JP7016109B2 - Composite structure, method for manufacturing composite structure, and method for heat storage - Google Patents

Composite structure, method for manufacturing composite structure, and method for heat storage Download PDF

Info

Publication number
JP7016109B2
JP7016109B2 JP2018024999A JP2018024999A JP7016109B2 JP 7016109 B2 JP7016109 B2 JP 7016109B2 JP 2018024999 A JP2018024999 A JP 2018024999A JP 2018024999 A JP2018024999 A JP 2018024999A JP 7016109 B2 JP7016109 B2 JP 7016109B2
Authority
JP
Japan
Prior art keywords
composite structure
outer shell
heat storage
metal material
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018024999A
Other languages
Japanese (ja)
Other versions
JP2019137819A (en
Inventor
英紀 北
慎二郎 中村
誠司 山下
光宏 窪田
和也 橋本
文仁 尾関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mino Ceramic Co Ltd
Tokai National Higher Education and Research System NUC
Original Assignee
Mino Ceramic Co Ltd
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mino Ceramic Co Ltd, Tokai National Higher Education and Research System NUC filed Critical Mino Ceramic Co Ltd
Priority to JP2018024999A priority Critical patent/JP7016109B2/en
Publication of JP2019137819A publication Critical patent/JP2019137819A/en
Application granted granted Critical
Publication of JP7016109B2 publication Critical patent/JP7016109B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Ceramic Products (AREA)

Description

本発明は、蓄熱体等として有用な複合構造体及びその製造方法、並びにこの複合構造体を蓄熱体として用いた蓄熱方法に関する。 The present invention relates to a composite structure useful as a heat storage body and the like, a method for producing the same, and a heat storage method using the composite structure as a heat storage body.

蓄熱方法の一つとして、相変化に伴う潜熱を利用した潜熱蓄熱が知られている。このような潜熱蓄熱を利用した蓄熱体として、その内部に潜熱蓄熱物質を有するカプセル状の蓄熱体が提案されている。 As one of the heat storage methods, latent heat storage using latent heat accompanying a phase change is known. As a heat storage body using such latent heat storage, a capsule-shaped heat storage body having a latent heat storage substance inside thereof has been proposed.

例えば、特許文献1では、電解めっき法によって潜熱蓄熱材の表面に一層以上の金属製被膜を形成した潜熱蓄熱カプセルが提案されている。また、特許文献2では、相変化により蓄熱又は放熱する水溶性の潜熱蓄熱物質を芯物質とし、この芯物質を無機化合物と有機高分子化合物とが複合化されて形成された複合カプセル壁で被覆した蓄熱マイクロカプセルが提案されている。 For example, Patent Document 1 proposes a latent heat storage capsule in which one or more metal coatings are formed on the surface of a latent heat storage material by an electrolytic plating method. Further, in Patent Document 2, a water-soluble latent heat storage substance that stores heat or dissipates heat due to a phase change is used as a core substance, and this core substance is covered with a composite capsule wall formed by combining an inorganic compound and an organic polymer compound. The heat storage microcapsules have been proposed.

さらに、特許文献3では、糖類等の水溶性蓄熱材からなる芯物質と、この芯物質を被覆する、無機化合物と有機高分子化合物の複合材からなる第一カプセル壁と、この第一カプセル壁を被覆するポリマー材からなる第二カプセル壁とを有する蓄熱マイクロカプセルが提案されている。 Further, in Patent Document 3, a core substance made of a water-soluble heat storage material such as a saccharide, a first capsule wall made of a composite material of an inorganic compound and an organic polymer compound covering the core substance, and the first capsule wall. A heat storage microcapsule having a second capsule wall made of a polymer material covering the above has been proposed.

しかしながら、特許文献1で提案された潜熱蓄熱カプセルの金属製被膜は耐熱性が低いため、高温状態での使用時に破れてしまい、内部の蓄熱物質が漏出しやすくなるといった問題があった。また、特許文献2及び3で提案された蓄熱マイクロカプセルのカプセル壁は低密度であるために強度が低い。このため、高温条件下や腐食等を生じやすい過酷な環境下で使用することは困難であった。さらに、上述した従来の蓄熱用のカプセル等はエネルギー密度が小さく、外殻部分の耐熱性が十分でないため、温度差を利用した顕熱を十分に利用することができず、エネルギー密度が小さいという問題もあった。 However, since the metal film of the latent heat storage capsule proposed in Patent Document 1 has low heat resistance, there is a problem that the metal film is torn when used in a high temperature state and the internal heat storage substance easily leaks out. Further, since the capsule wall of the heat storage microcapsules proposed in Patent Documents 2 and 3 has a low density, the strength is low. Therefore, it has been difficult to use it under high temperature conditions or in a harsh environment where corrosion is likely to occur. Furthermore, the above-mentioned conventional heat storage capsules and the like have a low energy density and the heat resistance of the outer shell portion is not sufficient, so that the sensible heat utilizing the temperature difference cannot be sufficiently utilized and the energy density is low. There was also a problem.

このような問題を解決すべく、例えば、セラミックスからなる一対の中空半球体を分割面で嵌合して形成した外殻中に金属等の内部蓄熱体を内包した蓄熱体が特許文献4で提案されている。 In order to solve such a problem, for example, Patent Document 4 proposes a heat storage body in which an internal heat storage body such as a metal is contained in an outer shell formed by fitting a pair of hollow hemispheres made of ceramics on a split surface. Has been done.

特開平11-23172号公報Japanese Unexamined Patent Publication No. 11-23172 特開2007-238912号公報JP-A-2007-238912 特開2009-108167号公報Japanese Unexamined Patent Publication No. 2009-108167 特開2012-111825号公報Japanese Unexamined Patent Publication No. 2012-11182

特許文献4で提案された蓄熱体はエネルギー密度が高く、ある程度有用なものではあった。しかしながら、使用時に、外殻を形成する一対の中空半球体の嵌合箇所から内部へと空気が侵入することがあった。このため、金属等の内部蓄熱体が酸化により劣化しやすいとともに、嵌合箇所の存在により機械的強度が不足するといった課題があった。また、外殻と内部蓄熱体との間にわずかな空隙が存在するため、この空隙が熱抵抗となって昇温速度が低下する場合があった。さらに、特許文献4で開示された製造方法では、図5に示すように、内部蓄熱体80と外殻92,94を個別に作製した後、これらを組み合わせて蓄熱体100とする必要がある。このため、製造工程が煩雑となってコスト高であるとともに、安定した性能を有する蓄熱体を定常的に製造することが困難であった。 The heat storage body proposed in Patent Document 4 has a high energy density and is useful to some extent. However, at the time of use, air may enter the inside from the fitting portion of the pair of hollow hemispheres forming the outer shell. For this reason, there are problems that the internal heat storage body such as metal is easily deteriorated by oxidation and the mechanical strength is insufficient due to the existence of the fitting portion. Further, since there is a slight void between the outer shell and the internal heat storage body, this void may become a thermal resistance and the rate of temperature rise may decrease. Further, in the manufacturing method disclosed in Patent Document 4, as shown in FIG. 5, it is necessary to individually prepare the internal heat storage body 80 and the outer shells 92 and 94, and then combine them to form the heat storage body 100. For this reason, the manufacturing process becomes complicated and the cost is high, and it is difficult to constantly manufacture a heat storage body having stable performance.

本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その課題とするところは、昇温特性に優れているとともに、機械的強度が高く、かつ、蓄熱性能を安定的に発揮しうる、蓄熱体等として有用な複合構造体を提供することにある。また、本発明の課題とするところは、上記の複合構造体の簡便な製造方法、及び上記の複合構造体を用いた蓄熱方法を提供することにある。 The present invention has been made in view of the problems of the prior art, and the problems thereof are excellent temperature rise characteristics, high mechanical strength, and stable heat storage performance. It is an object of the present invention to provide a composite structure useful as a heat storage body or the like that can be effectively exhibited. Further, an object of the present invention is to provide a simple method for producing the above-mentioned composite structure and a heat storage method using the above-mentioned composite structure.

