Critical patent/JP2016141595A/en
Application granted granted Critical
Publication of JP6348071B2 publication Critical patent/JP6348071B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、マグネシア質耐火物に関する。特に、低熱伝導率であり、耐スポール性・耐食性に優れ高耐用なマグネシア質耐火物に関する。   The present invention relates to a magnesia refractory. In particular, the present invention relates to a magnesia refractory having low thermal conductivity, excellent spall resistance and corrosion resistance, and high durability.

鉄鋼プロセスにおいて、溶鋼容器の内張り材としてアルミナ-炭素質、アルミナ-炭化珪素-炭素質、マグネシア炭素質など、炭素を含有した耐火物が使用されている。炭素源としては、鱗状黒鉛が主に用いられている。これは、鱗状黒鉛にはアルミナやマグネシア等耐火骨材の熱膨張を吸収する特性があり、耐熱スポール性の向上に大きく寄与するためである。また、鱗状黒鉛はスラグとの濡れ性が悪いことから、耐火物内へのスラグ成分の浸潤を抑制する働きも持つ。   In the steel process, refractories containing carbon such as alumina-carbonaceous, alumina-silicon carbide-carbonaceous, and magnesia carbonaceous are used as the lining material of molten steel containers. As the carbon source, scaly graphite is mainly used. This is because scaly graphite has the property of absorbing the thermal expansion of refractory aggregates such as alumina and magnesia, and greatly contributes to the improvement of heat-resistant spalling properties. In addition, since scaly graphite has poor wettability with slag, it also has a function of suppressing infiltration of the slag component into the refractory.

一方、鱗状黒鉛を含有した炭素含有耐火物は鱗状黒鉛の存在により熱伝導率が高いために、溶融金属の放散熱による熱エネルギー損失を招く。また、転炉や二次精錬設備等の酸化雰囲気下で使用される場合、炭素含有耐火物は気相酸化により耐火物中の炭素成分が酸化消失する。黒鉛の消失に伴い形成した気孔にスラグ成分が浸潤し骨材が溶解することで、耐火物自体の損耗が進行する問題がある。
これらのことから、炭素含有耐火物中の炭素原料特に鱗状黒鉛含有量は少ないことが望まれている。ところが前述した通り、鱗状黒鉛は耐火物の耐スポール性の向上に寄与していることから、黒鉛含有量が減少することで、耐スポール性が低下するという問題が生じている。
On the other hand, carbon-containing refractories containing scaly graphite have a high thermal conductivity due to the presence of scaly graphite, and thus cause thermal energy loss due to the dissipated heat of the molten metal. Further, when used in an oxidizing atmosphere such as a converter or a secondary refining facility, the carbon component of the refractory containing carbon is oxidized and lost due to vapor phase oxidation. There is a problem that wear of the refractory itself progresses because the slag component infiltrates into pores formed with the disappearance of graphite and the aggregate dissolves.
From these facts, it is desired that the carbon raw material in the carbon-containing refractory, particularly the scaly graphite content, is small. However, as described above, scaly graphite contributes to the improvement of the spall resistance of the refractory, so that the problem of a decrease in the spall resistance occurs due to a decrease in the graphite content.

この鱗状黒鉛の低減に伴う耐スポール性の低下を防止する手段が種々提案されている。
例えば、特許文献1には、鱗状黒鉛の代替炭素原料として、有機バインダー・ピッチ・カーボンブラックを単独または併用して使用することで高耐用な耐火物が得られると記載されている。
Various means have been proposed for preventing the decrease in spall resistance associated with the reduction of scaly graphite.
For example, Patent Document 1 describes that a highly durable refractory can be obtained by using an organic binder, pitch, or carbon black alone or in combination as an alternative carbon raw material for scaly graphite.

また、特許文献2には、メソフェーズピッチ・熱硬化性樹脂を添加することで、鱗状黒鉛を含有しない高耐用な耐火物が得られると記載されている。   Patent Document 2 describes that a highly durable refractory containing no scaly graphite can be obtained by adding a mesophase pitch / thermosetting resin.

