JP7018804B2 - Method for preparing a sample-embedded resin for analysis - Google Patents

Method for preparing a sample-embedded resin for analysis Download PDF

Info

Publication number
JP7018804B2
JP7018804B2 JP2018069745A JP2018069745A JP7018804B2 JP 7018804 B2 JP7018804 B2 JP 7018804B2 JP 2018069745 A JP2018069745 A JP 2018069745A JP 2018069745 A JP2018069745 A JP 2018069745A JP 7018804 B2 JP7018804 B2 JP 7018804B2
Authority
JP
Japan
Prior art keywords
sample
resin material
rotation
granular
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018069745A
Other languages
Japanese (ja)
Other versions
JP2019090778A (en
Inventor
誠二 長谷川
昭弘 麻生
昌弘 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Publication of JP2019090778A publication Critical patent/JP2019090778A/en
Application granted granted Critical
Publication of JP7018804B2 publication Critical patent/JP7018804B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sampling And Sample Adjustment (AREA)

Description

この発明は、分析の対象とする微小な粒状試料を、分析に先立ち、樹脂材料に埋め込んで固定して、分析用試料埋込樹脂を作製する方法に関するものであり、特には、樹脂材料中の粒状試料の分散性の向上を図る技術を提案するものである。 The present invention relates to a method for preparing a sample-embedded resin for analysis by embedding and fixing a minute granular sample to be analyzed in a resin material prior to analysis, and in particular, in a resin material. It proposes a technique for improving the dispersibility of a granular sample.

たとえば、鉱石、スラグ、汚泥、粉塵もしくは、電気電子機器等のリサイクル原料その他の不均一な組成および粒径の粒子からなる粒状試料の元素含有量、粒度分布、単体分離度などを計測して分析するに際しては、その粒状試料を構成する粒子が微小であることから、分析装置にセットする前に、当該粒状試料を樹脂材料に埋め込んで固定して、試料埋込樹脂を得ることが一般に行われている。なお、このような分析装置の一例として、鉱物解析システム(Mineral Liberation Analyzer、MLA)は、SEM-EDSをベースとして鉱石粒子の解析を行うものであり、特に鉱物資源の分野で用いられている。 For example, the element content, particle size distribution, unit separation degree, etc. of a granular sample consisting of ore, slag, sludge, dust, recycled raw materials such as electrical and electronic equipment, and other particles with non-uniform composition and particle size are measured and analyzed. Since the particles constituting the granular sample are very small, it is generally practiced to embed the granular sample in a resin material and fix it to obtain a sample-embedded resin before setting it in an analyzer. ing. As an example of such an analyzer, a mineral analysis system (Minal Liberation Analyzer, MLA) analyzes ore particles based on SEM-EDS, and is particularly used in the field of mineral resources.

かかる試料埋込樹脂では、分析精度を高めるため、樹脂材料中の粒状試料の粒子の凝集をできる限り取り除き、粒状試料が樹脂材料中に十分に分散し、分離偏析がない代表組成になっていることが求められる。
それゆえに従来は、試料埋込樹脂を作製する場合、はじめに、粒状試料に対して篩別を行って篩上と篩下に分けた後にさらにそれらを混合し、その混合試料を液体状樹脂材料とともに容器に投入し、容器内を手動作業でかき混ぜるとともに、真空デシケーターを用いた液体状樹脂材料の脱泡、超音波撹拌機による容器内の攪拌を行った後、液体状樹脂材料を大気中で硬化させることとしていた。またここでは、試料埋込樹脂中の粒状試料の分散性を高めるため、容器に、液体状樹脂材料を投入するに先立って、グラファイトを投入し、これを粒状試料と混合させることもある。さらに断面を作製して測定する場合もある。
In such a sample-embedded resin, in order to improve the analysis accuracy, agglomeration of particles of the granular sample in the resin material is removed as much as possible, the granular sample is sufficiently dispersed in the resin material, and the composition has a representative composition without separation and segregation. Is required.
Therefore, conventionally, when preparing a sample-embedded resin, first, the granular sample is sieved and separated into upper and lower sieves, and then they are further mixed, and the mixed sample is combined with the liquid resin material. Put it in a container, stir the inside of the container manually, defoam the liquid resin material using a vacuum desiccator, stir the inside of the container with an ultrasonic stirrer, and then cure the liquid resin material in the atmosphere. I was supposed to let you. Further, here, in order to improve the dispersibility of the granular sample in the sample-embedded resin, graphite may be charged into the container prior to charging the liquid resin material, and this may be mixed with the granular sample. Further, a cross section may be prepared and measured.

しかるに、このようにして試料埋込樹脂を作製しても、分析装置で分析した際に、微小な粒子の凝集が少なからず存在し、当該凝集を十分に抑制できなかったので、分析装置が凝集粒子を一個の粒子として誤認することに起因する分析精度の低下が否めないという問題があった。また、上述した作製方法では、試料埋込樹脂の作製に多くの時間および手間を要する他、手動作業が含まれることから、作業者に応じて、作製される試料埋込樹脂の粒状試料の分散性にばらつきが生じる。しかも、そのような労力にもかかわらず、小さな粒子の凝集は十分に防止することができなかった。 However, even if the sample-embedded resin was prepared in this way, when analyzed by the analyzer, there was not a small amount of agglomeration of fine particles, and the agglomeration could not be sufficiently suppressed, so that the analyzer agglomerated. There is a problem that it is undeniable that the analysis accuracy is lowered due to the misidentification of the particles as one particle. In addition, the above-mentioned preparation method requires a lot of time and labor to prepare the sample-embedded resin, and also involves manual work. Therefore, the granular sample of the sample-embedded resin to be produced is dispersed according to the operator. There will be variations in sex. Moreover, despite such efforts, agglomeration of small particles could not be sufficiently prevented.

ここで、特許文献1の従来の技術の項目には、磁性材料、金属粉射出成形材料その他の種々の粉体の性状を測定ないし評価するに際し、特に磁石原料粉などの粉体を粒子単位に分離するため、水、アルコール、液状樹脂、油等の溶媒に観察対象とする粉体を溶かし、場合によっては超音波振動を与えることが記載されている。 Here, in the item of the conventional technique of Patent Document 1, when measuring or evaluating the properties of magnetic materials, metal powder injection molding materials and various other powders, in particular, powders such as magnet raw material powders are used in particle units. It is described that the powder to be observed is dissolved in a solvent such as water, alcohol, liquid resin, oil, etc. for separation, and ultrasonic vibration is applied in some cases.

特開平7-43275号公報Japanese Unexamined Patent Publication No. 7-43275

しかしながら、特許文献1に記載されているような超音波振動の付与によっては、先述したように粒子の凝集を確実になくすことはできないので、より高い精度で分析を行うには分散性が不十分となる。また、エタノールによる洗浄や固液分離、乾燥は手間がかかり、分析前の作業工数を増大させる。 However, as described above, the agglomeration of particles cannot be reliably eliminated by applying ultrasonic vibration as described in Patent Document 1, so that the dispersibility is insufficient for analysis with higher accuracy. It becomes. In addition, washing with ethanol, solid-liquid separation, and drying are time-consuming and increase the work man-hours before analysis.

この発明は、従来技術が抱えるこのような問題に対処することを課題とするものであり、その目的は、樹脂材料中の粒状試料の粒子の凝集を十分に抑制し、樹脂材料中の粒状試料の分散性を向上させることのできる分析用試料埋込樹脂の作製方法を提供することにある。 An object of the present invention is to deal with such a problem of the prior art, and an object thereof is to sufficiently suppress the aggregation of particles of the granular sample in the resin material and to sufficiently suppress the aggregation of the particles of the granular sample in the resin material. It is an object of the present invention to provide a method for producing a sample-embedded resin for analysis, which can improve the dispersibility of the sample.