すなわち、本発明によれば、以下に示す複合構造体が提供される。
[1]金属材料からなる内部構造部と、前記内部構造部を内包する、反応焼結により形成された炭化ケイ素を90体積%以上含むセラミックスからなるシームレスな外殻部と、を備え、前記金属材料の融点が1,500℃以下である複合構造体。
[2]前記内部構造部と前記外殻部の間に配置される緩衝層をさらに備える前記[1]に記載の複合構造体。
[3]前記緩衝層が、窒化ホウ素及び炭素の少なくともいずれかの材料で形成されている前記[2]に記載の複合構造体。
]前記金属材料が、銅、アルミニウム、ニッケル、及び鉄からなる群より選択される少なくとも一種の金属である前記[~[3]のいずれかに記載の複合材料。
]前記金属材料が、ケイ素を含有する前記[1]~[]のいずれかに記載の複合構造体。
[6]前記金属材料が、銅、又は、ケイ素を35質量%以下含む銅-ケイ素合金である前記[1]~[3]のいずれかに記載の複合構造体。
[7]蓄熱体として用いられる前記[1]~[6]のいずれかに記載の複合構造体。
That is, according to the present invention, the following composite structure is provided.
[1] The metal includes an internal structural portion made of a metal material and a seamless outer shell portion made of ceramics containing 90% by volume or more of silicon carbide formed by reaction sintering and containing the internal structural portion. A composite structure in which the melting point of the material is 1,500 ° C. or lower .
[2] The composite structure according to the above [1], further comprising a buffer layer arranged between the internal structure portion and the outer shell portion.
[3] The composite structure according to the above [2], wherein the buffer layer is made of at least one of boron nitride and carbon.
[ 4 ] The composite material according to any one of the above [ 1 ] to [3], wherein the metal material is at least one metal selected from the group consisting of copper, aluminum, nickel, and iron.
[ 5 ] The composite structure according to any one of the above [1] to [ 4 ], wherein the metal material contains silicon.
[6] The composite structure according to any one of the above [1] to [3], wherein the metal material is copper or a copper-silicon alloy containing 35% by mass or less of silicon.
[7] The composite structure according to any one of the above [1] to [6], which is used as a heat storage body.

また、本発明によれば、以下に示す複合構造体の製造方法が提供される。
[8]前記[1]~[7]のいずれかに記載の複合構造体の製造方法であって、前記金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して被焼成体を得る工程と、得られた前記被焼成体の少なくとも前記被覆層をケイ素と接触させた状態で加熱し、反応焼結により前記外殻部を形成する工程と、を有する複合構造体の製造方法。
Further, according to the present invention, there is provided a method for producing a composite structure shown below.
[8] The method for producing a composite structure according to any one of the above [1] to [7], wherein the outer peripheral surface of the molded body made of the metal material is coated with a coating layer containing silicon carbide and carbon. A composite structure having a step of obtaining a body to be fired and a step of heating at least the coating layer of the obtained body to be fired in contact with silicon and forming the outer shell portion by reaction sintering. Manufacturing method.

さらに、本発明によれば、以下に示す蓄熱方法が提供される。
[9]前記[7]に記載の複合構造体を前記内部構造部の溶融点以上の温度に加熱して、前記複合構造体に蓄熱させる工程を有する蓄熱方法。
Further, according to the present invention, the following heat storage method is provided.
[9] A heat storage method comprising a step of heating the composite structure according to the above [7] to a temperature equal to or higher than the melting point of the internal structure portion to store heat in the composite structure.

本発明によれば、昇温特性に優れているとともに、機械的強度が高く、かつ、蓄熱性能を安定的に発揮しうる、蓄熱体等として有用な複合構造体を提供することができる。また、本発明によれば、上記の複合構造体の簡便な製造方法、及び上記の複合構造体を用いた蓄熱方法を提供することができる。 According to the present invention, it is possible to provide a composite structure useful as a heat storage body or the like, which is excellent in temperature rise characteristics, has high mechanical strength, and can stably exhibit heat storage performance. Further, according to the present invention, it is possible to provide a simple method for producing the above-mentioned composite structure and a heat storage method using the above-mentioned composite structure.

本発明の複合構造体の一実施形態を模式的に示す断面図である。It is sectional drawing which shows typically one Embodiment of the composite structure of this invention. 本発明の複合構造体の他の実施形態を模式的に示す断面図である。It is sectional drawing which shows typically the other embodiment of the composite structure of this invention. 本発明の複合構造体の製造方法の一実施形態を示す模式図である。It is a schematic diagram which shows one Embodiment of the manufacturing method of the composite structure of this invention. 本発明の複合構造体の製造方法の他の実施形態を示す模式図である。It is a schematic diagram which shows the other embodiment of the manufacturing method of the composite structure of this invention. 従来の蓄熱体の製造方法の一例を示す模式図である。It is a schematic diagram which shows an example of the manufacturing method of the conventional heat storage body. 各要因が複合構造体の昇温特性に及ぼす影響を示すグラフである。It is a graph which shows the influence which each factor has on the temperature rise characteristic of a composite structure. 各要因が複合構造体の機械的強度に及ぼす影響を示すグラフである。It is a graph which shows the influence which each factor has on the mechanical strength of a composite structure.

<複合構造体>
以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではない。本発明の複合構造体は、金属材料からなる内部構造部と、この内部構造部を内包する、反応焼結により形成された炭化ケイ素を主成分とするセラミックスからなるシームレスな外殻部とを備える。以下、本発明の複合構造体の詳細について説明する。
<Composite structure>
Hereinafter, embodiments of the present invention will be described, but the present invention is not limited to the following embodiments. The composite structure of the present invention includes an internal structure portion made of a metal material and a seamless outer shell portion made of ceramics containing silicon carbide as a main component, which is formed by reaction sintering and contains the internal structure portion. .. Hereinafter, the details of the composite structure of the present invention will be described.

図1は、本発明の複合構造体の一実施形態を模式的に示す断面図である。図1に示すように、本実施形態の複合構造体10は、内部構造部2と、この内部構造部2を内包するシームレスな外殻部4とを備える。 FIG. 1 is a cross-sectional view schematically showing an embodiment of the composite structure of the present invention. As shown in FIG. 1, the composite structure 10 of the present embodiment includes an internal structure portion 2 and a seamless outer shell portion 4 including the internal structure portion 2.

(内部構造部)
複合構造体10を構成する内部構造部2は金属材料によって形成されており、主として内部蓄熱体として機能する部分である。複合構造体10を1,000~1,500℃の温度域の廃熱を回収して再利用する蓄熱体として用いる場合を考慮すると、内部構造部2を構成する金属材料の融点は1,500℃以下であることが好ましく、1,000~1,400℃であることがさらに好ましい。このような金属材料としては、例えば、銅、アルミニウム、ニッケル、及び鉄などを挙げることができる。これらの金属材料は、一種単独で又は二種以上を組み合わせて用いることができる。
(Internal structure)
The internal structure portion 2 constituting the composite structure 10 is formed of a metal material and is a portion that mainly functions as an internal heat storage body. Considering the case where the composite structure 10 is used as a heat storage body for recovering and reusing waste heat in a temperature range of 1,000 to 1,500 ° C., the melting point of the metal material constituting the internal structure portion 2 is 1,500. The temperature is preferably 1 ° C. or lower, and more preferably 1,000 to 1,400 ° C. Examples of such metal materials include copper, aluminum, nickel, iron and the like. These metallic materials can be used alone or in combination of two or more.

