JP7018267B2 - Sialon sintered body, its manufacturing method, composite substrate and electronic device - Google Patents

Sialon sintered body, its manufacturing method, composite substrate and electronic device Download PDF

Info

Publication number
JP7018267B2
JP7018267B2 JP2017129086A JP2017129086A JP7018267B2 JP 7018267 B2 JP7018267 B2 JP 7018267B2 JP 2017129086 A JP2017129086 A JP 2017129086A JP 2017129086 A JP2017129086 A JP 2017129086A JP 7018267 B2 JP7018267 B2 JP 7018267B2
Authority
JP
Japan
Prior art keywords
sintered body
sialon
sialon sintered
less
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017129086A
Other languages
Japanese (ja)
Other versions
JP2018048059A (en
Inventor
祐輝 野本
勝弘 井上
啓 田中
祐司 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to US15/703,034 priority Critical patent/US10399906B2/en
Priority to DE102017008649.4A priority patent/DE102017008649B4/en
Priority to TW106131734A priority patent/TWI762509B/en
Priority to KR1020170119462A priority patent/KR102395407B1/en
Priority to CN201710846104.8A priority patent/CN107840664B/en
Publication of JP2018048059A publication Critical patent/JP2018048059A/en
Application granted granted Critical
Publication of JP7018267B2 publication Critical patent/JP7018267B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/597Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon oxynitride, e.g. SIALONS
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3865Aluminium nitrides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/38Non-oxide ceramic constituents or additives
    • C04B2235/3852Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
    • C04B2235/3873Silicon nitrides, e.g. silicon carbonitride, silicon oxynitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H2009/02165Tuning
    • H03H2009/02173Tuning of film bulk acoustic resonators [FBAR]

Description

本発明は、サイアロン焼結体、その製法、複合基板及び電子デバイスに関する。 The present invention relates to a Sialon sintered body, a method for producing the same, a composite substrate and an electronic device.

サイアロンは一般式:Si6-zAlzz8-z(0<z≦4.2)で表される物質の総称で、セラミック材料のなかでも、高強度、高ヤング率、低熱膨張、高絶縁性を兼ね備えた材料である。このようなセラミック材料を、弾性波素子の複合基板の支持基板として用いる場合には、接合させるために気孔がなく、表面平坦性が高く、全面に均一な組成であることが求められる。特許文献1に示すように、サイアロンを製造するには焼結助剤を用いて焼成することが一般的である。一方、サイアロンを製造する際に焼結助剤を用いずに焼成する方法も知られている。例えば、特許文献2には、β―サイアロンを窒化珪素とBNの粉末で覆ってN2ガス雰囲気で焼成する方法が開示されている。また、特許文献3には、窒化珪素粉末にアルミニウムアルコキシドを加え、加水分解後、ろ過して得た粉末を600~900℃で仮焼し、1700~1900℃で加圧焼結をしてβ―サイアロン焼結体を得る方法が開示されている。 Sialon is a general term for substances represented by the general formula: Si 6-z Al z O z N 8-z (0 <z ≤ 4.2), and among ceramic materials, it has high strength, high Young's modulus, and low thermal expansion. , A material that also has high insulation. When such a ceramic material is used as a support substrate for a composite substrate of an elastic wave element, it is required that there are no pores for bonding, the surface flatness is high, and the composition is uniform over the entire surface. As shown in Patent Document 1, in order to produce Sialon, it is common to fire using a sintering aid. On the other hand, a method of firing without using a sintering aid when producing Sialon is also known. For example, Patent Document 2 discloses a method of covering β-sialon with a powder of silicon nitride and BN and firing in an N 2 gas atmosphere. Further, in Patent Document 3, aluminum alkoxide is added to silicon nitride powder, and after hydrolysis, the powder obtained by filtration is calcined at 600 to 900 ° C. and pressure-sintered at 1700 to 1900 ° C. to β. -A method for obtaining a Sialon sintered body is disclosed.

特開平1-264973号公報Japanese Unexamined Patent Publication No. 1-264973 特開昭61-141671号公報Japanese Unexamined Patent Publication No. 61-141671 特開昭60-108371号公報Japanese Unexamined Patent Publication No. 60-108371

しかしながら、特許文献1のようにサイアロンの製造時に焼結助剤を用いると、組成が均一にはならず異相成分が多くなったり、気孔が多くなったりするという問題があった。異相成分が多くなると、サイアロンと異相成分との間で研磨のされ易さが異なるため、表面平坦性が十分高くならないという問題があった。例えば、異相成分がサイアロンに比べて硬い場合には異相成分が研磨され難いため凸状に残り易く、異相成分が軟らかい場合には異相成分が研磨され易く穴になり易いことが挙げられる。また、材料内に気孔が多いと、研磨しても気孔由来の凹部分が残るため、表面平坦性が十分高くならないという問題があった。また、特許文献2,3のようにサイアロンの製造時に焼結助剤を用いず常圧焼成した場合、サイアロンは難焼結性の材料であるため、気孔が外部に排出しきらず内部に残留しやすく、相対密度を十分高くすることが難しかった。 However, when a sintering aid is used at the time of producing Sialon as in Patent Document 1, there is a problem that the composition is not uniform, the number of different phase components increases, and the number of pores increases. When the amount of the heterogeneous component increases, the easiness of polishing differs between the sialon and the heterogeneous component, so that there is a problem that the surface flatness is not sufficiently high. For example, when the heterogeneous component is harder than Sialon, the heterogeneous component is difficult to be polished and therefore tends to remain convex, and when the heterogeneous component is soft, the heterogeneous component is easily polished and easily becomes a hole. Further, if there are many pores in the material, there is a problem that the surface flatness is not sufficiently high because the recesses derived from the pores remain even after polishing. Further, as in Patent Documents 2 and 3, when normal pressure firing is performed without using a sintering aid during the production of Sialon, since Sialon is a difficult-to-sinter material, the pores are not completely discharged to the outside and remain inside. It was easy and it was difficult to make the relative density sufficiently high.

本発明はこのような課題を解決するためになされたものであり、表面を鏡面状に研磨したときの表面平坦性が高いサイアロン焼結体を提供することを目的とする。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a Sialon sintered body having high surface flatness when the surface is mirror-polished.

本発明のサイアロン焼結体は、Si6-zAlzz8-z(0<z≦4.2)で表され、開気孔率が0.1%以下、相対密度が99.9%以上、且つ、X線回折図において、サイアロンの最大ピークの強度に対する、サイアロン以外の各成分の最大ピークの強度の総和の比が0.005以下のものである。このサイアロン焼結体は、開気孔率が低く、相対密度が高く、異相が少ないため、表面を鏡面状に研磨したときの表面平坦性が高くなる。 The Sialon sintered body of the present invention is represented by Si 6-z Al z O z N 8-z (0 <z ≦ 4.2), has an open porosity of 0.1% or less, and has a relative density of 99.9. % Or more, and in the X-ray diffraction pattern, the ratio of the sum of the maximum peak intensities of each component other than sialon to the maximum peak intensity of sialon is 0.005 or less. Since this Sialon sintered body has a low open porosity, a high relative density, and few heterogeneous phases, the surface flatness when the surface is mirror-polished is high.

