JP7015506B2 - Positioning method using landmarks - Google Patents

Positioning method using landmarks Download PDF

Info

Publication number
JP7015506B2
JP7015506B2 JP2016169627A JP2016169627A JP7015506B2 JP 7015506 B2 JP7015506 B2 JP 7015506B2 JP 2016169627 A JP2016169627 A JP 2016169627A JP 2016169627 A JP2016169627 A JP 2016169627A JP 7015506 B2 JP7015506 B2 JP 7015506B2
Authority
JP
Japan
Prior art keywords
positioning
acquisition means
information
moving body
acquired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016169627A
Other languages
Japanese (ja)
Other versions
JP2018036151A (en
Inventor
敏成 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2016169627A priority Critical patent/JP7015506B2/en
Publication of JP2018036151A publication Critical patent/JP2018036151A/en
Application granted granted Critical
Publication of JP7015506B2 publication Critical patent/JP7015506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、移動体の現在の位置を測定する測位方法に関し、特に、ランドマークを用いた測位方法に関するものである。 The present invention relates to a positioning method for measuring the current position of a moving object, and more particularly to a positioning method using landmarks.

移動体の現在の位置を測定する測位方法は、種々の方法が知られているが、例えば、GPS(Global Positioning System)を用いた測位により自己位置を測定する測位方法が知られている。 Various positioning methods are known for measuring the current position of a moving object. For example, a positioning method for measuring a self-position by positioning using GPS (Global Positioning System) is known.

また、特許文献1に記載されているように、GPSを用いた測位方法であっても、測位衛星からの送信波が受信できない状況となった場合に、慣性装置などから得られた情報により、自己位置を補正することで自己位置の推定精度を向上させた測位方法が知られている。なお、自己位置の推定方法は、レーダにより得られたDBS(Doppler Beam Sharpening)画像から特徴点を取得し、当該取得した特徴点と予め得られたSAR(Synthetic Aperture Radar)マップとの関係性を相互参照することで、SARマップ上の対応する既知のランドマークの位置情報と既知のランドマークに対応するDBS画像上で得られた特徴点までの距離情報を用いて、自己位置を推定している。 Further, as described in Patent Document 1, even in the positioning method using GPS, when the transmission wave from the positioning satellite cannot be received, the information obtained from the inertial device or the like is used. A positioning method is known in which the estimation accuracy of the self-position is improved by correcting the self-position. In the self-position estimation method, feature points are acquired from a DBS (Doppler Beam Sharpening) image obtained by radar, and the relationship between the acquired feature points and a SAR (Synthetic Aperture Radar) map obtained in advance is determined. By mutual reference, the self-position is estimated using the position information of the corresponding known landmark on the SAR map and the distance information to the feature point obtained on the DBS image corresponding to the known landmark. There is.

特開2014-174070号公報Japanese Unexamined Patent Publication No. 2014-174070

しかしながら、上述した従来の測位方法は、橋脚や桟橋に移動体が潜り込んだ場合や、室内を移動する場合には、GPS等を用いた測位方法が利用できない環境下では、移動体の位置が常に不明となることから安全かつ確実に移動体を誘導することは大きな困難を伴うという問題があった。また、移動体が何らかの作業を伴う場合には、作業位置の管理ができない状況となることから、移動体の利活用にとっても致命的な問題となる。このような問題は上述したGPSを用いた測位方法が利用できない環境下での機械化の導入の大きな妨げとなっている。 However, in the above-mentioned conventional positioning method, when a moving object sneaks into a pier or a pier, or when moving indoors, the position of the moving object is always in an environment where a positioning method using GPS or the like cannot be used. Since it is unknown, there is a problem that it is very difficult to guide a moving body safely and surely. In addition, when the moving body involves some work, the working position cannot be managed, which is a fatal problem for the utilization of the moving body. Such a problem is a big obstacle to the introduction of mechanization in an environment where the above-mentioned positioning method using GPS cannot be used.

そこで、本発明は、上記問題に鑑みてなされたものであり、GPS等の既存の測位方法が利用できない環境下であっても移動体の現在の位置を測定することができる測位方法を提供することを目的とする。 Therefore, the present invention has been made in view of the above problems, and provides a positioning method capable of measuring the current position of a moving object even in an environment where an existing positioning method such as GPS cannot be used. The purpose is.