内部構造部2を構成する金属材料は、ケイ素を含有することが好ましい。後述する複合構造体の製造方法では、金属材料からなる成形体の外周面を被覆層で被覆した被焼成体を所定温度に加熱する。このため、固体から液体への相変態の際に収縮するケイ素を金属材料に含有させておくことで、加熱に伴って溶融した金属材料の過度の膨張を抑制することができる。これにより、得られる複合構造体に欠損等が生じにくくなるとともに、得られる複合構造体の熱伝導性等の特性をさらに向上させることができる。 The metal material constituting the internal structure portion 2 preferably contains silicon. In the method for manufacturing a composite structure described later, a body to be fired in which the outer peripheral surface of a molded body made of a metal material is covered with a coating layer is heated to a predetermined temperature. Therefore, by including silicon that shrinks during the phase transformation from a solid to a liquid in the metal material, it is possible to suppress excessive expansion of the molten metal material due to heating. As a result, the obtained composite structure is less likely to be damaged, and the properties such as thermal conductivity of the obtained composite structure can be further improved.

内部構造部2を構成する金属材料がケイ素を含有する場合において、金属材料中のケイ素の含有量は、2~35質量%であることが好ましく、5~30質量%であることがさらに好ましく、10~25質量%であることが特に好ましい。金属材料中のケイ素の含有量が2質量%未満であると、ケイ素を含有させることによって得られる効果が不十分になる。一方、金属材料中のケイ素の含有量が35質量%超であると、ケイ素の特性が顕在化しやすく、金属材料自体の熱的特性等が不十分になる場合がある。 When the metal material constituting the internal structure portion 2 contains silicon, the content of silicon in the metal material is preferably 2 to 35% by mass, more preferably 5 to 30% by mass. It is particularly preferably 10 to 25% by mass. If the content of silicon in the metallic material is less than 2% by mass, the effect obtained by containing silicon becomes insufficient. On the other hand, if the content of silicon in the metal material is more than 35% by mass, the characteristics of silicon are likely to be manifested, and the thermal characteristics of the metal material itself may be insufficient.

(外殻部)
複合構造体10を構成する外殻部4は、セラミックスによって形成されている。また、このセラミックスは、反応焼結により形成された炭化ケイ素を主成分として含有する。本実施形態の複合構造体10は、このようなセラミックスによって形成された外殻部4によって内部構造部2を被覆したものであるため、良好な昇温特性を有するとともに、優れた機械的強度を示す。外殻部4を形成するセラミックスに含まれる炭化ケイ素の量は特に限定されないが、50体積%以上であることが好ましく、90体積%以上であることがさらに好ましい。
(Outer shell)
The outer shell portion 4 constituting the composite structure 10 is formed of ceramics. Further, this ceramic contains silicon carbide formed by reaction sintering as a main component. Since the composite structure 10 of the present embodiment has the internal structure portion 2 covered with the outer shell portion 4 formed of such ceramics, it has good temperature rising characteristics and excellent mechanical strength. show. The amount of silicon carbide contained in the ceramics forming the outer shell portion 4 is not particularly limited, but is preferably 50% by volume or more, and more preferably 90% by volume or more.

また、外殻部4は、嵌合部、接合部、又は隙間等が実質的に存在しない、いわゆるシームレスな部分である。このため、外殻部4を通じて外部から空気が侵入しにくく、内部構造部2が劣化しにくい。さらに、外殻部4に嵌合部や隙間が実質的に存在しないことから、優れた機械的強度が発揮される。 Further, the outer shell portion 4 is a so-called seamless portion in which a fitting portion, a joint portion, a gap, or the like is substantially not present. Therefore, it is difficult for air to enter from the outside through the outer shell portion 4, and the internal structure portion 2 is less likely to deteriorate. Further, since there is substantially no fitting portion or gap in the outer shell portion 4, excellent mechanical strength is exhibited.

(緩衝層)
図2は、本発明の複合構造体の他の実施形態を模式的に示す断面図である。図2に示すように、本実施形態の複合構造体20は、内部構造部2と外殻部4の間に配置される緩衝層6をさらに備えることが好ましい。後述する複合構造体の製造方法では、金属材料からなる成形体の外周面を被覆層で被覆した被焼成体を所定温度に加熱する。このため、所定箇所に緩衝層を配置することで、加熱に伴って溶融した金属材料の膨張により生ずる応力を緩衝することができる。また、緩衝層を配置することで、加熱に伴って溶融した金属材料が外部に流出しやすくなるのを抑制することも期待される。すなわち、緩衝層は、遮蔽層としての機能をも具備することが好ましい。緩衝層を配置することで、得られる複合構造体に欠損等が生じにくくなるとともに、得られる複合構造体の熱伝導性等の特性をさらに向上させることができる。
(Cushioning layer)
FIG. 2 is a cross-sectional view schematically showing another embodiment of the composite structure of the present invention. As shown in FIG. 2, it is preferable that the composite structure 20 of the present embodiment further includes a buffer layer 6 arranged between the internal structure portion 2 and the outer shell portion 4. In the method for manufacturing a composite structure described later, a body to be fired in which the outer peripheral surface of a molded body made of a metal material is covered with a coating layer is heated to a predetermined temperature. Therefore, by arranging the buffer layer at a predetermined position, the stress generated by the expansion of the molten metal material due to heating can be buffered. It is also expected that by arranging the buffer layer, it is possible to prevent the molten metal material from easily flowing out due to heating. That is, it is preferable that the buffer layer also has a function as a shielding layer. By arranging the buffer layer, the obtained composite structure is less likely to be damaged, and the properties such as thermal conductivity of the obtained composite structure can be further improved.

緩衝層6の厚みは特に限定されないが、3mm以下とすることが好ましく、1mm以下とすることがさらに好ましい。緩衝層6の厚みが3mm超であると、外部から内部構造部2への熱伝導が阻害されやすくなる場合がある。 The thickness of the buffer layer 6 is not particularly limited, but is preferably 3 mm or less, and more preferably 1 mm or less. If the thickness of the buffer layer 6 is more than 3 mm, heat conduction from the outside to the internal structure portion 2 may be easily hindered.

緩衝層6を構成する材料としては、窒化ホウ素、炭素等を挙げることができる。これらの材料は、一種単独で又は二種を組み合わせて用いることができる。 Examples of the material constituting the buffer layer 6 include boron nitride and carbon. These materials can be used alone or in combination of two.

本発明の複合構造体は、(i)堅牢でシームレスな外殻部、及び(ii)この外殻部に内包された金属材料からなる内部構造部、といった、物理的にも化学的にも顕著に相違する二つの構造部分を備える。このため、本発明の複合構造体は、その特性を生かし、例えば、鉄鋼の転炉などの1,000℃以上の高温かつ腐食しやすい過酷な環境下で廃熱回収するための蓄熱体;輻射を利用した発熱体等として有用である。その他、本発明の複合構造体が、耐食性に優れているとともに熱伝導率が高いものであることを利用すれば、触媒基材、放熱基板、及び熱交換機への適用も期待される。 The composite structure of the present invention is physically and chemically remarkable, such as (i) a robust and seamless outer shell portion, and (ii) an internal structural portion made of a metallic material contained in the outer shell portion. It has two structural parts that differ from each other. Therefore, the composite structure of the present invention makes use of its characteristics, for example, a heat storage element for recovering waste heat in a harsh environment such as a steel converter at a high temperature of 1,000 ° C. or higher and easily corroded; radiation. It is useful as a heating element or the like using the above. In addition, if the composite structure of the present invention has excellent corrosion resistance and high thermal conductivity, it is expected to be applied to a catalyst base material, a heat radiating substrate, and a heat exchanger.