本発明のサイアロン焼結体の製法は、いずれも純度が99.8質量%以上の窒化珪素、窒化アルミニウム、アルミナ及びシリカの成分の中から、Si:Al:O:N=(6-z):z:z:(8-z)(但し0<z≦4.2)となるように組成を選択すると共に質量割合を決定して各成分を混合して原料粉末を作製し、該原料粉末を所定形状に成形したのち、焼成温度1725~1900℃、プレス圧力100~300kgf/cm2でホットプレス焼成を行うことによりサイアロン焼結体を得るものである。この製法は、圧力によって気孔を排出しながら緻密化を進められるため、上述した本発明のサイアロン焼結体を製造するのに適している。 In the method for producing the Sialon sintered body of the present invention, Si: Al: O: N = (6-z) is selected from the components of silicon nitride, aluminum nitride, alumina and silica having a purity of 99.8% by mass or more. : Z: z: (8-z) (However, 0 <z≤4.2), the composition is selected, the mass ratio is determined, and each component is mixed to prepare a raw material powder, and the raw material powder is prepared. Is molded into a predetermined shape, and then hot-press fired at a firing temperature of 1725 to 1900 ° C. and a press pressure of 100 to 300 kgf / cm 2 to obtain a sialon sintered body. This production method is suitable for producing the above-mentioned Sialon sintered body of the present invention because densification can be promoted while discharging pores by pressure.

本発明の複合基板は、支持基板と機能性基板とが接合された複合基板であって、前記支持基板は、上述した本発明のサイアロン焼結体であるものである。この複合基板は、支持基板が上述した本発明のサイアロン焼結体であるため、接合界面のうち実際に接合している面積の割合が大きくなり、良好な接合性を示す。 The composite substrate of the present invention is a composite substrate in which a support substrate and a functional substrate are bonded, and the support substrate is the above-mentioned Sialon sintered body of the present invention. In this composite substrate, since the support substrate is the sialon sintered body of the present invention described above, the ratio of the area actually bonded to the bonding interface is large, and good bonding properties are exhibited.

本発明の電子デバイスは、上述した本発明の複合基板を利用したものである。この電子デバイスでは、支持基板であるサイアロン焼結体の熱膨張係数が3.0ppm/K(40-400℃)以下であるため、弾性表面波デバイスとした場合の周波数温度依存性やフィルター性能が大きく改善される。また、ラム波素子、薄膜共振子(FBAR)、LEDデバイス、光導波路デバイス、スイッチデバイス、半導体デバイスなどにおいても、支持基板の熱膨張係数が非常に小さいことで、性能が向上する。更には、サイアロンの組成(前述のz値)を調整することで、熱膨張係数が3.0ppm/K以下のまま、ヤング率を調整することができ、これによって複合基板とした場合の機能性基板の性能の微調整や最大化が可能となる。 The electronic device of the present invention utilizes the composite substrate of the present invention described above. In this electronic device, the coefficient of thermal expansion of the Sialon sintered body, which is the support substrate, is 3.0 ppm / K (40-400 ° C) or less, so that the frequency temperature dependence and filter performance of the surface acoustic wave device are high. It will be greatly improved. Further, in a Lamb wave element, a thin film resonator (FBAR), an LED device, an optical waveguide device, a switch device, a semiconductor device, etc., the thermal expansion coefficient of the support substrate is very small, so that the performance is improved. Furthermore, by adjusting the composition of Sialon (z value described above), Young's modulus can be adjusted while the coefficient of thermal expansion remains 3.0 ppm / K or less, which makes it functional when a composite substrate is formed. It is possible to fine-tune and maximize the performance of the board.

複合基板10の斜視図。The perspective view of the composite board 10. 複合基板10を用いて作製した電子デバイス30の斜視図。FIG. 3 is a perspective view of an electronic device 30 manufactured by using the composite substrate 10.

以下、本発明の実施の形態を具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜変更、改良等が加えられることが理解されるべきである。 Hereinafter, embodiments of the present invention will be specifically described, but the present invention is not limited to the following embodiments and is based on ordinary knowledge of those skilled in the art to the extent that it does not deviate from the gist of the present invention. It should be understood that changes, improvements, etc. will be made as appropriate.

本実施形態のサイアロン焼結体は、Si6-zAlzz8-z(0<z≦4.2)で表され、開気孔率が0.1%以下、相対密度が99.9%以上(好ましくは99.95%以上)、且つ、X線回折図において、サイアロンの最大ピークの強度に対する、サイアロン以外の各成分(異相成分)の最大ピークの強度の総和の比が0.005以下のものである。なお、X線回折図の測定条件はCuKα、40kV、40mA、2θ=10-70°である。このサイアロン焼結体は、開気孔率が低く、相対密度が高く、異相が少ないため、表面を鏡面状に研磨したときの表面平坦性が高くなる。開気孔率が高かったり相対密度が低かったりすると、研磨しても気孔由来の凹部分が残るため、表面平坦性が十分高くならない。また、異相成分が多いと、サイアロンと異相成分との間で研磨のされ易さが異なり、表面平坦性が十分高くならない。特に異相成分が研磨され難い場合は異相部が凸部として残り易く、機能性基板との接合が難しくなる。異相成分としては、例えばAl23、Si2ON2、Si3Al6122、ムライトなどが挙げられる。 The Sialon sintered body of the present embodiment is represented by Si 6-z Al z O z N 8-z (0 <z ≦ 4.2), has an open porosity of 0.1% or less, and has a relative density of 99. 9% or more (preferably 99.95% or more), and in the X-ray diffraction pattern, the ratio of the sum of the maximum peak intensities of each component (heterogeneous component) other than sialon to the maximum peak intensity of sialon is 0. It is less than 005. The measurement conditions of the X-ray diffraction pattern are CuKα, 40 kV, 40 mA, 2θ = 10-70 °. Since this Sialon sintered body has a low open porosity, a high relative density, and few heterogeneous phases, the surface flatness when the surface is mirror-polished is high. If the open porosity is high or the relative density is low, the surface flatness will not be sufficiently high because the recesses derived from the pores will remain even after polishing. Further, when the amount of the heterogeneous component is large, the easiness of polishing differs between the sialon and the heterogeneous component, and the surface flatness is not sufficiently high. In particular, when the out-of-phase component is difficult to polish, the out-of-phase portion tends to remain as a convex portion, which makes it difficult to bond to the functional substrate. Examples of the heterogeneous component include Al 2 O 3 , Si 2 ON 2 , Si 3 Al 6 O 12 N 2 , and mullite.

本実施形態のサイアロン焼結体によれば、研磨仕上げした表面に存在する気孔数を少なくすることができる。研磨仕上げした表面の100μm×100μmの面積当たりに存在する最大長さ0.5μm以上、且つ、深さ0.08μm以上の気孔数は10個以下が好ましく、5個以下がより好ましく、3個以下が更に好ましい。 According to the Sialon sintered body of the present embodiment, the number of pores existing on the polished surface can be reduced. The number of pores having a maximum length of 0.5 μm or more and a depth of 0.08 μm or more, which exists per 100 μm × 100 μm area of the polished surface, is preferably 10 or less, more preferably 5 or less, and 3 or less. Is more preferable.

本実施形態のサイアロン焼結体の表面平坦性については、例えば、鏡面状に研磨仕上げした表面の100μm×140μmの測定範囲における中心線平均粗さRaが1.0nm以下であること、及び、同測定範囲における最大山高さと最大谷深さとの高さの差Ptが30nm以下であることの少なくとも1つを満たすことが好ましい。Raは0.8nm以下がより好ましい。Ptは25nm以下がより好ましい。 Regarding the surface flatness of the Sialon sintered body of the present embodiment, for example, the centerline average roughness Ra in the measurement range of 100 μm × 140 μm on the mirror-polished surface is 1.0 nm or less, and the same. It is preferable that the difference Pt between the maximum peak height and the maximum valley depth in the measurement range satisfies at least one of 30 nm or less. Ra is more preferably 0.8 nm or less. Pt is more preferably 25 nm or less.