発明者は鋭意検討の結果、容器内に投入した粒状試料と液体状樹脂材料との混合攪拌に、自転公転撹拌機を用いることにより、粒子の凝集が効果的に抑制されて、樹脂材料中の粒状試料の分散性を有効に向上でき、分離偏析もない代表組成を得ることを見出した。これは、粒状試料および液体状樹脂材料を投入した容器を自転させながら公転させることで、渦巻流と上下対流の相互効果に基いて、液体状樹脂材料の硬化時の粒子の凝集が抑制されること、ならびに、自転公転撹拌機で粒状試料の粒子どうしが混練されて、粒子表面に付着した他の粒子が剥ぎ取られること、さらに、摩擦熱による温度上昇があり、液体状樹脂材料の硬化時間が短縮されること等によるものと考えられるが、この発明は、このような理論に限定されるものではない。 As a result of diligent studies, the inventor effectively suppressed the aggregation of particles by using a rotation / revolution stirrer for mixing and stirring the granular sample and the liquid resin material put into the container, and the agglomeration of the particles was effectively suppressed in the resin material. It has been found that the dispersibility of the granular sample can be effectively improved and a representative composition without separation and segregation can be obtained. This is because the particles containing the granular sample and the liquid resin material are revolved while rotating, and the agglomeration of particles during curing of the liquid resin material is suppressed based on the mutual effect of swirl flow and vertical convection. In addition, the particles of the granular sample are kneaded with a rotating and revolving stirrer to strip off other particles adhering to the particle surface, and the temperature rises due to frictional heat. However, the present invention is not limited to such a theory.

かかる知見に基き、この発明の分析用試料埋込樹脂の作製方法は、粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、容器内に、前記粒状試料を液体状樹脂材料とともに投入し、粒状試料および液体状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転とは逆の回転方向に公転させることにより、容器内の粒状試料および液体状樹脂材料を攪拌してから、液体状樹脂材料を硬化させ、前記自転公転撹拌機での撹拌の初期段階を大気雰囲気とし、その後の少なくとも終期段階を真空雰囲気とするというものである。 Based on this finding, in the method for producing a sample-embedded resin for analysis of the present invention, a granular sample to be analyzed, which is composed of particles having a non-uniform particle size and contains a plurality of types of simple substances and / or compounds, is embedded in a resin material. A method for producing a sample-embedded resin in which the granular sample is fixed in the resin material. The granular sample is put into a container together with the liquid resin material, and the granular sample and the liquid resin material are contained. The container is rotated in the direction opposite to the rotation while rotating with a rotation / revolution stirrer to stir the granular sample and the liquid resin material in the container, and then the liquid resin material is cured. The initial stage of stirring by the rotation / revolution stirrer is an atmospheric atmosphere, and at least the final stage thereafter is a vacuum atmosphere .

また、この発明の分析用試料埋込樹脂の作製方法は、粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、容器内に、前記粒状試料を液体状樹脂材料とともに投入し、粒状試料および液体状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転と同じ回転方向に公転させることにより、容器内の粒状試料および液体状樹脂材料を攪拌してから、液体状樹脂材料を硬化させ、前記自転公転撹拌機での撹拌の初期段階を大気雰囲気とし、その後の少なくとも終期段階を真空雰囲気とするというものである。 Further, in the method for producing a sample-embedded resin for analysis of the present invention, a granular sample to be analyzed, which is composed of particles having a non-uniform particle size and contains a plurality of types of simple substances and / or compounds, is embedded in a resin material and the resin is prepared. A method for producing a sample-embedded resin in which the granular sample is fixed in a material. The granular sample is put into a container together with the liquid resin material, and the granular sample and the container containing the liquid resin material are placed in a container. The granular sample and the liquid resin material in the container are agitated by rotating in the same rotation direction as the rotation while rotating with the rotation / revolution stirrer, and then the liquid resin material is cured, and the rotation / revolution stirrer is used. The initial stage of stirring is the air atmosphere, and at least the final stage thereafter is the vacuum atmosphere .

ここで、自転公転撹拌機による攪拌時の公転速度は、400rpm~2000rpmとすることが好ましい。 Here, the revolution speed at the time of stirring by the rotation / revolution stirrer is preferably 400 rpm to 2000 rpm.

自転公転撹拌機による攪拌時間は、1分~30分とすることが効果的である。 It is effective that the stirring time by the rotation / revolution stirrer is 1 minute to 30 minutes.

この発明の分析用試料埋込樹脂の作製方法では、自転公転撹拌機による攪拌後、液体状樹脂材料の硬化が完了するまでの時間を、30分~60分とすることが好ましい。 In the method for producing a sample-embedded resin for analysis of the present invention, it is preferable that the time from stirring with a rotating revolution stirrer to the completion of curing of the liquid resin material is 30 minutes to 60 minutes.

ところで、容器に投入する液体状樹脂材料に対する粒状試料の割合は、100体積%~300体積%とすることが好適である。 By the way, the ratio of the granular sample to the liquid resin material to be put into the container is preferably 100% by volume to 300% by volume.

この発明の分析用試料埋込樹脂の作製方法では、前記粒状試料を構成する粒子を鉱石粒子とすることができる。 In the method for producing a sample-embedded resin for analysis of the present invention, the particles constituting the granular sample can be used as ore particles.

この発明の分析用試料埋込樹脂の作製方法では、自転公転撹拌機で自転させる前記容器として、粒状試料および液体状樹脂材料入りの容器が複数個配置されたものを用いることができる。 In the method for producing a sample-embedded resin for analysis of the present invention, a container in which a plurality of containers containing a granular sample and a liquid resin material are arranged can be used as the container to be rotated by a rotation / revolution stirrer.

この発明の分析用試料埋込樹脂の作製方法によれば、粒状試料および液体状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ公転させることにより、容器内を攪拌して液体状樹脂材料中で粒状試料を分散させてから、液体状樹脂材料を硬化させるので、樹脂材料中の粒状試料の粒子の凝集が十分に抑制され、それにより、樹脂材料中の粒状試料の分散性を向上させることができる。 According to the method for producing a sample-embedded resin for analysis of the present invention, the container containing a granular sample and a liquid resin material is revolved while rotating with a rotating / revolving stirrer to stir the inside of the container into a liquid state. Since the granular sample is dispersed in the resin material and then the liquid resin material is cured, the aggregation of the particles of the granular sample in the resin material is sufficiently suppressed, thereby improving the dispersibility of the granular sample in the resin material. Can be improved.