<複合構造体の製造方法>
次に、本発明の複合構造体の製造方法について説明する。本発明の複合構造体の製造方法は、上述の複合構造体を製造する方法であり、金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して被焼成体を得る工程(工程(1))と、得られた被焼成体の少なくとも被覆層をケイ素と接触させた状態で加熱し、反応焼結により外殻部を形成する工程(工程(2))とを有する。以下、本発明の複合構造体の製造方法の詳細について説明する。
<Manufacturing method of composite structure>
Next, a method for producing the composite structure of the present invention will be described. The method for producing a composite structure of the present invention is the method for producing the above-mentioned composite structure, and the outer peripheral surface of a molded body made of a metal material is coated with a coating layer containing silicon carbide and carbon to obtain a fired body. It has a step (step (1)) and a step (step (2)) of heating at least the coating layer of the obtained body to be fired in contact with silicon and forming an outer shell portion by reaction sintering. .. Hereinafter, the details of the method for producing the composite structure of the present invention will be described.

(工程(1))
工程(1)では、金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して、被焼成体を得る。成形体を構成する金属材料は、内部構造部を形成するための前述の金属材料と同様のものを挙げることができる。なお、金属材料からなる成形体の外周面上に前述した緩衝層を形成してもよい。緩衝層を形成するには、例えば、窒化ホウ素や炭素の粉末を適当な分散媒(水、エタノール等)に分散させて得られるスラリーを成形体の外周面上に塗布すればよい。
(Step (1))
In the step (1), the outer peripheral surface of the molded body made of a metal material is coated with a coating layer containing silicon carbide and carbon to obtain a body to be fired. Examples of the metal material constituting the molded body include the same metal materials as those described above for forming the internal structural portion. The above-mentioned cushioning layer may be formed on the outer peripheral surface of the molded body made of a metal material. In order to form the buffer layer, for example, a slurry obtained by dispersing boron nitride or carbon powder in an appropriate dispersion medium (water, ethanol, etc.) may be applied onto the outer peripheral surface of the molded body.

図3は、本発明の複合構造体の製造方法の一実施形態を示す模式図である。被焼成体を得るには、まず、金属材料からなる成形体12の外周面上に炭化ケイ素及び炭素を含有する粉体層14を形成して、粉体被覆物16を得る(図3(A)、(B))。この粉体層14は、例えば、炭化ケイ素の粉末及び炭素の粉末を適当な分散媒(水、エタノール等)に分散させて得られるスラリーを成形体12の外周面上に塗布することで形成することができる。得られた粉体被覆物16を回転混合器20のチャンバー18に入れ、チャンバー18を回転させて粉体被覆物16を転動させる(図3(C))。これにより、金属材料からなる成形体12の外周面が、粉体層よりも緻密な被覆層22で被覆された被焼成体30を得ることができる(図3(D))。 FIG. 3 is a schematic view showing an embodiment of the method for manufacturing a composite structure of the present invention. In order to obtain a body to be fired, first, a powder layer 14 containing silicon carbide and carbon is formed on the outer peripheral surface of a molded body 12 made of a metal material to obtain a powder coating 16 (FIG. 3 (A). ), (B)). The powder layer 14 is formed by, for example, applying a slurry obtained by dispersing silicon carbide powder and carbon powder in an appropriate dispersion medium (water, ethanol, etc.) on the outer peripheral surface of the molded body 12. be able to. The obtained powder coating material 16 is placed in the chamber 18 of the rotary mixer 20, and the chamber 18 is rotated to roll the powder coating material 16 (FIG. 3 (C)). As a result, it is possible to obtain the fired body 30 in which the outer peripheral surface of the molded body 12 made of a metal material is covered with the coating layer 22 which is denser than the powder layer (FIG. 3 (D)).

また、以下の方法によって被焼成体を得ることもできる。図4は、本発明の複合構造体の製造方法の他の実施形態を示す模式図である。まず、金属材料からなる成形体12の形状に対応する、炭化ケイ素及び炭素を含有する外殻成形体32a,32bを製造する(図4(A))。そして、製造した外殻成形体32a,32bの内部に成形体12を収容すれば、金属材料からなる成形体12の外周面が被覆層34で被覆された被焼成体40を得ることができる(図(B))。外殻成形体32a,32bは、例えば、炭化ケイ素の粉末及び炭素の粉末を適当なバインダーと混合した後、成形及び脱脂等することによって製造することができる。なお、図4(A)、(B)に示すような2以上の外殻成形体32a,32bを製造する場合、これらの当接部には、例えば、嵌合部42を構成するためのネジ部を形成しておくことが好ましい。 In addition, the fired body can also be obtained by the following method. FIG. 4 is a schematic view showing another embodiment of the method for producing a composite structure of the present invention. First, outer shell molded bodies 32a and 32b containing silicon carbide and carbon corresponding to the shape of the molded body 12 made of a metal material are manufactured (FIG. 4A). Then, if the molded body 12 is housed inside the manufactured outer shell molded bodies 32a and 32b, it is possible to obtain the fired body 40 in which the outer peripheral surface of the molded body 12 made of a metal material is covered with the coating layer 34 ( Figure (B)). The outer shell molded bodies 32a and 32b can be produced, for example, by mixing silicon carbide powder and carbon powder with an appropriate binder, and then molding and degreasing. When two or more outer shell molded bodies 32a and 32b as shown in FIGS. 4A and 4B are manufactured, for example, a screw for forming a fitting portion 42 is attached to these abutting portions. It is preferable to form a portion.

工程(2)では、工程(1)で得た被焼成体の少なくとも被覆層をケイ素と接触させた状態で加熱する。具体的には、図3(E)及び図4(C)に示すように、ケイ素を入れた容器に被焼成体30,40を入れ、所定の温度に加熱する。ケイ素の融点は約1,400℃であるため、1,500℃前後に加熱することでケイ素は溶融して溶融ケイ素50となる。これにより、被焼成体30,40の被覆層22,34をケイ素に接触させた状態で加熱することができる。溶融状態となったケイ素(溶融ケイ素50)は被覆層22,34に浸透するとともに、炭素と反応焼結して炭化ケイ素が形成される。これにより、炭化ケイ素を主成分とするセラミックスからなる外殻部4が形成され、内部構造部2と、内部構造部2を内包するシームレスな外殻部4とを備えた複合構造体10を得ることができる(図3(F)及び図4(D))。 In the step (2), at least the coating layer of the object to be fired obtained in the step (1) is heated in a state of being in contact with silicon. Specifically, as shown in FIGS. 3 (E) and 4 (C), the objects to be fired 30 and 40 are placed in a container containing silicon and heated to a predetermined temperature. Since the melting point of silicon is about 1,400 ° C., the silicon is melted to become molten silicon 50 by heating to around 1,500 ° C. As a result, the coating layers 22 and 34 of the objects to be fired 30 and 40 can be heated in contact with silicon. The molten silicon (molten silicon 50) permeates the coating layers 22 and 34 and reacts with carbon to form silicon carbide. As a result, an outer shell portion 4 made of ceramics containing silicon carbide as a main component is formed, and a composite structure 10 having an internal structure portion 2 and a seamless outer shell portion 4 including the internal structure portion 2 is obtained. Can be done (FIGS. 3 (F) and 4 (D)).

なお、図4(C)及び(D)に示すように、嵌合部42の隙間にも溶融ケイ素が含浸するため、含浸したケイ素と炭素が反応して炭化ケイ素が形成される。これにより、嵌合部42の隙間は実質的に消失し、シームレスな外殻部4を形成することができる。 As shown in FIGS. 4C and 4D, since the molten silicon is also impregnated in the gap between the fitting portions 42, the impregnated silicon reacts with carbon to form silicon carbide. As a result, the gap between the fitting portions 42 is substantially eliminated, and the seamless outer shell portion 4 can be formed.

