JP7015487B2 - Fried food texture evaluation method and fried food texture evaluation program - Google Patents

Fried food texture evaluation method and fried food texture evaluation program Download PDF

Info

Publication number
JP7015487B2
JP7015487B2 JP2016036493A JP2016036493A JP7015487B2 JP 7015487 B2 JP7015487 B2 JP 7015487B2 JP 2016036493 A JP2016036493 A JP 2016036493A JP 2016036493 A JP2016036493 A JP 2016036493A JP 7015487 B2 JP7015487 B2 JP 7015487B2
Authority
JP
Japan
Prior art keywords
data
spatial frequency
fried food
power value
texture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016036493A
Other languages
Japanese (ja)
Other versions
JP2017151938A (en
Inventor
慎一 小山
明子 大矢
智伸 須永
忍 三堀
亜紀 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chiba University NUC
Showa Sangyo Co Ltd
Original Assignee
Chiba University NUC
Showa Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chiba University NUC, Showa Sangyo Co Ltd filed Critical Chiba University NUC
Priority to JP2016036493A priority Critical patent/JP7015487B2/en
Publication of JP2017151938A publication Critical patent/JP2017151938A/en
Application granted granted Critical
Publication of JP7015487B2 publication Critical patent/JP7015487B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Frying-Pans Or Fryers (AREA)

Description

特許法第30条第2項適用 第17回 日本感性工学会大会予稿集Application of Article 30, Paragraph 2 of the Patent Law Proceedings of the 17th Annual Meeting of the Japanese Society of Kansei Engineering

本発明は、揚物の質感評価方法及び揚物の質感評価プログラムに関する。 The present invention relates to a fried food texture evaluation method and a fried food texture evaluation program.

食事の満足度は味が大きく寄与するものであり、食品を販売する者にとって味の向上が何より大切である。 The satisfaction of the meal is greatly contributed by the taste, and the improvement of the taste is the most important for the person who sells the food.

一方で、味は実際に食品を食べて初めて分かるものであるため、消費者に対しては、食品を食べる前、具体的には食品購入時において、如何においしくできているか(食材であれば如何においしくできるのか)を嗅覚や視覚において感じさせることも重要である。特に、視覚の観点では、例えば下記非特許文献1において、実際の食事の際に視覚が食事の満足度に少なからず寄与しているといった報告がなされている。 On the other hand, since the taste is only known after actually eating the food, how delicious it is for consumers before eating the food, specifically at the time of purchasing the food (if it is an ingredient). It is also important to make people feel how delicious they can be with their sense of smell and sight. In particular, from the viewpoint of vision, for example, in Non-Patent Document 1 below, it is reported that vision contributes not a little to the satisfaction of meals at the time of actual meals.

これに対し、視覚を介して食品の状態を把握しようとする技術が、例えば下記非特許文献2に記載されている。当該文献では、生鮮食品画像における輝度分布情報を用いて鮮度判断を行おうとする技術が開示されている。 On the other hand, a technique for visually grasping the state of food is described in, for example, Non-Patent Document 2 below. The document discloses a technique for determining freshness using luminance distribution information in a fresh food image.

http://www.fruitnet.com/fpj/article/165945/way-salad-presented-can-push-price-up-three-times-higherhttp: // www. fruitnet. com / fpj / article / 165945 / way-salad-presented-can-push-price-up-three-times-higher 増田知尋ら,“生鮮食品画像の輝度分布情報を用いた鮮度判断モデルの検討”,日本視覚学会2015年冬季大会プログラム,3p21Tomohiro Masuda et al., "Examination of Freshness Judgment Model Using Brightness Distribution Information of Fresh Food Images", Japan Visual Society 2015 Winter Games Program, 3p21

食品には様々な見た目の特徴があるが、上述したとおり、食品の見た目は、第一印象として消費者の購買意欲を高める要素の一つとなりうる。特に、揚げ物のし好性は、その食感に大きく影響される。そのため、揚げ物の見た目から推測される食感(質感)は、商品の価値に大きく影響する。例えば天ぷらであれば、サクサクとした食感が好まれ、しっとりした食感は好まれない。そのため、見た目から推測される食感として、サクサク感が強い商品が好まれる。揚げ物の質感を、より客観的に評価するための技術が求められている。 Foods have various appearance characteristics, but as mentioned above, the appearance of foods can be one of the factors that increase consumers' purchasing motivation as a first impression. In particular, the likability of fried food is greatly affected by its texture. Therefore, the texture (texture) inferred from the appearance of fried food has a great influence on the value of the product. For example, in the case of tempura, a crispy texture is preferred, and a moist texture is not preferred. Therefore, a product with a strong crispy texture is preferred as a texture that can be inferred from the appearance. There is a need for technology for more objectively evaluating the texture of fried foods.