本発明に係る測位方法は、移動体の自己位置の測位を地図情報に含まれるランドマーク情報を用いて行う測位方法であって、前記移動体の移動に伴って前記移動体の周辺環境の情報を連続的に取得する周辺環境情報取得手段と、該周辺環境情報取得手段によって任意の時刻に取得した周辺環境情報から1又は2以上の特徴点を抽出する特徴点抽出手段と、 前記特徴点と予め取得された前記地図情報に含まれる前記ランドマーク情報を対応させるランドマーク取得手段とを備え、前記移動体は、前記周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、前記任意の時刻に前記特徴点が2つ取得できた場合に前記周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、前記特徴点が1つ取得できた場合に前記特徴点からの距離と前記方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、前記特徴点が取得できなかった場合に前記相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備え、前記第1の測位手段、前記第2の測位手段及び前記第3の測位手段を、前記任意の時刻に取得された特徴点の数に応じて切り替える切替手段を備え、前記第1の測位手段、前記第2の測位手段または前記第3の測位手段によって得られた前記任意の時刻の自己位置を用いて、次測位時の前記特徴点の位置情報を推定し特徴点を追跡することを特徴とする。 The positioning method according to the present invention is a positioning method in which the self-positioning of a moving body is performed by using the landmark information included in the map information, and the information on the surrounding environment of the moving body is accompanied by the movement of the moving body. The peripheral environment information acquisition means for continuously acquiring the above, the feature point extraction means for extracting one or two or more feature points from the peripheral environment information acquired at an arbitrary time by the peripheral environment information acquisition means, and the feature points. The moving body includes the landmark acquisition means corresponding to the landmark information included in the map information acquired in advance, and the moving body includes the surrounding environment information acquisition means, the direction acquisition means for acquiring its own direction, and the surrounding environment. It is provided with a relative motion information acquisition means for acquiring the relative motion information of the above, and when two of the feature points can be acquired at any time, the distance and the direction from each feature point obtained by the surrounding environment information acquisition means. The self-position is estimated from the first positioning means for positioning the self-position using the above, the distance from the feature point when one feature point can be acquired, and the self-direction obtained by the direction acquisition means. The second positioning means is provided, and the third positioning means for estimating the self-position from the relative motion information obtained by the relative motion information acquisition means and the previous measurement result when the feature point cannot be acquired is provided. The first positioning means, the first positioning means, comprising a switching means for switching between the first positioning means, the second positioning means, and the third positioning means according to the number of feature points acquired at an arbitrary time. Using the self-position at an arbitrary time obtained by the second positioning means or the third positioning means, the position information of the feature point at the time of the next positioning is estimated and the feature point is tracked. do.

また、本発明に係る測位方法において、前記第2の測位手段及び前記第3の測位手段によって推定された自己の位置情報は、前記第1の測位手段が実行された場合に自己の測位情報に補正されると好適である。 Further, in the positioning method according to the present invention, the self-position information estimated by the second positioning means and the third positioning means becomes the self-positioning information when the first positioning means is executed. It is preferable to be corrected.

また、本発明に係る測位方法において、前記移動体の初期位置を取得する初期位置取得手段を備えると好適である。 Further, in the positioning method according to the present invention, it is preferable to include an initial position acquisition means for acquiring the initial position of the moving body.

上記発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた発明となり得る。 The outline of the above invention does not list all the necessary features of the present invention, and subcombinations of these feature groups can also be an invention.

本発明に係る測位方法は、特徴点と予め取得された地図情報に含まれるランドマーク情報を対応させるランドマーク取得手段とを備え、移動体は、周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、任意の時刻に特徴点が2つ取得できた場合に周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、特徴点が1つ取得できた場合に特徴点からの距離と方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、特徴点が取得できなかった場合に相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備えるので、GPS等の既存の測位方法が利用できない環境下においても有効性の極めて高い移動体の測位を行うことができる。 The positioning method according to the present invention includes a landmark acquisition means for associating a feature point with a landmark information included in the map information acquired in advance, and the moving body acquires the surrounding environment information acquisition means and its own direction. It is equipped with a direction acquisition means and a relative motion information acquisition means for acquiring relative motion information with the surrounding environment, and when two feature points can be acquired at an arbitrary time, from each feature point obtained by the surrounding environment information acquisition means. The self-position is determined by the first positioning means for positioning the self-position using the distance and direction of, and the distance from the feature point and the self-direction obtained by the direction acquisition means when one feature point can be acquired. Since it is provided with a second positioning means for estimating and a third positioning means for estimating the self-position from the relative motion information obtained by the relative motion information acquisition means when the feature point cannot be acquired and the previous measurement result. Even in an environment where existing positioning methods such as GPS cannot be used, it is possible to perform positioning of a moving object with extremely high effectiveness.

本発明の実施形態に係る測位方法の概要を説明するための図。The figure for demonstrating the outline of the positioning method which concerns on embodiment of this invention. 本発明の実施形態に係る測位方法のフロー図。The flow chart of the positioning method which concerns on embodiment of this invention. 本発明の実施形態に係る移動体の概要を説明するための図。The figure for demonstrating the outline of the moving body which concerns on embodiment of this invention. 自己位置の推定方法の概要を説明する図。The figure explaining the outline of the self-position estimation method. 第1の測位手段のフロー図。The flow chart of the first positioning means. 第2の測位手段のフロー図。The flow chart of the second positioning means. 第3の測位手段のフロー図。The flow chart of the third positioning means. 第3の測位手段の概要を説明する図。The figure explaining the outline of the 3rd positioning means. 本発明の実施形態に係る移動体の測位方法を説明するための図。The figure for demonstrating the positioning method of the moving body which concerns on embodiment of this invention.

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, suitable embodiments for carrying out the present invention will be described with reference to the drawings. It should be noted that the following embodiments do not limit the invention according to each claim, and not all combinations of features described in the embodiments are essential for the means for solving the invention. ..