<蓄熱方法>
次に、本発明の蓄熱方法について説明する。本発明の蓄熱方法は、前述の複合構造体を蓄熱体として使用する方法である。すなわち、本発明の蓄熱方法は、前述の複合構造体(蓄熱体)を内部構造部の溶融点以上の温度に加熱して、複合構造体に蓄熱させる工程(蓄熱工程)を有する。
<Heat storage method>
Next, the heat storage method of the present invention will be described. The heat storage method of the present invention is a method of using the above-mentioned composite structure as a heat storage body. That is, the heat storage method of the present invention includes a step (heat storage step) of heating the above-mentioned composite structure (heat storage body) to a temperature equal to or higher than the melting point of the internal structure portion to store heat in the composite structure.

蓄熱工程では、例えば、溶融前の内部構造部の顕熱、溶融前の内部構造部の潜熱、溶融状態の内部構造部の顕熱、及び外殻部の顕熱の総和の熱量(蓄熱体の全熱量)に対して、外殻部の顕熱の蓄熱量が20%以上となるように、複合構造体を加熱して蓄熱させることが好ましい。このような蓄熱方法によれば、溶融前の内部構造部の顕熱、溶融前の内部構造部の潜熱、溶融状態の内部構造部の顕熱、及び外殻部の顕熱の全てを利用することができ、エネルギー密度の高い蓄熱を実現することができる。なお、これらの顕熱及び潜熱は、下記式(1)を用いて算出することができる。そして、算出した顕熱及び潜熱に基づき、複合構造体を加熱する温度を決定することができる。 In the heat storage step, for example, the total heat amount of the sensible heat of the internal structure part before melting, the latent heat of the internal structure part before melting, the sensible heat of the internal structure part in the molten state, and the sensible heat of the outer shell part (of the heat storage body). It is preferable to heat the composite structure to store heat so that the amount of sensible heat stored in the outer shell portion is 20% or more with respect to the total amount of heat). According to such a heat storage method, all of the sensible heat of the internal structure part before melting, the latent heat of the internal structure part before melting, the sensible heat of the internal structure part in the molten state, and the sensible heat of the outer shell part are utilized. It is possible to realize heat storage with high energy density. These sensible heat and latent heat can be calculated using the following formula (1). Then, the temperature for heating the composite structure can be determined based on the calculated sensible heat and latent heat.

Figure 0007016109000001
Figure 0007016109000001

上記式(1)中、Tiは初期温度、Teは最終温度、mは質量、Cpsは固定状態における比熱、Cplは液体状態における比熱、Lは潜熱を示す。 In the above formula (1), Ti is the initial temperature, Te is the final temperature, m is the mass, Cps is the specific heat in the fixed state, Cpl is the specific heat in the liquid state, and L is the latent heat.

以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、実施例、比較例中の「部」及び「%」は、特に断らない限り質量基準である。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited to these examples. In addition, "part" and "%" in Examples and Comparative Examples are based on mass unless otherwise specified.

<複合構造体の製造>
(実施例1-1~1-12)
[金属材料からなる成形体(コア成形体)の製造]
(1)Cu、(2)Cu-10%Si、及び(3)Cu-25%Siからなる3種類の球状のコア成形体を鋳造法により製造した。製造したコア成形体の直径は、いずれも約18.5mmであった。
<Manufacturing of composite structure>
(Examples 1-1 to 1-12)
[Manufacturing of molded body (core molded body) made of metal material]
Three types of spherical core molded bodies composed of (1) Cu, (2) Cu-10% Si, and (3) Cu-25% Si were produced by a casting method. The diameter of each of the produced core molded bodies was about 18.5 mm.

[外殻部の形成(製法1)]
炭化ケイ素(SiC)粉末(平均粒径:約1μm)及びカーボン(C)粉末(平均粒径:約2μm)を、SiC:C=90:10の質量比となるように秤量するとともに、混合して混合粉末を得た。得られた混合粉末にエタノールを分散媒として添加してスラリーを調製した。調製したスラリーをコア成形体の表面に塗布した。同一成分の混合粉末を所定量投入した回転混合機のチャンバーに、その表面にスラリーを塗布したコア成形体を入れた。回転混合器のチャンバーを20分間回転させてコア成形体を転動させ、コア成形体の外周面上に炭化ケイ素及び炭素を含む被覆層が形成された被焼成体を得た。得られた被焼成体は、その直径が約22mmの球体であった。
[Formation of outer shell (manufacturing method 1)]
Silicon carbide (SiC) powder (average particle size: about 1 μm) and carbon (C) powder (average particle size: about 2 μm) are weighed and mixed so as to have a mass ratio of SiC: C = 90:10. To obtain a mixed powder. Ethanol was added as a dispersion medium to the obtained mixed powder to prepare a slurry. The prepared slurry was applied to the surface of the core molded product. A core molded product having a slurry coated on its surface was placed in a chamber of a rotary mixer in which a predetermined amount of mixed powder having the same components was charged. The chamber of the rotary mixer was rotated for 20 minutes to roll the core molded body, and a coated body containing silicon carbide and carbon was formed on the outer peripheral surface of the core molded body to obtain a fired body. The obtained body to be fired was a sphere having a diameter of about 22 mm.

粒径数mmのケイ素粗粒を敷いた黒鉛容器内に被焼成体を入れ、アルゴンガス中、1,500℃まで加熱昇温した。ケイ素の融点は約1,400℃である。このため、溶融状態となったケイ素が被覆層を構成する炭化ケイ素粉末の間隙に浸透するとともに、炭素と反応して炭化ケイ素が形成された(反応焼結)。これにより、内部構造と、内部構造部を内包する炭化ケイ素を主成分とする外殻部とを備えた複合構造体を得た。なお、加熱により内部のコア成形体も一時溶融するが、外部に流出する等してその形状を失うことはなかった。得られた複合構造体は、その直径が約22mmの球体であった。すなわち、反応焼結により実質的な寸法収縮は生じなかった。 The calcined body was placed in a graphite container lined with coarse silicon particles having a particle size of several mm, and heated to 1,500 ° C. in argon gas. The melting point of silicon is about 1,400 ° C. Therefore, the molten silicon permeates into the gaps between the silicon carbide powders constituting the coating layer and reacts with carbon to form silicon carbide (reaction sintering). As a result, a composite structure including an internal structure and an outer shell portion containing silicon carbide as a main component containing the internal structure portion was obtained. The core molded body inside was also temporarily melted by heating, but the shape was not lost due to outflow to the outside. The obtained composite structure was a sphere having a diameter of about 22 mm. That is, no substantial dimensional shrinkage occurred due to reaction sintering.

(実施例2-1~2-12)
[金属材料からなる成形体(コア成形体)の製造]
窒化ホウ素(BN)をスラリー状としたものを実施例1~12で製造した3種類のコア成形体の表面に塗布して、厚さ約1mmの緩衝層をそれぞれ形成した。このように緩衝層を形成したものをコア成形体として用いた。
(Examples 2-1 to 2-12)
[Manufacturing of molded body (core molded body) made of metal material]
Boron nitride (BN) in the form of a slurry was applied to the surfaces of the three types of core molded bodies produced in Examples 1 to 12 to form a buffer layer having a thickness of about 1 mm. The one having the buffer layer formed in this way was used as the core molded body.