しかしながら、上記非特許文献2に記載の技術は、あくまで生鮮食品の鮮度を対象とするものであり、天ぷら等の揚物の質感を対象としたものではなく、また、輝度分布情報を用いるものであり、輝度だけでは、明るさ等の撮影時の状態に大きく依存してしまい判断の安定性に欠くといった課題がある。 However, the technique described in Non-Patent Document 2 is intended only for the freshness of fresh foods, not for the texture of fried foods such as tempura, and uses luminance distribution information. However, there is a problem that the brightness alone largely depends on the state at the time of shooting such as the brightness and lacks the stability of judgment.

そこで、本発明は、上記課題に鑑み、安定性に優れた天ぷら等の揚物の質感を評価することのできる、揚物の質感評価方法及び揚物の質感評価プログラムを提供することを目的とする。 Therefore, in view of the above problems, it is an object of the present invention to provide a texture evaluation method for fried foods and a texture evaluation program for fried foods, which can evaluate the texture of fried foods such as tempura with excellent stability.

上記課題について本発明者らは、天ぷら等の揚物においては、揚げた衣の空間周波数が見た目から推測される食感(質感)と大きな相関を有していることを発見し、本発明を完成させるに至った。 Regarding the above-mentioned problems, the present inventors have discovered that in fried foods such as tempura, the spatial frequency of the fried batter has a large correlation with the texture (texture) estimated from the appearance, and completes the present invention. I came to let you.

すなわち、本発明の一観点に係る揚物の質感評価方法は、揚物画像データに対し空間周波数解析処理を行うものである。 That is, the method for evaluating the texture of a fried food according to one aspect of the present invention is to perform spatial frequency analysis processing on the fried food image data.

また、本発明の他の一観点に係る揚げ物の質感評価プログラムは、コンピュータに、揚物画像データに対し空間周波数解析処理を行わせるためのものである。 Further, the texture evaluation program for fried food according to another aspect of the present invention is for causing a computer to perform spatial frequency analysis processing on the fried food image data.

以上、本発明により、安定性に優れた天ぷら等の揚物の質感を評価することのできる、揚物の質感評価方法及び揚物の質感評価プログラムを提供することができる。 As described above, according to the present invention, it is possible to provide a texture evaluation method for fried foods and a texture evaluation program for fried foods, which can evaluate the texture of fried foods such as tempura having excellent stability.

本評価方法を実行するコンピュータの概略構成を示す図である。It is a figure which shows the schematic structure of the computer which executes this evaluation method. 天ぷらの場合の揚物画像の例を示す図である。It is a figure which shows the example of the fried food image in the case of tempura. サクサク感が強い状態とサクサク感が弱い状態の空間周波数分析結果を示す図である。It is a figure which shows the spatial frequency analysis result in the state where the crispy feeling is strong and the state where the crispy feeling is weak. ザクザク感が強い状態とザクザク感が弱い状態の空間周波数分析結果を示す図である。It is a figure which shows the spatial frequency analysis result in the state where the crunchy feeling is strong and the state where the crunchy feeling is weak. しっとり感が強い状態と弱い状態の空間周波数分析結果を示す図である。It is a figure which shows the spatial frequency analysis result in the state of strong moistness and the state of weak moistness. 図3乃至図5のまとめを示す図である。It is a figure which shows the summary of FIGS. 3 to 5.

以下、本発明の実施形態について、図面を用いて詳細に説明する。ただし、本発明は多くの異なる形態による実施が可能であり、以下に示す実施形態、実施例の例示に限定されるものではない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. However, the present invention can be implemented in many different embodiments, and is not limited to the embodiments and examples shown below.