図1は、本発明の実施形態に係る測位方法の概要を説明するための図であり、図2は、本発明の実施形態に係る測位方法のフロー図であり、図3は、本発明の実施形態に係る移動体の概要を説明するための図であり、図4は、自己位置の推定方法の概要を説明する図であり、図5は、第1の測位手段のフロー図であり、図6は、第2の測位手段のフロー図であり、図7は、第3の測位手段のフロー図であり、図8は、第3の測位手段の概要を説明する図であり、図9は、本発明の実施形態に係る移動体の測位方法を説明するための図である。 FIG. 1 is a diagram for explaining an outline of a positioning method according to an embodiment of the present invention, FIG. 2 is a flow chart of a positioning method according to an embodiment of the present invention, and FIG. 3 is a flow diagram of the present invention. It is a figure for demonstrating the outline of the moving body which concerns on embodiment, FIG. 4 is a figure explaining the outline of the self-position estimation method, and FIG. 5 is a flow diagram of the 1st positioning means. 6 is a flow chart of the second positioning means, FIG. 7 is a flow chart of the third positioning means, FIG. 8 is a diagram illustrating an outline of the third positioning means, and FIG. 9 is a diagram. It is a figure for demonstrating the positioning method of the moving body which concerns on embodiment of this invention.

図1に示すように、本実施形態に係る測位方法は、GPS等の測位技術を利用することができない環境下、例えば桟橋などの構造物1の下面を移動体10が移動しながら測定や観測などの作業を行う場合に、杭20等の周辺環境の測定結果を用いて該移動体の位置を測位する測位方法として用いられると好適である。 As shown in FIG. 1, in the positioning method according to the present embodiment, measurement and observation are performed while the moving body 10 moves on the lower surface of a structure 1 such as a pier in an environment where positioning technology such as GPS cannot be used. It is preferable that it is used as a positioning method for positioning the position of the moving body by using the measurement result of the surrounding environment such as the pile 20 when performing such work.

図2に示すように、本実施形態に係る測位方法は、移動体10の移動に伴って移動体10の周辺環境の情報を連続的に取得する周辺環境情報取得手段と、該周辺環境情報取得手段によって任意の時刻に取得した周辺環境情報から1又は2以上の特徴点を抽出する特徴点抽出手段と、特徴点と予め取得された地図情報に含まれるランドマーク情報を対応させるランドマーク取得手段とを備え、移動体10は、周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、任意の時刻に特徴点が2つ取得できた場合に周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、特徴点が1つ取得できた場合に特徴点からの距離と方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、特徴点が取得できなかった場合に相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備える。 As shown in FIG. 2, the positioning method according to the present embodiment includes peripheral environment information acquisition means for continuously acquiring information on the surrounding environment of the moving body 10 as the moving body 10 moves, and acquisition of the peripheral environment information. A feature point extraction means for extracting one or two or more feature points from the surrounding environment information acquired at an arbitrary time by means, and a landmark acquisition means for associating the feature points with the landmark information included in the map information acquired in advance. The moving body 10 is provided with a peripheral environment information acquisition means, a direction acquisition means for acquiring its own direction, and a relative motion information acquisition means for acquiring relative motion information with the surrounding environment, and a feature point is provided at an arbitrary time. When two can be acquired, the first positioning means for positioning the self-position using the distance and direction from each feature point obtained by the surrounding environment information acquisition means, and the case where one feature point can be acquired. The second positioning means that estimates the self-position based on the distance from the feature point and the self-direction obtained by the direction acquisition means, and the relative motion obtained by the relative motion information acquisition means when the feature point cannot be acquired. A third positioning means for estimating the self-position from the information and the previous measurement result is provided.

図3に示すように、移動体10には、周辺環境情報取得手段11、自己の方位を取得する方位取得手段12及び相対運動情報取得手段13を備えている。 As shown in FIG. 3, the moving body 10 includes a surrounding environment information acquisition means 11, an orientation acquisition means 12 for acquiring its own direction, and a relative motion information acquisition means 13.

周辺環境情報取得手段11は、図4に示すように、移動体10の周辺環境の情報を取得することができればどのような構成でも構わないが、例えば、LRF(レーザレンジファインダ)のような側域センサを用いると好適である。LRFは、レーザを発振して当該レーザを移動体10の周辺に照射し、その反射の度合いで周辺環境の情報を取得・測定出来る光学機器である。なお、周辺環境情報取得手段11は、移動体10から2方向に向けてレーザ等を照射することで図4に示すように周辺環境を走査することができる。 As shown in FIG. 4, the surrounding environment information acquisition means 11 may have any configuration as long as it can acquire information on the surrounding environment of the mobile body 10, but for example, the side such as an LRF (laser range finder). It is preferable to use a range sensor. The LRF is an optical device that can oscillate a laser, irradiate the periphery of the moving body 10 with the laser, and acquire / measure information on the surrounding environment based on the degree of reflection thereof. The surrounding environment information acquisition means 11 can scan the surrounding environment as shown in FIG. 4 by irradiating the moving body 10 with a laser or the like in two directions.

方位取得手段12は、自己の方位を取得することができればどのような構成でも構わないが、例えば、ジャイロセンサを用いると好適である。また、相対運動情報取得手段13は、桟橋等の測定対象の下面や海底面を画像処理するためのカメラを備えている。 The direction acquisition means 12 may have any configuration as long as it can acquire its own direction, but for example, it is preferable to use a gyro sensor. Further, the relative motion information acquisition means 13 is provided with a camera for image processing the lower surface of the measurement target such as a pier or the sea surface.

