JP2018036151A - Positioning method using landmark - Google Patents

Positioning method using landmark Download PDF

Info

Publication number
JP2018036151A
JP2018036151A JP2016169627A JP2016169627A JP2018036151A JP 2018036151 A JP2018036151 A JP 2018036151A JP 2016169627 A JP2016169627 A JP 2016169627A JP 2016169627 A JP2016169627 A JP 2016169627A JP 2018036151 A JP2018036151 A JP 2018036151A
Authority
JP
Japan
Prior art keywords
positioning
information
surrounding environment
acquisition means
relative motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016169627A
Other languages
Japanese (ja)
Other versions
JP7015506B2 (en
Inventor
敏成 田中
Toshishige Tanaka
敏成 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Maritime Port and Aviation Technology
Original Assignee
National Institute of Maritime Port and Aviation Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Maritime Port and Aviation Technology filed Critical National Institute of Maritime Port and Aviation Technology
Priority to JP2016169627A priority Critical patent/JP7015506B2/en
Publication of JP2018036151A publication Critical patent/JP2018036151A/en
Application granted granted Critical
Publication of JP7015506B2 publication Critical patent/JP7015506B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a positioning method capable of measuring a current position of a mobile body even when the same is in an environment where an existing positioning method such as GPS is not available.SOLUTION: A mobile body comprises: surrounding environment information acquisition means which continuously acquires information on an environment surrounding the mobile body while the same is moving; azimuth direction acquisition means which acquires an azimuth direction of the mobile body; relative motion information acquisition means which acquires relative motion information with respect to the surrounding environment; first positioning means which, when two characteristic points become available at an arbitrary time, measures an own position using distances from respective characteristic points acquired by the surrounding environment information acquisition means and the azimuth direction; second positioning means which, when one characteristic point becomes available, estimates the own position on the basis of the distance from the characteristic point and an own azimuth direction acquired by the azimuth direction acquisition means; and third positioning means which, when no characteristic point becomes available, estimates the own position on the basis of the relative motion information acquired by the relative motion information acquisition means and a previous measurement result.SELECTED DRAWING: Figure 2

Description

本発明は、移動体の現在の位置を測定する測位方法に関し、特に、ランドマークを用いた測位方法に関するものである。   The present invention relates to a positioning method for measuring the current position of a moving body, and more particularly to a positioning method using landmarks.

移動体の現在の位置を測定する測位方法は、種々の方法が知られているが、例えば、GPS(Global Positioning System)を用いた測位により自己位置を測定する測位方法が知られている。   Various positioning methods for measuring the current position of the moving body are known. For example, a positioning method for measuring the self-position by positioning using a GPS (Global Positioning System) is known.

また、特許文献1に記載されているように、GPSを用いた測位方法であっても、測位衛星からの送信波が受信できない状況となった場合に、慣性装置などから得られた情報により、自己位置を補正することで自己位置の推定精度を向上させた測位方法が知られている。なお、自己位置の推定方法は、レーダにより得られたDBS(Doppler Beam Sharpening)画像から特徴点を取得し、当該取得した特徴点と予め得られたSAR(Synthetic Aperture Radar)マップとの関係性を相互参照することで、SARマップ上の対応する既知のランドマークの位置情報と既知のランドマークに対応するDBS画像上で得られた特徴点までの距離情報を用いて、自己位置を推定している。   In addition, as described in Patent Document 1, even if it is a positioning method using GPS, when it becomes a situation where a transmission wave from a positioning satellite cannot be received, information obtained from an inertial device or the like, A positioning method is known in which self-position estimation accuracy is improved by correcting the self-position. The self-position estimation method acquires a feature point from a DBS (Doppler Beam Sharing) image obtained by a radar, and obtains the relationship between the acquired feature point and a previously obtained SAR (Synthetic Aperture Radar) map. By cross-referencing, the self-position is estimated using the position information of the corresponding known landmark on the SAR map and the distance information to the feature point obtained on the DBS image corresponding to the known landmark. Yes.

特開2014−174070号公報JP 2014-174070 A

しかしながら、上述した従来の測位方法は、橋脚や桟橋に移動体が潜り込んだ場合や、室内を移動する場合には、GPS等を用いた測位方法が利用できない環境下では、移動体の位置が常に不明となることから安全かつ確実に移動体を誘導することは大きな困難を伴うという問題があった。また、移動体が何らかの作業を伴う場合には、作業位置の管理ができない状況となることから、移動体の利活用にとっても致命的な問題となる。このような問題は上述したGPSを用いた測位方法が利用できない環境下での機械化の導入の大きな妨げとなっている。   However, the above-mentioned conventional positioning method always keeps the position of the moving body in an environment where the positioning method using GPS or the like cannot be used when the moving body has entered the pier or the pier or when moving indoors. Since it becomes unknown, there is a problem that it is very difficult to guide the moving body safely and reliably. In addition, when the moving body involves some work, the work position cannot be managed, which is a fatal problem for the utilization of the moving body. Such a problem greatly hinders the introduction of mechanization in an environment where the above-described positioning method using GPS cannot be used.

そこで、本発明は、上記問題に鑑みてなされたものであり、GPS等の既存の測位方法が利用できない環境下であっても移動体の現在の位置を測定することができる測位方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above problems, and provides a positioning method capable of measuring the current position of a moving object even in an environment where an existing positioning method such as GPS cannot be used. For the purpose.