(揚げ物の質感評価方法)
まず、本実施形態に係る揚物の質感評価方法(以下「本評価方法」という。)は、揚物画像データに対し空間周波数解析処理を行うことを特徴とする。
(Method of evaluating the texture of fried food)
First, the texture evaluation method for fried foods (hereinafter referred to as “the evaluation method”) according to the present embodiment is characterized in that spatial frequency analysis processing is performed on the fried food image data.

上記のとおり、本方法では、まず、揚物画像データを処理対象とする。ここで「揚物画像データ」とは、揚物を撮影した結果得られる揚物の情報を含む画像データであって、例えばデジタルカメラやデジタルカメラ機能を有するスマートフォン等の画像取得装置によって取得される画像データである。揚物画像データは、デジタルカメラ等の画像取得装置によって取得される場合、その内部に設けられるハードディスク等の記録装置、又は、それに外部記録装置として接続されるフラッシュメモリ、CD-ROMやDVD-ROM等に記録され、後述のように処理される。 As described above, in this method, first, the fried food image data is processed. Here, the "fried food image data" is image data including information on the fried food obtained as a result of photographing the fried food, and is image data acquired by an image acquisition device such as a digital camera or a smartphone having a digital camera function, for example. be. When the fried image data is acquired by an image acquisition device such as a digital camera, it is a recording device such as a hard disk provided inside the device, or a flash memory, CD-ROM, DVD-ROM, etc. connected to the recording device as an external recording device. It is recorded in and processed as described below.

揚物画像データは、電子的に読み取り可能なデータ(以下「電子データ」という。)としてコンピュータにより記録、処理される。本評価方法を実現するコンピュータとしては、限定されるわけではないが、例えば中央演算装置(CPU)と、ハードディスクやフラッシュメモリ等、電子データを比較的長期に記録することのできる記録装置、RAM等一時的に電子データを記録するメモリ装置、キーボードやマウス等使用者の指示を入力するための入力装置、処理した電子データに基づき情報を表示するためのモニタ等の表示装置、更には、上記CPU、記録装置、メモリ装置、CD-ROMやフラッシュメモリ等の外部記録装置を読み取るための読取装置、入力装置及び表示装置等を電気的に接続するバス等を備えていることが好ましい。図1に、本評価方法を実現するコンピュータの構成の概略を示しておく。なおコンピュータの態様としては、いわゆるデスクトップ型であってもノート型であっても、タブレット型であってもよい。更には、上記構成を備えている携帯電話、いわゆるスマートフォンであってもよい。 The fried image data is recorded and processed by a computer as electronically readable data (hereinafter referred to as "electronic data"). The computer that realizes this evaluation method is not limited, but is, for example, a central arithmetic unit (CPU), a recording device such as a hard disk or a flash memory, a recording device capable of recording electronic data for a relatively long period of time, a RAM, or the like. A memory device that temporarily records electronic data, an input device for inputting user instructions such as a keyboard and mouse, a display device such as a monitor for displaying information based on processed electronic data, and the above CPU. It is preferable to include a recording device, a memory device, a reading device for reading an external recording device such as a CD-ROM or a flash memory, a bus for electrically connecting an input device, a display device, and the like. FIG. 1 shows an outline of the configuration of a computer that realizes this evaluation method. The aspect of the computer may be a so-called desktop type, a notebook type, or a tablet type. Further, it may be a mobile phone having the above configuration, a so-called smartphone.

更に具体的に説明すると、本評価方法は、ハードディスク等の記録装置に本評価方法を実行するためのプログラムを予め記録しておき、使用者の操作に基づき、メモリ装置にプログラムを一時的に記録しつつCPUによる処理を経て実現できる。なお、今までの記載からも明らかなように、本評価方法を実行するための揚物の質感評価プログラムは、コンピュータに、揚物画像データに対し空間周波数解析処理を行わせるためのものである。 More specifically, in this evaluation method, a program for executing this evaluation method is recorded in advance in a recording device such as a hard disk, and the program is temporarily recorded in the memory device based on the user's operation. However, it can be realized through processing by the CPU. As is clear from the description so far, the texture evaluation program for the fried food for executing this evaluation method is for causing the computer to perform the spatial frequency analysis processing on the fried food image data.

