JP7016503B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP7016503B2
JP7016503B2 JP2016189050A JP2016189050A JP7016503B2 JP 7016503 B2 JP7016503 B2 JP 7016503B2 JP 2016189050 A JP2016189050 A JP 2016189050A JP 2016189050 A JP2016189050 A JP 2016189050A JP 7016503 B2 JP7016503 B2 JP 7016503B2
Authority
JP
Japan
Prior art keywords
negative electrode
positive electrode
vanadium
current collector
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016189050A
Other languages
Japanese (ja)
Other versions
JP2018055902A (en
Inventor
朝雄 山村
清志 坂本
茂樹 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Techno Arch Co Ltd
Original Assignee
Tohoku Techno Arch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co Ltd filed Critical Tohoku Techno Arch Co Ltd
Priority to JP2016189050A priority Critical patent/JP7016503B2/en
Publication of JP2018055902A publication Critical patent/JP2018055902A/en
Application granted granted Critical
Publication of JP7016503B2 publication Critical patent/JP7016503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は、二次電池に関する。 The present invention relates to a secondary battery.

二次電池の一つとして、バナジウムを活物質として用いたバナジウム・レドックスフロー電池が知られている(特許文献1)。バナジウム・レドックスフロー電池は、電解質溶液中における活物質の酸化還元反応を利用して充放電を行うことのできる電池である。 As one of the secondary batteries, a vanadium redox flow battery using vanadium as an active material is known (Patent Document 1). The vanadium redox flow battery is a battery that can be charged and discharged by utilizing the redox reaction of the active material in the electrolyte solution.

特に、活物質として2価、3価、4価、及び5価のバナジウムイオンを用いるとともに、タンクに貯蔵したバナジウムの硫酸溶液をセルとの間で循環させるバナジウム・レドックスフロー電池は、大型電力貯蔵分野で使用されている。 In particular, a vanadium redox flow battery that uses divalent, trivalent, tetravalent, and pentavalent vanadium ions as an active material and circulates a sulfuric acid solution of vanadium stored in a tank between the cell and a large power storage is used. Used in the field.

バナジウム・レドックスフロー電池は、正極側の活物質である正極液を収容する正極液タンク、負極側の活物質である負極液を収容する負極液タンク、及び、充放電を行うスタックとからなる。正極液及び負極液は、ポンプによってセルとタンクの間を循環する。スタックは、正極、負極、及び、それらを仕切るイオン交換膜を備えている。正極液中及び負極液中の電池反応式は、それぞれ、以下の式(1)、(2)の通りである。 The vanadium redox flow battery includes a positive electrode liquid tank containing a positive electrode liquid which is an active material on the positive electrode side, a negative electrode liquid tank containing a negative electrode liquid which is an active material on the negative electrode side, and a stack for charging and discharging. The positive electrode liquid and the negative electrode liquid are circulated between the cell and the tank by a pump. The stack comprises a positive electrode, a negative electrode, and an ion exchange membrane that separates them. The battery reaction formulas in the positive electrode liquid and the negative electrode liquid are as shown in the following formulas (1) and (2), respectively.

正極:VO2+(aq)+HO ⇔ VO (aq)+e+2H …(1) Positive electrode: VO 2+ (aq) + H 2 O ⇔ VO 2 + (aq ) + e- + 2H + ... (1)

負極:V3+(aq)+e ⇔ V2+(aq) …(2) Negative electrode: V 3+ (aq) + e - ⇔ V 2+ (aq) ... (2)

上式(1)及び(2)において、「⇔」は化学平衡を示す。またイオンの隣に記載された(aq)は、そのイオンが溶液中に存在することを意味する。 In the above equations (1) and (2), "⇔" indicates chemical equilibrium. Further, (aq) described next to the ion means that the ion is present in the solution.

また、バナジウムを活物質として用いた電池として、液静止型バナジウムレドックス電池(特許文献2)、バナジウム固体塩電池等が知られている(特許文献3)。 Further, as a battery using vanadium as an active material, a liquid stationary vanadium redox battery (Patent Document 2), a vanadium solid salt battery and the like are known (Patent Document 3).

本明細書では、バナジウム、バナジウムイオン、バナジウムを含むイオン、あるいはバナジウムを含む化合物を活物質として用いるレドックス電池全般のことを、「バナジウムレドックス電池」と呼ぶ In the present specification, a general redox battery using vanadium, vanadium ion, an ion containing vanadium, or a compound containing vanadium as an active material is referred to as a "vanadium redox battery" .

米国特許第4,786,567号公報U.S. Pat. No. 4,786,567 特開2002-216833号公報Japanese Unexamined Patent Publication No. 2002-216833 国際公開WO2011/049103号公報International Publication WO2011 / 049103

バナジウムレドックス電池等の従来の二次電池では、正極と負極はイオン交換膜によって隔てられており、正極及び負極に含まれる電解液が混合することが防止されている。しかしながら、このイオン交換膜は、電池体積の増大、電池コストの上昇など、電池を設計、製造する上で大きな制約となっていた。 In a conventional secondary battery such as a vanadium redox battery, the positive electrode and the negative electrode are separated by an ion exchange membrane, and the electrolytic solution contained in the positive electrode and the negative electrode is prevented from being mixed. However, this ion exchange membrane has been a major constraint on the design and manufacture of batteries, such as an increase in battery volume and an increase in battery cost.

そこで、本発明は、正極及び負極を隔てるためのイオン交換膜を必要としない二次電池を提供することを目的とする。 Therefore, an object of the present invention is to provide a secondary battery that does not require an ion exchange membrane for separating a positive electrode and a negative electrode.