本発明に係る測位方法は、移動体の自己位置の測位を地図情報に含まれるランドマーク情報を用いて行う測位方法であって、前記移動体の移動に伴って前記移動体の周辺環境の情報を連続的に取得する周辺環境情報取得手段と、該周辺環境情報取得手段によって任意の時刻に取得した周辺環境情報から1又は2以上の特徴点を抽出する特徴点抽出手段と、前記特徴点と予め取得された前記地図情報に含まれる前記ランドマーク情報を対応させるランドマーク取得手段とを備え、前記移動体は、前記周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、前記任意の時刻に前記特徴点が2つ取得できた場合に前記周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、前記特徴点が1つ取得できた場合に前記特徴点からの距離と前記方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、前記特徴点が取得できなかった場合に前記相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備えることを特徴とする。   The positioning method according to the present invention is a positioning method in which positioning of a mobile object's own position is performed using landmark information included in map information, and information on the surrounding environment of the mobile object as the mobile object moves Peripheral environment information acquisition means for continuously acquiring, feature point extraction means for extracting one or more feature points from the peripheral environment information acquired at an arbitrary time by the peripheral environment information acquisition means, and the feature points Landmark acquisition means for associating the landmark information included in the map information acquired in advance, and the moving body includes the surrounding environment information acquisition means, an orientation acquisition means for acquiring its own orientation, and the surrounding environment. Relative motion information acquisition means for acquiring the relative motion information of each of the environmental information obtained by the surrounding environment information acquisition means when the two feature points can be acquired at the arbitrary time. A first positioning means for positioning the self-position using the distance and orientation from the syllable point; and the distance from the feature point and the self obtained by the orientation obtaining means when one of the feature points is obtained. A second positioning means for estimating the self-position based on the orientation of the first position, and a second position-estimating means for estimating the self-position from the relative motion information obtained by the relative motion information obtaining means and the previous measurement result when the feature point cannot be obtained. 3 positioning means are provided.

また、本発明に係る測位方法において、前記第1の測位手段、前記第2の測位手段及び前記第3の測位手段を、前記任意の時刻に取得された特徴点の数に応じて切り替える切替手段を備えると好適である。   In the positioning method according to the present invention, switching means for switching the first positioning means, the second positioning means, and the third positioning means according to the number of feature points acquired at the arbitrary time. Is preferably provided.

また、本発明に係る測位方法において、前記第2の測位手段及び前記第3の測位手段によって推定された自己の位置情報は、前記第1の測位手段が実行された場合に自己の測位情報に補正されると好適である。   In the positioning method according to the present invention, the position information estimated by the second positioning means and the third positioning means is converted into the own positioning information when the first positioning means is executed. Preferably, it is corrected.

また、本発明に係る測位方法において、前記移動体の初期位置を取得する初期位置取得手段を備えると好適である。   In the positioning method according to the present invention, it is preferable that an initial position acquisition unit that acquires an initial position of the moving body is provided.

上記発明の概要は、本発明の必要な特徴の全てを列挙したものではなく、これらの特徴群のサブコンビネーションもまた発明となり得る。   The above summary of the invention does not enumerate all the necessary features of the present invention, and sub-combinations of these features can also be the invention.

本発明に係る測位方法は、特徴点と予め取得された地図情報に含まれるランドマーク情報を対応させるランドマーク取得手段とを備え、移動体は、周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、任意の時刻に特徴点が2つ取得できた場合に周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、特徴点が1つ取得できた場合に特徴点からの距離と方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、特徴点が取得できなかった場合に相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備えるので、GPS等の既存の測位方法が利用できない環境下においても有効性の極めて高い移動体の測位を行うことができる。   The positioning method according to the present invention includes a landmark acquisition unit that associates feature points with landmark information included in map information acquired in advance, and the mobile body acquires the surrounding environment information acquisition unit and its own direction. From the respective feature points obtained by the surrounding environment information obtaining means when two feature points can be obtained at an arbitrary time, including an orientation obtaining means and relative movement information obtaining means for obtaining relative movement information with the surrounding environment. The first positioning means for positioning the self-position using the distance and the orientation of the self-position, and when one feature point can be obtained, the self-position is determined by the distance from the feature point and the self-direction obtained by the orientation obtaining means. Second positioning means for estimating and third positioning hand for estimating the self-position from the relative motion information obtained by the relative motion information obtaining means and the previous measurement result when the feature point cannot be obtained. Since comprises, it is possible to perform a very high positioning of the moving body even efficacy in an environment where existing positioning methods are unavailable such as GPS.

本発明の実施形態に係る測位方法の概要を説明するための図。The figure for demonstrating the outline | summary of the positioning method which concerns on embodiment of this invention. 本発明の実施形態に係る測位方法のフロー図。The flowchart of the positioning method which concerns on embodiment of this invention. 本発明の実施形態に係る移動体の概要を説明するための図。The figure for demonstrating the outline | summary of the mobile body which concerns on embodiment of this invention. 自己位置の推定方法の概要を説明する図。The figure explaining the outline | summary of the estimation method of a self-position. 第1の測位手段のフロー図。The flowchart of a 1st positioning means. 第2の測位手段のフロー図。The flowchart of a 2nd positioning means. 第3の測位手段のフロー図。The flowchart of a 3rd positioning means. 第3の測位手段の概要を説明する図。The figure explaining the outline | summary of a 3rd positioning means. 本発明の実施形態に係る移動体の測位方法を説明するための図。The figure for demonstrating the positioning method of the mobile body which concerns on embodiment of this invention.

以下、本発明を実施するための好適な実施形態について、図面を用いて説明する。なお、以下の実施形態は、各請求項に係る発明を限定するものではなく、また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments for carrying out the invention will be described with reference to the drawings. The following embodiments do not limit the invention according to each claim, and all combinations of features described in the embodiments are not necessarily essential to the solution means of the invention. .