この発明の一の実施形態で粒状試料および液体状樹脂材料入りの容器を自転させつつ公転させる際の様子を模式的に示す斜視図である。It is a perspective view which shows the state at the time of revolving while rotating the container containing a granular sample and a liquid resin material in one Embodiment of this invention. 他の実施形態で粒状試料および液体状樹脂材料入りの容器を自転させつつ公転させる際の様子を模式的に示す斜視図である。It is a perspective view which shows the state when the container containing a granular sample and a liquid resin material is revolved while rotating in another embodiment. さらに他の実施形態で粒状試料および液体状樹脂材料入りの容器を複数個配置した容器を自転させつつ公転させる際の様子を模式的に示す斜視図である。It is a perspective view schematically showing the state of revolving while rotating a container in which a plurality of containers containing a granular sample and a liquid resin material are arranged in still another embodiment. 実施例の粗選給鉱を用いて作製した試料埋込樹脂の埋め込み固定された粒状試料の粒度分布を、埋め込み前の粒状試料の粒度分布計による粒度分布とともに示すグラフである。It is a graph which shows the particle size distribution of the granular sample which was embedded and fixed in the sample embedding resin prepared by using the crude preparation of Example, together with the particle size distribution by the particle size distribution meter of the granular sample before embedding. 実施例の粗選精鉱を用いて作製した試料埋込樹脂の埋め込み固定された粒状試料の粒度分布を、埋め込み前の粒状試料の粒度分布計による粒度分布とともに示すグラフである。It is a graph which shows the particle size distribution of the granular sample which was embedded and fixed in the sample embedding resin prepared by using the crude concentrate of an Example, together with the particle size distribution by the particle size distribution meter of the granular sample before embedding. 実施例の一次精選精鉱を用いて作製した試料埋込樹脂の埋め込み固定された粒状試料の粒度分布を、埋め込み前の粒状試料の粒度分布計による粒度分布とともに示すグラフである。It is a graph which shows the particle size distribution of the granular sample which was embedded and fixed in the sample embedding resin prepared using the primary selection concentrate of Example, together with the particle size distribution by the particle size distribution meter of the granular sample before embedding. 実施例の粗選給鉱を用いて手動攪拌法で作製した試料埋込樹脂の表面の反射電子像及び鉱物種マップである。It is a backscattered electron image and a mineral species map of the surface of the sample embedding resin prepared by the manual stirring method using the rough selection ore of an Example. 実施例の粗選給鉱を用いてミキサー攪拌法で作製した試料埋込樹脂の断面および表面の反射電子像及び鉱物種マップである。It is a back electron image and a mineral species map of the cross section and the surface of the sample embedding resin prepared by the mixer stirring method using the rough selection ore of the example. 実施例の粗選精鉱を用いて手動攪拌法で作製した試料埋込樹脂の表面の反射電子像及び鉱物種マップである。It is a backscattered electron image and a mineral species map of the surface of the sample embedding resin prepared by the manual stirring method using the crude concentrate of an Example. 実施例の粗選精鉱を用いてミキサー攪拌法で作製した試料埋込樹脂の表面の反射電子像及び鉱物種マップである。It is a backscattered electron image and a mineral species map of the surface of the sample embedding resin prepared by the mixer stirring method using the crude concentrate of an Example. 実施例の一次精選精鉱を用いて手動攪拌法で作製した試料埋込樹脂の表面の反射電子像及び鉱物種マップである。It is a backscattered electron image and a mineral species map of the surface of the sample embedding resin prepared by the manual stirring method using the primary selection concentrate of an Example. 実施例の一次精選精鉱を用いてミキサー攪拌法で作製した試料埋込樹脂の断面および表面の反射電子像及び鉱物種マップである。It is the back electron image and the mineral species map of the cross section and the surface of the sample embedding resin prepared by the mixer stirring method using the primary selection concentrate of an Example.

以下に、この発明の実施の形態について詳細に説明する。
この発明の一の実施形態に係る分析用試料埋込樹脂の作製方法では、粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製するに当り、容器内に、前記粒状試料を液体状樹脂材料とともに投入し、次いで、粒状試料および液体状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転とは逆の回転方向に、又は該自転と同じ回転方向に公転させることにより、容器内の粒状試料および液体状樹脂材料を攪拌し、その後、液体状樹脂材料を硬化させる。
Hereinafter, embodiments of the present invention will be described in detail.
In the method for producing a sample-embedded resin for analysis according to an embodiment of the present invention, a granular sample to be analyzed, which is composed of particles having a non-uniform particle size and contains a plurality of types of simple substances and / or compounds, is embedded in the resin material. Then, in producing a sample-embedded resin in which the granular sample is fixed in the resin material, the granular sample is put into a container together with the liquid resin material, and then the granular sample and the liquid resin material are contained. The granular sample and the liquid resin material in the container are stirred by rotating the container in a rotation direction opposite to the rotation or in the same rotation direction as the rotation while rotating the container with a rotation / rotation stirrer. , Curing the liquid resin material.

(粒状試料)
分析の対象とする粒状試料は、鉱石、スラグ、汚泥、粉塵もしくは、電気電子機器を含むそのリサイクル原料等に対して所定の処理を施すこと等によって、比較的小さい粒子となったものとすることができる。このような粒状試料は通常、組成および粒径の意図的な均一化が行われていないので、組成が異なるとともに粒径も異なる不均一な多種類の粒子からなる。
(Granular sample)
The granular sample to be analyzed shall be made into relatively small particles by subjecting ore, slag, sludge, dust, or its recycled raw materials including electrical and electronic equipment to a predetermined treatment. Can be done. Since such a granular sample is usually not intentionally homogenized in composition and particle size, it is composed of many kinds of non-uniform particles having different compositions and different particle sizes.

なかでも、鉱石粒子からなる粒状試料を対象とする場合、このような鉱石粒子は銅鉱石を含むことがあり、これには、たとえば、輝銅鉱、銅藍、黄銅鉱、班銅鉱、硫砒銅鉱、ブロシャン銅鉱等が含まれ得る。銅鉱石以外にも黄鉄鉱、磁鉄鉱、ケイ酸塩鉱物、輝水鉛鉱、金粒子等も含まれ得る。なおケイ酸塩鉱物としては、正長石、曹長石、斜長石、白雲母、黒雲母、石英等がある。 In particular, when targeting granular samples consisting of ore particles, such ore particles may contain copper ore, which may include, for example, chalcocite, covellite, chalcopyrite, copper ore, enargite, etc. Brochan copper ore and the like may be included. In addition to copper ore, pyrite, magnetite, silicate minerals, molybdenite, gold particles and the like can also be contained. The silicate minerals include orthoclase, albite, plagioclase, muscovite, biotite, quartz and the like.

スラグからなる粒状試料を対象とする場合、スラグ自体がSiO2、CaO、Al23、FeO及びFe34等を含む複雑な組成を持ち、さらにスラグ中にマット粒子やメタル粒子を含む場合がある。
電気電子機器からなる粒状試料の場合、基板に含まれる樹脂部や回路を構成する金属部、難燃剤部等の様々な組成を持つ粒子が存在する。
汚泥、粉塵に至っては単一の組成となっている場合はまず無い。
When targeting a granular sample consisting of slag, the slag itself has a complex composition containing SiO 2 , CaO, Al 2 O 3 , FeO, Fe 3 O 4 , etc., and the slag further contains matte particles and metal particles. In some cases.
In the case of a granular sample made of an electric / electronic device, there are particles having various compositions such as a resin part contained in the substrate, a metal part constituting a circuit, and a flame retardant part.
Sludge and dust are unlikely to have a single composition.

粒状試料を構成する粒子の粒径は、たとえば1μm~700μm、典型的には20μm~200μmの範囲で、比較的全体的に分布していて不均一である。なお、粒度分布計で測定できる粒度は、たとえば0.243μm~2000μmである場合があるが、上述したような粒状試料の粒径はこの範囲で不均一に分布している。 The particle size of the particles constituting the granular sample is, for example, in the range of 1 μm to 700 μm, typically 20 μm to 200 μm, and is relatively generally distributed and non-uniform. The particle size that can be measured by the particle size distribution meter may be, for example, 0.243 μm to 2000 μm, but the particle size of the granular sample as described above is unevenly distributed in this range.