本発明は、以下の通りである。
支持体と、
前記支持体上に積層された、複数の歯を有する櫛形形状をなす正極集電体と、
前記正極集電体の少なくとも歯の部分の上に積層され、酸化還元反応によって、5価および4価の間で酸化数が変化するバナジウムイオンまたは5価および4価の間で酸化数が変化するバナジウムを含むイオンを含有する正極活物質および電解液を有する正極電極と、
前記支持体上に積層された、複数の歯を有する櫛形形状をなす負極集電体と、
前記負極集電体の少なくとも歯の部分の上に積層され、酸化還元反応によって、2価および3価の間で酸化数が変化するバナジウムイオンまたは2価および3価の間で酸化数が変化するバナジウムを含むイオンを含有する負極活物質および電解液を有する負極電極と、
前記正極電極および前記負極電極の両方に接し、前記正極活物質および/または前記負極活物質を含有し、前記正極電極と前記負極電極の間でバナジウムイオン以外のイオンまたはバナジウムを含むイオン以外のイオンを移動させる固体またはゲル状の部材であるイオン伝導性部材と、を備え、
前記正極集電体と前記負極集電体が互いにその歯の部分でかみ合うように対向配置されており、
隣り合う前記正極電極と前記負極電極は離間しており、隣り合う前記正極電極と前記負極電極に亘って前記イオン伝導性部材が配置されている、二次電池。
The present invention is as follows.
With the support,
A comb-shaped positive electrode current collector having a plurality of teeth laminated on the support and
It is laminated on at least the tooth portion of the positive electrode current collector, and the oxidation number changes between pentavalent and tetravalent vanadium ions or between pentavalent and tetravalent due to the redox reaction. A positive electrode having a positive electrode active material and an electrolytic solution containing ions containing vanadium, and a positive electrode.
A comb-shaped negative electrode current collector having a plurality of teeth laminated on the support and
It is laminated on at least the tooth portion of the negative electrode current collector, and the oxidation number changes between divalent and trivalent vanadium ions or between divalent and trivalent by redox reaction. A negative electrode having a negative electrode active material containing ions containing vanadium and an electrolytic solution, and a negative electrode
Ions other than vanadium ions or ions other than vanadium-containing ions that are in contact with both the positive electrode and the negative electrode and contain the positive electrode active material and / or the negative electrode active material, and are between the positive electrode and the negative electrode. With an ionic conductive member, which is a solid or gel-like member that moves the
The positive electrode current collector and the negative electrode current collector are arranged so as to face each other so as to mesh with each other at the tooth portions.
A secondary battery in which the adjacent positive electrode and the negative electrode are separated from each other, and the ion conductive member is arranged over the adjacent positive electrode and the negative electrode.

前記正極電極は、前記正極集電体と同じ櫛形形状をなし、前記正極集電体上に積層されており、
前記負極電極は、前記負極集電体と同じ櫛形形状をなし、前記負極集電体上に積層されていることが好ましい。
The positive electrode has the same comb shape as the positive electrode current collector, and is laminated on the positive electrode current collector.
It is preferable that the negative electrode has the same comb shape as the negative electrode current collector and is laminated on the negative electrode current collector.

前記イオン伝導性部材は、前記正極電極及び前記負極電極の上に積層されていることが好ましい。 The ion conductive member is preferably laminated on the positive electrode and the negative electrode.

前記イオン伝導性部材は、ゲル状電解質であることが好ましい。 The ion conductive member is preferably a gel-like electrolyte.

本発明によれば、正極及び負極を隔てるためのイオン交換膜を必要としない二次電池を提供することができる。 According to the present invention, it is possible to provide a secondary battery that does not require an ion exchange membrane for separating a positive electrode and a negative electrode.

バナジウム固体塩電池の第1の構成例を示す平面図である。It is a top view which shows the 1st structural example of a vanadium solid salt battery. 図1のA-A線断面図である。FIG. 3 is a cross-sectional view taken along the line AA of FIG. 図2のB-B線断面図である。FIG. 2 is a cross-sectional view taken along the line BB of FIG. バナジウム固体塩電池の第2の構成例を示す平面図である。It is a top view which shows the 2nd structural example of a vanadium solid salt battery. 図4のC-C線断面図である。FIG. 4 is a cross-sectional view taken along the line CC of FIG. 図4のD-D線断面図である。FIG. 4 is a sectional view taken along line DD of FIG.

以下、二次電池の一つであるバナジウムレドックス電池を例にとって本発明の実施形態について詳細に説明する。
本実施形態のバナジウムレドックス電池は、正極及び負極における活物質として、バナジウム、バナジウムイオン、あるいはバナジウムを含む化合物を用いている。バナジウム(V)は、2価、3価、4価、及び5価を含む複数の酸化状態を取り得る元素である。バナジウムは、電池に有用な程度の大きさの電位差を生じさせる元素である
下では、本発明をバナジウム固体塩電池に適用した例について説明する。
Hereinafter, embodiments of the present invention will be described in detail using a vanadium redox battery, which is one of the secondary batteries, as an example.
The vanadium redox battery of the present embodiment uses vanadium, vanadium ion, or a compound containing vanadium as an active material in the positive electrode and the negative electrode. Vanadium (V) is an element that can have a plurality of oxidation states including divalent, trivalent, tetravalent, and pentavalent. Vanadium is an element that produces a potential difference of a magnitude useful for batteries .
Hereinafter , an example in which the present invention is applied to a vanadium solid salt battery will be described.

本実施形態のバナジウム固体塩電池は、正極電極及び正極集電体からなる正極と、負極電極及び負極集電体からなる負極を含む。 The vanadium solid salt battery of the present embodiment includes a positive electrode composed of a positive electrode and a positive electrode current collector, and a negative electrode composed of a negative electrode and a negative electrode current collector.