図1は、本発明の実施形態に係る測位方法の概要を説明するための図であり、図2は、本発明の実施形態に係る測位方法のフロー図であり、図3は、本発明の実施形態に係る移動体の概要を説明するための図であり、図4は、自己位置の推定方法の概要を説明する図であり、図5は、第1の測位手段のフロー図であり、図6は、第2の測位手段のフロー図であり、図7は、第3の測位手段のフロー図であり、図8は、第3の測位手段の概要を説明する図であり、図9は、本発明の実施形態に係る移動体の測位方法を説明するための図である。   FIG. 1 is a diagram for explaining an outline of a positioning method according to an embodiment of the present invention, FIG. 2 is a flowchart of the positioning method according to the embodiment of the present invention, and FIG. FIG. 4 is a diagram for explaining an overview of a mobile object according to the embodiment, FIG. 4 is a diagram for explaining an overview of a self-position estimation method, and FIG. 5 is a flowchart of a first positioning means; 6 is a flowchart of the second positioning means, FIG. 7 is a flowchart of the third positioning means, FIG. 8 is a diagram for explaining the outline of the third positioning means, and FIG. These are the figures for demonstrating the positioning method of the mobile body which concerns on embodiment of this invention.

図1に示すように、本実施形態に係る測位方法は、GPS等の測位技術を利用することができない環境下、例えば桟橋などの構造物1の下面を移動体10が移動しながら測定や観測などの作業を行う場合に、杭20等の周辺環境の測定結果を用いて該移動体の位置を測位する測位方法として用いられると好適である。   As shown in FIG. 1, the positioning method according to the present embodiment performs measurement and observation while the moving body 10 moves on the lower surface of a structure 1 such as a pier in an environment where positioning technology such as GPS cannot be used. It is preferable to use as a positioning method for positioning the position of the moving body using the measurement results of the surrounding environment such as the piles 20 when performing operations such as the above.

図2に示すように、本実施形態に係る測位方法は、移動体10の移動に伴って移動体10の周辺環境の情報を連続的に取得する周辺環境情報取得手段と、該周辺環境情報取得手段によって任意の時刻に取得した周辺環境情報から1又は2以上の特徴点を抽出する特徴点抽出手段と、特徴点と予め取得された地図情報に含まれるランドマーク情報を対応させるランドマーク取得手段とを備え、移動体10は、周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、任意の時刻に特徴点が2つ取得できた場合に周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、特徴点が1つ取得できた場合に特徴点からの距離と方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、特徴点が取得できなかった場合に相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備える。   As shown in FIG. 2, the positioning method according to the present embodiment includes peripheral environment information acquisition means for continuously acquiring information on the surrounding environment of the moving body 10 as the moving body 10 moves, and acquisition of the surrounding environment information. Feature point extraction means for extracting one or more feature points from the surrounding environment information acquired at any time by means, and landmark acquisition means for associating the feature points with landmark information included in map information acquired in advance The mobile body 10 includes a surrounding environment information acquisition unit, a direction acquisition unit that acquires its own direction, and a relative motion information acquisition unit that acquires relative motion information with respect to the surrounding environment, and a feature point at an arbitrary time. The first positioning means that measures the self-position using the distance and direction from each feature point obtained by the surrounding environment information obtaining means when two can be obtained, and the case where one feature point can be obtained. A second positioning means for estimating the self-position based on the distance from the feature point and the own orientation obtained by the orientation obtaining means, and a relative motion obtained by the relative motion information obtaining means when the feature point cannot be obtained. A third positioning means for estimating the self position from the information and the previous measurement result is provided.

図3に示すように、移動体10には、周辺環境情報取得手段11、自己の方位を取得する方位取得手段12及び相対運動情報取得手段13を備えている。   As shown in FIG. 3, the moving body 10 includes a surrounding environment information acquisition unit 11, an orientation acquisition unit 12 that acquires its own orientation, and a relative motion information acquisition unit 13.

周辺環境情報取得手段11は、図4に示すように、移動体10の周辺環境の情報を取得することができればどのような構成でも構わないが、例えば、LRF(レーザレンジファインダ)のような側域センサを用いると好適である。LRFは、レーザを発振して当該レーザを移動体10の周辺に照射し、その反射の度合いで周辺環境の情報を取得・測定出来る光学機器である。なお、周辺環境情報取得手段11は、移動体10から2方向に向けてレーザ等を照射することで図4に示すように周辺環境を走査することができる。   As shown in FIG. 4, the surrounding environment information acquisition unit 11 may have any configuration as long as it can acquire information on the surrounding environment of the moving body 10. For example, a side such as an LRF (laser range finder) is used. It is preferable to use an area sensor. The LRF is an optical device that can oscillate a laser, irradiate the periphery of the moving body 10 with the laser, and acquire and measure information on the surrounding environment based on the degree of reflection. The surrounding environment information acquisition unit 11 can scan the surrounding environment as shown in FIG. 4 by irradiating laser or the like from the moving body 10 in two directions.

方位取得手段12は、自己の方位を取得することができればどのような構成でも構わないが、例えば、ジャイロセンサを用いると好適である。また、相対運動情報取得手段13は、桟橋等の測定対象の下面や海底面を画像処理するためのカメラを備えている。   The direction acquisition unit 12 may have any configuration as long as it can acquire its own direction. For example, a gyro sensor is preferably used. Moreover, the relative motion information acquisition means 13 is provided with a camera for image processing of the lower surface and the sea bottom of a measurement target such as a pier.