さらに特許文献3にはマグネシア系原料の粒径10μm超〜500μmの粒子が耐火原料配合物の20〜50質量%であり、かつ、粒径10μm以下の粒子が耐火原料配合物の0〜5質量%であり、有機バインダーを加えて混練成形した後、タール又はピッチを含浸させることで、深部にまでタール又はピッチを含浸させることができ、高耐用マグネシア質耐火物が得られると記載されている。   Furthermore, Patent Document 3 discloses that magnesia-based raw material having a particle size of more than 10 μm to 500 μm is 20 to 50% by mass of the refractory raw material composition, and particles having a particle size of 10 μm or less are 0 to 5 mass of the refractory raw material composition. It is described that, after kneading and molding with an organic binder, tar or pitch can be impregnated to a deep part by impregnation with tar or pitch, and a high-resistance magnesia refractory can be obtained. .

特開平11−322405号公報Japanese Patent Laid-Open No. 11-322405 特開2005−139062号公報JP 2005-139062 A 特開2002−12914号公報JP 2002-12914 A

特許文献1に記載の発明は、酸化焼成後の強度や弾性率が高く、使用する窯炉の条件によっては耐スポール性が不足するという問題がある。
特許文献2に記載の発明は、炭素含有量が4質量%以上と多く、炭素質の酸化焼成後の組織劣化が大きいという問題がある。
特許文献3に記載の発明は、タール等の炭素成分を添加しており、全体の炭素含有量は多く、熱伝導率の上昇やカーボンピックアップ等の課題解決には至っていない。
本発明の目的は、溶鋼からの熱エネルギー損失を抑制し、耐食性・耐スポール性に優れ、十分な耐用性を有する、マグネシア質耐火物を提供することにある。
The invention described in Patent Document 1 has a problem that the strength and elastic modulus after oxidation firing are high, and the spall resistance is insufficient depending on the conditions of the kiln used.
The invention described in Patent Document 2 has a problem that the carbon content is as large as 4% by mass or more, and the structure deterioration after oxidation and firing of carbonaceous matter is large.
In the invention described in Patent Document 3, a carbon component such as tar is added, and the total carbon content is large, and the problems such as increase in thermal conductivity and carbon pickup have not been solved.
An object of the present invention is to provide a magnesia refractory that suppresses thermal energy loss from molten steel, has excellent corrosion resistance and spall resistance, and has sufficient durability.

本発明の要旨とするところは以下のとおりである。
(1)マグネシア系原料と、カーボンブラック0.2質量%以上0.9質量%以下と、粉末状の金属Al 0.1質量%以上0.5質量%未満と、を含有し、その他熱硬化性樹脂、炭素成分の酸化防止剤を添加してなる耐火原料混合物を使用したことを特徴とするマグネシア質耐火物。
The gist of the present invention is as follows.
(1) Contains magnesia-based raw material, 0.2% to 0.9% by weight of carbon black, and 0.1% to less than 0.5% by weight of powdered metal Al, and other thermosetting A magnesia refractory characterized by using a refractory raw material mixture formed by adding a functional resin and an antioxidant for a carbon component.

本発明のマグネシア質耐火物は鱗状黒鉛を含有しないことから低熱伝導率であり、高耐食性を示す。さらにカーボンブラックに起因した微細な気孔により、高耐スポール性を示す。したがって溶鋼容器の内張り材として使用すると溶鋼からの熱エネルギー損失が抑制でき、なおかつ耐用が向上する。   Since the magnesia refractory of the present invention does not contain scaly graphite, it has low thermal conductivity and high corrosion resistance. Furthermore, it shows high spall resistance due to fine pores caused by carbon black. Therefore, when it is used as a lining material for a molten steel container, a heat energy loss from the molten steel can be suppressed, and the durability is improved.

スポーリング損傷指数の導出方法を示す図である。It is a figure which shows the derivation method of a spall damage index. カーボンブラック添加時のスポーリング損傷指数を示す図である。It is a figure which shows the spall damage index at the time of carbon black addition. 回転侵食試験方法の概要を示す図である。It is a figure which shows the outline | summary of a rotational erosion test method. 回転侵食試験に用いる耐火物サンプル形状を示す図である。It is a figure which shows the refractory sample shape used for a rotation erosion test. カーボンブラック添加時の溶損指数を示す図である。It is a figure which shows the erosion index at the time of carbon black addition. 粉末状金属Al添加時のスポーリング損傷指数を示す図である。It is a figure which shows the spall damage index at the time of powdery metal Al addition. 粉末状金属Al添加時の溶損指数を示す図である。It is a figure which shows the erosion index at the time of powdery metal Al addition.