正極電極は、正極活物質を含む。正極活物質は、還元酸化反応によって5価及び4価の間で酸化数が変化するバナジウムを含む。または、正極活物質は、還元酸化反応によって5価及び4価の間で酸化数が変化するバナジウムイオンを含む。または、正極活物質は、酸化還元反応によって5価及び4価の間で酸化数が変化するバナジウムを含有するイオン(陽イオン又は陰イオン)を含む。または、正極活物質は、還元酸化反応によって5価及び4価の間で酸化数が変化するバナジウムを含む固体バナジウム塩を含む。または、正極活物質は、還元酸化反応によって5価及び4価の間で酸化数が変化するバナジウムを含む錯塩を含む。 The positive electrode contains a positive electrode active material. The positive electrode active material contains vanadium whose oxidation number changes between pentavalence and tetravalence due to the reduction oxidation reaction. Alternatively, the positive electrode active material contains vanadium ions whose oxidation number changes between pentavalent and tetravalent due to the reduction oxidation reaction. Alternatively, the positive electrode active material contains vanadium-containing ions (cations or anions) whose oxidation number changes between pentavalent and tetravalent due to a redox reaction. Alternatively, the positive electrode active material contains a solid vanadium salt containing vanadium whose oxidation number changes between pentavalent and tetravalent due to the reduction oxidation reaction. Alternatively, the positive electrode active material contains a complex salt containing vanadium whose oxidation number changes between pentavalent and tetravalent due to the reduction oxidation reaction.

負極電極は、負極活物質を含む。負極活物質は、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムを含む。または、負極活物質は、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムイオンを含む。または、負極活物質は、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムを含有するイオン(陽イオン又は陰イオン)を含む。または、負極活物質は、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムを含む固体バナジウム塩を含む。または、負極活物質は、酸化還元反応によって2価及び3価の間で酸化数が変化するバナジウムを含む錯塩を含む。 The negative electrode contains a negative electrode active material. The negative electrode active material contains vanadium whose oxidation number changes between divalent and trivalent due to a redox reaction. Alternatively, the negative electrode active material contains vanadium ions whose oxidation number changes between divalent and trivalent due to a redox reaction. Alternatively, the negative electrode active material contains vanadium-containing ions (cations or anions) whose oxidation number changes between divalent and trivalent due to a redox reaction. Alternatively, the negative electrode active material contains a solid vanadium salt containing vanadium whose oxidation number changes between divalent and trivalent due to a redox reaction. Alternatively, the negative electrode active material contains a complex salt containing vanadium whose oxidation number changes between divalent and trivalent due to a redox reaction.

バナジウム固体塩電池は、正極及び負極の活物質として固体物質を用いるため、液漏れなどの心配が少ない。また、バナジウム固体塩電池は、正極及び負極の活物質として固体物質を用いるため、安全性に優れ、かつ、高いエネルギー密度を有する。なお、バナジウム固体塩電池においては、活物質が全て固体状態で存在しているとは限らず、活物質が固体と液体の両方の状態で共存していることもある。 Since the vanadium solid salt battery uses a solid substance as the active material of the positive electrode and the negative electrode, there is little concern about liquid leakage. Further, since the vanadium solid salt battery uses a solid substance as the active material of the positive electrode and the negative electrode, it is excellent in safety and has a high energy density. In the vanadium solid salt battery, not all the active materials exist in the solid state, and the active materials may coexist in both the solid state and the liquid state.

バナジウム固体塩電池に用いることのできる負極活物質の例として、硫酸バナジウム(II)・n水和物、及び、硫酸バナジウム(III)・n水和物等が挙げられる。負極活物質は、硫酸水溶液などの電解液に加えられてもよい。 Examples of the negative electrode active material that can be used in the vanadium solid salt battery include vanadium sulfate (II) and n-hydrate, vanadium sulfate (III) and n-hydrate, and the like. The negative electrode active material may be added to an electrolytic solution such as an aqueous sulfuric acid solution.

バナジウム固体塩電池に用いることのできる正極活物質の例として、オキシ硫酸バナジウム(IV)・n水和物、及び、ジオキシ硫酸バナジウム(V)・n水和物等が挙げられる。正極活物質は、硫酸水溶液などの電解液に加えられてもよい。 Examples of positive electrode active materials that can be used in vanadium solid salt batteries include vanadium oxysulfate (IV) and n-hydrate, vanadium dioxysulfate (V) and n-hydrate, and the like. The positive electrode active material may be added to an electrolytic solution such as an aqueous sulfuric acid solution.

バナジウム固体塩電池の充放電時における正極活物質の反応式は、例えば、以下の式(3)に示す通りである。 The reaction formula of the positive electrode active material during charging and discharging of the vanadium solid salt battery is, for example, as shown in the following formula (3).

正極:VOX・nHO(s)⇔ VOX・mHO(s)+HX+H+e …(3) Positive electrode: VOX 2・ nH 2 O (s) ⇔ VO 2 X ・ mH 2 O (s) + HX + H + e … (3)

バナジウム固体塩電池の充放電時における負極活物質の反応式は、例えば、以下の式(4)に示す通りである。 The reaction formula of the negative electrode active material during charging and discharging of the vanadium solid salt battery is, for example, as shown in the following formula (4).

負極:VX・nHO(s)+e ⇔ 2VX・mHO(s)+X …(4) Negative electrode: VX 3 · nH 2 O (s) + e ⇔ 2 VX 2 · mH 2 O (s) + X … (4)

上記式(3)及び(4)において、Xは1価の陰イオンを表す。
上記式(3)及び(4)において、nは様々な値をとりうる。たとえば、オキシ硫酸バナジウム(IV)・n水和物とジオキシ硫酸バナジウム(V)・n水和物は、必ずしも同じ個数の水和水を持っているとは限らない。以下に登場する化学反応式や物質名においても同様である。
In the above formulas (3) and (4), X represents a monovalent anion.
In the above equations (3) and (4), n can take various values. For example, vanadium oxysulfate (IV) n-hydrate and vanadium dioxysulfate (V) n-hydrate do not always have the same number of hydrated waters. The same applies to the chemical reaction formulas and substance names that appear below.