本実施形態のサイアロン焼結体のヤング率は、180GPa以上が好ましく、200GPa以上がより好ましく、220GPa以上が更に好ましい。 The Young's modulus of the Sialon sintered body of the present embodiment is preferably 180 GPa or more, more preferably 200 GPa or more, still more preferably 220 GPa or more.

本実施形態のサイアロン焼結体において、zの値は0.5≦z≦4.0が好ましい。この範囲であれば、上述した気孔数をより少なくすることができる。zの値は0.5≦z≦3.2がより好ましい。この範囲であれば、上述した気孔数を更に少なくすることができる。 In the Sialon sintered body of the present embodiment, the value of z is preferably 0.5 ≦ z ≦ 4.0. Within this range, the number of pores described above can be further reduced. The value of z is more preferably 0.5 ≦ z ≦ 3.2. Within this range, the number of pores described above can be further reduced.

次に、サイアロン焼結体の製造方法の実施の形態について説明する。サイアロン焼結体の製造フローは、サイアロン原料粉末を作製する工程と、サイアロン焼結体を作製する工程とを含む。 Next, an embodiment of a method for manufacturing a Sialon sintered body will be described. The production flow of the sialon sintered body includes a step of producing a sialon raw material powder and a step of producing a sialon sintered body.

(サイアロン原料粉末の作製)
原料粉末には、不純物金属元素含有量が0.2質量%以下、平均粒径が2μm以下の市販の窒化珪素、窒化アルミニウム、アルミナ及びシリカ粉末を用いた。これら原料を用いて、Si:Al:O:N=(6-z):z:z:(8-z)(但し0<z≦4.2)となるように組成を選択すると共に質量割合を決定して各成分を混合して原料粉末を作製する。zの値は0.5≦z≦4.0が好ましく、0.5≦z≦3.2がより好ましい。各粉末は、緻密に焼結するためには細かいものが好ましく、平均粒径が0.5~1.5μmのものが好ましい。なお、加熱によりこれら成分を生成するような前駆体物質を各成分の原料に用いてもよい。各粉末は、混合して溶媒に分散させてサイアロン組成のスラリーを作製する。混合方法に特に制限はなく、例えばボールミル、アトライター、ビーズミル、ジェットミル等を利用することができる。但し、この際、メディアから混入する成分とその量には十分な注意が必要である。すなわち、混入しても不純物とはならないアルミナや窒化珪素製の玉石やポットをメディアに用いることが好ましい。また、樹脂製のポットや玉石も、焼成工程等で除去することができるため使用可能である。金属製のメディアは不純物量が多くなるため好ましくない。得られたスラリーを乾燥し、乾燥物を篩に通してサイアロン原料粉末とする。なお、粉砕時にメディア成分等の混入によって組成がずれた場合は、適宜組成調整するなどして原料粉末とすればよい。あるいは、粉砕物に含まれる各成分の質量が所望のサイアロン組成になるように、予め混合粉末の各成分の質量を調整しておくことにより、粉砕物をそのままサイアロン原料粉末としてもよい。
(Preparation of Sialon raw material powder)
As the raw material powder, commercially available silicon nitride, aluminum nitride, alumina and silica powder having an impurity metal element content of 0.2% by mass or less and an average particle size of 2 μm or less were used. Using these raw materials, the composition is selected so that Si: Al: O: N = (6-z): z: z: (8-z) (however, 0 <z≤4.2) and the mass ratio is selected. Is determined and each component is mixed to prepare a raw material powder. The value of z is preferably 0.5 ≦ z ≦ 4.0, more preferably 0.5 ≦ z ≦ 3.2. Each powder is preferably fine in order to be finely sintered, and preferably has an average particle size of 0.5 to 1.5 μm. In addition, a precursor substance that produces these components by heating may be used as a raw material for each component. Each powder is mixed and dispersed in a solvent to prepare a slurry having a sialon composition. The mixing method is not particularly limited, and for example, a ball mill, an attritor, a bead mill, a jet mill, or the like can be used. However, at this time, it is necessary to pay sufficient attention to the components mixed from the media and their amounts. That is, it is preferable to use a boulder or pot made of alumina or silicon nitride, which does not become an impurity even if mixed, as the medium. Further, resin pots and boulders can also be used because they can be removed in a firing step or the like. Metallic media is not preferable because it has a large amount of impurities. The obtained slurry is dried, and the dried product is passed through a sieve to obtain a sialon raw material powder. If the composition deviates due to the mixing of media components or the like during pulverization, the composition may be appropriately adjusted to obtain a raw material powder. Alternatively, the pulverized product may be used as the sialon raw material powder as it is by adjusting the mass of each component of the mixed powder in advance so that the mass of each component contained in the pulverized product has a desired sialon composition.

(サイアロン焼結体の作製)
得られたサイアロン原料粉末を所定形状に成形する。成形の方法に特に制限はなく、一般的な成形法を用いることができる。例えば、上記のようなサイアロン原料粉末をそのまま金型によってプレス成形してもよい。プレス成形の場合は、サイアロン原料粉末をスプレードライによって顆粒状にしておくと、成形性が良好になる。他に、有機バインダーを加えて坏土を作製し押出し成形したり、スラリーを作製しシート成形することができる。これらのプロセスでは焼成工程前あるいは焼成工程中に有機バインダー成分を除去することが必要になる。また、CIP(冷間静水圧プレス)にて高圧成形をしてもよい。
(Preparation of Sialon sintered body)
The obtained Sialon raw material powder is molded into a predetermined shape. The molding method is not particularly limited, and a general molding method can be used. For example, the above-mentioned Sialon raw material powder may be press-molded as it is by a mold. In the case of press molding, if the Sialon raw material powder is made into granules by spray drying, the moldability is improved. In addition, an organic binder can be added to prepare clay and extrude it, or a slurry can be prepared and sheet-molded. In these processes, it is necessary to remove the organic binder component before or during the firing step. Further, high pressure molding may be performed by CIP (cold hydrostatic pressure press).

次に、得られた成形体を焼成してサイアロン焼結体を作製する。この際、焼結粒子を微細に維持し、焼結中に気孔を排出することがサイアロン焼結体の表面平坦性を高めるために重要である。その手法として、ホットプレス法が非常に有効である。ホットプレス法を用いることで常圧焼結に比べて低温で微細粒の状態で緻密化が進み、常圧焼結でよく見られる粗大な気孔の残留を抑制することができる。ホットプレス時の焼成温度は1725~1900℃とすることが好ましく、異相を極力少なくするためには1750~1900℃とすることがより好ましい。また、ホットプレス時のプレス圧力は100~300kgf/cm2とすることが好ましく、150~250kgf/cm2がより好ましい。焼成温度(最高温度)での保持時間は、成形体の形状や大きさ、加熱炉の特性などを考慮し、適宜、適当な時間を選択することができる。具体的な好ましい保持時間は、例えば1~12時間、更に好ましくは2~8時間である。ホットプレス時の焼成雰囲気は、サイアロンの分解を避けるため、窒素雰囲気が好ましい。 Next, the obtained molded product is fired to produce a Sialon sintered body. At this time, it is important to keep the sintered particles fine and to discharge pores during sintering in order to improve the surface flatness of the Sialon sintered body. The hot press method is very effective as the method. By using the hot press method, densification progresses in the state of fine particles at a low temperature as compared with normal pressure sintering, and it is possible to suppress the residual coarse pores often seen in normal pressure sintering. The firing temperature during hot pressing is preferably 1725 to 1900 ° C, and more preferably 1750 to 1900 ° C in order to minimize the number of different phases. The press pressure during hot pressing is preferably 100 to 300 kgf / cm 2 , more preferably 150 to 250 kgf / cm 2 . The holding time at the firing temperature (maximum temperature) can be appropriately selected in consideration of the shape and size of the molded product, the characteristics of the heating furnace, and the like. The specific preferred holding time is, for example, 1 to 12 hours, more preferably 2 to 8 hours. The firing atmosphere during hot pressing is preferably a nitrogen atmosphere in order to avoid decomposition of sialon.