また、図2に示すように、本実施形態に係る測位方法は、ループ判定によって当該測位が初回であると判定された場合には、移動体10の初期位置を取得する初期位置取得手段を備えている。この初期位置取得手段は、通常、桟橋等の測定対象へ移動させる前に行われることから、移動体10が未だ測定対象の下面に入っておらず、GPS等の位置情報を利用することができるため、GPSから位置情報を取得することで実行されても構わない。また、GPSから位置情報を取得することに替えて、地図情報における移動体10の初期位置を手入力するように構成しても構わない。 Further, as shown in FIG. 2, the positioning method according to the present embodiment includes an initial position acquisition means for acquiring the initial position of the moving body 10 when the positioning is determined to be the first time by the loop determination. ing. Since this initial position acquisition means is usually performed before moving to a measurement target such as a pier, the moving body 10 has not yet entered the lower surface of the measurement target, and position information such as GPS can be used. Therefore, it may be executed by acquiring the position information from GPS. Further, instead of acquiring the position information from the GPS, the initial position of the moving body 10 in the map information may be manually input.

次に、図4を参照して特徴点抽出手段及びランドマーク取得手段について説明を行う。特徴点抽出手段は、周辺環境情報取得手段11によって得られた走査結果31から障害物を選定して当該選定された障害物を特徴点32として観測する。なお、周辺環境の走査は移動体10の移動に伴って連続的に行われており、特徴点32の観測は、任意の時刻に取得された周辺環境の情報を時系列に取得している。 Next, the feature point extraction means and the landmark acquisition means will be described with reference to FIG. The feature point extraction means selects an obstacle from the scanning result 31 obtained by the surrounding environment information acquisition means 11 and observes the selected obstacle as the feature point 32. The scanning of the surrounding environment is continuously performed with the movement of the moving body 10, and the observation of the feature point 32 acquires the information of the surrounding environment acquired at an arbitrary time in chronological order.

ランドマーク取得手段は、杭などの障害物の位置情報であるランドマーク情報33が含まれる地図情報30と、周辺環境情報取得手段11によって得られた走査結果31を相関処理等を行ってマッチングすることで、地図情報30に走査結果31をマッピングして行う。その結果、特徴点32とランドマーク情報33とを対応させている。 The landmark acquisition means matches the map information 30 including the landmark information 33, which is the position information of obstacles such as stakes, with the scanning result 31 obtained by the surrounding environment information acquisition means 11 by performing correlation processing or the like. Therefore, the scanning result 31 is mapped to the map information 30. As a result, the feature point 32 and the landmark information 33 are associated with each other.

切替手段14は、周辺環境情報取得手段11で得られた任意の時刻に取得された特徴点32の数に応じて第1の測位手段、第2の測位手段及び第3の測位手段のいずれの測位手段を切り替えている。具体的には、特徴点32が2以上取得された場合には、第1の測位手段に切り替え、特徴点32が1つ取得された場合には、第2の測位手段に切り替え、特徴点32が取得できなかった場合には、第3の測位手段に切り替える。 The switching means 14 is any of the first positioning means, the second positioning means, and the third positioning means according to the number of feature points 32 acquired at an arbitrary time obtained by the surrounding environment information acquisition means 11. The positioning means is being switched. Specifically, when two or more feature points 32 are acquired, the first positioning means is switched to, and when one feature point 32 is acquired, the second positioning means is switched to, and the feature point 32 is switched to. If it cannot be obtained, it switches to the third positioning means.

図5に示すように、第1の測位手段は、所謂灯台方式を用いて測位を行っており、具体的には、得られた特徴点32から移動体10に近いものから順に2点の特徴点を選定し、特徴点32のうち直近の1点の観測方位(移動体10から見た直近の特徴点の方位)とその点から移動体10までを結ぶ線分の長さ(特徴点32から移動体10までの距離)を求めておく。また、移動体の座標系(以下、R座標系という)におけるX軸と前出の2点の特徴点を結ぶ線分とのなす角を算出しておく。 As shown in FIG. 5, the first positioning means performs positioning by using a so-called lighthouse method. Specifically, two features are obtained in order from the obtained feature points 32 to those closest to the moving body 10. A point is selected, and the observation direction of one of the most recent feature points 32 (the direction of the most recent feature point seen from the moving body 10) and the length of the line segment connecting that point to the moving body 10 (feature point 32). The distance from to the moving body 10) is obtained. Further, the angle formed by the X-axis in the coordinate system of the moving body (hereinafter referred to as the R coordinate system) and the line segment connecting the above-mentioned two feature points is calculated.

次に、世界座標系(以下、W座標系という)における移動体10の絶対方位の算出を行う。具体的には、W座標系における特徴点32から移動体10までを結ぶ線分の方位角から上述したように算出した線分のなす角との差を求めることで、W座標系に対してR座標系のなす角を算出して移動体10の絶対方位を算出する。 Next, the absolute orientation of the moving body 10 in the world coordinate system (hereinafter referred to as W coordinate system) is calculated. Specifically, the difference between the azimuth angle of the line segment connecting the feature point 32 to the moving body 10 in the W coordinate system and the angle formed by the line segment calculated as described above is obtained with respect to the W coordinate system. The angle formed by the R coordinate system is calculated to calculate the absolute orientation of the moving body 10.

次に、R座標系からW座標系へ変換することで、W座標系における移動体10の位置を算出する。具体的には、既に算出したW座標系に対してR座標系のなす角(移動体10の絶対方位)と、直近の特徴点との相対位置から移動体10の絶対位置を逆算することで移動体10の位置を算出する。 Next, the position of the moving body 10 in the W coordinate system is calculated by converting from the R coordinate system to the W coordinate system. Specifically, by back-calculating the absolute position of the moving body 10 from the relative position between the angle formed by the R coordinate system (absolute orientation of the moving body 10) and the nearest feature point with respect to the already calculated W coordinate system. The position of the moving body 10 is calculated.