なお、上記の記載から明らかであるが、本評価方法の処理対象となる揚物画像データは、画像取得装置で取得された場合、有線ケーブル若しくは無線による通信によるデータの送受信、又は、接続された外部記録装置等を画像取得装置から取り外してコンピュータの読取装置によって記録装置に記録させることができる。もちろん、画像取得装置自体がスマートフォン等コンピュータとしての機能を備えている装置である場合、画像取得装置そのもので本評価方法を実行させてもよい。 As is clear from the above description, when the fried image data to be processed by this evaluation method is acquired by the image acquisition device, the data is transmitted / received by a wired cable or wireless communication, or is connected to an external device. The recording device or the like can be removed from the image acquisition device and recorded by the reading device of the computer. Of course, when the image acquisition device itself is a device having a function as a computer such as a smartphone, the evaluation method may be executed by the image acquisition device itself.

本評価方法において、揚物とは、具材に衣をつけて熱した油により揚げる料理をいい、上記のように天ぷらが好ましい一例であるが、これに限定されず例えばコロッケ、フライ、カツ、唐揚げ、竜田揚げ等を対象とすることも可能である。なお、天ぷらの例における揚物画像のイメージ図を図2に示しておく。 In this evaluation method, the fried food refers to a dish in which the ingredients are battered and fried in heated oil, and tempura is a preferable example as described above, but the fried food is not limited to this, for example, croquette, fried food, cutlet, and karaage. It is also possible to target fried chicken, fried chicken, etc. An image of a fried food image in the example of tempura is shown in FIG.

また本方法において、「空間周波数解析」とは、空間的な周期を有する構造の解析をいい、本評価方法において、具体的な空間周波数解析処理としては、限定されるわけではないが、例えばウェーブレット変換処理、フーリエ解析処理等を例示することができる。 Further, in this method, "spatial frequency analysis" refers to analysis of a structure having a spatial period, and in this evaluation method, the specific spatial frequency analysis process is not limited, but for example, wavelet. Transformation processing, Fourier analysis processing, and the like can be exemplified.

また本方法における空間周波数解析は、具体的には、揚物画像データに含まれる座標データ(x座標データ、y座標データ)及びその座標データに対応した輝度データに基づき解析を行い、空間周波数値データとその空間周波数値データに対応したパワー値データを求める。そして、このパワー値データと、予め記録してあるパワー値データベースを参照して質感評価値データを定める。 Further, the spatial frequency analysis in this method is specifically performed based on the coordinate data (x coordinate data, y coordinate data) included in the fried food image data and the brightness data corresponding to the coordinate data, and the spatial frequency value data. And the power value data corresponding to the spatial frequency value data is obtained. Then, the texture evaluation value data is determined by referring to the power value data and the power value database recorded in advance.

ここで「パワー値データ」とは、空間周波数に対するパワー値を示すデータをいい、このパワー値データには、この値に対応する空間周波数の値を示す「空間周波数値データ」が対応付けられている。ここで、空間周波数値データの単位は、特に限定されるわけではないが、cpi(cycle/image)を用いることが好ましい一例である。なお、このcpiによる空間周波数評価の場合は、ある程度撮影条件を一定にすれば十分な評価が可能である一方、撮影した画像によっては撮影対象の拡大・縮小の画像となっている可能性もあるため、撮影対象の幅の長さ及び撮影距離を考慮したcpd(cycle/degree)を用いても良い。 Here, the "power value data" refers to data indicating a power value with respect to a spatial frequency, and this power value data is associated with "spatial frequency value data" indicating a spatial frequency value corresponding to this value. There is. Here, the unit of the spatial frequency value data is not particularly limited, but it is a preferable example to use cpi (cycle / image). In the case of spatial frequency evaluation by cpi, sufficient evaluation is possible if the shooting conditions are kept constant to some extent, but there is a possibility that the image is enlarged or reduced depending on the captured image. Therefore, cpd (cycle / assessment) may be used in consideration of the length of the width of the object to be imaged and the image-taking distance.