次に、複合基板の実施の形態について説明する。複合基板は、機能性基板と、上述したサイアロン焼結体製の支持基板とが接合されたものである。接合界面のうち実際に接合している面積の割合(接合面積割合)が80%以上であることが好ましく、90%以上であることがより好ましい。このように接合面積割合が大きいと、機能性基板と支持基板とは良好な接合性を示す。機能性基板としては、特に限定されないが、例えばタンタル酸リチウム、ニオブ酸リチウム、窒化ガリウム、シリコンなどが挙げられる。接合方法は、直接接合でもよいし、接着層を介して接合してもよいが、直接接合が好ましい。直接接合の場合には、機能性基板と支持基板とのそれぞれの接合面を活性化した後、両接合面を向かい合わせにした状態で両基板を押圧する。接合面の活性化は、例えば、接合面への不活性ガス(アルゴンなど)の中性原子ビームの照射のほか、プラズマやイオンビームの照射などで行う。一方、接着層を介して接合する場合には、接着層として、例えばエポキシ樹脂やアクリル樹脂などを用いる。機能性基板と支持基板の厚みの比(機能性基板の厚み/支持基板の厚み)は0.1以下であることが好ましい。図1に複合基板の一例を示す。複合基板10は、機能性基板である圧電基板12と支持基板14とが直接接合により接合されたものである。 Next, an embodiment of the composite substrate will be described. The composite substrate is a bonding of a functional substrate and the above-mentioned support substrate made of a Sialon sintered body. The ratio of the area actually joined (joined area ratio) in the joined interface is preferably 80% or more, and more preferably 90% or more. When the bonding area ratio is large as described above, the functional substrate and the support substrate show good bonding properties. The functional substrate is not particularly limited, and examples thereof include lithium tantalate, lithium niobate, gallium nitride, and silicon. The joining method may be direct joining or may be joined via an adhesive layer, but direct joining is preferable. In the case of direct bonding, after activating the respective bonding surfaces of the functional substrate and the support substrate, both substrates are pressed with the two bonding surfaces facing each other. The junction surface is activated, for example, by irradiating the junction surface with a neutral atomic beam of an inert gas (argon or the like), or by irradiating the junction surface with a plasma or an ion beam. On the other hand, when joining via an adhesive layer, for example, an epoxy resin or an acrylic resin is used as the adhesive layer. The ratio of the thickness of the functional substrate to the support substrate (thickness of the functional substrate / thickness of the support substrate) is preferably 0.1 or less. FIG. 1 shows an example of a composite substrate. The composite substrate 10 is formed by directly joining the piezoelectric substrate 12, which is a functional substrate, and the support substrate 14.

次に、電子デバイスの実施の形態について説明する。電子デバイスは、上述した複合基板を利用したものである。こうした電子デバイスとしては、弾性波デバイス(弾性表面波デバイスやラム波素子、薄膜共振子(FBAR)など)のほか、LEDデバイス、光導波路デバイス、スイッチデバイスなどが挙げられる。弾性波デバイスに上述した複合基板を利用する場合には、支持基板であるサイアロン焼結体の熱膨張係数が3.0ppm/K(40-400℃)以下と非常に小さく、且つ、ヤング率が高いため、機能性基板の拘束力が高まる。その結果、デバイスの周波数温度依存性が大きく改善される。図2に複合基板10を用いて作製した電子デバイス30の一例を示す。電子デバイス30は、1ポートSAW共振子つまり弾性表面波デバイスである。まず、複合基板10の圧電基板12に一般的なフォトリソグラフィ技術を用いて多数の電子デバイス30のパターンを形成し、その後、ダイシングにより1つ1つの電子デバイス30に切り出す。電子デバイス30は、フォトリソグラフィ技術により、圧電基板12の表面にIDT(Interdigital Transducer)電極32,34と反射電極36とが形成されたものである。 Next, an embodiment of the electronic device will be described. The electronic device utilizes the composite substrate described above. Examples of such electronic devices include elastic wave devices (elastic surface wave devices, Lamb wave elements, thin film resonators (FBAR), etc.), LED devices, optical waveguide devices, switch devices, and the like. When the above-mentioned composite substrate is used for the elastic wave device, the coefficient of thermal expansion of the Sialon sintered body, which is the support substrate, is as small as 3.0 ppm / K (40-400 ° C) or less, and the Young's modulus is low. Because it is high, the binding force of the functional substrate is increased. As a result, the frequency temperature dependence of the device is greatly improved. FIG. 2 shows an example of an electronic device 30 manufactured by using the composite substrate 10. The electronic device 30 is a 1-port SAW resonator, that is, a surface acoustic wave device. First, a pattern of a large number of electronic devices 30 is formed on the piezoelectric substrate 12 of the composite substrate 10 by using a general photolithography technique, and then the patterns are cut into each electronic device 30 by dicing. The electronic device 30 has IDT (Interdigital Transducer) electrodes 32 and 34 and reflection electrodes 36 formed on the surface of the piezoelectric substrate 12 by photolithography technology.

以下に、本発明の実施例について説明する。なお、以下の実施例は本発明を何ら限定するものではない。 Hereinafter, examples of the present invention will be described. The following examples do not limit the present invention in any way.

1.原料粉末の作製
原料粉末には、市販の窒化珪素粉末(酸素含有量1.3質量%、不純物金属元素含有量0.2質量%以下、平均粒径0.6μm)、窒化アルミニウム(酸素含有量0.8質量%、不純物金属元素含有量0.1質量%以下、平均粒径1.1μm)、アルミナ(純度99.9質量%、平均粒径0.5μm)、シリカ(純度99.9質量%、平均粒径0.5μm)の粉末を用いた。
1. 1. Preparation of raw material powder The raw material powder includes commercially available silicon nitride powder (oxygen content 1.3% by mass, impurity metal element content 0.2% by mass or less, average particle size 0.6 μm) and aluminum nitride (oxygen content). 0.8% by mass, impurity metal element content 0.1% by mass or less, average particle size 1.1 μm), alumina (purity 99.9% by mass, average particle size 0.5 μm), silica (purity 99.9 mass) %, Average particle size 0.5 μm) powder was used.