また、図2に示すように、本実施形態に係る測位方法は、ループ判定によって当該測位が初回であると判定された場合には、移動体10の初期位置を取得する初期位置取得手段を備えている。この初期位置取得手段は、通常、桟橋等の測定対象へ移動させる前に行われることから、移動体10が未だ測定対象の下面に入っておらず、GPS等の位置情報を利用することができるため、GPSから位置情報を取得することで実行されても構わない。また、GPSから位置情報を取得することに替えて、地図情報における移動体10の初期位置を手入力するように構成しても構わない。   As shown in FIG. 2, the positioning method according to the present embodiment includes an initial position acquisition unit that acquires the initial position of the moving object 10 when the loop determination determines that the positioning is the first time. ing. Since this initial position acquisition means is normally performed before moving to a measurement target such as a jetty, the moving body 10 is not yet on the lower surface of the measurement target, and position information such as GPS can be used. Therefore, it may be executed by acquiring position information from GPS. Moreover, it may replace with acquiring position information from GPS and you may comprise so that the initial position of the mobile body 10 in map information may be input manually.

次に、図4を参照して特徴点抽出手段及びランドマーク取得手段について説明を行う。特徴点抽出手段は、周辺環境情報取得手段11によって得られた走査結果31から障害物を選定して当該選定された障害物を特徴点32として観測する。なお、周辺環境の走査は移動体10の移動に伴って連続的に行われており、特徴点32の観測は、任意の時刻に取得された周辺環境の情報を時系列に取得している。   Next, feature point extraction means and landmark acquisition means will be described with reference to FIG. The feature point extraction unit selects an obstacle from the scanning result 31 obtained by the surrounding environment information acquisition unit 11 and observes the selected obstacle as the feature point 32. The scanning of the surrounding environment is continuously performed with the movement of the moving body 10, and the observation of the feature point 32 acquires the information on the surrounding environment acquired at an arbitrary time in time series.

ランドマーク取得手段は、杭などの障害物の位置情報であるランドマーク情報33が含まれる地図情報30と、周辺環境情報取得手段11によって得られた走査結果31を相関処理等を行ってマッチングすることで、地図情報30に走査結果31をマッピングして行う。その結果、特徴点32とランドマーク情報33とを対応させている。   The landmark acquisition means matches the map information 30 including the landmark information 33 that is position information of an obstacle such as a pile with the scanning result 31 obtained by the surrounding environment information acquisition means 11 by performing correlation processing or the like. Thus, the scanning result 31 is mapped to the map information 30. As a result, the feature point 32 and the landmark information 33 are associated with each other.

切替手段14は、周辺環境情報取得手段11で得られた任意の時刻に取得された特徴点32の数に応じて第1の測位手段、第2の測位手段及び第3の測位手段のいずれの測位手段を切り替えている。具体的には、特徴点32が2以上取得された場合には、第1の測位手段に切り替え、特徴点32が1つ取得された場合には、第2の測位手段に切り替え、特徴点32が取得できなかった場合には、第3の測位手段に切り替える。   The switching means 14 is one of the first positioning means, the second positioning means, and the third positioning means depending on the number of feature points 32 acquired at an arbitrary time obtained by the surrounding environment information acquisition means 11. Switching the positioning method. Specifically, when two or more feature points 32 are acquired, switching to the first positioning unit is performed, and when one feature point 32 is acquired, switching to the second positioning unit is performed. If the data cannot be acquired, the mode is switched to the third positioning means.

図5に示すように、第1の測位手段は、所謂灯台方式を用いて測位を行っており、具体的には、得られた特徴点32から移動体10に近いものから順に2点の特徴点を選定し、特徴点32のうち直近の1点の観測方位(移動体10から見た直近の特徴点の方位)とその点から移動体10までを結ぶ線分の長さ(特徴点32から移動体10までの距離)を求めておく。また、移動体の座標系(以下、R座標系という)におけるX軸と前出の2点の特徴点を結ぶ線分とのなす角を算出しておく。   As shown in FIG. 5, the first positioning means performs positioning using a so-called lighthouse method, and specifically, features of two points in order from the obtained feature point 32 to the moving object 10 in order. A point is selected, and the observation direction of one nearest point among the feature points 32 (the direction of the nearest feature point viewed from the mobile object 10) and the length of the line segment connecting from that point to the mobile object 10 (the feature point 32) To the moving body 10). In addition, an angle formed by the X-axis in the coordinate system of the moving body (hereinafter referred to as the R coordinate system) and a line segment connecting the above-described two feature points is calculated.

次に、世界座標系(以下、W座標系という)における移動体10の絶対方位の算出を行う。具体的には、W座標系における特徴点32から移動体10までを結ぶ線分の方位角から上述したように算出した線分のなす角との差を求めることで、W座標系に対してR座標系のなす角を算出して移動体10の絶対方位を算出する。   Next, the absolute azimuth of the moving body 10 in the world coordinate system (hereinafter referred to as the W coordinate system) is calculated. Specifically, the difference between the azimuth angle of the line segment connecting from the feature point 32 to the moving body 10 in the W coordinate system and the angle formed by the line segment as described above is obtained. The absolute azimuth of the moving body 10 is calculated by calculating the angle formed by the R coordinate system.

次に、R座標系からW座標系へ変換することで、W座標系における移動体10の位置を算出する。具体的には、既に算出したW座標系に対してR座標系のなす角(移動体10の絶対方位)と、直近の特徴点との相対位置から移動体10の絶対位置を逆算することで移動体10の位置を算出する。   Next, the position of the moving body 10 in the W coordinate system is calculated by converting from the R coordinate system to the W coordinate system. Specifically, the absolute position of the moving body 10 is calculated backward from the relative position between the angle (the absolute azimuth of the moving body 10) made by the R coordinate system and the nearest feature point with respect to the already calculated W coordinate system. The position of the moving body 10 is calculated.