(樹脂材料)
上述した粒状試料を埋め込んで固定するための樹脂材料としては、後述する容器への投入の際および攪拌の際に液体状に維持でき、かつその後に硬化させることができれば様々なものを用いることができるが、たとえば、エポキシ樹脂、アクリル樹脂、フェノール樹脂等を挙げることができ、このなかでも、熱硬化性樹脂であるエポキシ樹脂が好ましい。アクリル樹脂は電子線照射に弱いことから、電流量を増やすことができず、それにより測定に時間を要し、またフェノール樹脂は樹脂以外のものが含有されていることがあり、それが測定試料と判別ができない懸念があるからである。
(Resin material)
As the resin material for embedding and fixing the above-mentioned granular sample, various materials can be used as long as they can be maintained in a liquid state at the time of charging into a container and at the time of stirring, which will be described later, and can be cured thereafter. However, for example, epoxy resin, acrylic resin, phenol resin and the like can be mentioned, and among these, epoxy resin which is a thermosetting resin is preferable. Since acrylic resin is vulnerable to electron beam irradiation, the amount of current cannot be increased, which takes time for measurement, and phenolic resin may contain something other than resin, which is the measurement sample. This is because there is a concern that it cannot be determined.

(分析用試料埋込樹脂の作製方法)
上記の粒状試料および樹脂材料にて分析用の試料埋込樹脂を作製するには、はじめに、図1及び2に例示するような底付き円筒状等の所定の容器1に、粒状試料2を液体状樹脂材料3とともに投入する。
またここでは、必要に応じて、エポキシ樹脂等の液体状樹脂材料3を攪拌後の加熱で硬化させるための樹脂硬化剤を使用することができる。この場合、事前に液体状樹脂材料3と樹脂硬化剤を所定の比率で混合して調合しておき、それを粒状試料2とともに容器1に投入することができる。樹脂硬化剤としては、液体状樹脂材料3の種類に適合する公知のものを用いることが可能である。
(Method for preparing a resin for implanting a sample for analysis)
In order to prepare a sample-embedded resin for analysis from the above-mentioned granular sample and resin material, first, the granular sample 2 is liquid in a predetermined container 1 such as a bottomed cylindrical shape as exemplified in FIGS. 1 and 2. It is charged together with the resin material 3.
Further, here, if necessary, a resin curing agent for curing the liquid resin material 3 such as an epoxy resin by heating after stirring can be used. In this case, the liquid resin material 3 and the resin curing agent can be mixed and mixed in advance in a predetermined ratio, and the liquid resin material 3 and the resin curing agent can be put into the container 1 together with the granular sample 2. As the resin curing agent, known ones suitable for the type of the liquid resin material 3 can be used.

この実施形態では、後述するように自転公転撹拌機により液体状樹脂材料3中に粒状試料2を十分に分散させることができるので、グラファイト等をさらに投入することを要しない。すなわち、容器1には、樹脂硬化剤を除き粒状試料2および液体状樹脂材料3のみを投入することができる。またここでは、手作業および超音波による容器1内の粒状試料2および液体状樹脂材料3の攪拌を行わないこととすることができる。さらに、従来行っていた粒状試料2の容器1への投入前の篩別も不要である。したがって、この実施形態では、試料埋込樹脂の作製に要する作業を飛躍的に簡略化することができ、作業工数の低減、作業時間の短縮を実現することができる。 In this embodiment, as will be described later, the granular sample 2 can be sufficiently dispersed in the liquid resin material 3 by a rotation / revolution stirrer, so that it is not necessary to further add graphite or the like. That is, only the granular sample 2 and the liquid resin material 3 can be put into the container 1 except for the resin curing agent. Further, here, it is possible not to manually stir the granular sample 2 and the liquid resin material 3 in the container 1 by ultrasonic waves. Further, it is not necessary to perform the conventional sieving of the granular sample 2 before putting it into the container 1. Therefore, in this embodiment, the work required for producing the sample-embedded resin can be dramatically simplified, the work man-hours can be reduced, and the work time can be shortened.

容器1に投入する液体状樹脂材料3に対する粒状試料2の割合は、100体積%~300体積%とすることが好適である。より好ましくは、200体積%~300体積%とする。これはすなわち、粒状試料2の割合が少なすぎると、粒子が凝集する可能性が否めず、また粒状試料の2の割合が多すぎると、固結できず、測定面を露出させる面だし研磨時に破損することが懸念されるからである。 The ratio of the granular sample 2 to the liquid resin material 3 to be put into the container 1 is preferably 100% by volume to 300% by volume. More preferably, it is 200% by volume to 300% by volume. That is, if the ratio of the granular sample 2 is too small, the particles may agglomerate, and if the ratio of the granular sample 2 is too large, the particles cannot be solidified, and the surface to be measured is exposed during polishing. This is because there is a concern that it will be damaged.

次いで、粒状試料および液体状樹脂材料入りの容器4を、所定の自転公転撹拌機にセットし、当該自転公転撹拌機の機能に基き、図1及び2のそれぞれに矢印で示すように、粒状試料および液体状樹脂材料入りの容器4の自転および公転を同時に行って、容器1内の粒状試料2および液体状樹脂材料3を攪拌する。より詳細には、底付き円筒状の容器1の底部を斜め下側に向けてその中心軸を傾斜させて配置し、その中心軸を自転軸として粒状試料および液体状樹脂材料入りの容器4を自転させるとともに、容器1から距離をおいて自転軸が所定の角度θで傾斜するように公転軸を設定し、その公転軸の周りに粒状試料および液体状樹脂材料入りの容器4を公転させる。 Next, the container 4 containing the granular sample and the liquid resin material is set in a predetermined rotation / revolution stirrer, and based on the function of the rotation / revolution stirrer, the granular sample is shown by an arrow in each of FIGS. 1 and 2. And the container 4 containing the liquid resin material is rotated and revolved at the same time to stir the granular sample 2 and the liquid resin material 3 in the container 1. More specifically, the bottom of the bottomed cylindrical container 1 is arranged so as to incline its central axis toward the diagonally downward side, and the container 4 containing the granular sample and the liquid resin material is arranged with the central axis as the rotation axis. Along with the rotation, the revolution axis is set so that the rotation axis tilts at a predetermined angle θ at a distance from the container 1, and the container 4 containing the granular sample and the liquid resin material is rotated around the revolution axis.

これにより、自転と公転の相互作用によって発生する渦巻流と上下対流によって、液体状樹脂材料3中の気泡を押し出し、泡を巻きこむことなく、粒状試料2および液体状樹脂材料3を撹拌させて、その分散を促進させることができる。しかもここでは、自転公転撹拌機による攪拌時に、液体状樹脂材料3や粒子等との摩擦熱によって温度が上昇し、液体状樹脂材料3が若干硬化することから、後述するような液体状樹脂材料3を硬化させる際の時間を短縮できる他、そのような若干の硬化により、内部の粒状試料2の粒子の沈降度合の違いによる粒子の存在の偏りを抑制することができる。 As a result, the bubbles in the liquid resin material 3 are pushed out by the swirling flow and the vertical convection generated by the interaction between the rotation and the revolution, and the granular sample 2 and the liquid resin material 3 are stirred without entraining the bubbles. , The dispersion can be promoted. Moreover, here, the temperature rises due to the frictional heat with the liquid resin material 3 and particles during stirring by the planetary rotation mixer, and the liquid resin material 3 is slightly cured. Therefore, the liquid resin material as described later. In addition to shortening the time required to cure No. 3, such slight curing can suppress the bias of the presence of particles due to the difference in the degree of sedimentation of the particles of the granular sample 2 inside.