Figure 0007018267000001
Figure 0007018267000001

サイアロン原料粉末A~G及びJは、以下のようにして作製した。すなわち、まず、窒化珪素、窒化アルミニウム、アルミナ、シリカの各粉末を、表1に示すzの値を持つサイアロン組成(Si6-zAlzz8-z)になるように秤量し、アルミナを玉石(φ5mm)とし、溶媒にイソプロピルアルコールを用いてボールミルにて4時間混合し、混合粉末のスラリーを作製した。得られたスラリーを窒素ガスフロー下、110℃で乾燥し、乾燥物を篩に通してサイアロン原料粉末A~G及びJとした。なお、異相成分を抑えるためにサイアロン原料粉末は過剰酸素量が少ないことが好ましく、サイアロン原料粉末A~Gは過剰酸素量を1.0質量%以下とした。一方、サイアロン原料粉末Jは過剰酸素量を2.7質量%とした。 The sialon raw material powders A to G and J were prepared as follows. That is, first, each powder of silicon nitride, aluminum nitride, alumina, and silica is weighed so as to have a sialon composition (Si 6-z Al z O z N 8-z ) having a value of z shown in Table 1. Alumina was made into a ball stone (φ5 mm) and mixed with isopropyl alcohol as a solvent in a ball mill for 4 hours to prepare a slurry of mixed powder. The obtained slurry was dried at 110 ° C. under a nitrogen gas flow, and the dried product was passed through a sieve to obtain Sialon raw material powders A to G and J. The sialone raw material powder preferably has a small excess oxygen amount in order to suppress the heterogeneous component, and the sialon raw material powders A to G have an excess oxygen amount of 1.0% by mass or less. On the other hand, the excess oxygen content of the Sialon raw material powder J was 2.7% by mass.

窒化珪素原料粉末Hは、前述の窒化珪素粉末を単独で用いた。窒化珪素原料粉末Iは、窒化珪素、イットリア(純度99.9質量%以上、平均粒径1.1μm)、マグネシア(純度99.9質量%、平均粒径1.8μm)の各粉末を表1に示す組成になるように秤量し、サイアロン原料粉末A~G及びJと同様にして乾燥物を作製しそれを篩に通したものとした。 As the silicon nitride raw material powder H, the above-mentioned silicon nitride powder was used alone. As the silicon nitride raw material powder I, each powder of silicon nitride, Itria (purity 99.9% by mass or more, average particle size 1.1 μm) and magnesia (purity 99.9% by mass, average particle size 1.8 μm) is shown in Table 1. Weighed so as to have the composition shown in (1), a dried product was prepared in the same manner as the Sialon raw material powders A to G and J, and the dried product was passed through a sieve.

2.焼結体の作製及び評価
(1)実験例1
実験例1のサイアロン焼結体は、サイアロン原料粉末Aを金型を用いてφ125mm、厚さ約20mmに成形した後、黒鉛型にて、プレス圧力200kgf/cm2下、最高温度1800℃で4時間、ホットプレス焼成したものである。焼成雰囲気は、窒素雰囲気とした。得られた焼結体は直径125mmで厚さ約8mmであった。この焼結体から4mm×3mm×40mmサイズの抗折棒などを切り出し、各種特性を評価した。各種特性の評価方法を以下に示す。また、結果を表2に示す。なお、焼結体表面の性状は、4mm×3mm×10mm程度の試験片の一面を研磨によって鏡面状に仕上げて評価した。研磨は3μmのダイヤモンド砥粒、最終的に0.5μmのダイヤモンド砥粒のラップ研磨を行った。
2. 2. Fabrication and evaluation of sintered body (1) Experimental example 1
The Sialon sintered body of Experimental Example 1 was formed by molding the Sialon raw material powder A into a diameter of 125 mm and a thickness of about 20 mm using a mold, and then using a graphite mold at a press pressure of 200 kgf / cm 2 and a maximum temperature of 1800 ° C. 4 It is hot-press fired for hours. The firing atmosphere was a nitrogen atmosphere. The obtained sintered body had a diameter of 125 mm and a thickness of about 8 mm. A 4 mm × 3 mm × 40 mm size anti-folding rod or the like was cut out from this sintered body, and various characteristics were evaluated. The evaluation methods for various characteristics are shown below. The results are shown in Table 2. The properties of the surface of the sintered body were evaluated by polishing one surface of a test piece having a size of about 4 mm × 3 mm × 10 mm into a mirror surface. The polishing was performed by lapping polishing 3 μm diamond abrasive grains and finally 0.5 μm diamond abrasive grains.

・嵩密度、開気孔率
蒸留水を用いたアルキメデス法により測定した。
・ Bulk density and open porosity Measured by the Archimedes method using distilled water.

・相対密度
相対密度は嵩密度÷見掛け密度として算出した。
-Relative density Relative density was calculated as bulk density ÷ apparent density.

・結晶相及びピーク強度比Ix
サイアロン焼結体を粉砕し、X線回折装置により、サイアロン、異相の同定と各相の最大ピークの強度の算出を行った。なお、異相の特定においては、焼結体粉砕時の乳鉢や乳棒等のメディアからの混入相及びその量には十分注意が必要である。XRD装置には、全自動多目的X線解析装置D8 ADVANCEを用い、CuKα、40kV、40mA、2θ=10-70°を測定条件とした。X線回折図から、サイアロンの最大ピーク(2θ=32.8~33.5°)の強度(Ic)に対する、検出された各異相(P、Q、R、・・・)の最大ピークの強度(Ip、Iq、Ir、・・・)の総和の比(ピーク強度比Ix)を下記式から求めた。なお、最大ピークが他のピークと重なる場合は、最大ピークの代わりに2番目にピーク強度の大きなピークを採用した。
Ix=(Ip+Iq+Ir・・・)/Ic
-Crystal phase and peak intensity ratio Ix
The sialon sintered body was pulverized, and the sialon and the different phase were identified and the maximum peak intensity of each phase was calculated by an X-ray diffractometer. In identifying the heterogeneous phase, it is necessary to pay sufficient attention to the mixed phase from the media such as the mortar and pestle and the amount thereof when the sintered body is crushed. A fully automatic multipurpose X-ray analyzer D8 ADVANCE was used as the XRD apparatus, and the measurement conditions were CuKα, 40 kV, 40 mA, and 2θ = 10-70 °. From the X-ray diffraction pattern, the intensity of the maximum peak of each detected different phase (P, Q, R, ...) With respect to the intensity (Ic) of the maximum peak of Sialon (2θ = 32.8 to 33.5 °). The ratio of the sum of (Ip, Iq, Ir, ...) (Peak intensity ratio Ix) was calculated from the following formula. When the maximum peak overlaps with other peaks, the peak with the second highest peak intensity was adopted instead of the maximum peak.
Ix = (Ip + Iq + Ir ...) / Ic

・サイアロン焼結粒の平均粒径
破断面におけるサイアロン焼結粒をSEMにて127μm×88μmの視野で観察し、視野内の10個以上のサイアロン焼結粒の粒径を求め、その平均値をサイアロン焼結粒の平均粒径とした。なお、1つのサイアロン焼結粒の粒径は、その焼結粒の長径と短径の平均値とした。
-Average grain size of Sialon sintered grains Observe the Sialon sintered grains in the fracture surface in a field of 127 μm × 88 μm with SEM, determine the grain size of 10 or more Sialon sintered grains in the field, and calculate the average value. The average particle size of the Sialon sintered grains was used. The particle size of one Sialon sintered grain was taken as the average value of the major axis and the minor axis of the sintered grain.

・気孔数
上記のように鏡面状に仕上げた面を3D測定レーザー顕微鏡で観察し、最大長さが0.5μm以上、深さが0.08μm以上の気孔の単位面積当たりの計数値を4箇所で計測し、その平均値を気孔数とした。単位面積は100μm四方の面積とした。
・ Number of pores Observe the mirror-finished surface as described above with a 3D measurement laser microscope, and count four values per unit area of pores with a maximum length of 0.5 μm or more and a depth of 0.08 μm or more. The average value was taken as the number of pores. The unit area was 100 μm square.