[外殻部の形成(製法2)]
炭化ケイ素(SiC)粉末(平均粒径:約1μm)及びカーボン(C)粉末(平均粒径:約2μm)を、SiC:C=90:10の質量比となるように秤量し、機械的に混合して約3,000gの混合粉末を得た。得られた混合粉末と、ポリエチレン、ワックス、及びステアリン酸を含む有機系のバインダーとを加圧ニーダ内に投入し、バインダーの融点以上の温度に加熱しながら十分に混練した後、冷却して固化させた。なお、炭化ケイ素の比重を3.22、及び炭素の比重を2.26とし、バインダーの配合量は約50体積%とした。冷却して得た固化物を破砕してペレットを得た。得られたペレットを射出成形機に投入して射出成形した後、アルゴンガス中、600℃に加熱して脱脂処理して、図4に示すような中空半球体である外殻成形体(直径:約22mm)を得た。一対の外殻成形体の内部にコア成形体を入れるとともに、外殻成形体をネジ部で嵌合した。これにより、コア成形体の外周面上に炭化ケイ素及び炭素を含む被覆層(外殻成形体)が形成された被焼成体を得た。なお、被覆層の嵌合部には、わずかな隙間が残っている。
[Formation of outer shell (manufacturing method 2)]
Silicon carbide (SiC) powder (average particle size: about 1 μm) and carbon (C) powder (average particle size: about 2 μm) are weighed so as to have a mass ratio of SiC: C = 90: 10 and mechanically. Mixing gave about 3,000 g of mixed powder. The obtained mixed powder and an organic binder containing polyethylene, wax, and stearic acid are put into a pressurized kneader, sufficiently kneaded while heating to a temperature equal to or higher than the melting point of the binder, and then cooled and solidified. I let you. The specific gravity of silicon carbide was 3.22, the specific gravity of carbon was 2.26, and the blending amount of the binder was about 50% by volume. The solidified product obtained by cooling was crushed to obtain pellets. The obtained pellets are put into an injection molding machine for injection molding, and then heated to 600 ° C. in argon gas for degreasing treatment to form an outer shell molded body (diameter::) which is a hollow hemisphere as shown in FIG. About 22 mm) was obtained. The core molded body was placed inside the pair of outer shell molded bodies, and the outer shell molded body was fitted with a screw portion. As a result, a fired body in which a coating layer (outer shell molded body) containing silicon carbide and carbon was formed on the outer peripheral surface of the core molded body was obtained. A slight gap remains in the fitting portion of the coating layer.

粒径数mmのケイ素粗粒を敷いた黒鉛容器内に被焼成体を入れ、アルゴンガス中、1,500℃まで加熱昇温した。ケイ素の融点は約1,400℃である。このため、溶融状態となったケイ素が被覆層を構成する炭化ケイ素粉末の間隙に浸透するとともに、炭素と反応して炭化ケイ素が形成された(反応焼結)。これにより、内部構造部と、内部構造部を内包する炭化ケイ素を主成分とする外殻部とを備えた複合構造体を得た。なお、加熱により内部のコア成形体も一時溶融するが、外部に流出する等してその形状を失うことはなかった。得られた複合構造体は、その直径が約22mmの球体であった。すなわち、反応焼結により実質的な寸法収縮は生じなかった。また、嵌合部の隙間にもケイ素が含浸し、炭素と反応して炭化ケイ素が形成されたことで、嵌合部の隙間は消失していた。 The calcined body was placed in a graphite container lined with coarse silicon particles having a particle size of several mm, and heated to 1,500 ° C. in argon gas. The melting point of silicon is about 1,400 ° C. Therefore, the molten silicon permeates into the gaps between the silicon carbide powders constituting the coating layer and reacts with carbon to form silicon carbide (reaction sintering). As a result, a composite structure including an internal structure portion and an outer shell portion containing silicon carbide as a main component containing the internal structure portion was obtained. The core molded body inside was also temporarily melted by heating, but the shape was not lost due to outflow to the outside. The obtained composite structure was a sphere having a diameter of about 22 mm. That is, no substantial dimensional shrinkage occurred due to reaction sintering. Further, the gaps in the fitting portion were also impregnated with silicon and reacted with carbon to form silicon carbide, so that the gaps in the fitting portion disappeared.

(比較例1-1~1-12)
[外殻部の形成(製法3)]
炭化ケイ素(α-SiC)粉末(屋久島電工社製、平均粒径:0.72mm)粉末100gに対して、アルミナ(Al23)(昭和電工社製)3%、及び炭化ホウ素(B4C)粉末1~5%をそれぞれ添加し、ポリエチレン製の容器に入れた。エタノール中、ナイロン製ボールを用いた湿式ボールミルにより20時間混合した後、乾燥して混合粉末を得た。得られた混合粉末55体積部と、アクリル樹脂及びワックスを含むバインダー45体積部とを混合し、約3,000gの混合物を得た。得られた混合物を加圧ニーダに入れ、バインダーの融点以上の温度に加熱しながら十分に混練した後、冷却して固化させた。冷却して得た固化物を破砕してペレットを得た。得られたペレットを射出成形機に投入して射出成形し、中空半球体である成形体(直径:約25mm)を得た。得られた成形体を、アルゴンガス中、600℃に加熱して脱脂処理した後、2,100℃まで加熱して焼結させた。これにより、直径約22mm、肉厚1mm、相対密度99%の、図5に示すような中空半球体である外殻部を得た。
(Comparative Examples 1-1 to 1-12)
[Formation of outer shell (manufacturing method 3)]
Alumina (Al 2 O 3 ) (manufactured by Showa Denko Co., Ltd.) 3% and boron carbide (B 4 ) per 100 g of silicon carbide (α-SiC) powder (manufactured by Yakushima Denko Co., Ltd., average particle size: 0.72 mm). C) 1 to 5% of the powder was added and placed in a container made of polyethylene. After mixing in ethanol with a wet ball mill using nylon balls for 20 hours, the mixture was dried to obtain a mixed powder. 55 parts by volume of the obtained mixed powder and 45 parts by volume of a binder containing an acrylic resin and wax were mixed to obtain a mixture of about 3,000 g. The obtained mixture was placed in a pressurized kneader, sufficiently kneaded while heating to a temperature equal to or higher than the melting point of the binder, and then cooled and solidified. The solidified product obtained by cooling was crushed to obtain pellets. The obtained pellets were put into an injection molding machine and injection molded to obtain a molded body (diameter: about 25 mm) which was a hollow hemisphere. The obtained molded product was heated to 600 ° C. in argon gas for degreasing treatment, and then heated to 2,100 ° C. for sintering. As a result, an outer shell portion having a diameter of about 22 mm, a wall thickness of 1 mm, and a relative density of 99%, which was a hollow hemisphere as shown in FIG. 5, was obtained.

[一体化]
一対の外殻部の内部にコア成形体を入れるとともに、外殻部の接合面(嵌合部)に耐熱性の無機接着剤(商品名「アロンセラミック」、登録商標、東亞合成社製)を薄く塗布した。外殻部をネジ部で嵌合した後、約150℃で加熱して接着した。これにより、内部構造部と、内部構造部を内包する炭化ケイ素を主成分とする外殻部とを備えた複合構造体を得た。なお、嵌合部の隙間を完全に埋めることはできず、わずかな隙間が存在していた。
[Integration]
A core molded body is placed inside the pair of outer shells, and a heat-resistant inorganic adhesive (trade name "Aron Ceramic", registered trademark, manufactured by Toagosei Co., Ltd.) is applied to the joint surface (fitting part) of the outer shells. It was applied thinly. After fitting the outer shell portion with the screw portion, the outer shell portion was heated at about 150 ° C. and adhered. As a result, a composite structure including an internal structure portion and an outer shell portion containing silicon carbide as a main component containing the internal structure portion was obtained. It should be noted that the gap in the fitting portion could not be completely filled, and a slight gap existed.