自転公転撹拌機としては、粒状試料および液体状樹脂材料入りの容器4のこのような自転および公転を行い得るものであれば特に問わず、たとえば公知のものを用いることができる。自転公転撹拌機での公転と自転は、図1に示すように、互いに逆の回転方向とすることができ、あるいは図2に示すように、互いに同じ回転方向とすることができる。つまり、公転と自転の相対的な回転方向は特に問わず、使用する自転公転撹拌機や、粒状試料2ないし液体状樹脂材料3の状態等に応じて適宜設定することができる。 The rotation / revolution agitator is not particularly limited as long as it can perform such rotation and revolution of the container 4 containing the granular sample and the liquid resin material, and for example, a known one can be used. The rotation and rotation of the rotation / revolution stirrer can be opposite to each other as shown in FIG. 1, or can be in the same rotation direction as shown in FIG. That is, the relative rotation direction of the revolution and the rotation is not particularly limited, and can be appropriately set according to the rotation / revolution agitator to be used, the state of the granular sample 2 or the liquid resin material 3, and the like.

また図3に示すように、粒状試料および液体状樹脂材料入りの容器4を複数個配置した容器4aを自転及び公転させることもできる。自転公転撹拌機によってはテーブルとも称され得るこの容器4aも、粒状試料および液体状樹脂材料入りの容器とみなすことができる。この場合、容器4aの中心軸を自転軸として容器4aを自転させるとともに、該自転軸が所定の角度θで傾斜するように公転軸を設定し、その公転軸の周りに容器4aを公転させる。図3に示すところでは、容器4aの中心軸の周囲に、粒状試料および液体状樹脂材料入りの容器4を互いに等間隔で四個配置しているが、容器4a内での粒状試料および液体状樹脂材料入りの容器4の配置態様や個数はこれに限定されるものではない。このように粒状試料および液体状樹脂材料入りの容器4を複数個配置した容器4aを自転及び公転させることにより、一度で複数個の粒状試料および液体状樹脂材料入りの容器4の粒状試料2を分散させることができるので、作業効率を大きく向上させることができる。 Further, as shown in FIG. 3, a container 4a in which a plurality of containers 4 containing a granular sample and a liquid resin material are arranged can be rotated and revolved. This container 4a, which may also be called a table depending on the rotation / revolution stirrer, can also be regarded as a container containing a granular sample and a liquid resin material. In this case, the container 4a is rotated around the central axis of the container 4a as a rotation axis, the revolution axis is set so that the rotation axis is tilted at a predetermined angle θ, and the container 4a is rotated around the revolution axis. In FIG. 3, four containers 4 containing a granular sample and a liquid resin material are arranged around the central axis of the container 4a at equal intervals, but the granular sample and the liquid state in the container 4a are arranged. The arrangement mode and number of the containers 4 containing the resin material are not limited to this. By rotating and revolving the container 4a in which a plurality of containers 4 containing the granular sample and the liquid resin material are arranged in this way, the plurality of granular samples and the granular sample 2 of the container 4 containing the liquid resin material can be obtained at one time. Since it can be dispersed, work efficiency can be greatly improved.

ここで、自転公転撹拌機による攪拌時の公転速度は、400rpm~2000rpmとすることが好ましい。公転速度が遅すぎる場合、凝集粒ができることが懸念され、この一方で、公転速度が速すぎる場合、摩擦により粒が摩耗するおそれがある。この観点から、公転速度は400rpm~2000rpmとすることが好ましい。 Here, the revolution speed at the time of stirring by the rotation / revolution stirrer is preferably 400 rpm to 2000 rpm. If the revolution speed is too slow, there is a concern that aggregated grains will be formed, while if the revolution speed is too fast, the grains may wear due to friction. From this point of view, the revolution speed is preferably 400 rpm to 2000 rpm.

またここで、自転公転撹拌機による攪拌時の公転速度に対する自転速度の比率は、樹脂の上下対流が発生し、粒子同士が摩耗しない範囲であればよく、例えば公転速度に対して0.4~0.6倍とすることが好適である。自転速度が遅すぎると、上下対流が起きないために凝集粒が存在することが考えられる。一方、自転速度が速すぎると、渦巻流と上下対流のスピードが早くなり、粒子同士が摩耗して本来の粒度とは異なってしまう懸念がある。
なお、上述した公転速度および自転速度は、自転公転撹拌機で設定可能である。
Further, here, the ratio of the rotation speed to the revolution speed at the time of stirring by the rotation revolution stirrer may be within a range in which vertical convection of the resin is generated and the particles do not wear each other, for example, 0.4 to 0.4 to the revolution speed. It is preferable to set it to 0.6 times. If the rotation speed is too slow, it is possible that aggregates are present because vertical convection does not occur. On the other hand, if the rotation speed is too fast, the speeds of the spiral flow and the vertical convection become high, and there is a concern that the particles will wear and differ from the original particle size.
The above-mentioned revolution speed and rotation speed can be set by the rotation revolution agitator.

自転公転撹拌機による攪拌時の自転軸の、公転軸に対する角度θは、好ましくは30°~60°、より好ましくは40°~50°として、自転軸を公転軸から傾斜させて攪拌を行うことができる。自転軸の傾斜角度θが小さいと、比重の大きいものが容器底部に沈降しやすい状態となり、また傾斜角度θが大きいと容器から樹脂がこぼれ、必要な樹脂量を容器に充填できない状態となる可能性がある。傾斜角度θは、材料の性質に合わせて適宜設定することができる。 The angle θ of the rotation axis during stirring by the rotation / revolution stirrer is preferably 30 ° to 60 °, more preferably 40 ° to 50 °, and the rotation axis is tilted from the revolution axis for stirring. Can be done. If the tilt angle θ of the rotation axis is small, the one with a large specific gravity tends to settle at the bottom of the container, and if the tilt angle θ is large, resin may spill from the container and the required amount of resin may not be filled in the container. There is sex. The inclination angle θ can be appropriately set according to the properties of the material.

ところで、上述したような自転公転撹拌機による攪拌は、粒状試料および液体状樹脂材料入りの容器4の周囲の雰囲気を真空雰囲気として行うことが、液体状樹脂材料3に混入し得るマイクロバブルを除去できる点で好適である。このようなマイクロバブルは、粒子の凝集を生じさせる要因の一つになるところ、自転公転撹拌機で真空雰囲気にて攪拌することにより、マイクロバブル除去のためにこれまで行っていた真空デシケーターの使用を省略することができる。真空雰囲気とする場合、マイクロバブルを有効に除去するとの観点から、最大到達真空度は、たとえば1.0kPa以下、好ましくは0.67kPa以下とすることができる。なお、さらに圧力を低下させても効果はそれほど変化せず、またそのような低い圧力に到達するまでに時間がかかる。 By the way, in the stirring by the rotation / revolution stirrer as described above, the atmosphere around the container 4 containing the granular sample and the liquid resin material can be set as a vacuum atmosphere to remove microbubbles that may be mixed in the liquid resin material 3. It is suitable in that it can be done. Such microbubbles are one of the factors that cause agglomeration of particles. By stirring in a vacuum atmosphere with a rotating revolution stirrer, the use of a vacuum desiccator that has been used so far to remove microbubbles is used. Can be omitted. In the case of a vacuum atmosphere, the maximum ultimate vacuum degree can be, for example, 1.0 kPa or less, preferably 0.67 kPa or less, from the viewpoint of effectively removing microbubbles. Even if the pressure is further reduced, the effect does not change so much, and it takes time to reach such a low pressure.