・表面平坦性
上記のように鏡面状に仕上げた面に対し、3次元光学プロファイラー(Zygo)を用いて中心線平均粗さRaと、最大山高さと最大谷深さとの高さの差Ptを測定した。本明細書中のRaとPtは、JIS B 0601:2013で規定される、断面曲線の算術平均粗さRaと断面曲線の最大断面高さPtに対応する。上記のRa、Ptを表面平坦性とした。測定範囲は、100μm×140μmとした。
・ Surface flatness Measure the average roughness Ra of the center line and the difference Pt between the maximum peak height and the maximum valley depth using a three-dimensional optical profiler (Zygo) for the mirror-finished surface as described above. did. Ra and Pt in the present specification correspond to the arithmetic mean roughness Ra of the cross-section curve and the maximum cross-section height Pt of the cross-section curve as defined in JIS B 0601: 2013. The above Ra and Pt were used as surface flatness. The measurement range was 100 μm × 140 μm.

・ヤング率
JIS R1602に準じた、静的撓み法で測定した。試験片形状は3mm×4mm×40mm抗折棒とした。
-Young's modulus was measured by the static deflection method according to JIS R1602. The shape of the test piece was a 3 mm × 4 mm × 40 mm anti-folding rod.

・熱膨張係数(40~400℃)
JIS R1618に準じて、押し棒示差式で測定した。試験片形状は3mm×4mm×20mmとした。
・ Coefficient of thermal expansion (40-400 ° C)
According to JIS R1618, the measurement was performed by the push rod difference method. The shape of the test piece was 3 mm × 4 mm × 20 mm.

Figure 0007018267000002
Figure 0007018267000002

表2に示すように、実験例1のサイアロン焼結体は優れた特性を備えていた。具体的には、実験例1のサイアロン焼結体の嵩密度は3.16g/cm3、開気孔率は0.00%、相対密度は100%であった。結晶相は、サイアロン以外に僅かにアルミナや酸窒化ケイ素が検出された。サイアロンの最大ピークの強度に対する、サイアロン以外の各成分の最大ピークの強度の総和の比(ピーク強度比)Ixは0.0012であり、極めて小さかった。研磨面の100μm×100μm範囲において、最大長さが0.5μm以上の気孔数は1個と非常に少なかった。研磨面の表面平坦性は、中心線平均粗さRaが0.4nmと小さく、最大山高さと最大谷深さとの高さの差Ptが15nmと小さいことがわかった。 As shown in Table 2, the Sialon sintered body of Experimental Example 1 had excellent properties. Specifically, the bulk density of the Sialon sintered body of Experimental Example 1 was 3.16 g / cm 3 , the open porosity was 0.00%, and the relative density was 100 %. In the crystal phase, in addition to sialon, a small amount of alumina and silicon nitride were detected. The ratio (peak intensity ratio) Ix of the sum of the maximum peak intensities of each component other than sialon to the maximum peak intensity of sialon was 0.0012, which was extremely small. In the range of 100 μm × 100 μm of the polished surface, the number of pores having a maximum length of 0.5 μm or more was very small, one. Regarding the surface flatness of the polished surface, it was found that the average roughness Ra of the center line was as small as 0.4 nm, and the height difference Pt between the maximum peak height and the maximum valley depth was as small as 15 nm.

(2)実験例2~6
実験例2~6のサイアロン焼結体は、サイアロン原料粉末Aの代わりに表1に示すサイアロン原料粉末B,D~Gを用いて、実験例1と同様にしてホットプレス焼成したものである。各サイアロン焼結体の特性を表2に示す。いずれのサイアロン焼結体も、開気孔率が0.1%以下、相対密度が99.9%以上、気孔数は10個以下、ピーク強度比Ixは0.005以下であり、優れた特性を備えていた。
(2) Experimental Examples 2 to 6
The Sialon sintered bodies of Experimental Examples 2 to 6 were hot-press fired in the same manner as in Experimental Example 1 using the Sialon raw material powders B, D to G shown in Table 1 instead of the Sialon raw material powder A. Table 2 shows the characteristics of each Sialon sintered body. All Sialon sintered bodies have excellent porosity of 0.1% or less, relative density of 99.9% or more, number of pores of 10 or less, and peak intensity ratio Ix of 0.005 or less. I was prepared.

(3)実験例7
実験例7のサイアロン焼結体は、サイアロン原料粉末Cを用いて実験例1と同様にしてホットプレス焼結したものである。サイアロン原料粉末Cは、実験例2で用いたサイアロン原料粉末Bと比べてz値が1.0である点で一致するが、出発原料としてSi34、AlN及びAl23の3つを用いている点で、Si34、AlN及びSiO2の3つを用いているサイアロン原料粉末Bと相違する。実験例7のサイアロン焼結体は、実験例2のサイアロン焼結体と同様に優れた特性を備えていたことから、出発原料はSi34、AlN,Al23及びSiO2の中から所望のサイアロンとなるように適宜選択すればよいことがわかった。
(3) Experimental example 7
The Sialon sintered body of Experimental Example 7 was hot-press sintered using Sialon raw material powder C in the same manner as in Experimental Example 1. The sialon raw material powder C is consistent in that the z value is 1.0 as compared with the sialon raw material powder B used in Experimental Example 2, but there are three starting materials, Si 3 N 4 , Al N and Al 2 O 3 . It is different from Sialon raw material powder B which uses three of Si 3 N 4 , Al N and SiO 2 in that it uses. Since the Sialon sintered body of Experimental Example 7 had the same excellent characteristics as the Sialon sintered body of Experimental Example 2, the starting materials were among Si 3 N 4 , Al N, Al 2 O 3 and SiO 2 . It was found from the above that it should be appropriately selected so as to obtain the desired sialon.

(4)実験例8~12
実験例8~11は実験例1,2,4,5の焼成時の最高温度を1750℃に変更した例であり、実験例12は実験例3の焼成時の最高温度を1725℃に変更した例である。実験例8~12のサイアロン焼結体は、表2に示すように、実験例1~5のサイアロン焼結体と同様に優れた特性を備えていることがわかった。
(4) Experimental Examples 8 to 12
Experimental Examples 8 to 11 are examples in which the maximum temperature during firing of Experimental Examples 1, 2, 4, and 5 is changed to 1750 ° C., and Experimental Example 12 is an example in which the maximum temperature during firing of Experimental Example 3 is changed to 1725 ° C. This is an example. As shown in Table 2, it was found that the Sialon sintered bodies of Experimental Examples 8 to 12 had excellent properties similar to those of the Sialon sintered bodies of Experimental Examples 1 to 5.

なお、実験例1~12のサイアロン焼結体は過剰酸素量が1.0質量%以下である。 The Sialon sintered bodies of Experimental Examples 1 to 12 have an excess oxygen content of 1.0% by mass or less.