以下、本発明の実施の形態を詳細に説明する。本発明ではマグネシア系原料に炭素原料としてカーボンブラックを0.2質量%以上、0.9質量%以下、粉末状金属Alを0.1質量%以上、0.5質量%未満添加した耐火原料混合物を使用したマグネシア質耐火物とすることで、黒鉛含有マグネシア質耐火物と比較して低熱伝導率であり、耐食性・耐スポール性に優れた耐火物が得られる。
上述したマグネシア系原料に炭素原料としてカーボンブラック、粉末状金属Al、その他熱硬化性樹脂、炭素成分の酸化防止剤を添加したものを耐火原料混合物とした。
ここで、マグネシア系原料はマグネシアのみ、あるいはマグネシアを95質量%以上含有する耐火原料の混合物のことである。マグネシアは、通常マグネシアカーボンれんがに使用される粒径100μm〜3mm程度のマグネシアクリンカーであればよい。
Hereinafter, embodiments of the present invention will be described in detail. In the present invention, a refractory raw material mixture in which carbon black is added to a magnesia-based raw material as a carbon raw material in an amount of 0.2% by mass to 0.9% by mass and powdered metal Al is added in an amount of 0.1% by mass to less than 0.5% by mass. By using a magnesia refractory using the refractory, a refractory having a low thermal conductivity and excellent corrosion resistance and spall resistance can be obtained as compared with a graphite-containing magnesia refractory.
A refractory raw material mixture was prepared by adding carbon black, powdered metal Al, other thermosetting resin, and carbon component antioxidant to the magnesia-based raw material described above as a carbon raw material.
Here, the magnesia-based raw material is magnesia alone or a mixture of refractory raw materials containing 95% by mass or more of magnesia. The magnesia may be a magnesia clinker having a particle size of about 100 μm to 3 mm, which is usually used for magnesia carbon bricks.

まず、カーボンブラックの作用効果について説明する。
マグネシア系原料に鱗状黒鉛又はカーボンブラックをそれぞれ0.7質量%含有させた耐火原料混合物を使用したマグネシア質耐火物(それぞれ鱗状黒鉛含有耐火物、カーボンブラック含有耐火物と称す。)を供試材として、定常熱流法により熱伝導率を測定した。ここで、定常熱流法とは、試料に一次元軸方向または径方向の定常熱流を与え、試料の温度勾配を取得することにより熱伝導率を求める方法である。サンプルをΦ20×150mmに成形し、長手方向の端部を600℃に維持し、反対側の端部に伝わる熱量を測定することで熱伝導率を算出した。
First, the effect of carbon black will be described.
Specimens made of magnesia refractories using a mixture of refractory raw materials containing 0.7% by mass of scaly graphite or carbon black in magnesia-based raw materials (referred to as scaly graphite-containing refractories and carbon black-containing refractories, respectively). As described above, the thermal conductivity was measured by a steady heat flow method. Here, the steady heat flow method is a method for obtaining a thermal conductivity by applying a one-dimensional axial or radial steady heat flow to a sample and acquiring a temperature gradient of the sample. The sample was molded into Φ20 × 150 mm, the end in the longitudinal direction was maintained at 600 ° C., and the amount of heat transferred to the opposite end was measured to calculate the thermal conductivity.

測定の結果、鱗状黒鉛含有耐火物の熱伝導率は12.3W/mK、カーボンブラック含有耐火物の熱伝導率は10.3W/mKであった。これら2つの耐火物を実際のRH下部槽に適用した場合の放散熱量を、溶鋼温度1600℃、大気雰囲気30℃、耐火物厚み480mm、鉄皮厚み25mmという条件で計算した。その結果、鱗状黒鉛含有耐火物では17271W/m、カーボンブラック含有耐火物では15948W/mとなり、炭素成分を鱗状黒鉛からカーボンブラックに変更することで8.3%熱エネルギー損失を低減可能であった。 As a result of the measurement, the heat conductivity of the scaly graphite-containing refractory was 12.3 W / mK, and the heat conductivity of the carbon black-containing refractory was 10.3 W / mK. The amount of heat dissipated when these two refractories were applied to an actual RH lower tank was calculated under the conditions of a molten steel temperature of 1600 ° C., an atmospheric atmosphere of 30 ° C., a refractory thickness of 480 mm, and an iron skin thickness of 25 mm. As a result, the scaly graphite-containing refractory 17271W / m 2, carbon black in refractories containing can reduce 8.3% heat energy loss by changing the carbon black 15948W / m 2, and the carbon component from the vein graphite there were.