このように、第1の測位手段は、R座標系における特徴点32の位置から自己の位置情報を算出することができるので測位の誤差が少なく、連続的に特徴点を観測し測位を継続した場合であっても原理的に累積誤差はゼロである。 As described above, since the first positioning means can calculate its own position information from the position of the feature point 32 in the R coordinate system, the positioning error is small, and the feature point is continuously observed and the positioning is continued. Even in the case, the cumulative error is zero in principle.

図6に示すように、第2の測位手段は、特徴点32が1つ取得された場合に、方位取得手段12から移動体10の推定方位を取得する。次に、W座標系における移動体10の絶対方位の算出を行う。具体的には、方位取得手段12からW座標系に対するR座標系のなす角を算出し、当該W座標系に対するR座標系のなす角からW座標系における移動体10の絶対方位を算出する。なお、方位取得手段12がジャイロのよう相対方位を出力する装置である場合には、特徴点が1点以下となった時点の絶対方位を推定方位の初期値として保持しておき、ここで取得する相対方位を保持していた推定方位の初期値に加算して移動体10の方位を推定する。 As shown in FIG. 6, the second positioning means acquires the estimated direction of the moving body 10 from the direction acquisition means 12 when one feature point 32 is acquired. Next, the absolute orientation of the moving body 10 in the W coordinate system is calculated. Specifically, the angle formed by the R coordinate system with respect to the W coordinate system is calculated from the orientation acquisition means 12, and the absolute orientation of the moving body 10 in the W coordinate system is calculated from the angle formed by the R coordinate system with respect to the W coordinate system. When the direction acquisition means 12 is a device that outputs a relative direction such as a gyro, the absolute direction at the time when the feature point becomes one point or less is held as the initial value of the estimated direction and acquired here. The orientation of the moving body 10 is estimated by adding it to the initial value of the estimated orientation that holds the relative orientation.

次に、R座標系からW座標系へ変換することで、W座標系における移動体10の推定位置を算出する。具体的には、既に算出したW座標系に対してR座標系のなす角(移動体10の絶対方位)と、直近の特徴点との相対位置から移動体10の絶対位置を逆算して移動体10の位置を推定する。 Next, the estimated position of the moving body 10 in the W coordinate system is calculated by converting from the R coordinate system to the W coordinate system. Specifically, the absolute position of the moving body 10 is calculated back from the relative position between the angle formed by the R coordinate system (absolute orientation of the moving body 10) and the nearest feature point with respect to the already calculated W coordinate system. Estimate the position of body 10.

このように、第2の測位手段は、特徴点が1つのみ得られた場合であっても、方位取得手段12によって推定方位を取得することができるので、第1の測位手段と同様に直近の特徴点の相対位置から自己位置を推定することができる。 As described above, the second positioning means can acquire the estimated direction by the direction acquisition means 12 even when only one feature point is obtained, so that the second positioning means is the latest as in the first positioning means. The self-position can be estimated from the relative position of the feature points of.

図7に示すように、第3の測位手段は、特徴点が全く得られない場合に第2の測位手段と同様に方位取得手段12から移動体10の推定方位を取得し、W座標系における移動体10の絶対方位の算出を行う。また、特徴点が全く得られなかった時点の絶対位置を推定位置の初期値として保持しておく。 As shown in FIG. 7, when the feature points cannot be obtained at all, the third positioning means acquires the estimated directional of the moving body 10 from the azimuth acquiring means 12 in the same manner as the second positioning means, and in the W coordinate system. The absolute orientation of the moving body 10 is calculated. In addition, the absolute position at the time when no feature points are obtained is retained as the initial value of the estimated position.

次に、移動体10の絶対位置を慣性航法や周辺環境に対する相対運動情報等を利用したデッドレコニングによる推定位置に切り替える。相対運動情報取得手段は、ドップラーベロシティーログやオドメトリーあるいは図8に示すように、移動体10に備えられたカメラから得られた画像にオプティカルフローを利用した画像処理を行うことなどで移動体10の並進速度及び旋回速度の推定を行い、周辺環境との相対運動情報を取得する。オプティカルフローは、連続的にカメラで取得した画像の中で物体(桟橋等の床板下部等)の動きをベクトルで表したものであり、このベクトルから移動体10の並進速度及び旋回速度を算出する。この結果、得られた並進速度及び旋回速度などの周辺環境に対する相対運動情報を累積し、この累積値を保持していた推定位置の初期値に加算して移動体10の位置を推定する。 Next, the absolute position of the moving body 10 is switched to the estimated position by dead reckoning using inertial navigation, relative motion information with respect to the surrounding environment, and the like. The relative motion information acquisition means is a moving body 10 by performing image processing using optical flow on an image obtained from a camera provided in the moving body 10 as shown in Doppler velocity log, odometry, or FIG. The translational speed and turning speed of the camera are estimated, and the relative motion information with the surrounding environment is acquired. The optical flow is a vector representation of the movement of an object (lower part of a floor plate such as a pier) in images continuously acquired by a camera, and the translational speed and turning speed of the moving body 10 are calculated from this vector. .. As a result, the relative motion information with respect to the surrounding environment such as the obtained translational speed and turning speed is accumulated, and the position of the moving body 10 is estimated by adding the accumulated value to the initial value of the estimated position.