(5)実験例13~16
実験例13~16は実験例1~3,5の焼成時の最高温度を1700℃に変更した例である。実験例13~15のサイアロン焼結体は、焼成温度が低すぎたため、開気孔率が0.1を超え、相対密度が99.9%以下で緻密化不十分であり、気孔数が多く、33個あるいは50個以上であった。実験例16のサイアロン焼結体は、開気孔率が0.01%、相対密度は99.97%、気孔数は2個であったが、ピーク強度比Ixが0.0221で高く、中心線平均粗さRaや最大断面高さPtの値が悪化した。ピーク強度比Ixが高い原因は、焼成温度が低すぎるために、原料成分の反応(サイアロン化)が不十分になり、中間生成物のひとつであるアルミナが異相としてより多く析出したためと考えられる。また、中心線平均粗さRaや最大山高さと最大谷深さとの高さの差Ptの値が悪化した原因は異相として析出したアルミナとサイアロンの研磨のされ易さが異なることでアルミナが凸部として残ったためだと考えられる。
(5) Experimental Examples 13 to 16
Experimental Examples 13 to 16 are examples in which the maximum temperature at the time of firing in Experimental Examples 1 to 3 and 5 is changed to 1700 ° C. Since the firing temperature of the Sialon sintered bodies of Experimental Examples 13 to 15 was too low, the open porosity exceeded 0.1, the relative density was 99.9% or less, the densification was insufficient, and the number of pores was large. There were 33 or 50 or more. The Sialon sintered body of Experimental Example 16 had a porosity of 0.01%, a relative density of 99.97%, and a number of pores of 2, but had a high peak intensity ratio Ix of 0.0221 and a center line. The values of the average roughness Ra and the maximum cross-sectional height Pt deteriorated. It is considered that the reason why the peak intensity ratio Ix is high is that the firing temperature is too low, the reaction (sialonization) of the raw material components becomes insufficient, and more alumina, which is one of the intermediate products, is precipitated as a heterogeneous phase. In addition, the reason why the average roughness Ra of the center line and the difference in height between the maximum peak height and the maximum valley depth Pt deteriorated is that the alumina deposited as a different phase and the sialon are easily polished, so that the alumina is convex. It is thought that it was because it remained as.

(6)実験例17,18
実験例17では、出発原料として窒化珪素原料粉末H(z=0)を用いたこと以外は、実験例1と同様にホットプレス焼成した。得られた焼成体は、開気孔率が52.1%で相対密度が47.95%であり、焼結していなかった。実験例18では、出発原料として窒化珪素原料粉末I(z=0、焼結助剤であるY23とMgOを添加)を用いたこと以外は、実験例1と同様にホットプレス焼成した。得られた焼結体は、窒化珪素特有の柱状化した結晶が発達した組織からなり、粒界には気孔が見られた。そのため、研磨面の100μm四方の範囲において、最大長さが0.5μm以上の気孔数は50個以上であり、気孔数を減らすことができなかった。
(6) Experimental Examples 17, 18
In Experimental Example 17, hot press firing was carried out in the same manner as in Experimental Example 1 except that silicon nitride raw material powder H (z = 0) was used as a starting material. The obtained fired body had an open porosity of 52.1% and a relative density of 47.95%, and was not sintered. In Experimental Example 18, hot press firing was carried out in the same manner as in Experimental Example 1 except that silicon nitride raw material powder I (z = 0, addition of sintering aids Y 2 O 3 and Mg O) was used as a starting material. .. The obtained sintered body consisted of a structure in which columnarized crystals peculiar to silicon nitride were developed, and pores were observed at the grain boundaries. Therefore, in the range of 100 μm square of the polished surface, the number of pores having a maximum length of 0.5 μm or more was 50 or more, and the number of pores could not be reduced.

(7)実験例19
実験例19のサイアロン焼結体は、サイアロン原料粉末Jを用いて実験例8と同様にホットプレス焼成した。得られた焼成体は、相対密度99.98%で気孔数が3個であり、十分緻密化していた。ただし、ピーク強度比Ixが0.0492と高く、異相が多く析出したために中心線平均粗さRaや最大断面高さPtの値が悪く、十分な平坦性が得られなかった。この実験例19のサイアロン焼結体は過剰酸素量が2.7質量%であり、特開昭62-212268号公報の実施例1に相当する。
(7) Experimental Example 19
The Sialon sintered body of Experimental Example 19 was hot-press fired using Sialon raw material powder J in the same manner as in Experimental Example 8. The obtained fired body had a relative density of 99.98% and had three pores, and was sufficiently densified. However, the peak intensity ratio Ix was as high as 0.0492, and the values of the centerline average roughness Ra and the maximum cross-sectional height Pt were poor due to the precipitation of many heterogeneous phases, and sufficient flatness could not be obtained. The Sialon sintered body of Experimental Example 19 has an excess oxygen amount of 2.7% by mass, and corresponds to Example 1 of JP-A-62-121268.

なお、上述した実験例1~19のうち、実験例1~12が本発明の実施例、実験例13~19が比較例に相当する。 Of the above-mentioned Experimental Examples 1 to 19, Experimental Examples 1 to 12 correspond to Examples of the present invention, and Experimental Examples 13 to 19 correspond to Comparative Examples.

3.接合性
実験例2,4,14の焼結体から切り出した直径100mm、厚さ230μmの支持基板に対し、直径100mm、厚さ250μmのLT基板の接合を試みた。接合前の表面の活性化処理では、FABガンを用いてアルゴンの中性原子ビームを両基板に照射した。その後、両基板を貼り合わせた後、接合荷重0.1tonで1分間プレスし、支持基板とLT基板を室温で直接接合した。実験例2,4の焼結体から得られた複合基板は、接合界面に気泡は殆ど観察されず、接合界面のうち実際に接合している面積の割合(接合面積割合)が90%以上であり、良好に接合されていた。これに対して、実験例14の焼結体から得られた複合基板は、接合界面に気泡が観察され、接合界面のうち実際に接合している面積の割合(接合面積割合)が80%以下であった。ここで、接合面積は、気泡のない部分の面積であり、接合面積割合は、接合界面全体の面積に対する接合面積の割合である。なお、ここではFABガンを用いたが、その代わりにイオンガンを用いてもよい。
3. 3. Bondability An attempt was made to join an LT substrate having a diameter of 100 mm and a thickness of 250 μm to a support substrate having a diameter of 100 mm and a thickness of 230 μm cut out from the sintered body of Experimental Examples 2, 4 and 14. In the surface activation treatment before joining, both substrates were irradiated with a neutral atomic beam of argon using a FAB gun. Then, after bonding both substrates, they were pressed for 1 minute with a bonding load of 0.1 ton, and the support substrate and the LT substrate were directly bonded at room temperature. In the composite substrate obtained from the sintered bodies of Experimental Examples 2 and 4, almost no bubbles were observed at the bonding interface, and the ratio of the actually bonded area (bonding area ratio) to the bonding interface was 90% or more. Yes, it was well joined. On the other hand, in the composite substrate obtained from the sintered body of Experimental Example 14, bubbles were observed at the bonding interface, and the ratio of the actually bonded area (bonding area ratio) to the bonding interface was 80% or less. Met. Here, the bonding area is the area of the portion without bubbles, and the bonding area ratio is the ratio of the bonding area to the area of the entire bonding interface. Although the FAB gun is used here, an ion gun may be used instead.

本出願は、2016年9月20日に出願された国際出願PCT/JP2016/77627を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。 This application is based on the international application PCT / JP2016 / 77627 filed on September 20, 2016, which is incorporated herein by reference in its entirety.

本発明は、表面弾性波素子の他にラム波素子、薄膜共振子(FBAR)などの電子デバイスに利用可能である。 The present invention can be used for electronic devices such as lamb wave elements and thin film resonators (FBARs) in addition to surface acoustic wave elements.