但し、液体状樹脂材料3中に粒状試料2がほとんど分散していない攪拌の初期段階から、自転公転撹拌機内の粒状試料および液体状樹脂材料入りの容器4の周囲を真空雰囲気とすれば、容器1の開口の表面近傍に存在する粒状試料2が飛散することが懸念される。これを防止するため、攪拌の初期段階は、大気雰囲気として重力の作用の下で攪拌を行い、その後、真空雰囲気に切り替えてさらに攪拌することが好適である。つまり、攪拌の初期段階は大気雰囲気とし、その後の少なくとも終期段階は真空雰囲気とすることが好ましい。
ここで攪拌の初期段階は、自転公転撹拌機による攪拌の開始時点から、30秒~60秒が経過したときまでとすることができる。その後に真空雰囲気とする時間は、60秒~30分とすることができる。
However, if the surroundings of the granular sample and the container 4 containing the liquid resin material in the rotating / revolving and revolving stirrer are set to a vacuum atmosphere from the initial stage of stirring in which the granular sample 2 is hardly dispersed in the liquid resin material 3, the container can be used. There is a concern that the granular sample 2 existing near the surface of the opening of 1 may be scattered. In order to prevent this, it is preferable to perform stirring under the action of gravity as an atmospheric atmosphere in the initial stage of stirring, and then switch to a vacuum atmosphere for further stirring. That is, it is preferable that the initial stage of stirring is an atmospheric atmosphere, and at least the final stage thereafter is a vacuum atmosphere.
Here, the initial stage of stirring can be from the start time of stirring by the rotation / revolution stirrer to the time when 30 seconds to 60 seconds have elapsed. After that, the time for creating a vacuum atmosphere can be 60 seconds to 30 minutes.

自転公転撹拌機による攪拌時間は、上述したように途中で大気雰囲気から真空雰囲気に切り替える場合はそれらの合計の時間として、好ましくは1分~30分、より好ましくは5分~15分とすることができる。攪拌時間が短い場合は、液体状樹脂材料3中での粒状試料2の分散が不十分となることが懸念され、この一方で、攪拌時間が長すぎると、液体状樹脂材料3中で粒状試料2の粒子が相互に衝突することに起因する粒子の破壊が生じるおそれがある。 The stirring time by the rotation / revolution stirrer is preferably 1 minute to 30 minutes, more preferably 5 minutes to 15 minutes, as the total time when switching from the atmospheric atmosphere to the vacuum atmosphere on the way as described above. Can be done. If the stirring time is short, there is a concern that the dispersion of the granular sample 2 in the liquid resin material 3 will be insufficient. On the other hand, if the stirring time is too long, the granular sample 2 in the liquid resin material 3 may be insufficiently dispersed. There is a risk of particle destruction due to the collision of the two particles with each other.

このように自転公転撹拌機を用いて、容器1内の粒状試料2および液体状樹脂材料3を攪拌した後は、所定の温度、たとえば20℃~60℃まで加熱されることで、先述の樹脂硬化剤の作用と相俟って、液体状樹脂材料3を硬化させる。それにより、硬化した樹脂材料中に粒状試料が埋め込まれて固定された試料埋込樹脂を作製することができる。 After stirring the granular sample 2 and the liquid resin material 3 in the container 1 using the planetary rotation mixer in this way, the above-mentioned resin is heated to a predetermined temperature, for example, 20 ° C to 60 ° C. Combined with the action of the curing agent, the liquid resin material 3 is cured. Thereby, a sample-embedded resin in which a granular sample is embedded and fixed in the cured resin material can be produced.

ここで、攪拌後から液体状樹脂材料3を硬化させるまで長い時間をおくと、容器1内の液体状樹脂材料3中で粒状試料2が、重力の作用により沈降して分散性が低下することが懸念される。逆に攪拌後から液体状樹脂材料3を硬化させるまでの時間が短いと、加熱時に粒状試料2の温度が上昇している懸念があり、この場合、粒状試料2が熱により変質する可能性がある。そのため、自転公転撹拌機による攪拌後、液体状樹脂材料3の硬化が完了するまでの時間は、好ましくは30分~60分、より好ましくは30分~40分とする。 Here, if a long time is left from stirring until the liquid resin material 3 is cured, the granular sample 2 settles in the liquid resin material 3 in the container 1 due to the action of gravity, and the dispersibility deteriorates. Is a concern. On the contrary, if the time from stirring to curing the liquid resin material 3 is short, there is a concern that the temperature of the granular sample 2 rises during heating, and in this case, the granular sample 2 may be deteriorated by heat. be. Therefore, the time until the curing of the liquid resin material 3 is completed after stirring with the rotation / revolution stirrer is preferably 30 minutes to 60 minutes, more preferably 30 minutes to 40 minutes.

以上に述べたようにして作製された試料埋込樹脂では、試料埋込樹脂における樹脂材料中に分散した粒状試料の粒子の粒度分布が、埋め込み前の粒状試料の粒度分布とほぼ同一、つまりほぼ同様の傾向となっていることが、粒子どうしの凝集抑制の観点から好適である。
そして、このような試料埋込樹脂は、様々な分析装置を用いた粒状試料の元素含有量、粒度分布、単体分離度などの分析に供することができる。特にここで、粒状試料を構成する粒子を鉱石粒子とした場合、その試料埋込樹脂は、鉱物解析システム(Mineral Liberation Analyzer、MLA)による分析に有効に用いることができる。
In the sample-embedded resin prepared as described above, the particle size distribution of the particles of the granular sample dispersed in the resin material in the sample-embedded resin is almost the same as, that is, almost the same as the particle size distribution of the granular sample before embedding. It is preferable that the same tendency is obtained from the viewpoint of suppressing aggregation of particles.
Then, such a sample-embedded resin can be used for analysis of the element content, particle size distribution, elemental separation degree, etc. of the granular sample using various analyzers. In particular, when the particles constituting the granular sample are ore particles, the sample-embedded resin can be effectively used for analysis by a mineral analysis system (Mineral Liberation Analyzer, MLA).

次に、この発明の分析用試料埋込樹脂の作製方法を試験的に実施し、その効果を確認したので以下に説明する。但し、ここでの説明は単なる例示を目的としたものであり、それに限定されることを意図するものではない。 Next, the method for producing the sample-embedded resin for analysis of the present invention was carried out on a trial basis, and its effect was confirmed, which will be described below. However, the description here is for the purpose of mere illustration, and is not intended to be limited thereto.

表1に示すように、粒状試料であるサンプルとしての粗選給鉱、粗選精鉱および一次精選精鉱のそれぞれについて、超音波撹拌機を用いた方法(手動攪拌法)と、自転公転撹拌機を用いた方法(ミキサー攪拌法)のそれぞれを用いて、試料埋込樹脂を作製した。 As shown in Table 1, a method using an ultrasonic stirrer (manual stirring method) and rotation / revolution stirring for each of the coarsely selected ore, the coarsely selected concentrate and the primary selected concentrate as the sample which is a granular sample. A sample-embedded resin was prepared using each of the machine-based methods (mixer stirring method).

通常法では、篩を用いてサンプルを篩別し、その篩下と篩上を混合し、1インチのクリアカップにその混合サンプルとグラファイトを同当量投入し、手動作業にてそれらを混合した。次いで、エポキシ樹脂(Buehler社製のエポキュア2)の主剤と硬化剤を2:1の割合で混合し、それを真空デシケーターで脱泡した後、サンプルと同当量を上記のクリアカップに流し込んで手動作業で十分に混合させた。その後、超音波撹拌機で9分間攪拌し、そして、真空デシケーターで10分間脱泡し、残りのエポキシ樹脂をクリアカップに流し込んだ後、大気中でエポキシ樹脂を硬化させた。 In the conventional method, the samples were sieved using a sieve, the under-sieve and the top of the sieve were mixed, and the same amount of the mixed sample and graphite were put into a 1-inch clear cup, and they were mixed manually. Next, the main agent of the epoxy resin (Epocure 2 manufactured by Buehler) and the curing agent are mixed at a ratio of 2: 1 and defoamed with a vacuum desiccator, and then the same amount as the sample is poured into the above clear cup and manually. Mix well in the work. Then, the mixture was stirred with an ultrasonic stirrer for 9 minutes, defoamed with a vacuum desiccator for 10 minutes, the remaining epoxy resin was poured into a clear cup, and then the epoxy resin was cured in the air.