また、カーボンブラックは、粒径が100nm程度と鱗状黒鉛と比較して小さく、酸化消失した後に微細な気孔を多数形成する。そのため、耐火物の弾性率が低下し、耐スポール性が向上する。カーボンブラック添加量を0質量%〜1.2質量%の間で変化させたマグネシア質耐火物と、比較のために鱗状黒鉛を1.0質量%添加したマグネシア質耐火物を、40mm×40mm×160mmのサイズで作成し、耐スポール性評価試験を実施した。耐スポール性評価試験は、各耐火物を1600℃の溶銑中に3分間浸漬した後、溶銑から引き出し10分間空冷するサイクルを3回行った。その後耐火物の断面を観察して発生した亀裂長さを測定し、鱗状黒鉛含有耐火物の測定結果を100として指数化し、スポーリング損傷指数として耐スポール性を評価した。この数値が小さい程耐スポール性に優れていると言える。なお、亀裂長さ測定方法の概要を図1に、その結果を図2に示す。カーボンブラック添加量0質量%ではスポーリング損傷指数は115であり耐スポール性は劣るが、カーボンブラック添加量を増大させる程、耐スポール性は向上する結果が得られている。カーボンブラックを0.2質量%含有させることでスポーリング損傷指数は99となり、鱗状黒鉛を1.0質量%含有させた耐火物スポーリング損傷指数(100、黒四角印)よりも耐スポール性は向上する。そこで、カーボンブラック添加量の下限を0.2質量%とした。   Carbon black has a particle size of about 100 nm, which is smaller than that of scaly graphite, and forms many fine pores after disappearance of oxidation. Therefore, the elastic modulus of the refractory is lowered and the spall resistance is improved. A magnesia refractory in which the amount of carbon black added was changed between 0% by mass and 1.2% by mass, and a magnesia refractory to which 1.0% by mass of scaly graphite was added for comparison were 40 mm × 40 mm × It was prepared with a size of 160 mm, and a spall resistance evaluation test was performed. In the spall resistance evaluation test, each refractory was immersed in hot metal at 1600 ° C. for 3 minutes, and then extracted from the hot metal and air-cooled for 10 minutes three times. Thereafter, the crack length generated by observing the cross section of the refractory was measured, the measurement result of the scaly graphite-containing refractory was indexed as 100, and the spall resistance was evaluated as a spalling damage index. It can be said that the smaller this value, the better the spall resistance. The outline of the crack length measurement method is shown in FIG. 1, and the result is shown in FIG. When the carbon black addition amount is 0% by mass, the spalling damage index is 115 and the spall resistance is inferior. However, as the carbon black addition amount is increased, the spall resistance is improved. By adding 0.2% by mass of carbon black, the spalling damage index is 99, and the spall resistance is higher than that of the refractory spalling damage index (100, black square mark) containing 1.0% by mass of scaly graphite. improves. Therefore, the lower limit of the carbon black addition amount was set to 0.2% by mass.