10 複合基板、12 圧電基板、14 支持基板、30 電子デバイス、32,34 IDT電極、36 反射電極。 10 composite substrate, 12 piezoelectric substrate, 14 support substrate, 30 electronic device, 32, 34 IDT electrode, 36 reflective electrode.

Claims (8)

Si6-zAlzz8-z(0<z≦4.2)で表され、開気孔率が0.1%以下、相対密度が99.9%以上、且つ、X線回折図において、サイアロンの最大ピークの強度に対する、サイアロン以外の各成分の最大ピークの強度の総和の比が0.005以下である、
サイアロン焼結体。
It is represented by Si 6-z Al z O z N 8-z (0 <z ≦ 4.2), the open porosity is 0.1% or less, the relative density is 99.9% or more, and the X-ray diffraction pattern is shown. The ratio of the sum of the maximum peak intensities of each component other than sialon to the maximum peak intensity of sialon is 0.005 or less.
Sialon sintered body.
前記サイアロン焼結体の表面は、100μm×140μmの測定範囲における中心線平均粗さ(Ra)が1.0nm以下である、
請求項1に記載のサイアロン焼結体。
The surface of the Sialon sintered body has a centerline average roughness (Ra) of 1.0 nm or less in a measurement range of 100 μm × 140 μm.
The Sialon sintered body according to claim 1.
前記サイアロン焼結体の表面は、100μm×140μmの測定範囲における最大山高さと最大谷深さとの高さの差(Pt)が30nm以下である、
請求項1又は2に記載のサイアロン焼結体。
The surface of the Sialon sintered body has a height difference (Pt) of 30 nm or less between the maximum peak height and the maximum valley depth in a measurement range of 100 μm × 140 μm.
The Sialon sintered body according to claim 1 or 2.
前記サイアロン焼結体のヤング率は、180GPa以上である、
請求項1~3のいずれか1項に記載のサイアロン焼結体。
The Young's modulus of the Sialon sintered body is 180 GPa or more.
The sialon sintered body according to any one of claims 1 to 3.
請求項1~4のいずれか1項に記載のサイアロン焼結体を製造する方法であって、
いずれも純度が99.8質量%以上の窒化珪素、窒化アルミニウム、アルミナ及びシリカの成分の中から、Si:Al:O:N=(6-z):z:z:(8-z)(但し0<z≦4.2)となるように成分を選択すると共に質量割合を決定して各成分を混合して原料粉末を作製し、該原料粉末を所定形状に成形したのち、焼成温度1725~1900℃、プレス圧力100~300kgf/cm2でホットプレス焼成を行うことによりサイアロン焼結体を得る、
サイアロン焼結体の製法。
The method for producing a sialon sintered body according to any one of claims 1 to 4.
Among the components of silicon nitride, aluminum nitride, alumina and silica having a purity of 99.8% by mass or more, Si: Al: O: N = (6-z): z: z: (8-z) ( However, the components are selected so that 0 <z ≦ 4.2), the mass ratio is determined, and the components are mixed to prepare a raw material powder. The raw material powder is formed into a predetermined shape, and then the firing temperature is 1725. A sialon sintered body is obtained by hot press firing at ~ 1900 ° C. and a press pressure of 100 to 300 kgf / cm 2 .
Manufacturing method of Sialon sintered body.
支持基板と機能性基板とが接合された複合基板であって、
前記支持基板は、請求項1~4のいずれか1項に記載のサイアロン焼結体である、
複合基板。
A composite board in which a support board and a functional board are joined together.
The support substrate is the sialon sintered body according to any one of claims 1 to 4.
Composite board.
前記接合が直接接合である、
請求項6に記載の複合基板。
The joint is a direct joint,
The composite substrate according to claim 6.
請求項6又は7に記載の複合基板を利用した電子デバイス。 An electronic device using the composite substrate according to claim 6 or 7.
JP2017129086A 2016-09-20 2017-06-30 Sialon sintered body, its manufacturing method, composite substrate and electronic device Active JP7018267B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/703,034 US10399906B2 (en) 2016-09-20 2017-09-13 Sialon sintered body, method for producing the same, composite substrate, and electronic device
DE102017008649.4A DE102017008649B4 (en) 2016-09-20 2017-09-14 SIALON SINTERED BODY, METHOD OF PRODUCTION THEREOF, COMPOSITE SUBSTRATE AND ITS USE IN AN ELECTRONIC DEVICE
TW106131734A TWI762509B (en) 2016-09-20 2017-09-15 Silicon aluminum oxynitride sintered body, its production method, composite substrate and electronic component
KR1020170119462A KR102395407B1 (en) 2016-09-20 2017-09-18 Sialon sintered body, method for producing the same, composite substrate, and electronic device
CN201710846104.8A CN107840664B (en) 2016-09-20 2017-09-19 Sialon sintered body, method for producing same, composite substrate, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/JP2016/77627 2016-09-20
JP2016077627 2016-09-20

Publications (2)

Publication Number Publication Date
JP2018048059A JP2018048059A (en) 2018-03-29
JP7018267B2 true JP7018267B2 (en) 2022-02-10

Family

ID=61767222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017129086A Active JP7018267B2 (en) 2016-09-20 2017-06-30 Sialon sintered body, its manufacturing method, composite substrate and electronic device

Country Status (2)

Country Link
JP (1) JP7018267B2 (en)
TW (1) TWI762509B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102156574B1 (en) * 2020-01-23 2020-09-17 주식회사 화인테크 Machinable ceramic composite material and manufacturing method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60191064A (en) * 1984-03-13 1985-09-28 株式会社トクヤマ Manufacture of light permeable sialon
JPH0597533A (en) * 1991-03-15 1993-04-20 Toshiba Corp Composition for bonding ceramic-metal and bonded product of ceramic-metal
JPH085727B2 (en) * 1991-03-20 1996-01-24 新日本製鐵株式会社 Method of joining ceramics and metal
US5413972A (en) * 1993-12-23 1995-05-09 The Dow Chemical Company SiAlON composites and method of preparing the same
JPH07196380A (en) * 1993-12-28 1995-08-01 Nippon Cement Co Ltd Method for joining non-oxide ceramic to metal
JP2004091272A (en) * 2002-09-02 2004-03-25 Matsushita Masashi beta-SIALON SINTERED COMPACT
EP2323959A1 (en) * 2008-08-29 2011-05-25 Aktiebolaget SKF Large ceramic component and method of manufacture

Also Published As

Publication number Publication date
TW201827384A (en) 2018-08-01
TWI762509B (en) 2022-05-01
JP2018048059A (en) 2018-03-29

Similar Documents

Publication Publication Date Title
TWI570091B (en) Modular stone sintered body, its preparation method and composite substrate
JP5890945B1 (en) Cordierite sintered body, manufacturing method thereof, composite substrate and electronic device
US10998881B2 (en) Composite substrate, method for producing the same, and electronic device
KR102377658B1 (en) Cordierite sintered body and production thereof and composite substrate
JP7018267B2 (en) Sialon sintered body, its manufacturing method, composite substrate and electronic device
KR102395407B1 (en) Sialon sintered body, method for producing the same, composite substrate, and electronic device
JP6940959B2 (en) Cordellite sintered body, its manufacturing method and composite substrate
TWI718275B (en) Sintered mullite-containing body, its preparation method and composite substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200512

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200811

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210831

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210907

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211221

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220125

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220131

R150 Certificate of patent or registration of utility model

Ref document number: 7018267

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150