ミキサー攪拌法では、サンプルを上記と同様のエポキシ樹脂とともにクリアカップに投入した後、自転公転撹拌機(シンキー社製のあわとり練太郎(登録商標))を用いて攪拌を行った。その後、大気中でエポキシ樹脂を硬化させた。このときの攪拌の条件は表1に示すとおりである。なお、表1の回転数は公転の回転数である。その他の条件として、自転速度は公転速度に対して1/2とし、自転軸の傾斜角度は公転軸に対して45°とした。なお、公転軸は鉛直方向に平行とした。 In the mixer stirring method, the sample was put into a clear cup together with the same epoxy resin as above, and then stirred using a rotating revolution agitator (Awatori Rentaro (registered trademark) manufactured by Shinky Co., Ltd.). Then, the epoxy resin was cured in the atmosphere. The stirring conditions at this time are as shown in Table 1. The rotation speed in Table 1 is the rotation speed of the revolution. As other conditions, the rotation speed was set to 1/2 of the revolution speed, and the inclination angle of the rotation axis was set to 45 ° with respect to the revolution axis. The revolution axis was parallel to the vertical direction.

Figure 0007018804000001
Figure 0007018804000001

上記の各方法で得られた試料埋込樹脂について、その樹脂材料に埋め込み固定された粒状試料の粒度をMLAにより測定した粒度分布の結果を、埋め込み前の粒状試料の粒度を粒度分布計(日機装株式会社製MT3300EX)で測定した結果ととともに図4~6にグラフで示す。 For the sample-embedded resin obtained by each of the above methods, the particle size distribution of the granular sample embedded and fixed in the resin material was measured by MLA, and the particle size of the granular sample before embedding was measured by the particle size distribution meter (Nikki). The results measured by MT3300EX manufactured by Co., Ltd.) are shown in graphs in FIGS. 4 to 6.

また、粗選給鉱についての手動攪拌法とミキサー攪拌法による試料埋込樹脂の反射電子像及び鉱物種マップをそれぞれ図7及び8に、粗選精鉱についての手動撹拌法とミキサー撹拌法による試料埋込樹脂の反射電子像及び鉱物種マップをそれぞれ図9及び10に、一次精選精鉱についての手動撹拌法とミキサー撹拌法による試料埋込樹脂の反射電子像及び鉱物種マップをそれぞれ図11及び12に示す。なおここで、反射電子像は反射電子強度の像であり、鉱物種マップは鉱物ごとのエネルギースペクトルと標準鉱物スペクトルの同定により、鉱物種をマップで表したものである。図7、9~11は、円柱状の試料埋込樹脂の一方の端面である表面についてのものであり、図8および12は、当該表面および、円柱状の試料埋込樹脂の軸線方向に沿う断面についてのものである。 In addition, the backscattered electron images and mineral species maps of the sample-embedded resin obtained by the manual stirring method and the mixer stirring method for the coarsely selected ore are shown in FIGS. 7 and 8, respectively, and the manual stirring method and the mixer stirring method for the coarsely selected concentrate are used. The backscattered electron images and mineral species maps of the sample-embedded resin are shown in FIGS. 9 and 10, respectively, and the backscattered electron images and mineral species maps of the sample-embedded resin obtained by the manual stirring method and the mixer stirring method for the primary selected concentrate are shown in FIGS. And 12 show. Here, the backscattered electron image is an image of the backscattered electron intensity, and the mineral species map is a map showing the mineral species by identifying the energy spectrum and the standard mineral spectrum for each mineral. 7 and 9 to 11 show the surface which is one end face of the columnar sample-embedded resin, and FIGS. 8 and 12 show the surface and the axial direction of the columnar sample-embedded resin. It is about the cross section.

図4~6に示すところから、ミキサー攪拌法で特に真空雰囲気とした場合は、手動攪拌法に比して、埋め込み前の粒状試料と粒度分布計の傾向が近似していることが解かる。また、図7、9、11に示す手動攪拌法による試料埋込樹脂の写真では、粒子どうしの大きな凝集が確認されるのに対し、図8、10、12に示すミキサー攪拌法による試料埋込樹脂の写真では、そのような凝集がほとんどないことが明らかである。
したがって、この発明によれば、樹脂材料中の粒状試料の粒子の凝集を抑制し、樹脂材料中の粒状試料の分散性を向上できることが解かった。
From the results shown in FIGS. 4 to 6, it can be seen that the tendency of the granular sample before embedding and the particle size distribution meter is closer to that of the manual stirring method, especially when the vacuum atmosphere is set by the mixer stirring method. Further, in the photographs of the sample-embedded resin by the manual stirring method shown in FIGS. 7, 9 and 11, large agglomeration of particles is confirmed, whereas the sample embedding by the mixer stirring method shown in FIGS. 8, 10 and 12 is confirmed. It is clear from the resin photographs that there is little such agglomeration.
Therefore, according to the present invention, it was found that the agglomeration of the particles of the granular sample in the resin material can be suppressed and the dispersibility of the granular sample in the resin material can be improved.

1 容器
2 粒状試料
3 液体状樹脂材料
4、4a 粒状試料および液体状樹脂材料入りの容器
θ 公転軸に対する自転軸の傾斜角度
1 Container 2 Granular sample 3 Liquid resin material 4, 4a Container containing granular sample and liquid resin material θ Tilt angle of the rotation axis with respect to the revolution axis

Claims (8)

粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、
容器内に、前記粒状試料を液体状樹脂材料とともに投入し、粒状試料および液体状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転とは逆の回転方向に公転させることにより、容器内の粒状試料および液体状樹脂材料を攪拌してから、液体状樹脂材料を硬化させ
前記自転公転撹拌機による撹拌の初期段階を大気雰囲気で行い、その後の少なくとも終期段階を真空雰囲気で行う、分析用試料埋込樹脂の作製方法。
A granular sample to be analyzed, which is composed of particles having a non-uniform particle size and contains a plurality of types of simple substances and / or compounds, is embedded in a resin material to prepare a sample-embedded resin in which the granular sample is fixed in the resin material. It ’s a method,
By putting the granular sample together with the liquid resin material into the container and rotating the container containing the granular sample and the liquid resin material in the direction opposite to the rotation while rotating with a rotation / revolution stirrer. After stirring the granular sample and the liquid resin material in the container, the liquid resin material is cured .
A method for producing a sample-embedded resin for analysis , wherein the initial stage of stirring by the rotation / revolution stirrer is performed in an atmospheric atmosphere, and then at least the final stage is performed in a vacuum atmosphere .
粒径が不均一な粒子からなり複数種類の単体及び/又は化合物を含む分析対象の粒状試料を、樹脂材料に埋め込んで、該樹脂材料中に前記粒状試料を固定した試料埋込樹脂を作製する方法であって、
容器内に、前記粒状試料を液体状樹脂材料とともに投入し、粒状試料および液体状樹脂材料入りの前記容器を、自転公転撹拌機で自転させつつ該自転と同じ回転方向に公転させることにより、容器内の粒状試料および液体状樹脂材料を攪拌してから、液体状樹脂材料を硬化させ
前記自転公転撹拌機による撹拌の初期段階を大気雰囲気で行い、その後の少なくとも終期段階を真空雰囲気で行う、分析用試料埋込樹脂の作製方法。
A granular sample to be analyzed, which is composed of particles having a non-uniform particle size and contains a plurality of types of simple substances and / or compounds, is embedded in a resin material to prepare a sample-embedded resin in which the granular sample is fixed in the resin material. It ’s a method,
The granular sample is put into the container together with the liquid resin material, and the container containing the granular sample and the liquid resin material is rotated in the same rotation direction as the rotation while rotating with a rotation / revolution stirrer. After stirring the granular sample and the liquid resin material inside, the liquid resin material is cured .
A method for producing a sample-embedded resin for analysis , wherein the initial stage of stirring by the rotation / revolution stirrer is performed in an atmospheric atmosphere, and then at least the final stage is performed in a vacuum atmosphere .
自転公転撹拌機による攪拌時の公転速度を、400rpm~2000rpmとする、請求項1又は2に記載の分析用試料埋込樹脂の作製方法。 The method for producing a sample-embedded resin for analysis according to claim 1 or 2, wherein the revolution speed at the time of stirring by a rotation / revolution stirrer is 400 rpm to 2000 rpm. 自転公転撹拌機による攪拌時間を、1分~30分とする、請求項1~のいずれか一項に記載の分析用試料埋込樹脂の作製方法。 The method for producing a sample-embedded resin for analysis according to any one of claims 1 to 3 , wherein the stirring time by the rotation / revolution stirrer is 1 minute to 30 minutes. 自転公転撹拌機による攪拌後、液体状樹脂材料の硬化が完了するまでの時間を、30分~60分とする、請求項1~のいずれか一項に記載の分析用試料埋込樹脂の作製方法。 The analytical sample-embedded resin according to any one of claims 1 to 4 , wherein the time required to complete the curing of the liquid resin material after stirring by the planetary rotation mixer is 30 to 60 minutes. Manufacturing method. 容器に投入する液体状樹脂材料に対する粒状試料の割合を、100体積%~300体積%とする、請求項1~のいずれか一項に記載の分析用試料埋込樹脂の作製方法。 The method for producing a sample-embedded resin for analysis according to any one of claims 1 to 5 , wherein the ratio of the granular sample to the liquid resin material to be charged into the container is 100% by volume to 300% by volume. 前記粒状試料を構成する粒子を鉱石粒子とする、請求項1~のいずれか一項に記載の分析用試料埋込樹脂の作製方法。 The method for producing a sample-embedded resin for analysis according to any one of claims 1 to 6 , wherein the particles constituting the granular sample are ore particles. 自転公転撹拌機で自転させる前記容器として、粒状試料および液体状樹脂材料入りの容器が複数個配置されたものを用いる、請求項1~のいずれか一項に記載の分析用試料埋込樹脂の作製方法。 The analytical sample-embedded resin according to any one of claims 1 to 7 , wherein a container in which a plurality of containers containing a granular sample and a liquid resin material are arranged is used as the container to be rotated by a rotation / revolution stirrer. Manufacturing method.
JP2018069745A 2017-11-14 2018-03-30 Method for preparing a sample-embedded resin for analysis Active JP7018804B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017219423 2017-11-14
JP2017219423 2017-11-14

Publications (2)

Publication Number Publication Date
JP2019090778A JP2019090778A (en) 2019-06-13
JP7018804B2 true JP7018804B2 (en) 2022-02-14

Family

ID=66836255

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069745A Active JP7018804B2 (en) 2017-11-14 2018-03-30 Method for preparing a sample-embedded resin for analysis

Country Status (1)

Country Link
JP (1) JP7018804B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6815574B1 (en) 2019-05-13 2021-01-20 住友電気工業株式会社 Tungsten carbide powder
KR102292634B1 (en) * 2019-07-18 2021-08-23 (의)삼성의료재단 Sample manufacturing apparatus for tissue inspection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316031A (en) 2001-04-18 2002-10-29 I K S:Kk Apparatus for stirring and defoaming for syringe, syringe adapter used therein and method for stirring and defoaming for syringe by using the adapter
JP2005131622A (en) 2003-10-29 2005-05-26 I K S:Kk Agitating/defoaming method of solvent etc. and its apparatus
US20140048972A1 (en) 2011-04-22 2014-02-20 Fei Company Automated Sample Preparation
JP2017080645A (en) 2015-10-23 2017-05-18 株式会社写真化学 Agitation defoaming method and agitation defoaming apparatus

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2711964B2 (en) * 1992-08-27 1998-02-10 株式会社アイ・ケイ・エス Method and apparatus for stirring and defoaming liquid
JP3586741B2 (en) * 1997-10-01 2004-11-10 株式会社イーエムイー Kneading defoaming method and kneading defoaming device
JP3896449B2 (en) * 1998-04-13 2007-03-22 株式会社シンキー Stirring deaerator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002316031A (en) 2001-04-18 2002-10-29 I K S:Kk Apparatus for stirring and defoaming for syringe, syringe adapter used therein and method for stirring and defoaming for syringe by using the adapter
JP2005131622A (en) 2003-10-29 2005-05-26 I K S:Kk Agitating/defoaming method of solvent etc. and its apparatus
US20140048972A1 (en) 2011-04-22 2014-02-20 Fei Company Automated Sample Preparation
JP2017080645A (en) 2015-10-23 2017-05-18 株式会社写真化学 Agitation defoaming method and agitation defoaming apparatus

Also Published As

Publication number Publication date
JP2019090778A (en) 2019-06-13

Similar Documents

Publication Publication Date Title
JP7018804B2 (en) Method for preparing a sample-embedded resin for analysis
JP6891715B2 (en) Sample preparation method and sample analysis method
US8376251B2 (en) Method, system and apparatus for the deagglomeration and/or disaggregation of clustered materials
JP6985112B2 (en) Sample embedded resin for analysis
TWI358324B (en) Method for separating foreign particles
KR102649474B1 (en) Fused spherical silica powder and method for producing the same
JP7345277B2 (en) Evaluation method of analytical sample embedding resin and manufacturing method of analytical sample embedding resin
JP6459312B2 (en) Sample preparation method
JP7018806B2 (en) Method for preparing a sample-embedded resin for analysis
CN108779001A (en) Ferrite particle, resin composition, and resin film
JP7018805B2 (en) Method for preparing a sample-embedded resin for analysis
JP6620935B2 (en) Resin-embedded sample and method for producing the same
JP2005239531A (en) Spheric carbon nanotube aggregate, its manufacturing method and method for manufacturing composite material
JP2019090686A (en) Method of preparing resin embedded with analysis sample, and resin embedded with analysis sample
KR101583752B1 (en) Method of high-speed dispersing beta-type capacious nanoparticles within epoxy resin
JP5042806B2 (en) Method for producing metal oxide fine particles, method for evaluating metal oxide fine particles, and metal oxide fine particles
JP2022079253A (en) Method for analyzing useful minerals included in ore
JP2018044829A (en) Method for preparing particulate/resin-embedded sample for use in surface analysis, method for analyzing sample, and method for evaluating sample preparation condition
Shakirbay et al. Evaluation of alumina slurry dispersion by nuclear magnetic resonance relaxation as a comparison to conventional dispersion evaluation methods
JP6537307B2 (en) Method of treating cement composition
JP7298326B2 (en) Method for preparing samples for mineral analysis
JP2022081895A (en) Method for manufacturing observation sample
JP7121290B2 (en) Sample preparation method and sample analysis method
De Castro et al. Novel technique for the preparation and analysis of powder-based polished sections by automated optical Mineralogy: Part 1–Comparative study of representativity
US20230107924A1 (en) Inorganic filler powder, thermally conductive polymer composition, and method for manufacturing inorganic filler powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200805

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220201

R151 Written notification of patent or utility model registration

Ref document number: 7018804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151