また本評価方法において「パワー値データベース」は、予め記録してあるパワー値データの集合であって、質感評価値データを定める基準となるものである。本方法では、特定の質感に有意差のある画像群に対し、それぞれ空間周波数の分析を行い、統計的な処理により有意差があった範囲をその質感をあらわす周波数帯とし、印象、周波数帯、パワー値を関連付けてデータベースとしておくことで、質感を評価することができるようになる。原理的には印象に差があり、空間周波数においても有意な差が見られるのであればどのような質感でも評価することが可能となる。 Further, in this evaluation method, the "power value database" is a set of power value data recorded in advance and serves as a reference for determining the texture evaluation value data. In this method, spatial frequencies are analyzed for each image group that has a significant difference in a specific texture, and the range where there is a significant difference by statistical processing is defined as the frequency band that represents the texture, and the impression, frequency band, and so on. By associating the power values into a database, it becomes possible to evaluate the texture. In principle, there is a difference in impression, and any texture can be evaluated as long as there is a significant difference in spatial frequency.

本評価方法ではパワー値データは、上記の通り様々な質感に対して用いることができ、限定されるわけではないが、例えば揚物、より具体的に天ぷらの場合、一般の消費者が揚物を見た場合に、「サクサク感」を強く感じる場合のパワー値データ及びこれに対応する空間周波数値データ、「ザクザク感」を強く感じる場合のパワー値データ及びこれに対応する空間周波数値データ、「しっとり感」を強く感じる場合のパワー値データ及びこれに対応する空間周波数値データをそれぞれ備え、特定の空間周波数値データに対応した上記求めたパワー値データと比較し、どの程度消費者がサクサク感、ザクザク感、しっとり感を感じているのか評価することを例示することができる。そしてこの結果、どの程度揚物の質感を消費者が感じているのかを示すデータを、質感評価値データとして、作成、出力する。すなわち質感評価値データとは、揚物画像を見た者がその揚物画像に対しどのような質感を、どの程度感じているのかを評価することのできるデータをいう。 In this evaluation method, the power value data can be used for various textures as described above, and is not limited, but for example, in the case of fried foods, more specifically tempura, general consumers see the fried foods. In that case, the power value data when the "crispy feeling" is strongly felt and the corresponding spatial frequency value data, the power value data when the "crispy feeling" is strongly felt and the corresponding spatial frequency value data, "moist". It is equipped with power value data and corresponding spatial frequency value data when a strong feeling of "feeling" is provided, and how crispy the consumer feels when compared with the above-mentioned obtained power value data corresponding to specific spatial frequency value data. It can be exemplified to evaluate whether or not a feeling of crunchiness and moistness is felt. As a result, data indicating how much the consumer feels the texture of the fried food is created and output as texture evaluation value data. That is, the texture evaluation value data refers to data that can evaluate what kind of texture and to what extent the person who sees the fried food image feels the fried food image.

なお本評価方法におけるパワー値データベースで記録されるパワー値データは、評価対象となる揚物の空間周波数解析の結果得られるパワー値データのどの空間周波数領域でも評価できるように、解析を行った空間周波数領域全体のパワー値データを格納しておくこととしてもよいが、記憶容量を削減すること及び計算速度を向上させる観点から、各質感評価種類において、特定の空間周波数領域のパワー値データのみを保持させておくこととしてもよい。たとえば、天ぷらの場合、空間周波数で0~90cpi、230~250cpiの範囲のパワー値データを質感評価種類ごとに保持しておくことが好ましく、より具体的には、サクサク感の強い画像では0~50cpi程度の空間周波数帯、ザクザク感の強い画像では更に0~60cpi程度の空間周波数帯も考慮し、一方、しっとり感の強い画像では0~90cpi、240cpi程度の空間周波数帯のパワー値データを保持しておくことがより好ましい。 The power value data recorded in the power value database in this evaluation method is the spatial frequency analyzed so that it can be evaluated in any spatial frequency region of the power value data obtained as a result of the spatial frequency analysis of the fried food to be evaluated. The power value data of the entire region may be stored, but from the viewpoint of reducing the storage capacity and improving the calculation speed, only the power value data of a specific spatial frequency region is retained in each texture evaluation type. You may leave it alone. For example, in the case of tempura, it is preferable to hold power value data in the range of 0 to 90 cpi and 230 to 250 cpi in spatial frequency for each texture evaluation type, and more specifically, 0 to 0 to a crispy image. The spatial frequency band of about 50 cpi and the spatial frequency band of about 0 to 60 cpi are also considered for the image with a strong crunchy feeling, while the power value data of the spatial frequency band of about 0 to 90 cpi and 240 cpi is retained for the image with a strong moist feeling. It is more preferable to keep it.