<評価>
(昇温特性)
製造した複合構造体の中心部に直径0.5mmの穴をあけた。あけた穴を通じて、その先端が内部構造部の中心に位置するように熱電対を挿入した。約1,150℃に加熱した炉内に熱電対を挿入した状態の複合構造体を投入した。中心部の温度がほぼ一定となるまでの時間(到達時間)を測定し、昇温特性の指標とした。到達時間の測定結果を表1に示す。また、測定した到達時間の分散分析の結果を表2に示す。さらに、各要因が複合構造体の昇温特性に及ぼす影響を示すグラフを図6に示す。分散分析に当たっては、タグチメソッドに基づき、L36直交表を用いて策定した。また、各データの誤差と効果を切り分けるとともに、統計学的な効果の有無を評価する指標としてSN比を採用した。
<Evaluation>
(Heating characteristics)
A hole with a diameter of 0.5 mm was drilled in the center of the manufactured composite structure. A thermocouple was inserted through the drilled hole so that its tip was located in the center of the internal structure. The composite structure with the thermocouple inserted was put into the furnace heated to about 1,150 ° C. The time until the temperature in the central part became almost constant (arrival time) was measured and used as an index of the temperature rise characteristic. Table 1 shows the measurement results of the arrival time. Table 2 shows the results of the analysis of variance of the measured arrival time. Further, FIG. 6 shows a graph showing the influence of each factor on the temperature rise characteristics of the composite structure. The analysis of variance was formulated using the L36 orthogonal array based on the Taguchi method. In addition, the SN ratio was adopted as an index for evaluating the presence or absence of statistical effects while separating the errors and effects of each data.

(機械的強度)
強度試験機を使用し、製造した複合構造体に圧縮荷重を付与した。複合構造体が破壊した時点の荷重(圧壊荷重)を測定し、機械的強度の指標とした。圧壊荷重の測定結果を表1に示す。また、測定した圧壊荷重の分散分析の結果を表3に示す。さらに、各要因が複合構造体の機械的強度に及ぼす影響を示すグラフを図7に示す。分散分析に当たっては、タグチメソッドに基づき、L36直交表を用いて策定した。また、各データの誤差と効果を切り分けるとともに、統計学的な効果の有無を評価する指標としてSN比を採用した。
(Mechanical strength)
A compressive load was applied to the manufactured composite structure using a strength tester. The load at the time when the composite structure broke (crushing load) was measured and used as an index of mechanical strength. Table 1 shows the measurement results of the crushing load. Table 3 shows the results of the analysis of variance of the measured crushing load. Further, FIG. 7 shows a graph showing the influence of each factor on the mechanical strength of the composite structure. The analysis of variance was formulated using the L36 orthogonal array based on the Taguchi method. In addition, the SN ratio was adopted as an index for evaluating the presence or absence of statistical effects while separating the errors and effects of each data.

Figure 0007016109000002
Figure 0007016109000002

Figure 0007016109000003
Figure 0007016109000003

Figure 0007016109000004
Figure 0007016109000004

表1に示すように、実施例の複合構造体は比較例の複合構造体に比して所定の温度までの到達時間が短く、昇温特性に優れていることがわかる。さらに、実施例の複合構造体は比較例の複合構造体に比して圧壊荷重が大きく、機械的強度に優れていることがわかる。 As shown in Table 1, it can be seen that the composite structure of the example has a shorter time to reach a predetermined temperature than the composite structure of the comparative example, and is excellent in temperature rising characteristics. Further, it can be seen that the composite structure of the example has a large crushing load and is excellent in mechanical strength as compared with the composite structure of the comparative example.

また、表2及び図6(グラフ)に示すように、P値を基準にした検定結果から、外殻部の構造が複合構造体の昇温特性に対して有意であることがわかる。また、SN比については、製法1で作製した構造の外殻部が最も大きく、効果が高いことがわかる。なお、製法2で作製した構造の外殻部については、製法1で作製した外殻部に若干劣るものの、製法3で作製した外殻部に比べてSN比が大きいことがわかる。また、内部構造部にケイ素を含有させることで、性能が若干向上したことがわかる。これは、ケイ素をコア成形体に含有させることで固液相変態に伴う寸法変化が抑制され、内部構造部と外殻部の隙間が小さくなったためと考えらえる。 Further, as shown in Table 2 and FIG. 6 (graph), it can be seen from the test results based on the P value that the structure of the outer shell portion is significant with respect to the temperature rise characteristic of the composite structure. Further, regarding the SN ratio, it can be seen that the outer shell portion of the structure produced by the production method 1 is the largest and the effect is high. It can be seen that the outer shell portion of the structure produced by the production method 2 is slightly inferior to the outer shell portion produced by the production method 1, but has a larger SN ratio than the outer shell portion produced by the production method 3. In addition, it can be seen that the performance was slightly improved by containing silicon in the internal structure. It is considered that this is because the dimensional change due to the solid-liquid phase transformation was suppressed by containing silicon in the core molded body, and the gap between the internal structure portion and the outer shell portion became smaller.

さらに、表3及び図7(グラフ)に示すように、外殻部の構造が複合構造体の機械的強度に対して有意であることがわかる。製法3で作製した従来の嵌合構造を有する外殻部には不可避的な隙間が残存している。このため、比較例の複合構造体では外殻部に残存した隙間が破壊の原因となる欠陥となりやすいのに比べて、実施例の複合構造体の外殻部には隙間が実質的に存在せず、破壊の原因となる欠陥がほとんど生じないためであると考えられる。比較例の複合構造体では、設計上、外殻部と内部構造部の間に隙間が生ずる。これに対し、実施例の複合構造体では外殻部と内部構造部の間に隙間が実質的に生じておらず、外殻部と内部構造部が密着しているため、熱抵抗が低下して熱伝導性が向上したと考えられる。さらに、外殻部の内面に内部構造部の表面が接触しているために、外殻部に発生する引張応力が低下し、機械的強度が向上したと考えられる。 Furthermore, as shown in Table 3 and FIG. 7 (graph), it can be seen that the structure of the outer shell portion is significant with respect to the mechanical strength of the composite structure. An unavoidable gap remains in the outer shell portion having the conventional fitting structure manufactured by the manufacturing method 3. For this reason, in the composite structure of the comparative example, the gap remaining in the outer shell portion is likely to be a defect that causes fracture, whereas in the outer shell portion of the composite structure of the example, the gap is substantially present. However, it is considered that this is because there are almost no defects that cause destruction. In the composite structure of the comparative example, a gap is created between the outer shell portion and the internal structure portion by design. On the other hand, in the composite structure of the embodiment, there is substantially no gap between the outer shell portion and the internal structure portion, and the outer shell portion and the internal structure portion are in close contact with each other, so that the thermal resistance is reduced. It is considered that the thermal conductivity was improved. Further, it is considered that since the surface of the internal structure portion is in contact with the inner surface of the outer shell portion, the tensile stress generated in the outer shell portion is reduced and the mechanical strength is improved.

本発明の複合構造体は、例えば、鉄鋼の転炉などの1,000℃以上の高温かつ腐食しやすい過酷な環境下で廃熱回収するための蓄熱体として有用である。 The composite structure of the present invention is useful as a heat storage body for recovering waste heat in a harsh environment such as a steel converter, which has a high temperature of 1,000 ° C. or higher and is easily corroded.