このように、第1の測位手段は、R座標系における特徴点32の位置から自己の位置情報を算出することができるので測位の誤差が少なく、連続的に特徴点を観測し測位を継続した場合であっても原理的に累積誤差はゼロである。   As described above, the first positioning means can calculate its own position information from the position of the feature point 32 in the R coordinate system, so that there is little positioning error, and the feature point is continuously observed and the positioning is continued. Even in this case, the cumulative error is zero in principle.

図6に示すように、第2の測位手段は、特徴点32が1つ取得された場合に、方位取得手段12から移動体10の推定方位を取得する。次に、W座標系における移動体10の絶対方位の算出を行う。具体的には、方位取得手段12からW座標系に対するR座標系のなす角を算出し、当該W座標系に対するR座標系のなす角からW座標系における移動体10の絶対方位を算出する。なお、方位取得手段12がジャイロのよう相対方位を出力する装置である場合には、特徴点が1点以下となった時点の絶対方位を推定方位の初期値として保持しておき、ここで取得する相対方位を保持していた推定方位の初期値に加算して移動体10の方位を推定する。   As illustrated in FIG. 6, the second positioning unit acquires the estimated azimuth of the moving body 10 from the azimuth acquiring unit 12 when one feature point 32 is acquired. Next, the absolute azimuth of the moving body 10 in the W coordinate system is calculated. Specifically, the angle formed by the R coordinate system with respect to the W coordinate system is calculated from the azimuth obtaining unit 12, and the absolute azimuth of the moving body 10 in the W coordinate system is calculated from the angle formed by the R coordinate system with respect to the W coordinate system. If the orientation acquisition means 12 is a device that outputs a relative orientation, such as a gyro, the absolute orientation at the time when the feature point becomes one point or less is held as the initial value of the estimated orientation, and acquired here. The azimuth of the moving body 10 is estimated by adding to the initial value of the estimated azimuth that holds the relative azimuth.

次に、R座標系からW座標系へ変換することで、W座標系における移動体10の推定位置を算出する。具体的には、既に算出したW座標系に対してR座標系のなす角(移動体10の絶対方位)と、直近の特徴点との相対位置から移動体10の絶対位置を逆算して移動体10の位置を推定する。   Next, the estimated position of the moving body 10 in the W coordinate system is calculated by converting from the R coordinate system to the W coordinate system. More specifically, the absolute position of the moving object 10 is calculated by back-calculating the absolute position of the moving object 10 from the relative position between the angle calculated by the R coordinate system (the absolute orientation of the moving object 10) and the nearest feature point with respect to the already calculated W coordinate system. The position of the body 10 is estimated.

このように、第2の測位手段は、特徴点が1つのみ得られた場合であっても、方位取得手段12によって推定方位を取得することができるので、第1の測位手段と同様に直近の特徴点の相対位置から自己位置を推定することができる。   Thus, since the second positioning means can acquire the estimated azimuth by the azimuth acquiring means 12 even when only one feature point is obtained, the second positioning means is closest to the same as the first positioning means. The self-position can be estimated from the relative positions of the feature points.

図7に示すように、第3の測位手段は、特徴点が全く得られない場合に第2の測位手段と同様に方位取得手段12から移動体10の推定方位を取得し、W座標系における移動体10の絶対方位の算出を行う。また、特徴点が全く得られなかった時点の絶対位置を推定位置の初期値として保持しておく。   As shown in FIG. 7, the third positioning unit acquires the estimated azimuth of the moving body 10 from the azimuth acquiring unit 12 in the same manner as the second positioning unit when no feature point is obtained, and in the W coordinate system. The absolute azimuth of the moving body 10 is calculated. Also, the absolute position when no feature point is obtained is held as the initial value of the estimated position.

次に、移動体10の絶対位置を慣性航法や周辺環境に対する相対運動情報等を利用したデッドレコニングによる推定位置に切り替える。相対運動情報取得手段は、ドップラーベロシティーログやオドメトリーあるいは図8に示すように、移動体10に備えられたカメラから得られた画像にオプティカルフローを利用した画像処理を行うことなどで移動体10の並進速度及び旋回速度の推定を行い、周辺環境との相対運動情報を取得する。オプティカルフローは、連続的にカメラで取得した画像の中で物体(桟橋等の床板下部等)の動きをベクトルで表したものであり、このベクトルから移動体10の並進速度及び旋回速度を算出する。この結果、得られた並進速度及び旋回速度などの周辺環境に対する相対運動情報を累積し、この累積値を保持していた推定位置の初期値に加算して移動体10の位置を推定する。   Next, the absolute position of the moving body 10 is switched to an estimated position by dead reckoning using inertial navigation or relative motion information with respect to the surrounding environment. The relative motion information acquisition unit performs Doppler velocity log, odometry, or image processing using an optical flow on an image obtained from a camera provided in the moving body 10 as shown in FIG. The translational speed and the turning speed are estimated, and the relative motion information with the surrounding environment is acquired. The optical flow represents the motion of an object (such as a lower part of a floor board such as a pier) in images continuously acquired by a camera, and the translation speed and turning speed of the moving body 10 are calculated from the vector. . As a result, the obtained relative motion information with respect to the surrounding environment such as the translation speed and the turning speed is accumulated, and the accumulated value is added to the initial value of the estimated position holding the estimated position of the moving body 10.

その後、測位データの更新を行う。測位データの更新は、W座標系で保持しているデータベース内の全ランドマーク座標をR座標系に変換することでR座標系のランドマークデータベースを更新する。   Thereafter, the positioning data is updated. The positioning data is updated by updating the landmark database in the R coordinate system by converting all landmark coordinates in the database held in the W coordinate system into the R coordinate system.