<第1の構成例>
図1は、バナジウム固体塩電池の第1の構成例を示す平面図である。図2は、図1のA-A線断面図である。図3は、図1のB-B線断面図である。
図1~図3に示すように、バナジウム固体塩電池10は、基板12と、基板12の上に互いに向かい合うように配置された正極20及び負極40を備えている。
<First configuration example>
FIG. 1 is a plan view showing a first configuration example of a vanadium solid salt battery. FIG. 2 is a cross-sectional view taken along the line AA of FIG. FIG. 3 is a cross-sectional view taken along the line BB of FIG.
As shown in FIGS. 1 to 3, the vanadium solid salt battery 10 includes a substrate 12 and a positive electrode 20 and a negative electrode 40 arranged on the substrate 12 so as to face each other.

基板12は、その上に正極20及び負極40を配置することのできる絶縁性の部材であればよく、特に制限されるものではないが、ロール状に巻き取ることが可能なシート状の部材であることが好ましい。基板12がシート状の部材である場合、基板12に対してロールtoロール方式で正極20及び負極40を印刷することができるため、量産性に優れた安価な電池を実現することができる。例えば、基板12は、絶縁性のプラスチックシートや多孔質シートによって構成されることが好ましい。基板12が、本発明の「支持体」に対応する。 The substrate 12 may be an insulating member on which the positive electrode 20 and the negative electrode 40 can be arranged, and is not particularly limited, but is a sheet-shaped member that can be wound into a roll. It is preferable to have. When the substrate 12 is a sheet-shaped member, the positive electrode 20 and the negative electrode 40 can be printed on the substrate 12 by a roll-to-roll method, so that an inexpensive battery with excellent mass productivity can be realized. For example, the substrate 12 is preferably composed of an insulating plastic sheet or a porous sheet. The substrate 12 corresponds to the "support" of the present invention.

正極20は、基板12の上に積層された、複数の歯22aを有する櫛形形状をなす正極集電体22と、正極集電体22の少なくとも歯22aの部分の上に積層された正極電極24とからなる。 The positive electrode 20 is a comb-shaped positive electrode collector 22 having a plurality of teeth 22a laminated on the substrate 12, and a positive electrode 24 laminated on at least a portion of the positive electrode collector 22 having teeth 22a. It consists of.

正極集電体22は、炭素材料によって形成されている。炭素材料としては、例えば、カーボンブラック、炭素繊維、カーボンナノチューブ、グラフェン、グラッシーカーボン(登録商標)の粉末、黒鉛粉末、多孔質カーボン粉末、活性炭、及び/又は、炭素フェルトを用いることができる。これらの炭素材料の中では、カーボンブラックが特に好ましい。 The positive electrode current collector 22 is made of a carbon material. As the carbon material, for example, carbon black, carbon fiber, carbon nanotube, graphene, glassy carbon (registered trademark) powder, graphite powder, porous carbon powder, activated carbon, and / or carbon felt can be used. Of these carbon materials, carbon black is particularly preferred.

上記した炭素材料及びバインダーを混練した後、この混練物を基板12の上に塗布あるいは印刷等によって積層する。これにより、基板12の上にシート状に積層された正極集電体22を得ることができる。炭素材料と混練するバインダーとしては、例えば、PTFE、PVDF、フッ素系バインダー、ポリイミド、ポリアミド、ポリアミドイミド、ゴム系バインダー、アクリル系バインダー、塩素系バインダー、及び/又は、無機系バインダーを用いることができる。 After the above-mentioned carbon material and binder are kneaded, the kneaded material is laminated on the substrate 12 by coating or printing. As a result, the positive electrode current collector 22 laminated in the form of a sheet on the substrate 12 can be obtained. As the binder to be kneaded with the carbon material, for example, PTFE, PVDF, a fluorine-based binder, a polyimide, a polyamide, a polyamide-imide, a rubber-based binder, an acrylic-based binder, a chlorine-based binder, and / or an inorganic binder can be used. ..

正極電極24を形成するためには、正極活物質であるオキシ硫酸バナジウム(IV)・n水和物と、電解液である硫酸水溶液と、カーボンとを混合した後、この混合物を正極集電体22の歯22aの上に塗布あるいは印刷等によって積層する。これにより、正極集電体22の歯22aの上に積層された薄膜状の正極電極24を得ることができる。なお、正極電極24はカーボンを含むことが好ましいが、正極活物質によって形状を保持できる場合は、正極電極24はカーボンを含まなくてもよい。 In order to form the positive electrode 24, vanadium oxysulfate (IV) n-hydrate, which is a positive electrode active material, sulfuric acid aqueous solution, which is an electrolytic solution, and carbon are mixed, and then this mixture is used as a positive electrode current collector. It is laminated on the teeth 22a of 22 by coating or printing. As a result, a thin-film positive electrode 24 laminated on the teeth 22a of the positive electrode current collector 22 can be obtained. The positive electrode 24 preferably contains carbon, but the positive electrode 24 may not contain carbon if the shape can be maintained by the positive electrode active material.

負極40は、基板12の上に積層された、複数の歯42aを有する櫛形形状をなす負極集電体42と、負極集電体42の少なくとも歯42aの部分の上に積層された負極電極44とからなる。 The negative electrode 40 is a comb-shaped negative electrode current collector 42 having a plurality of teeth 42a laminated on the substrate 12, and a negative electrode 44 laminated on at least a portion of the negative electrode current collector 42 having teeth 42a. It consists of.

負極集電体42は、炭素材料によって形成されている。炭素材料としては、例えば、カーボンブラック、炭素繊維、カーボンナノチューブ、グラフェン、グラッシーカーボン(登録商標)の粉末、黒鉛粉末、多孔質カーボン粉末、活性炭、及び/又は、炭素フェルトを用いることができる。これらの炭素材料の中では、カーボンブラックが特に好ましい。 The negative electrode current collector 42 is made of a carbon material. As the carbon material, for example, carbon black, carbon fiber, carbon nanotube, graphene, glassy carbon (registered trademark) powder, graphite powder, porous carbon powder, activated carbon, and / or carbon felt can be used. Of these carbon materials, carbon black is particularly preferred.