一方、カーボンブラック添加量増大により、気孔率が上昇するため、耐食性の悪化が懸念される。そこで、耐食性評価試験を実施した。耐食性は回転浸食法により評価した。回転浸食法とは、図4に示す形状のサンプルを図3に示すように円筒形の試験装置の内部に内張りし、その中に浸食材を入れて回転させ、加熱する試験である。浸食材にはCaO:30質量%・SiO:30%・Al:20%・FeO:20%である組成のスラグを用いた。試験温度1650℃、30min毎にスラグの入れ替えを計10回行い、浸食試験後の耐火物残寸を7点測定し平均値を算出したものを溶損寸法とし、鱗状黒鉛含有耐火物の測定結果を100として指数化し溶損指数として評価した。この数値が小さい程耐食性が優れていると言える。その結果、図5に示すように、0.7質量%以上の添加で気孔率の上昇に伴って耐食性が低下し、0.9質量%添加で溶損指数99で、それ以上の添加で鱗状黒鉛を1.0質量%含有させて耐火物よりも耐食性は低下する。そこで、カーボンブラック添加量の上限を0.9質量%とした。 On the other hand, since the porosity increases due to an increase in the amount of carbon black added, there is a concern about deterioration of corrosion resistance. Therefore, a corrosion resistance evaluation test was performed. Corrosion resistance was evaluated by the rotary erosion method. The rotary erosion method is a test in which a sample having a shape shown in FIG. 4 is lined inside a cylindrical test apparatus as shown in FIG. 3, an erosion material is put in the sample, and the sample is rotated and heated. The immersion ingredients CaO: 30 wt% · SiO 2: 30% · Al 2 O 3: 20% · FeO: using slag composition is 20%. The test temperature is 1650 ° C, and the slag is replaced 10 times every 30 min. The refractory residual dimension after the erosion test is measured at 7 points, and the average value is calculated as the erosion dimension. Was indexed as 100 and evaluated as a melting index. It can be said that the smaller this value, the better the corrosion resistance. As a result, as shown in FIG. 5, the corrosion resistance decreases as the porosity increases when 0.7% by mass or more is added, the erosion index is 99 when 0.9% by mass is added, and the scale increases when the amount is further added. By containing 1.0% by mass of graphite, the corrosion resistance is lower than that of the refractory. Therefore, the upper limit of the amount of carbon black added is set to 0.9% by mass.

以上耐スポール性・耐食性評価結果から、カーボンブラック添加量は0.2〜0.9質量%、特に0.5〜0.7質量%の添加が好適である。
粉末状金属Alは一般的に炭素原料の酸化防止材として添加されており、反応性を高めるために粉末状の形態で使用される。その粒径はマグネシアクリンカ―と同等程度かそれ以下の粒径であることが望ましい。また、本発明では炭素成分の酸化防止剤としての特性に加え、微細な気孔の形成にも寄与していると考える。
一般的に、炭素含有耐火物に添加された金属Alは、炭素成分の酸化防止材としての役割を果たしている。つまり、2Al(l)+3CO(g)=Al(s)+3C(s)の反応により、Al(l)がCO(g)を還元し、C(s)を析出させ、全体として炭素成分の減少抑制に寄与している。さらにAlはAl(g)のような蒸気種にもなり得るため、金属Alの周囲のみではなく、蒸発して耐火物中のどこでもこの反応が生じ、Alを形成する。
ところが、本発明のような炭素含有量が極微量な耐火物の場合、耐火物内のCO分圧が低く、AlはAlよりもAl(l)もしくはAl(g)が安定な状態となり、高温下において流出や蒸発を招き、結果として耐火物組織内に気孔を多数形成すると推定される。焼成後の組織観察によってマグネシア原料骨材間に微細な気孔の生成が確認でき、その周囲にAl成分が検出されている。
As described above, from the evaluation results of the spall resistance / corrosion resistance, the addition amount of carbon black is preferably 0.2 to 0.9 mass%, particularly preferably 0.5 to 0.7 mass%.
The powdered metal Al is generally added as an antioxidant for the carbon raw material, and is used in the form of a powder to increase the reactivity. The particle size is preferably about the same as or smaller than that of magnesia clinker. Further, in the present invention, it is considered that in addition to the characteristics of the carbon component as an antioxidant, it contributes to the formation of fine pores.
Generally, metal Al added to a carbon-containing refractory plays a role as an antioxidant for a carbon component. That is, by the reaction of 2Al (l) + 3CO (g) = Al 2 O 3 (s) + 3C (s), Al (l) reduces CO (g), precipitates C (s), and carbon as a whole. Contributes to the suppression of component reduction. Furthermore, since Al can be a vapor species such as Al (g), this reaction occurs not only around the metal Al but also anywhere in the refractory to form Al 2 O 3 .
However, in the case of a refractory with a very small carbon content as in the present invention, the CO partial pressure in the refractory is low, and Al is in a state in which Al (l) or Al (g) is more stable than Al 2 O 3. Thus, it is presumed that outflow and evaporation occur at high temperatures, resulting in the formation of many pores in the refractory structure. The observation of the structure after firing confirmed the formation of fine pores between the magnesia raw material aggregates, and the Al component was detected around the pores.