また、第1の測位手段が実行された場合に、第2の測位手段又は第3の測位手段によって得られた推定方位と推定位置を現在の絶対方位と絶対位置で更新することで、自己の測位情報に補正される。推定方位と推定位置は通常、レートや相対速度などの観測値の累積値であることから累積誤差を含んでいるため、この補正によって当該累積誤差を解消して測位の精度を高めることができる。   Further, when the first positioning means is executed, by updating the estimated azimuth and the estimated position obtained by the second positioning means or the third positioning means with the current absolute azimuth and absolute position, It is corrected to positioning information. Since the estimated azimuth and the estimated position are usually accumulated values of observed values such as rate and relative speed, they include accumulated errors. Therefore, this correction can eliminate the accumulated errors and improve positioning accuracy.

次に、図9を参照して、本実施形態に係る移動体10の測位方法について詳述する。上述したように、移動体10は特徴点32の観測を行い、任意の時刻に取得された周辺環境の情報として時系列に取得している。即ち、図9の測位ステップT〜T+2に示すような観測を連続的に行っている。なお、以下の説明においては、地図情報としてW座標系におけるランドマークが(1)〜(4)まで包含される例について説明を行う。   Next, with reference to FIG. 9, the positioning method of the moving body 10 according to the present embodiment will be described in detail. As described above, the moving object 10 observes the feature point 32 and acquires it in time series as information on the surrounding environment acquired at an arbitrary time. That is, the observation as shown in the positioning steps T to T + 2 in FIG. 9 is continuously performed. In the following description, an example in which landmarks in the W coordinate system are included as (1) to (4) as map information will be described.

まず、測位ステップTでは、特徴点32を2点以上観測しているので、上述した第1の測位手段によって移動体10の測位を行うと共に、特徴点32とランドマーク座標とを照合することで、W座標系におけるランドマークを照合している。つまり、観測された特徴点32とW座標系のランドマーク(1)〜(3)が照合される。   First, in the positioning step T, since two or more feature points 32 are observed, the mobile body 10 is positioned by the first positioning means described above, and the feature points 32 and the landmark coordinates are collated. The landmarks in the W coordinate system are collated. That is, the observed feature point 32 and the landmarks (1) to (3) in the W coordinate system are collated.

次に、測位ステップTから微小時間後に行われた測位ステップT+1では、特徴点32を2点観測している。この2点が前回の測位ステップTの照合結果と重複するランドマーク(1)及び(2)であるため、測位ステップTで照合したランドマーク(1)及び(2)と測位ステップT+1で観測したランドマーク(1)及び(2)が同一であると推定されて測位ステップT+1でのランドマーク(1)及び(2)の追跡を行うことができる。   Next, at the positioning step T + 1 performed after a short time from the positioning step T, two feature points 32 are observed. Since these two points are the landmarks (1) and (2) that overlap with the matching result of the previous positioning step T, the observation was performed at the positioning step T + 1 with the landmarks (1) and (2) collated in the positioning step T. It is estimated that the landmarks (1) and (2) are the same, and the landmarks (1) and (2) can be tracked at the positioning step T + 1.

次に、測位ステップT+1と測位ステップT+2のように、重複するランドマークが存在しない場合について説明を行う。本実施形態に係る測位方法では、測位ステップT+1で未検出であったランドマーク(3)及び(4)について各測位ステップにおいて地図情報を介して地図上におけるランドマーク同士の幾何学的な位置関係を推定している。したがって、測位ステップT+2においては、観測した特徴点32をランドマーク(3)及び(4)と照合することが可能となり、ランドマーク(1)〜(4)の追跡を行うことができる。   Next, a case where there are no overlapping landmarks as in the positioning step T + 1 and the positioning step T + 2 will be described. In the positioning method according to this embodiment, for the landmarks (3) and (4) that have not been detected in the positioning step T + 1, the geometric positional relationship between the landmarks on the map via the map information in each positioning step. Is estimated. Therefore, in the positioning step T + 2, the observed feature point 32 can be collated with the landmarks (3) and (4), and the landmarks (1) to (4) can be tracked.

このように、本実施形態に係る測位方法は、各測位ステップにおいて、地図情報の全てのランドマークの位置を推定しているので、直前の測位ステップにおいて照合に成功したランドマーク以外のランドマークについても追跡することができ、広範囲な測位を実現することができる。即ち、本実施形態に係る測位方法は、複数存在するランドマークをハンドオーバーしながら渡り歩くような測位を行うことで、広範囲測位を実現している。   Thus, since the positioning method according to the present embodiment estimates the positions of all landmarks in the map information at each positioning step, the landmarks other than the landmarks that have been successfully verified at the previous positioning step. Can also be tracked, and a wide range of positioning can be realized. That is, the positioning method according to the present embodiment realizes wide-range positioning by performing positioning such as walking while handing over a plurality of landmarks.

このように、本実施形態に係る測位方法によれば、GPS等の測位技術が利用できない環境下であっても、ランドマーク情報を含む地図情報を備えていれば、測位が可能となり、GPS等の測位技術が利用できない環境下であっても、多くの作業に対して機械化を図ることができる。   As described above, according to the positioning method according to the present embodiment, positioning is possible as long as map information including landmark information is provided even in an environment where positioning technology such as GPS cannot be used. Even in an environment where the positioning technology cannot be used, mechanization can be achieved for many operations.

また、本実施形態に係る測位方法によれば、あらかじめ設置されたランドマークの位置に対するランドマーク情報を有する地図情報を有しており、ランドマーク同士の幾何学的な位置関係でランドマークの位置を区別しているので、個々のランドマーク同士を区別するための特徴を別途用意することなく、測位を行うことが可能となる。   Further, according to the positioning method according to the present embodiment, the map information having the landmark information with respect to the positions of the landmarks set in advance is included, and the position of the landmark is determined by the geometric positional relationship between the landmarks. Therefore, positioning can be performed without separately preparing a feature for distinguishing individual landmarks.