上記した炭素材料及びバインダーを混練した後、この混練物を基板12の上に塗布あるいは印刷等によって積層する。これにより、基板12の上にシート状に積層された負極集電体42を得ることができる。炭素材料と混練するバインダーとしては、例えば、PTFE、PVDF、フッ素系バインダー、ポリイミド、ポリアミド、ポリアミドイミド、ゴム系バインダー、アクリル系バインダー、塩素系バインダー、及び/又は、無機系バインダーを用いることができる。 After the above-mentioned carbon material and binder are kneaded, the kneaded material is laminated on the substrate 12 by coating or printing. As a result, the negative electrode current collector 42 laminated in the form of a sheet on the substrate 12 can be obtained. As the binder to be kneaded with the carbon material, for example, PTFE, PVDF, a fluorine-based binder, a polyimide, a polyamide, a polyamide-imide, a rubber-based binder, an acrylic-based binder, a chlorine-based binder, and / or an inorganic binder can be used. ..

負極電極44を形成するためには、負極活物質である硫酸バナジウム(III)・n水和物と、電解液である硫酸水溶液と、カーボンとを混合した後、この混合物を負極集電体42の歯42aの上に塗布あるいは印刷等によって積層する。これにより、負極集電体42の歯42aの上に積層された薄膜状の負極電極44を得ることができる。なお、負極電極44はカーボンを含むことが好ましいが、負極活物質によって形状を保持できる場合は、負極電極44はカーボンを含まなくてもよい。 In order to form the negative electrode electrode 44, vanadium sulfate (III) n-hydrate, which is a negative electrode active material, sulfuric acid aqueous solution, which is an electrolytic solution, and carbon are mixed, and then this mixture is used as a negative electrode current collector 42. It is laminated on the tooth 42a by coating or printing. As a result, a thin film-shaped negative electrode electrode 44 laminated on the teeth 42a of the negative electrode current collector 42 can be obtained. The negative electrode 44 preferably contains carbon, but the negative electrode 44 may not contain carbon if the shape can be maintained by the negative electrode active material.

正極集電体22の端部には、正極リード線26が接続されており、負極集電体42の端部には、負極リード線46が接続されている。正極リード線26と負極リード線46との間に適当な大きさの電気抵抗を接続することによって、電池10を放電させることができる。正極リード線26と負極リード線46との間に十分な大きさの電圧を印加することによって、電池10の充電を行うことができる。 A positive electrode lead wire 26 is connected to the end of the positive electrode current collector 22, and a negative electrode lead wire 46 is connected to the end of the negative electrode current collector 42. The battery 10 can be discharged by connecting an electric resistance having an appropriate size between the positive electrode lead wire 26 and the negative electrode lead wire 46. The battery 10 can be charged by applying a voltage of sufficient magnitude between the positive electrode lead wire 26 and the negative electrode lead wire 46.

図1~図3に示すように、正極電極24と負極電極44の間には、イオン伝導性部材50が配置されている。イオン伝導性部材50は、その内部をイオン(例えば、水素イオン、硫酸イオン等)が移動することのできる部材である。イオン伝導性部材50は、電解質を含むことが好ましい。電解質としては、例えば、硫酸を用いることができる。なお、図1では、イオン伝導性部材50の外周の輪郭のみを点線で示している。 As shown in FIGS. 1 to 3, an ion conductive member 50 is arranged between the positive electrode 24 and the negative electrode 44. The ion conductive member 50 is a member through which ions (for example, hydrogen ions, sulfate ions, etc.) can move. The ion conductive member 50 preferably contains an electrolyte. As the electrolyte, for example, sulfuric acid can be used. In FIG. 1, only the outline of the outer circumference of the ion conductive member 50 is shown by a dotted line.

イオン伝導性部材50は、正極電極24及び負極電極44の間でバナジウムイオン以外のイオン(例えば、水素イオン、硫酸イオン等)を移動させることのできる部材であることが好ましい。イオン伝導性部材50は、基板12の上でその形状を保持できる部材であることが好ましく、固体または、ゲル状の部材であることが好ましい。 The ion conductive member 50 is preferably a member capable of transferring ions other than vanadium ions (for example, hydrogen ion, sulfate ion, etc.) between the positive electrode 24 and the negative electrode 44. The ion conductive member 50 is preferably a member that can retain its shape on the substrate 12, and is preferably a solid or gel-like member.

ゲル状のイオン伝導性部材50は、例えば、電解質である硫酸水溶液と、寒天を混合した後、この混合物を型枠に流し込むことによって製造することができる。硫酸水溶液の濃度、量、及び、混合する寒天の量を調整することによって、ゲル化した後のイオン伝導性部材50の固さや電気伝導度を調整することができる。なお、電解質溶液をゲル化するためには、寒天以外のゲル化剤を用いることも可能である。 The gel-like ion conductive member 50 can be produced, for example, by mixing an aqueous solution of sulfuric acid, which is an electrolyte, with agar, and then pouring the mixture into a mold. By adjusting the concentration and amount of the sulfuric acid aqueous solution and the amount of agar to be mixed, the hardness and electrical conductivity of the ion conductive member 50 after gelation can be adjusted. In addition, in order to gel the electrolyte solution, it is also possible to use a gelling agent other than agar.

図2、図3に示すように、イオン伝導性部材50は、正極電極24及び負極電極44の上面を覆うように積層されていることが好ましいが、互いに隣接する正極電極24及び負極電極44の間にのみ積層されてもよい。すなわち、イオン伝導性部材50は、正極電極24及び負極電極44の両方に接していればよく、正極電極24及び負極電極44の上面を覆っていなくてもよい。 As shown in FIGS. 2 and 3, the ion conductive member 50 is preferably laminated so as to cover the upper surfaces of the positive electrode 24 and the negative electrode 44, but the positive electrode 24 and the negative electrode 44 adjacent to each other are laminated. It may be laminated only between them. That is, the ion conductive member 50 may be in contact with both the positive electrode 24 and the negative electrode 44, and may not cover the upper surfaces of the positive electrode 24 and the negative electrode 44.