以上、本評価方法により、安定性をもって天ぷら等の揚物の質感を評価することができる。また本評価方法を実現するための揚物の質感評価プログラムを提供することができる。 As described above, the texture of fried food such as tempura can be evaluated with stability by this evaluation method. It is also possible to provide a texture evaluation program for fried foods to realize this evaluation method.

また、上記の評価方法を利用した上で、取得した揚物画像に対して修正を加えることで、修正揚物画像データを作成し、上記質感評価プログラムの検証に用い、データベースの信頼性を向上させることも可能である。 In addition, after using the above evaluation method, by making corrections to the acquired fried food image, modified fried food image data is created and used for verification of the above texture evaluation program to improve the reliability of the database. Is also possible.

具体的には、本方法は、揚物画像データに対し空間周波数解析処理を行いパワー値データを求め、パワー値データを修正して逆空間周波数解析処理を行い、修正揚物画像データを作成する。これにより、上記の通り、修正揚物画像データについて検証を行うことで、蓄積されるパワー値データベースの信頼性をより向上させることができる。 Specifically, this method performs spatial frequency analysis processing on the fried food image data to obtain power value data, corrects the power value data, performs reverse spatial frequency analysis processing, and creates modified fried food image data. As a result, as described above, the reliability of the accumulated power value database can be further improved by verifying the modified fried image data.

また、上記方法を実現するプログラムは、コンピュータに、揚物画像データに対し空間周波数解析処理を行いパワー値データを求め、パワー値データを修正して逆空間周波数解析処理を行い、修正揚物画像データを作成するためのものである。 In addition, the program that realizes the above method performs spatial frequency analysis processing on the fried food image data to obtain power value data, corrects the power value data, performs reverse spatial frequency analysis processing, and obtains the modified fried food image data. It is for creating.

この修正の方法としては、特定の空間周波数におけるパワー値データのみを所望の値の範囲にする、たとえば、処理前は「しっとり感」を強く感じる空間周波数範囲のパワー値データを、「サクサク感」を強く感じるパワー値データに修正する等して質感を向上させることができる。また、揚物画像全体の違和感を抑えるために、上記のようにパワー値データを空間周波数全体で上げる又は下げることで対応してもよい。 As a method of this correction, only the power value data in a specific spatial frequency is set in the desired value range. For example, the power value data in the spatial frequency range in which "moist feeling" is strongly felt before processing is "crispy". The texture can be improved by modifying the power value data to strongly feel. Further, in order to suppress the discomfort of the entire fried food image, the power value data may be increased or decreased over the entire spatial frequency as described above.

すなわち、上記のように、本方法及び本プログラムを用いることで、取得した揚物画像データをより所望の感覚に修正した修正揚物画像を作成することで、データベースを充実させ、更なる評価の検証に寄与し、評価の信頼性向上を図ることができるようになる。 That is, as described above, by using this method and this program, by creating a modified fried food image in which the acquired fried food image data is modified to a more desired feeling, the database is enriched and further evaluation verification is performed. It will be possible to contribute and improve the reliability of evaluation.

(原理確認)
ここで、実際に揚物の質感評価プログラムを作成し、揚物の質感評価方法による効果を確認した。
(Principle confirmation)
Here, we actually created a texture evaluation program for fried foods and confirmed the effect of the texture evaluation method for fried foods.

まず、全部で29種類の海老の天ぷら画像を準備した。これらの画像は凹凸感と衣細部の丸みの二つの軸において均等に分布していた。なお撮影の際は、約15cmの海老天ぷらを約25cmの距離から撮影し、512×512pixel(解像度72dpi)の大きさに3箇所ずつトリミングし、外見が極めて類似したものを除外し、87枚の揚物画像データを作成した。 First, we prepared a total of 29 types of shrimp tempura images. These images were evenly distributed on the two axes of unevenness and roundness of clothing details. At the time of shooting, about 15 cm of shrimp tempura was taken from a distance of about 25 cm, trimmed to a size of 512 x 512 pixel (resolution 72 dpi) at 3 points each, and 87 sheets were excluded, excluding those with very similar appearance. Fried food image data was created.