さらに、本実施形態に係る測位方法によれば、利用可能なランドマークの数に応じて第1から第3の測位手段を切り替えるので、得られた情報から柔軟に測位方法を変更することが可能となり、また、利用できるランドマークの数が減少した場合であっても他の上方によってこれを補うことができるので、より柔軟に測位を行うことができる。   Furthermore, according to the positioning method according to the present embodiment, since the first to third positioning means are switched according to the number of available landmarks, the positioning method can be flexibly changed from the obtained information. In addition, even when the number of available landmarks decreases, this can be compensated for by the other upper direction, so that positioning can be performed more flexibly.

なお、以上説明した本実施形態に係る測位方法は、例えば、桟橋の床板面を相対運動情報取得手段で撮影しながら画像処理を行った場合について説明を行ったが、相対運動情報取得手段が撮影する対象は床板面に限らず、例えば、海底面などを撮影しながら画像処理を行っても構わない。また、本実施形態に係る測位方法を実行するプログラムを計算機に読み込ませて実施することができる。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。   In the positioning method according to the present embodiment described above, for example, the case where image processing is performed while photographing the floor surface of the pier with the relative motion information acquisition unit has been described, but the relative motion information acquisition unit captures the image. The target to be processed is not limited to the floor plate surface, and for example, image processing may be performed while photographing the sea bottom. In addition, a computer program for executing the positioning method according to the present embodiment can be read by a computer. It is apparent from the description of the scope of claims that embodiments with such changes or improvements can be included in the technical scope of the present invention.

10 移動体、 11 周辺環境情報取得手段、 12 方位取得手段、 13 相対運動情報取得手段、 20 杭、 30 地図情報、 31 走査結果、 32 特徴点、 33 ランドマーク情報。   DESCRIPTION OF SYMBOLS 10 Mobile body, 11 Surrounding environment information acquisition means, 12 Direction acquisition means, 13 Relative motion information acquisition means, 20 Pile, 30 Map information, 31 Scan result, 32 Feature point, 33 Landmark information.

Claims (4)

移動体の自己位置の測位を地図情報に含まれるランドマーク情報を用いて行う測位方法であって、
前記移動体の移動に伴って前記移動体の周辺環境の情報を連続的に取得する周辺環境情報取得手段と、
該周辺環境情報取得手段によって任意の時刻に取得した周辺環境情報から1又は2以上の特徴点を抽出する特徴点抽出手段と、
前記特徴点と予め取得された前記地図情報に含まれる前記ランドマーク情報を対応させるランドマーク取得手段とを備え、
前記移動体は、前記周辺環境情報取得手段、自己の方位を取得する方位取得手段並びに周辺環境との相対運動情報を取得する相対運動情報取得手段を備え、
前記任意の時刻に前記特徴点が2つ取得できた場合に前記周辺環境情報取得手段によって得られたそれぞれの特徴点からの距離及び方位を用いて自己位置の測位を行う第1の測位手段と、前記特徴点が1つ取得できた場合に前記特徴点からの距離と前記方位取得手段によって得られた自己の方位によって自己位置を推定する第2の測位手段と、前記特徴点が取得できなかった場合に前記相対運動情報取得手段によって得られた相対運動情報と前回の測定結果から自己位置を推定する第3の測位手段を備えることを特徴とする測位方法。
A positioning method for performing positioning of a mobile object using landmark information included in map information,
Surrounding environment information acquisition means for continuously acquiring information on the surrounding environment of the moving body as the moving body moves,
Feature point extracting means for extracting one or more feature points from the surrounding environment information acquired at an arbitrary time by the surrounding environment information acquiring means;
Landmark acquisition means for associating the feature points with the landmark information included in the map information acquired in advance;
The mobile body includes the surrounding environment information acquisition means, an orientation acquisition means for acquiring its own orientation, and a relative motion information acquisition means for acquiring relative motion information with the surrounding environment,
First positioning means for performing self-position positioning using distances and directions from respective feature points obtained by the surrounding environment information obtaining means when two feature points can be obtained at the arbitrary time; The second positioning means for estimating the self-position based on the distance from the feature point and the self-direction obtained by the azimuth obtaining means when one feature point is obtained, and the feature point cannot be obtained. And a third positioning means for estimating the self-position from the relative motion information obtained by the relative motion information acquisition means and the previous measurement result.
請求項1に記載の測位方法において、
前記第1の測位手段、前記第2の測位手段及び前記第3の測位手段を、前記任意の時刻に取得された特徴点の数に応じて切り替える切替手段を備えることを特徴とする測位方法。
The positioning method according to claim 1,
A positioning method comprising switching means for switching the first positioning means, the second positioning means, and the third positioning means in accordance with the number of feature points acquired at the arbitrary time.
請求項1又は2に記載の測位方法において、
前記第2の測位手段及び前記第3の測位手段によって推定された自己の位置情報は、前記第1の測位手段が実行された場合に自己の測位情報に補正されることを特徴とする測位方法。
In the positioning method according to claim 1 or 2,
The position information estimated by the second positioning means and the third positioning means is corrected to the own positioning information when the first positioning means is executed. .
請求項1から3のいずれか1項に記載の測位方法において、
前記移動体の初期位置を取得する初期位置取得手段を備えることを特徴とする測位方法。
The positioning method according to any one of claims 1 to 3,
A positioning method comprising initial position acquisition means for acquiring an initial position of the moving body.
JP2016169627A 2016-08-31 2016-08-31 Positioning method using landmarks Active JP7015506B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016169627A JP7015506B2 (en) 2016-08-31 2016-08-31 Positioning method using landmarks