その後、測位データの更新を行う。測位データの更新は、W座標系で保持しているデータベース内の全ランドマーク座標をR座標系に変換することでR座標系のランドマークデータベースを更新する。 After that, the positioning data is updated. To update the positioning data, the landmark database of the R coordinate system is updated by converting all the landmark coordinates in the database held in the W coordinate system into the R coordinate system.

また、第1の測位手段が実行された場合に、第2の測位手段又は第3の測位手段によって得られた推定方位と推定位置を現在の絶対方位と絶対位置で更新することで、自己の測位情報に補正される。推定方位と推定位置は通常、レートや相対速度などの観測値の累積値であることから累積誤差を含んでいるため、この補正によって当該累積誤差を解消して測位の精度を高めることができる。 Further, when the first positioning means is executed, the estimated orientation and the estimated position obtained by the second positioning means or the third positioning means are updated with the current absolute direction and the absolute position, so that the self can be used. It is corrected to the positioning information. Since the estimated azimuth and the estimated position are usually cumulative values of observed values such as rate and relative velocity, they include a cumulative error. Therefore, this correction can eliminate the cumulative error and improve the accuracy of positioning.

次に、図9を参照して、本実施形態に係る移動体10の測位方法について詳述する。上述したように、移動体10は特徴点32の観測を行い、任意の時刻に取得された周辺環境の情報として時系列に取得している。即ち、図9の測位ステップT~T+2に示すような観測を連続的に行っている。なお、以下の説明においては、地図情報としてW座標系におけるランドマークが(1)~(4)まで包含される例について説明を行う。 Next, with reference to FIG. 9, the positioning method of the mobile body 10 according to the present embodiment will be described in detail. As described above, the moving body 10 observes the feature point 32 and acquires it in time series as information on the surrounding environment acquired at an arbitrary time. That is, the observations shown in the positioning steps T to T + 2 in FIG. 9 are continuously performed. In the following description, an example in which landmarks in the W coordinate system are included as map information from (1) to (4) will be described.

まず、測位ステップTでは、特徴点32を2点以上観測しているので、上述した第1の測位手段によって移動体10の測位を行うと共に、特徴点32とランドマーク座標とを照合することで、W座標系におけるランドマークを照合している。つまり、観測された特徴点32とW座標系のランドマーク(1)~(3)が照合される。 First, in the positioning step T, since two or more feature points 32 are observed, the moving body 10 is positioned by the first positioning means described above, and the feature points 32 and the landmark coordinates are collated. , The landmarks in the W coordinate system are collated. That is, the observed feature points 32 and the landmarks (1) to (3) in the W coordinate system are collated.

次に、測位ステップTから微小時間後に行われた測位ステップT+1では、特徴点32を2点観測している。この2点が前回の測位ステップTの照合結果と重複するランドマーク(1)及び(2)であるため、測位ステップTで照合したランドマーク(1)及び(2)と測位ステップT+1で観測したランドマーク(1)及び(2)が同一であると推定されて測位ステップT+1でのランドマーク(1)及び(2)の追跡を行うことができる。 Next, in the positioning step T + 1 performed after a minute time from the positioning step T, two feature points 32 are observed. Since these two points are landmarks (1) and (2) that overlap with the collation result of the previous positioning step T, they were observed in the positioning step T + 1 with the landmarks (1) and (2) collated in the positioning step T. It is presumed that the landmarks (1) and (2) are the same, and the landmarks (1) and (2) can be tracked in the positioning step T + 1.

次に、測位ステップT+1と測位ステップT+2のように、重複するランドマークが存在しない場合について説明を行う。本実施形態に係る測位方法では、測位ステップT+1で未検出であったランドマーク(3)及び(4)について各測位ステップにおいて地図情報を介して地図上におけるランドマーク同士の幾何学的な位置関係を推定している。したがって、測位ステップT+2においては、観測した特徴点32をランドマーク(3)及び(4)と照合することが可能となり、ランドマーク(1)~(4)の追跡を行うことができる。 Next, a case where there are no overlapping landmarks such as the positioning step T + 1 and the positioning step T + 2 will be described. In the positioning method according to the present embodiment, the geometrical positional relationship between the landmarks (3) and (4) that were not detected in the positioning step T + 1 on the map via the map information in each positioning step. Is estimated. Therefore, in the positioning step T + 2, the observed feature points 32 can be collated with the landmarks (3) and (4), and the landmarks (1) to (4) can be tracked.

このように、本実施形態に係る測位方法は、各測位ステップにおいて、地図情報の全てのランドマークの位置を推定しているので、直前の測位ステップにおいて照合に成功したランドマーク以外のランドマークについても追跡することができ、広範囲な測位を実現することができる。即ち、本実施形態に係る測位方法は、複数存在するランドマークをハンドオーバーしながら渡り歩くような測位を行うことで、広範囲測位を実現している。 As described above, since the positioning method according to the present embodiment estimates the positions of all the landmarks in the map information in each positioning step, the landmarks other than the landmarks that were successfully collated in the immediately preceding positioning step Can also be tracked, and a wide range of positioning can be realized. That is, the positioning method according to the present embodiment realizes wide-range positioning by performing positioning such as walking around while handing over a plurality of existing landmarks.