次に、これらの画像の中から、「サクサク感」、「ザクザク感」、「しっとり感」の強いものと弱いものをそれぞれ5枚ずつ計10枚選択した(重複を含む)。そしてそれぞれの質感に対して選ばれた10枚の画像を用いて一般の消費者として大学生13名を対象とした正規化順位法による並べ替え課題を行い、上位5枚と下位5枚の間に統計的優位さが認められた。具体的には、サクサク感の場合、t(24)=5.498、p<0.05、ザクザク感の場合、t(24)=3.354、p<0.05、しっとり感の場合、t(24)=3.836、p<0.05、がそれぞれ認められた。 Next, from these images, 5 images each with strong and weak "crispy", "crispy", and "moist" images were selected (including duplication). Then, using the 10 images selected for each texture, a sorting task was performed by the normalization ranking method for 13 university students as general consumers, and between the top 5 and bottom 5 images. A statistical advantage was recognized. Specifically, in the case of a crispy feeling, t (24) = 5.498, p <0.05, in the case of a crispy feeling, t (24) = 3.354, p <0.05, in the case of a moist feeling, T (24) = 3.836 and p <0.05, respectively, were observed.

そして、これらの揚物画像データに対し、空間周波数分析具体的には高速フーリエ変換処理を行い、空間周波数におけるパワー値データの算出にはMATLABを用いて行った。 Then, the spatial frequency analysis, specifically, the fast Fourier transform process was performed on these fried food image data, and the power value data at the spatial frequency was calculated using MATLAB.

図3は、本原理確認において、サクサク感が強い状態とサクサク感が弱い状態の空間周波数分析結果を示している。この空間周波数におけるパワー値データについて、上位・下位間でt検定を行ったところ、サクサク感が強い状態と弱い状態ではでは0~1、3~6、10~20、24~26、29~31、33~35、52~53、61~62cycle/imageで優位差が見られた。 FIG. 3 shows the results of spatial frequency analysis in a state of strong crispness and a state of weak crispness in the confirmation of this principle. When the t-test was performed between the upper and lower power values in this spatial frequency, it was 0 to 1, 3 to 6, 10 to 20, 24 to 26, and 29 to 31 in the strong and weak crispness states. , 33-35, 52-53, 61-62 cycle / image showed a dominant difference.

また上記と同様、ザクザク感が強い状態とザクザク感が弱い状態、しっとり感が強い状態と弱い状態の空間周波数分析結果を示している。この結果を図4、図5にそれぞれ示しておく。また、図6は、上記図3乃至5のまとめを示す図である。 Further, as in the above, the spatial frequency analysis results of the state where the feeling of crunchiness is strong and the state where the feeling of crunchiness is weak, and the state where the feeling of moistness is strong and the state where the feeling of moistness is weak are shown. The results are shown in FIGS. 4 and 5, respectively. Further, FIG. 6 is a diagram showing a summary of FIGS. 3 to 5 above.

この結果、空間周波数分析の結果、サクサク感の強い画像では0~50cpi程度の空間周波数帯で振幅が大きく、ザクザク感の強い画像では0~60cpi程度の空間周波数帯で振幅が大きく、しっとり感の強い画像では0~90cpi、240cpi程度の空間周波数帯で振幅が大きくなっていることを確認した。この結果は、まだ推測の域にはあるが、0~50cpi程度の低~中周波成分が衣表面の密度や連続性の印象に影響を与えたことによりサクサク感やザクザク感を強め、50~60cpi程度のやや高周波の帯域は輪郭の強調に寄与し、衣がしっかりとした印象を生み、ザクザク感を強めたためと考えられる。一方、しっとり感は0~50cpi程度の低~中周波成分の明暗の変化の少なさによって生み出されたと考えられる。 As a result, as a result of the spatial frequency analysis, the amplitude is large in the spatial frequency band of about 0 to 50 cpi in the image with a strong crispy feeling, and the amplitude is large in the spatial frequency band of about 0 to 60 cpi in the image with a strong crispy feeling, and the feeling of moistness is high. In a strong image, it was confirmed that the amplitude was large in the spatial frequency band of about 0 to 90 cpi and 240 cpi. This result is still speculative, but the low to medium frequency components of about 0 to 50 cpi affected the impression of density and continuity of the clothing surface, which strengthened the crispy and crunchy feeling, and 50 to 50. It is probable that the slightly high frequency band of about 60 cpi contributed to the enhancement of the contour, and the clothes gave a firm impression and strengthened the crunchy feeling. On the other hand, it is considered that the moist feeling was created by the small change in brightness of the low to medium frequency components of about 0 to 50 cpi.