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016169627A JP7015506B2 (en) 2016-08-31 2016-08-31 Positioning method using landmarks

Publications (2)

Publication Number Publication Date
JP2018036151A true JP2018036151A (en) 2018-03-08
JP7015506B2 JP7015506B2 (en) 2022-02-15

Family

ID=61567318

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016169627A Active JP7015506B2 (en) 2016-08-31 2016-08-31 Positioning method using landmarks

Country Status (1)

Country Link
JP (1) JP7015506B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110068830A (en) * 2019-03-27 2019-07-30 东软睿驰汽车技术(沈阳)有限公司 A kind of method and device of vehicle location
JP2020118666A (en) * 2019-01-28 2020-08-06 株式会社データ変換研究所 Mobile entity position estimation system
CN111856499A (en) * 2020-07-30 2020-10-30 浙江大华技术股份有限公司 Map construction method and device based on laser radar

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099145A (en) * 1998-09-28 2000-04-07 Meidensha Corp Unmanned carrier position detecting system
JP2002031529A (en) * 2000-07-17 2002-01-31 Kansai Koji Sokuryo Kk Automated position measuring system and method therefor
JP2008134743A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Self-location recognition method
JP2010096752A (en) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program
JP2012014265A (en) * 2010-06-29 2012-01-19 Yaskawa Electric Corp Movable body
US20130155222A1 (en) * 2011-12-14 2013-06-20 Electronics And Telecommunications Research Institute Apparatus and method for recognizing location of vehicle
JP2014215296A (en) * 2013-04-26 2014-11-17 ジック アーゲー Laser scanner for traveling object navigation
JP2015519677A (en) * 2012-10-01 2015-07-09 アイロボット コーポレイション Adaptive mapping using spatial aggregation of sensor data

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000099145A (en) * 1998-09-28 2000-04-07 Meidensha Corp Unmanned carrier position detecting system
JP2002031529A (en) * 2000-07-17 2002-01-31 Kansai Koji Sokuryo Kk Automated position measuring system and method therefor
JP2008134743A (en) * 2006-11-27 2008-06-12 Matsushita Electric Works Ltd Self-location recognition method
JP2010096752A (en) * 2008-09-16 2010-04-30 Adoin Kenkyusho:Kk Tree information measuring method, tree information measuring device, and program
JP2012014265A (en) * 2010-06-29 2012-01-19 Yaskawa Electric Corp Movable body
US20130155222A1 (en) * 2011-12-14 2013-06-20 Electronics And Telecommunications Research Institute Apparatus and method for recognizing location of vehicle
JP2015519677A (en) * 2012-10-01 2015-07-09 アイロボット コーポレイション Adaptive mapping using spatial aggregation of sensor data
JP2014215296A (en) * 2013-04-26 2014-11-17 ジック アーゲー Laser scanner for traveling object navigation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020118666A (en) * 2019-01-28 2020-08-06 株式会社データ変換研究所 Mobile entity position estimation system
JP7396618B2 (en) 2019-01-28 2023-12-12 株式会社データ変換研究所 Mobile position estimation system
CN110068830A (en) * 2019-03-27 2019-07-30 东软睿驰汽车技术(沈阳)有限公司 A kind of method and device of vehicle location
CN111856499A (en) * 2020-07-30 2020-10-30 浙江大华技术股份有限公司 Map construction method and device based on laser radar

Also Published As

Publication number Publication date
JP7015506B2 (en) 2022-02-15

Similar Documents

Publication Publication Date Title
KR101739996B1 (en) Moving robot and simultaneous localization and map-buliding method thereof
Maier et al. Improved GPS sensor model for mobile robots in urban terrain
JP6442193B2 (en) Point cloud position data processing device, point cloud position data processing system, point cloud position data processing method and program
CN110889808B (en) Positioning method, device, equipment and storage medium
KR101781757B1 (en) Underwater image processing device for object recognition and method there of
JP6656886B2 (en) Information processing apparatus, control method, program, and storage medium
EP2133662A2 (en) Methods and system of navigation using terrain features
US11099030B2 (en) Attitude estimation apparatus, attitude estimation method, and observation system
CN110795984A (en) Information processing method, information processing apparatus, and program recording medium
JP5610870B2 (en) Unmanned traveling vehicle guidance device and unmanned traveling vehicle guidance method
Chen et al. Towards autonomous localization and mapping of AUVs: a survey
KR101444685B1 (en) Method and Apparatus for Determining Position and Attitude of Vehicle by Image based Multi-sensor Data
JP2002511614A (en) Tracking and detection of object position
JP2016048172A (en) Image processor, image processing method, and program
EP3617749A1 (en) Method and arrangement for sourcing of location information, generating and updating maps representing the location
US9875403B2 (en) Method for accurately geolocating an image sensor installed on board an aircraft
JP2018009959A (en) Satellite positioning system and satellite positioning method
JP7015506B2 (en) Positioning method using landmarks
JP2017524932A (en) Video-assisted landing guidance system and method
JP6698430B2 (en) Measuring device, measuring method and program
KR101763911B1 (en) Heading estimation apparatus of auv in severe magnetic disturbance environment and the method thereof
WO2018008627A1 (en) Satellite positioning system and satellite positioning method
US10184799B2 (en) Systems and methods for targeting objects of interest in denied GPS environments
Ruotsalainen Visual gyroscope and odometer for pedestrian indoor navigation with a smartphone
Bikmaev et al. Improving the accuracy of supporting mobile objects with the use of the algorithm of complex processing of signals with a monocular camera and LiDAR

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190827

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220117

R150 Certificate of patent or registration of utility model

Ref document number: 7015506

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150