上記と同様の手法を用いてスポーリング損傷指数を評価すると、金属Al添加に伴う気孔形成に起因して組織が粗になるため、図6に示すように金属Al添加量増大に伴いスポーリング損傷指数は低下、つまり耐スポール性は向上する。ここで、鱗状黒鉛含有耐火物のスポーリング損傷指数を基準の100とした。金属Alを0.1質量%以上添加することでスポーリング損傷指数の向上が見られた。耐スポール性の向上に反して、気孔形成に伴いスラグ浸潤量が増大するため、図7に示すように金属Al添加量増大に伴って耐食性は悪化する。鱗状黒鉛含有耐火物の溶損指数を100とした場合、金属Al添加量0.5質量%で100となり、それ以上添加した場合は耐食性が悪化することから、金属Al添加量の上限を0.5質量%未満とした。
以上耐スポール性・耐食性評価結果から、金属Al添加量は0.1質量%以上0.5質量%未満が好ましく、特に0.3〜0.4質量%の添加が、さらに、好適である。
When the spalling damage index is evaluated using the same method as described above, the structure becomes rough due to pore formation accompanying the addition of metallic Al. Therefore, as shown in FIG. The index decreases, that is, the spall resistance improves. Here, the spalling damage index of the scaly graphite-containing refractory was set to 100. The spalling damage index was improved by adding 0.1% by mass or more of metal Al. Contrary to the improvement of the spall resistance, the amount of slag infiltration increases with the formation of pores, so that the corrosion resistance deteriorates as the amount of metal Al added increases as shown in FIG. When the melting loss index of the scaly graphite-containing refractory is 100, the addition amount of metal Al becomes 100 when the addition amount is 0.5% by mass, and when it is added more, the corrosion resistance deteriorates. The amount was less than 5% by mass.
As described above, from the evaluation results of the spall resistance and the corrosion resistance, the amount of metal Al added is preferably 0.1% by mass or more and less than 0.5% by mass, and the addition of 0.3 to 0.4% by mass is more preferable.

本発明においては、上述したように金属Alの添加によって酸化防止効果を得ている。その他の炭素成分の酸化防止剤としては、一般的にMg、Si、Bといった金属粉やそれらの合金が、一種または二種以上添加される。
金属Siは、金属Alと同様COガスの還元反応によって酸化防止効果を得られるが、金属Alとの併用によって高い耐酸化防止効果が発現することが知られている。Siによる酸化防止効果は、Si(s)+C(s)=SiC(s) SiC(s)+2CO(g)=SiO2(s)+3C(s)の反応によってCO(g)の還元が進むことに起因するが、金属Alとの併用によってSiC生成が促進されることが報告されており、結果として、酸化防止効果が増大する。
さらに炭化ホウ素はB4C+6CO(g)=2B2O3(l)+7C(s)の反応によりCOガスを還元するとともに、生成した酸化ホウ素の液相が耐火物表面で緻密層となり、酸素の浸入を防ぐことで高い酸化防止効果が得られる。
In the present invention, as described above, the antioxidant effect is obtained by adding metal Al. As an antioxidant for other carbon components, one or more metal powders such as Mg, Si, and B and their alloys are generally added.
Metal Si, like metal Al, can obtain an antioxidation effect by reduction reaction of CO gas, but it is known that a high antioxidation effect is exhibited when used together with metal Al. The anti-oxidation effect by Si is reduced by the reaction of Si (s) + C (s) = SiC (s) SiC (s) + 2CO (g) = SiO 2 (s) + 3C (s). However, it is reported that SiC formation is promoted by the combined use with metal Al, and as a result, the antioxidant effect is increased.
Furthermore, boron carbide reduces CO gas by the reaction of B 4 C + 6CO (g) = 2B 2 O 3 (l) + 7C (s), and the liquid phase of the generated boron oxide becomes a dense layer on the refractory surface. By preventing the intrusion of oxygen, a high antioxidant effect can be obtained.