図1に示すように、櫛形形状の正極集電体22と、櫛形形状の負極集電体42は、互いにその歯22a、42aの部分で噛み合うように対向配置(互いに向かい合うように配置)されている。また、櫛形形状の正極集電体22と、櫛形形状の負極集電体42は、互いに所定の距離だけ離間した状態で配置されている。正極集電体22と負極集電体42をこのように配置することによって、高容量でかつ高出力のバナジウム固体塩電池10を実現することができる。 As shown in FIG. 1, the comb-shaped positive electrode current collector 22 and the comb-shaped negative electrode current collector 42 are arranged to face each other (arranged so as to face each other) so as to mesh with each other at the portions of the teeth 22a and 42a. There is. Further, the comb-shaped positive electrode current collector 22 and the comb-shaped negative electrode current collector 42 are arranged so as to be separated from each other by a predetermined distance. By arranging the positive electrode current collector 22 and the negative electrode current collector 42 in this way, it is possible to realize a vanadium solid salt battery 10 having a high capacity and a high output.

イオン伝導性部材50は、正極活物質および/または負極活物質を含有していることが好ましい。
イオン伝導性部材50が正極活物質および/または負極活物質を含有している場合、イオン伝導性部材50に含まれる活物質の濃度と、正極電極24および/または負極電極44に含まれる活物質の濃度との差を小さくすることができる。その結果、正極電極24および/または負極電極44に含まれる活物質がイオン伝導性部材50に移動することを防止できるため、活物質の減少によって電池の容量が時間の経過とともに低下することを防止することができる。
The ion conductive member 50 preferably contains a positive electrode active material and / or a negative electrode active material.
When the ionic conductive member 50 contains a positive electrode active material and / or a negative electrode active material, the concentration of the active material contained in the ionic conductive member 50 and the active material contained in the positive electrode 24 and / or the negative electrode electrode 44. The difference from the concentration of can be reduced. As a result, since the active material contained in the positive electrode 24 and / or the negative electrode 44 can be prevented from moving to the ion conductive member 50, it is possible to prevent the capacity of the battery from decreasing with the passage of time due to the decrease in the active material. can do.

<第2の構成例>
図4は、バナジウム固体塩電池の第2の構成例を示す平面図である。図5は、図4のC-C線断面図である。図6は、図4のD-D線断面図である。図4~図6において、第1の構成例に係るバナジウム固体塩電池10と同様の部分には、同一の符号を付している。
<Second configuration example>
FIG. 4 is a plan view showing a second configuration example of the vanadium solid salt battery. FIG. 5 is a cross-sectional view taken along the line CC of FIG. FIG. 6 is a cross-sectional view taken along the line DD of FIG. In FIGS. 4 to 6, the same parts as those of the vanadium solid salt battery 10 according to the first configuration example are designated by the same reference numerals.

図4~図6に示すように、第2の構成例に係るバナジウム固体塩電池60において、正極集電体22は櫛形形状に形成されており、正極電極24は正極集電体22とほぼ同一の櫛形形状に形成されている。正極電極24を形成するためには、正極活物質であるオキシ硫酸バナジウム(IV)・n水和物と、電解液である硫酸水溶液と、カーボンとを混合した後、この混合物を正極集電体22の上に塗布あるいは印刷等によって積層する。これにより、櫛形形状の正極集電体22の上に積層された、櫛形形状でかつ薄膜状の正極電極24を得ることができる。 As shown in FIGS. 4 to 6, in the vanadium solid salt battery 60 according to the second configuration example, the positive electrode current collector 22 is formed in a comb shape, and the positive electrode electrode 24 is substantially the same as the positive electrode current collector 22. It is formed in the shape of a comb. In order to form the positive electrode 24, vanadium oxysulfate (IV) n-hydrate, which is a positive electrode active material, sulfuric acid aqueous solution, which is an electrolytic solution, and carbon are mixed, and then this mixture is used as a positive electrode current collector. It is laminated on 22 by coating or printing. As a result, it is possible to obtain a comb-shaped and thin-film positive electrode electrode 24 laminated on the comb-shaped positive electrode current collector 22.

第2の構成例に係るバナジウム固体塩電池60において、負極集電体42は櫛形形状に形成されており、負極電極44は負極集電体42とほぼ同一の櫛形形状に形成されている。負極電極44を形成するためには、負極活物質である硫酸バナジウム(III)・n水和物と、電解液である硫酸水溶液と、カーボンとを混合した後、この混合物を負極集電体42の上に塗布あるいは印刷等によって積層する。これにより、櫛形形状の負極集電体42の上に積層された、櫛形形状でかつ薄膜状の負極電極44を得ることができる。 In the vanadium solid salt battery 60 according to the second configuration example, the negative electrode current collector 42 is formed in a comb shape, and the negative electrode electrode 44 is formed in a comb shape substantially the same as the negative electrode current collector 42. In order to form the negative electrode electrode 44, vanadium sulfate (III) n-hydrate, which is a negative electrode active material, sulfuric acid aqueous solution, which is an electrolytic solution, and carbon are mixed, and then this mixture is used as a negative electrode current collector 42. Laminate on top by coating or printing. As a result, it is possible to obtain a comb-shaped and thin-film negative electrode electrode 44 laminated on the comb-shaped negative electrode current collector 42.

図4~図6に示すように、正極電極24と負極電極44の間には、イオン伝導性部材50が配置されている。イオン伝導性部材50は、その内部をイオン(例えば、水素イオン、硫酸イオン等)が移動することのできる部材である。イオン伝導性部材50は、電解質を含むことが好ましい。電解質としては、例えば、硫酸を用いることができる。なお、図4では、イオン伝導性部材50の外周の輪郭のみを点線で示している。 As shown in FIGS. 4 to 6, an ion conductive member 50 is arranged between the positive electrode 24 and the negative electrode 44. The ion conductive member 50 is a member through which ions (for example, hydrogen ions, sulfate ions, etc.) can move. The ion conductive member 50 preferably contains an electrolyte. As the electrolyte, for example, sulfuric acid can be used. In FIG. 4, only the outline of the outer circumference of the ion conductive member 50 is shown by a dotted line.