このように、本実施形態に係る測位方法によれば、GPS等の測位技術が利用できない環境下であっても、ランドマーク情報を含む地図情報を備えていれば、測位が可能となり、GPS等の測位技術が利用できない環境下であっても、多くの作業に対して機械化を図ることができる。 As described above, according to the positioning method according to the present embodiment, even in an environment where positioning technology such as GPS cannot be used, positioning is possible as long as the map information including landmark information is provided, and GPS and the like can be used. Even in an environment where the positioning technology of is not available, it is possible to mechanize many tasks.

また、本実施形態に係る測位方法によれば、あらかじめ設置されたランドマークの位置に対するランドマーク情報を有する地図情報を有しており、ランドマーク同士の幾何学的な位置関係でランドマークの位置を区別しているので、個々のランドマーク同士を区別するための特徴を別途用意することなく、測位を行うことが可能となる。 Further, according to the positioning method according to the present embodiment, the map information having the landmark information with respect to the position of the landmark installed in advance is possessed, and the position of the landmark is based on the geometrical positional relationship between the landmarks. Since the above are distinguished, it is possible to perform positioning without separately preparing a feature for distinguishing between individual landmarks.

さらに、本実施形態に係る測位方法によれば、利用可能なランドマークの数に応じて第1から第3の測位手段を切り替えるので、得られた情報から柔軟に測位方法を変更することが可能となり、また、利用できるランドマークの数が減少した場合であっても他の上方によってこれを補うことができるので、より柔軟に測位を行うことができる。 Further, according to the positioning method according to the present embodiment, since the first to third positioning means are switched according to the number of available landmarks, it is possible to flexibly change the positioning method from the obtained information. In addition, even if the number of available landmarks decreases, it can be compensated for by other upwards, so that positioning can be performed more flexibly.

なお、以上説明した本実施形態に係る測位方法は、例えば、桟橋の床板面を相対運動情報取得手段で撮影しながら画像処理を行った場合について説明を行ったが、相対運動情報取得手段が撮影する対象は床板面に限らず、例えば、海底面などを撮影しながら画像処理を行っても構わない。また、本実施形態に係る測位方法を実行するプログラムを計算機に読み込ませて実施することができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The positioning method according to the present embodiment described above has been described, for example, in the case where image processing is performed while photographing the floor plate surface of the pier with the relative motion information acquisition means, but the relative motion information acquisition means captures the images. The object to be processed is not limited to the floor plate surface, and image processing may be performed while photographing, for example, the sea floor. Further, a program for executing the positioning method according to the present embodiment can be loaded into a computer and executed. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.

10 移動体、 11 周辺環境情報取得手段、 12 方位取得手段、 13 相対運動情報取得手段、 20 杭、 30 地図情報、 31 走査結果、 32 特徴点、 33 ランドマーク情報。 10 Moving object, 11 Surrounding environment information acquisition means, 12 Direction acquisition means, 13 Relative motion information acquisition means, 20 Pile, 30 Map information, 31 Scanning result, 32 Feature point, 33 Landmark information.

Claims (3)

移動体の自己位置の測位を地図情報に含まれるランドマーク情報を用いて行う測位方法であって、
前記移動体の移動に伴って前記移動体の周辺環境の情報を連続的に取得する周辺環境情報取得手段と、
該周辺環境情報取得手段によって任意の時刻に取得した周辺環境情報から1又は2以上の特徴点を抽出する特徴点抽出手段と、
前記特徴点と予め取得された前記地図情報に含まれる前記ランドマーク情報を対応させるランドマーク取得手段とを備え、
前記移動体は、前記周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、
前記任意の時刻に前記特徴点が2つ取得できた場合に前記周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、前記特徴点が1つ取得できた場合に前記特徴点からの距離と前記方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、前記特徴点が取得できなかった場合に前記相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備え、
前記第1の測位手段、前記第2の測位手段及び前記第3の測位手段を、前記任意の時刻に取得された特徴点の数に応じて切り替える切替手段を備え、
前記第1の測位手段、前記第2の測位手段または前記第3の測位手段によって得られた前記任意の時刻の自己位置を用いて、次測位時の前記特徴点の位置情報を推定し特徴点を追跡することを特徴とする測位方法。
It is a positioning method that uses landmark information included in map information to determine the self-position of a moving object.
Peripheral environment information acquisition means for continuously acquiring information on the surrounding environment of the moving body as the moving body moves, and
A feature point extraction means for extracting one or more feature points from the surrounding environment information acquired at an arbitrary time by the surrounding environment information acquisition means, and a feature point extraction means.
It is provided with a landmark acquisition means for associating the feature point with the landmark information included in the map information acquired in advance.
The moving body includes the peripheral environment information acquisition means, the direction acquisition means for acquiring its own direction, and the relative motion information acquisition means for acquiring relative motion information with the surrounding environment.
When two of the feature points can be acquired at an arbitrary time, the first positioning means for positioning the self-position using the distance and the direction from the respective feature points obtained by the surrounding environment information acquisition means. When one of the feature points can be acquired, the second positioning means for estimating the self-position based on the distance from the feature points and the self-direction obtained by the direction acquisition means, and the feature points cannot be acquired. In this case, a third positioning means for estimating the self-position from the relative motion information obtained by the relative motion information acquisition means and the previous measurement result is provided.
A switching means for switching between the first positioning means, the second positioning means, and the third positioning means according to the number of feature points acquired at an arbitrary time is provided.
Using the self-position at an arbitrary time obtained by the first positioning means, the second positioning means, or the third positioning means, the position information of the feature point at the time of the next positioning is estimated and the feature point . A positioning method characterized by tracking .
請求項1に記載の測位方法において、
前記第2の測位手段及び前記第3の測位手段によって推定された自己の位置情報は、前記第1の測位手段が実行された場合に自己の測位情報に補正されることを特徴とする測位方法。
In the positioning method according to claim 1,
A positioning method characterized in that its own position information estimated by the second positioning means and the third positioning means is corrected to its own positioning information when the first positioning means is executed. ..
請求項1又は2に記載の測位方法において、
前記移動体の初期位置を取得する初期位置取得手段を備えることを特徴とする測位方法。
In the positioning method according to claim 1 or 2,
A positioning method including an initial position acquisition means for acquiring the initial position of the moving body.
JP2016169627A 2016-08-31 2016-08-31 Positioning method using landmarks Active JP7015506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169627A JP7015506B2 (en) 2016-08-31 2016-08-31 Positioning method using landmarks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169627A JP7015506B2 (en) 2016-08-31 2016-08-31 Positioning method using landmarks