更に、加圧成形及び熱処理時の強度発現させるための熱硬化性樹脂、さらにマグネシア耐火原料をカーボンボンドにより結合し組織強度を増強させるため、ピッチも加える。
本願発明に係る耐火原料混合物を混練し、プレス等によって加圧成型後、120〜400℃でベーキングし不焼成のマグネシア質耐火物を製造する。上記のようにして得られたマグネシア質耐火物を500〜1500℃程度の還元雰囲気あるいは無酸化雰囲気で焼成して「焼成品」を製造することもでき、これも本発明に包含されるものである。
Further, a thermosetting resin for expressing the strength during pressure molding and heat treatment, and a pitch are also added to bond the magnesia refractory raw material with carbon bonds to enhance the structure strength.
The refractory raw material mixture according to the present invention is kneaded, press-molded by a press or the like, and then baked at 120 to 400 ° C. to produce an unfired magnesia refractory. The magnesia refractory obtained as described above can be fired in a reducing or non-oxidizing atmosphere at about 500 to 1500 ° C. to produce a “baked product”, which is also included in the present invention. is there.

本発明の実施例を比較例と共に表1に挙げる。
供試材は表に示す配合組成物を混練し、フリクションプレスによって230mm×114mm×65mmの並型形状に加圧成型後、250℃で10時間加熱した。表中の原料使用割合は質量%である。得られた供試材について前述した方法で耐スポール性評価試験・耐食性評価試験を行い、スポーリング損傷指数・溶損指数を評価した。
Examples of the present invention are listed in Table 1 together with comparative examples.
The test materials were kneaded with the composition shown in the table, pressed into a parallel shape of 230 mm × 114 mm × 65 mm by a friction press, and then heated at 250 ° C. for 10 hours. The raw material usage ratio in the table is mass%. The obtained specimens were subjected to a spall resistance evaluation test and a corrosion resistance evaluation test by the methods described above to evaluate the spalling damage index and the melting index.

Figure 0006348071
Figure 0006348071

試料No.1〜10は発明例であり、いずれもスポーリング損傷指数、溶損指数がともに100未満となる良好な特性を示している。
試料No.11は比較例であり、炭素原料が入っていないために、耐スポール性に劣る。
試料No.12は比較例であり、カーボンブラックの添加量が上限を超えるため、耐食性に劣る。
試料No.13、14は比較例であり、金属Alが過剰に添加されているため、耐食性に劣る。
試料No.15、16は比較例であり、金属Alを含まず、添加金属種を変更したが、耐食性・耐スポーリング性の両立はできていない。
試料No.17は比較例であり、カーボンブラックを含まず、鱗状黒鉛を1質量%含有しており、スポーリング損傷指数・溶損指数100の基準材質とした。
Sample No. 1 to 10 are examples of the invention, and both show good characteristics in which both the spalling damage index and the melting index are less than 100.
Sample No. 11 is a comparative example, and since it does not contain a carbon raw material, it is inferior in spall resistance.
Sample No. No. 12 is a comparative example, and since the amount of carbon black added exceeds the upper limit, the corrosion resistance is poor.
Sample No. Reference numerals 13 and 14 are comparative examples, and since the metal Al is excessively added, the corrosion resistance is poor.
Samples Nos. 15 and 16 are comparative examples, which do not contain metal Al and have changed the additive metal species, but they cannot achieve both corrosion resistance and spalling resistance.
Sample No. Reference numeral 17 is a comparative example, does not contain carbon black, contains 1% by mass of scaly graphite, and is used as a reference material for the spalling damage index / melting index 100.

本発明のマグネシア質耐火物は、転炉・電気炉・取鍋・真空脱ガス炉等の溶融金属容器内張り材として、適用可能である。   The magnesia refractory according to the present invention is applicable as a liner for molten metal containers such as converters, electric furnaces, ladles, vacuum degassing furnaces, and the like.