イオン伝導性部材50は、正極電極24及び負極電極44の間でバナジウムイオン以外のイオン(例えば、水素イオン、硫酸イオン等)を移動させることのできる部材であることが好ましい。イオン伝導性部材50は、基板12の上でその形状を保持できる部材であることが好ましく、固体または、ゲル状の部材であることが好ましい。 The ion conductive member 50 is preferably a member capable of transferring ions other than vanadium ions (for example, hydrogen ion, sulfate ion, etc.) between the positive electrode 24 and the negative electrode 44. The ion conductive member 50 is preferably a member that can retain its shape on the substrate 12, and is preferably a solid or gel-like member.

ゲル状のイオン伝導性部材50は、例えば、電解質である硫酸水溶液と、寒天を混合した後、この混合物を型枠に流し込むことによって製造することができる。硫酸水溶液の濃度、量、及び、混合する寒天の量を調整することによって、ゲル化した後のイオン伝導性部材50の固さや電気伝導度を調整することができる。なお、電解質溶液をゲル化するためには、寒天以外のゲル化剤を用いることも可能である。 The gel-like ion conductive member 50 can be produced, for example, by mixing an aqueous solution of sulfuric acid, which is an electrolyte, with agar, and then pouring the mixture into a mold. By adjusting the concentration and amount of the sulfuric acid aqueous solution and the amount of agar to be mixed, the hardness and electrical conductivity of the ion conductive member 50 after gelation can be adjusted. In addition, in order to gel the electrolyte solution, it is also possible to use a gelling agent other than agar.

第2の構成例に係るバナジウム固体塩電池60において、イオン伝導性部材50は、櫛形形状に形成された正極電極24及び負極電極44の歯の部分だけでなく、正極電極24及び負極電極44の基部24a、44aを含めた全部を覆うように積層されている。 In the vanadium solid salt battery 60 according to the second configuration example, the ion conductive member 50 includes not only the tooth portions of the positive electrode 24 and the negative electrode 44 formed in a comb shape, but also the positive electrode 24 and the negative electrode 44. It is laminated so as to cover the entire base including the bases 24a and 44a.

第2の構成例に係るバナジウム固体塩電池60によれば、正極集電体22が櫛形形状に形成されており、正極電極24が正極集電体22とほぼ同一の櫛形形状に形成されている。また、負極集電体42が櫛形形状に形成されており、負極電極44が負極集電体42とほぼ同一の櫛形形状に形成されている。これにより、正極電極24及び負極電極44のイオン伝導性部材50との接触面積を大きくすることができるため、バナジウム固体塩電池60の出力をより高めることができる。 According to the vanadium solid salt battery 60 according to the second configuration example, the positive electrode current collector 22 is formed in a comb shape, and the positive electrode electrode 24 is formed in a comb shape substantially the same as the positive electrode current collector 22. .. Further, the negative electrode current collector 42 is formed in a comb shape, and the negative electrode electrode 44 is formed in a comb shape substantially the same as that of the negative electrode current collector 42. As a result, the contact area of the positive electrode 24 and the negative electrode 44 with the ion conductive member 50 can be increased, so that the output of the vanadium solid salt battery 60 can be further increased.

また、第2の構成例に係るバナジウム固体塩電池60によれば、イオン伝導性部材50が正極電極24及び負極電極44の全部を覆うように積層されているため、バナジウム固体塩電池60の出力をより一層高めることができる。 Further, according to the vanadium solid salt battery 60 according to the second configuration example, since the ion conductive member 50 is laminated so as to cover all of the positive electrode 24 and the negative electrode 44, the output of the vanadium solid salt battery 60 Can be further enhanced.

以上説明したように、本実施形態のバナジウム固体塩電池によれば、正極及び負極を隔てるためのイオン交換膜を必要としない二次電池を実現することができる。 As described above, according to the vanadium solid salt battery of the present embodiment, it is possible to realize a secondary battery that does not require an ion exchange membrane for separating the positive electrode and the negative electrode.

10、60 バナジウム固体塩電池
12 基板
20 正極
22 正極集電体
24 正極電極
26 正極リード線
40 負極
42 負極集電体
44 負極電極
46 負極リード線
50 イオン伝導性部材
10, 60 vanadium solid salt battery 12 substrate 20 positive electrode 22 positive electrode current collector 24 positive electrode electrode 26 positive electrode lead wire 40 negative electrode 42 negative electrode current collector 44 negative electrode electrode 46 negative electrode lead wire 50 ion conductive member

Claims (3)