2:内部構造部
4:外殻部
6:緩衝層
10,20:複合構造体
12:(金属材料からなる)成形体
14:粉体層
16:粉体被覆物
18:チャンバー
20:回転混合器
22,34:被覆層
30,40:被焼成体
50:溶融ケイ素
32a,32b:外殻成形体
42:嵌合部
80:内部蓄熱体
92,94:外殻
100:蓄熱体
2: Internal structure part 4: Outer shell part 6: Buffer layer 10, 20: Composite structure 12: Molded body (made of metal material) 14: Powder layer 16: Powder coating 18: Chamber 20: Rotating mixer 22, 34: Coating layer 30, 40: Fired body 50: Molten silicon 32a, 32b: Outer shell molded body 42: Fitting portion 80: Internal heat storage body 92, 94: Outer shell 100: Heat storage body

Claims (9)

金属材料からなる内部構造部と、
前記内部構造部を内包する、反応焼結により形成された炭化ケイ素を90体積%以上含むセラミックスからなるシームレスな外殻部と、を備え
前記金属材料の融点が1,500℃以下である複合構造体。
Internal structure made of metal material and
A seamless outer shell portion made of ceramics containing 90% by volume or more of silicon carbide formed by reaction sintering, which encloses the internal structure portion, is provided .
A composite structure in which the melting point of the metal material is 1,500 ° C. or lower .
前記内部構造部と前記外殻部の間に配置される緩衝層をさらに備える請求項1に記載の複合構造体。 The composite structure according to claim 1, further comprising a buffer layer arranged between the internal structure portion and the outer shell portion. 前記緩衝層が、窒化ホウ素及び炭素の少なくともいずれかの材料で形成されている請求項2に記載の複合構造体。 The composite structure according to claim 2, wherein the buffer layer is made of at least one of boron nitride and carbon. 前記金属材料が、銅、アルミニウム、ニッケル、及び鉄からなる群より選択される少なくとも一種の金属である請求項1~3のいずれか一項に記載の複合材料。 The composite material according to any one of claims 1 to 3, wherein the metal material is at least one metal selected from the group consisting of copper, aluminum, nickel, and iron. 前記金属材料が、ケイ素を含有する請求項1~のいずれか一項に記載の複合構造体。 The composite structure according to any one of claims 1 to 4 , wherein the metal material contains silicon. 前記金属材料が、銅、又は、ケイ素を35質量%以下含む銅-ケイ素合金である請求項1~3のいずれか一項に記載の複合構造体。The composite structure according to any one of claims 1 to 3, wherein the metal material is copper or a copper-silicon alloy containing 35% by mass or less of silicon. 蓄熱体として用いられる請求項1~6のいずれか一項に記載の複合構造体。 The composite structure according to any one of claims 1 to 6, which is used as a heat storage body. 請求項1~7のいずれか一項に記載の複合構造体の製造方法であって、
前記金属材料からなる成形体の外周面を炭化ケイ素及び炭素を含む被覆層で被覆して被焼成体を得る工程と、
得られた前記被焼成体の少なくとも前記被覆層をケイ素と接触させた状態で加熱し、反応焼結により前記外殻部を形成する工程と、
を有する複合構造体の製造方法。
The method for producing a composite structure according to any one of claims 1 to 7.
A step of coating the outer peripheral surface of the molded body made of the metal material with a coating layer containing silicon carbide and carbon to obtain a fired body.
A step of heating the obtained body to be fired in a state where at least the coating layer is in contact with silicon and forming the outer shell portion by reaction sintering.
A method for manufacturing a composite structure having the above.
請求項7に記載の複合構造体を前記内部構造部の溶融点以上の温度に加熱して、前記複合構造体に蓄熱させる工程を有する蓄熱方法。 A heat storage method comprising a step of heating the composite structure according to claim 7 to a temperature equal to or higher than the melting point of the internal structure portion to store heat in the composite structure.
JP2018024999A 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage Active JP7016109B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018024999A JP7016109B2 (en) 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018024999A JP7016109B2 (en) 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage

Publications (2)

Publication Number Publication Date
JP2019137819A JP2019137819A (en) 2019-08-22
JP7016109B2 true JP7016109B2 (en) 2022-02-04

Family

ID=67693477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018024999A Active JP7016109B2 (en) 2018-02-15 2018-02-15 Composite structure, method for manufacturing composite structure, and method for heat storage

Country Status (1)

Country Link
JP (1) JP7016109B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112480873B (en) * 2020-11-30 2021-07-20 武汉科技大学 Corundum-mullite composite shell phase-change heat storage ball and preparation method thereof
CN113636843A (en) * 2021-09-10 2021-11-12 南京航空航天大学 Ultralight ceramic foam composite heat storage material and preparation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162182A (en) 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage body and manufacturing method thereof
JP2012111825A (en) 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Heat storing body and method
WO2013061978A2 (en) 2011-10-24 2013-05-02 国立大学法人北海道大学 Latent heat storage material, and heat storage body
JP2015048393A (en) 2013-08-30 2015-03-16 株式会社金星 Heat reservoir
WO2015162929A1 (en) 2014-04-24 2015-10-29 国立大学法人北海道大学 Latent heat storage body, latent heat storage body manufacturing method and heat exchange material
WO2017200021A1 (en) 2016-05-17 2017-11-23 国立大学法人北海道大学 Latent-heat storage material microcapsules and process for producing latent-heat storage material microcapsules

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4873038A (en) * 1987-07-06 1989-10-10 Lanxide Technology Comapny, Lp Method for producing ceramic/metal heat storage media, and to the product thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002162182A (en) 2000-11-27 2002-06-07 National Institute Of Advanced Industrial & Technology Heat storage body and manufacturing method thereof
JP2012111825A (en) 2010-11-24 2012-06-14 National Institute Of Advanced Industrial Science & Technology Heat storing body and method
WO2013061978A2 (en) 2011-10-24 2013-05-02 国立大学法人北海道大学 Latent heat storage material, and heat storage body
JP2015048393A (en) 2013-08-30 2015-03-16 株式会社金星 Heat reservoir
WO2015162929A1 (en) 2014-04-24 2015-10-29 国立大学法人北海道大学 Latent heat storage body, latent heat storage body manufacturing method and heat exchange material
WO2017200021A1 (en) 2016-05-17 2017-11-23 国立大学法人北海道大学 Latent-heat storage material microcapsules and process for producing latent-heat storage material microcapsules

Also Published As

Publication number Publication date
JP2019137819A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
Zhong et al. Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer
Chu et al. Mechanical and electrical properties of carbon‐nanotube‐reinforced Cu–Ti alloy matrix composites
JP7016109B2 (en) Composite structure, method for manufacturing composite structure, and method for heat storage
JP2012111825A (en) Heat storing body and method
BR112015016855B1 (en) magnesia-carbon brick
CN104871251B (en) Used by nuclear reactor part
Song et al. High-performance thermal energy storage and thermal management via starch-derived porous ceramics-based phase change devices
CN105745040B (en) The method of the mold and surface coating composition and cast titanium and titanium aluminide alloy of silicon carbide-containing
JPH01234536A (en) Production of aluminum/magnesium alloy containing refractory particles
US8357623B2 (en) Composite materials and bodies including silicon carbide and titanium diboride and methods of forming same
Günay et al. High‐Temperature Compressive Behavior of Refractory Alumina–Niobium Composite Material
KR0134955B1 (en) Method for manufacturing articles having thermal shock resistance and elasticity
CN102858712A (en) Refractory containing thick flake graphite
JPS5941380A (en) Castable metal complex friction material
US5139979A (en) Method of producing self-supporting aluminum titanate composites and products relating thereto
JP2023128245A (en) Latent-heat heat-storage material molded body and method for producing the same
JP7264374B2 (en) COMPOSITE STRUCTURE, COMPOSITE STRUCTURE MANUFACTURING METHOD, AND HEAT STORAGE METHOD
JP3655207B2 (en) Heat dissipation member for electronic device and method for manufacturing the same
JP5399291B2 (en) Temperature measuring probe
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JP5116611B2 (en) Container that can contain objects
JP4401588B2 (en) Inorganic composite particles
JP2023017146A (en) Composite structure, method for manufacturing the same, and heat storage method
CN111995418A (en) Preparation method of high-strength and high-toughness silicon carbide nanowire reinforced silicon carbide ceramic composite material
Lü et al. Research on modification of steel fiber in investment casting shell

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20180306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20180306

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220114