Claims (1)

マグネシア系原料と、カーボンブラック0.2質量%以上0.9質量%以下と、粉末状の金属Al 0.1質量%以上0.5質量%未満と、を含有し、その他熱硬化性樹脂、炭素成分の酸化防止剤を添加してなる耐火原料混合物を使用したことを特徴とするマグネシア質耐火物。   Containing magnesia-based raw material, carbon black 0.2 mass% or more and 0.9 mass% or less, and powdered metal Al 0.1 mass% or more and less than 0.5 mass%, and other thermosetting resins, A magnesia refractory characterized by using a refractory raw material mixture to which an antioxidant of a carbon component is added.
JP2015018560A 2015-02-02 2015-02-02 Magnesia refractory Active JP6348071B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015018560A JP6348071B2 (en) 2015-02-02 2015-02-02 Magnesia refractory

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015018560A JP6348071B2 (en) 2015-02-02 2015-02-02 Magnesia refractory

Publications (2)

Publication Number Publication Date
JP2016141595A JP2016141595A (en) 2016-08-08
JP6348071B2 true JP6348071B2 (en) 2018-06-27

Family

ID=56569692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015018560A Active JP6348071B2 (en) 2015-02-02 2015-02-02 Magnesia refractory

Country Status (1)

Country Link
JP (1) JP6348071B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6279052B1 (en) * 2016-10-27 2018-02-14 黒崎播磨株式会社 Magnesia carbon brick and method for producing the same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2599428B2 (en) * 1988-06-02 1997-04-09 川崎炉材株式会社 Method for producing unburned MgO-C brick
JP3766137B2 (en) * 1996-05-24 2006-04-12 品川白煉瓦株式会社 Low-carbon MgO-C refractory for vacuum degassing refining furnace
JP4791761B2 (en) * 2004-05-26 2011-10-12 黒崎播磨株式会社 Carbon-containing refractories
JP2006152160A (en) * 2004-11-30 2006-06-15 Shinagawa Refract Co Ltd Carbon-black-dispersed organic solvent, carbon-black-dispersed organic resin prepared by adding and mixing the organic solvent, and carbon-containing refractory using the organic resin
JP4634263B2 (en) * 2005-09-16 2011-02-16 黒崎播磨株式会社 Magnesia carbon brick
JP4681456B2 (en) * 2006-01-05 2011-05-11 黒崎播磨株式会社 Low carbon magnesia carbon brick
JP2008069045A (en) * 2006-09-14 2008-03-27 Itochu Ceratech Corp Magnesia-carbon brick
JP5697210B2 (en) * 2011-09-26 2015-04-08 黒崎播磨株式会社 Converter operating method, magnesia carbon brick used in the converter, manufacturing method of the brick, and lining structure of the converter lining

Also Published As

Publication number Publication date
JP2016141595A (en) 2016-08-08

Similar Documents

Publication Publication Date Title
JP4634263B2 (en) Magnesia carbon brick
JP4681456B2 (en) Low carbon magnesia carbon brick
TWI606993B (en) Magnesia carbon brick
JP5565907B2 (en) Plate brick and manufacturing method thereof
TWI558683B (en) Magnesium oxide carbon brick
JP6279052B1 (en) Magnesia carbon brick and method for producing the same
JP5097861B1 (en) Magnesia-carbon brick
JP6215109B2 (en) Magnesia carbon brick
JP2015193511A (en) Refractory for casting, nozzle for casting using the same and plate for sliding nozzle
JP2020100511A (en) Method of producing magnesia-carbon brick
JP6662346B2 (en) Refractory and manufacturing method thereof
JP6348071B2 (en) Magnesia refractory
JP5737503B2 (en) Plate refractory for sliding nozzle
JP6219729B2 (en) Magnesia carbon brick
JP2020163458A (en) Method of manufacturing sliding nozzle plate
JP2012192430A (en) Alumina carbon-based slide gate plate
JP6190730B2 (en) Magnesia carbon brick
JP6826282B2 (en) Magnesia-Chromium converter How to manufacture steel outlet sleeve bricks
JP2022060911A (en) Method of producing lf-ladle magnesia-carbon brick
JP2006021972A (en) Magnesia-carbon brick
JP6541607B2 (en) Method of manufacturing carbon-containing plate refractories for sliding nozzle
JP2005089271A (en) Carbon-containing refractory, its manufacturing method and its use application
JP4822192B2 (en) Non-fired carbon-containing refractories
JP2018114507A (en) Slide plate refractory
JP2022129790A (en) Method for producing carbon-containing slide plate refractory

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180530

R150 Certificate of patent or registration of utility model

Ref document number: 6348071

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250