支持体と、
前記支持体上に積層された、複数の歯を有する櫛形形状をなす正極集電体と、
前記正極集電体の少なくとも歯の部分の上に積層され、酸化還元反応によって、5価および4価の間で酸化数が変化するバナジウムイオンまたは5価および4価の間で酸化数が変化するバナジウムを含むイオンを含有する正極活物質および電解液を有する正極電極と、
前記支持体上に積層された、複数の歯を有する櫛形形状をなす負極集電体と、
前記負極集電体の少なくとも歯の部分の上に積層され、酸化還元反応によって、2価および3価の間で酸化数が変化するバナジウムイオンまたは2価および3価の間で酸化数が変化するバナジウムを含むイオンを含有する負極活物質および電解液を有する負極電極と、
前記正極電極および前記負極電極の両方に接し、前記正極活物質および/または前記負極活物質を含有し、前記正極電極と前記負極電極の間でバナジウムイオン以外のイオンまたはバナジウムを含むイオン以外のイオンを移動させる固体またはゲル状の部材であるイオン伝導性部材と、を備え、
前記正極集電体と前記負極集電体が互いにその歯の部分でかみ合うように対向配置されており、
隣り合う前記正極電極と前記負極電極は離間しており、隣り合う前記正極電極と前記負極電極に亘って前記イオン伝導性部材が配置されている二次電池。
With the support,
A comb-shaped positive electrode current collector having a plurality of teeth laminated on the support and
It is laminated on at least the tooth portion of the positive electrode current collector, and the oxidation number changes between pentavalent and tetravalent vanadium ions or between pentavalent and tetravalent due to the redox reaction. A positive electrode having a positive electrode active material and an electrolytic solution containing ions containing vanadium, and a positive electrode.
A comb-shaped negative electrode current collector having a plurality of teeth laminated on the support and
It is laminated on at least the tooth portion of the negative electrode current collector, and the oxidation number changes between divalent and trivalent vanadium ions or between divalent and trivalent by redox reaction. A negative electrode having a negative electrode active material containing ions containing vanadium and an electrolytic solution, and a negative electrode
Ions other than vanadium ions or ions other than vanadium-containing ions that are in contact with both the positive electrode and the negative electrode and contain the positive electrode active material and / or the negative electrode active material, and are between the positive electrode and the negative electrode. With an ionic conductive member, which is a solid or gel-like member that moves the
The positive electrode current collector and the negative electrode current collector are arranged so as to face each other so as to mesh with each other at the tooth portions.
A secondary battery in which the adjacent positive electrode and the negative electrode are separated from each other, and the ion conductive member is arranged over the adjacent positive electrode and the negative electrode.
前記正極電極は、前記正極集電体と同じ櫛形形状をなし、前記正極集電体上に積層されており、
前記負極電極は、前記負極集電体と同じ櫛形形状をなし、前記負極集電体上に積層されている、請求項1に記載の二次電池。
The positive electrode has the same comb shape as the positive electrode current collector, and is laminated on the positive electrode current collector.
The secondary battery according to claim 1, wherein the negative electrode has the same comb shape as the negative electrode current collector and is laminated on the negative electrode current collector.
前記イオン伝導性部材は、前記正極電極および前記負極電極の上に積層されている、請求項1または請求項2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the ion conductive member is laminated on the positive electrode and the negative electrode.
JP2016189050A 2016-09-28 2016-09-28 Secondary battery Active JP7016503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016189050A JP7016503B2 (en) 2016-09-28 2016-09-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016189050A JP7016503B2 (en) 2016-09-28 2016-09-28 Secondary battery

Publications (2)

Publication Number Publication Date
JP2018055902A JP2018055902A (en) 2018-04-05
JP7016503B2 true JP7016503B2 (en) 2022-02-07

Family

ID=61836952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016189050A Active JP7016503B2 (en) 2016-09-28 2016-09-28 Secondary battery

Country Status (1)

Country Link
JP (1) JP7016503B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228371B2 (en) * 2018-11-22 2023-02-24 前田建設工業株式会社 air conditioning system
JP7136150B2 (en) * 2020-03-10 2022-09-13 株式会社豊田中央研究所 Electrode for power storage device and power storage device
CN111834637B (en) * 2020-07-24 2022-03-22 江西理工大学 Flexible lithium ion battery with multi-channel flexible current collector structure for reducing internal resistance and preparation method thereof
CN114667636A (en) * 2021-03-02 2022-06-24 宁德新能源科技有限公司 Flexible battery and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216833A (en) 2001-01-19 2002-08-02 Kansai Electric Power Co Inc:The Redox cell
JP2006147210A (en) 2004-11-17 2006-06-08 Hitachi Ltd Secondary battery and production method therefor
WO2011049103A1 (en) 2009-10-20 2011-04-28 国立大学法人東北大学 Vanadium cell
WO2014203965A1 (en) 2013-06-21 2014-12-24 東京応化工業株式会社 Nonaqueous secondary battery and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002216833A (en) 2001-01-19 2002-08-02 Kansai Electric Power Co Inc:The Redox cell
JP2006147210A (en) 2004-11-17 2006-06-08 Hitachi Ltd Secondary battery and production method therefor
WO2011049103A1 (en) 2009-10-20 2011-04-28 国立大学法人東北大学 Vanadium cell
WO2014203965A1 (en) 2013-06-21 2014-12-24 東京応化工業株式会社 Nonaqueous secondary battery and method for manufacturing same

Also Published As

Publication number Publication date
JP2018055902A (en) 2018-04-05

Similar Documents

Publication Publication Date Title
EP2493002B1 (en) Vanadium cell
JP7016503B2 (en) Secondary battery
JP2017539051A5 (en)
WO2014104282A1 (en) Static vanadium redox battery
JP2017079301A (en) Power storage device
WO2014126179A1 (en) Vanadium solid-salt battery and method for producing same
US20150295281A1 (en) Vanadium Redox Battery
US20220263165A1 (en) Hybrid Energy Storage Device
JP2018170131A (en) Vanadium redox secondary battery, barrier membrane for redox secondary battery, and method of producing barrier membrane for redox secondary battery
WO2019181526A1 (en) Electrochemical capacitor
JP6967749B2 (en) battery
JP2016186853A (en) Vanadium redox battery
WO2016158217A1 (en) Vanadium redox cell
US20150147663A1 (en) Electrical energy storage device with non-aqueous electrolyte
WO2017203921A1 (en) Vanadium redox secondary battery and method for producing vanadium redox secondary battery
JP2018049788A (en) Vanadium redox secondary battery, and diaphragm for vanadium redox secondary battery
JP7069224B2 (en) Ion exchange separation membrane and flow battery containing it
JP2018501607A (en) Electrical energy storage device using non-aqueous electrolyte
JP2017204395A (en) Lithium air secondary battery
JP2018026242A (en) Vanadium redox secondary battery, and ion conducting film for battery
KR102106110B1 (en) Redox flow battery
KR20170005531A (en) Ion battery
JP2018501607A5 (en)
WO2016158216A1 (en) Vanadium redox cell
WO2016158019A1 (en) Vanadium solid-salt battery

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20190807

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190927

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20190927

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190930

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7016503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350