Publications (2)

Publication Number Publication Date
JP2018036151A JP2018036151A (en) 2018-03-08
JP7015506B2 true JP7015506B2 (en) 2022-02-15

Family

ID=61567318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169627A Active JP7015506B2 (en) 2016-08-31 2016-08-31 Positioning method using landmarks

Country Status (1)

Country Link
JP (1) JP7015506B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7396618B2 (en) * 2019-01-28 2023-12-12 株式会社データ変換研究所 Mobile position estimation system
CN110068830A (en) * 2019-03-27 2019-07-30 东软睿驰汽车技术(沈阳)有限公司 A kind of method and device of vehicle location
CN111856499B (en) * 2020-07-30 2021-06-18 浙江华睿科技有限公司 Map construction method and device based on laser radar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099145A (en) 1998-09-28 2000-04-07 Meidensha Corp Unmanned carrier position detecting system
JP2002031529A (en) 2000-07-17 2002-01-31 Kansai Koji Sokuryo Kk Automated position measuring system and method therefor
JP2008134743A (en) 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Self-location recognition method
JP2010096752A (en) 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program
JP2012014265A (en) 2010-06-29 2012-01-19 Yaskawa Electric Corp Movable body
US20130155222A1 (en) 2011-12-14 2013-06-20 Electronics And Telecommunications Research Institute Apparatus and method for recognizing location of vehicle
JP2014215296A (en) 2013-04-26 2014-11-17 ジック アーゲー Laser scanner for traveling object navigation
JP2015519677A (en) 2012-10-01 2015-07-09 アイロボット コーポレイション Adaptive mapping using spatial aggregation of sensor data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099145A (en) 1998-09-28 2000-04-07 Meidensha Corp Unmanned carrier position detecting system
JP2002031529A (en) 2000-07-17 2002-01-31 Kansai Koji Sokuryo Kk Automated position measuring system and method therefor
JP2008134743A (en) 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Self-location recognition method
JP2010096752A (en) 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program
JP2012014265A (en) 2010-06-29 2012-01-19 Yaskawa Electric Corp Movable body
US20130155222A1 (en) 2011-12-14 2013-06-20 Electronics And Telecommunications Research Institute Apparatus and method for recognizing location of vehicle
JP2015519677A (en) 2012-10-01 2015-07-09 アイロボット コーポレイション Adaptive mapping using spatial aggregation of sensor data
JP2014215296A (en) 2013-04-26 2014-11-17 ジック アーゲー Laser scanner for traveling object navigation

Also Published As

Publication number Publication date
JP2018036151A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
Maier et al. Improved GPS sensor model for mobile robots in urban terrain
US10151588B1 (en) Determining position and orientation for aerial vehicle in GNSS-denied situations
KR101739996B1 (en) Moving robot and simultaneous localization and map-buliding method thereof
CN110889808B (en) Positioning method, device, equipment and storage medium
US10274958B2 (en) Method for vision-aided navigation for unmanned vehicles
US6489922B1 (en) Passive/ranging/tracking processing method for collision avoidance guidance and control
US6442476B1 (en) Method of tracking and sensing position of objects
US11906983B2 (en) System and method for tracking targets
EP2133662A2 (en) Methods and system of navigation using terrain features
Chen et al. Towards autonomous localization and mapping of AUVs: a survey
JP5610870B2 (en) Unmanned traveling vehicle guidance device and unmanned traveling vehicle guidance method
JP2016045150A (en) Point group position data processing device, point group position data processing system, point group position data processing method, and program
JP7015506B2 (en) Positioning method using landmarks
US20140334685A1 (en) Motion estimation system utilizing point cloud registration
US9875403B2 (en) Method for accurately geolocating an image sensor installed on board an aircraft
JP2018009959A (en) Satellite positioning system and satellite positioning method
JP2023521700A (en) Visual cue-based random access LIDAR system and method for location and navigation
JP2017524932A (en) Video-assisted landing guidance system and method
WO2018008627A1 (en) Satellite positioning system and satellite positioning method
JP6698430B2 (en) Measuring device, measuring method and program
RU2515469C1 (en) Method of aircraft navigation
RU2617147C1 (en) Method for initial orienting gyroscopic navigation system for land mobiles
US20200116482A1 (en) Data thinning device, surveying device, surveying system, and data thinning method
JP6227950B2 (en) Sensor orientation control method and apparatus
CN112578363B (en) Laser radar motion track obtaining method and device and medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7015506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150