Claims (2)

座標データ及び当該座標データに対応した輝度データを含む天ぷらの揚物画像データに対し空間周波数解析処理を行い、
前記座標データ及び前記輝度データに基づき前記空間周波数解析によりパワー値データを求め、
前記パワー値データと、予め記録してあるパワー値データベースを参照して見た目の質感評価値データを定める天ぷらの見た目の質感評価方法。
Spatial frequency analysis processing is performed on the fried food image data of tempura including the coordinate data and the brightness data corresponding to the coordinate data .
Power value data is obtained by the spatial frequency analysis based on the coordinate data and the luminance data .
A method for evaluating the appearance of tempura, which determines the appearance of texture evaluation value data by referring to the power value data and a power value database recorded in advance.
コンピュータに、
座標データ及び当該座標データに対応した輝度データを含む天ぷらの揚物画像データに対し空間周波数解析処理を行わせ、
前記座標データ及び前記輝度データに基づき空間周波数解析によりパワー値データを求め、
前記パワー値データと、予め記録してあるパワー値データベースを参照して見た目の質感評価値データを定める天ぷらの見た目の質感評価プログラム。


On the computer
Spatial frequency analysis processing is performed on the tempura fried image data including the coordinate data and the brightness data corresponding to the coordinate data .
Power value data is obtained by spatial frequency analysis based on the coordinate data and the brightness data .
Tempura's appearance texture evaluation program that determines the appearance texture evaluation value data by referring to the power value data and the power value database recorded in advance.


JP2016036493A 2016-02-28 2016-02-28 Fried food texture evaluation method and fried food texture evaluation program Active JP7015487B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016036493A JP7015487B2 (en) 2016-02-28 2016-02-28 Fried food texture evaluation method and fried food texture evaluation program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016036493A JP7015487B2 (en) 2016-02-28 2016-02-28 Fried food texture evaluation method and fried food texture evaluation program

Publications (2)

Publication Number Publication Date
JP2017151938A JP2017151938A (en) 2017-08-31
JP7015487B2 true JP7015487B2 (en) 2022-02-03

Family

ID=59740823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016036493A Active JP7015487B2 (en) 2016-02-28 2016-02-28 Fried food texture evaluation method and fried food texture evaluation program

Country Status (1)

Country Link
JP (1) JP7015487B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114720646B (en) * 2022-04-07 2023-12-15 手拉手纳米科技(嘉兴)有限公司 Intelligent optimization analysis method of food frying pan based on big data
CN116804669B (en) * 2023-06-16 2024-04-02 枣庄华宝牧业开发有限公司 Fried monitoring system for meat product processing

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063420A (en) 2008-09-12 2010-03-25 Kao Corp Oil and fat composition

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010063420A (en) 2008-09-12 2010-03-25 Kao Corp Oil and fat composition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
加藤 邦人、"天ぷらのおいしさ評価のための画像処理技術の開発"、科学研究費助成事業 研究成果報告、平成26年6月16日、

Also Published As

Publication number Publication date
JP2017151938A (en) 2017-08-31

Similar Documents

Publication Publication Date Title
CN106575450B (en) It is rendered by the augmented reality content of albedo model, system and method
US20210406987A1 (en) Recommendation system, method and computer program product based on a user&#39;s physical features
US9646340B2 (en) Avatar-based virtual dressing room
DE102013203667B4 (en) Cabin for trying out one or more items of clothing
Bruce Expoblend: Information preserving exposure blending based on normalized log-domain entropy
US20130336550A1 (en) Monitoring physical body changes via image sensor
US20130342527A1 (en) Avatar construction using depth camera
GB2526977A (en) Computer implemented methods and systems for generating virtual body models for garment fit visualisation
CN103890780B (en) The signal detection that distortion reduces
CN103473563A (en) Fingernail image processing method and system, and fingernail feature analysis method and system
JP7015487B2 (en) Fried food texture evaluation method and fried food texture evaluation program
CN108830898A (en) A kind of food volume evaluation method based on 3D model nesting
Dutta et al. Leveraging smart devices for automatic mood-transferring in real-time oil painting
CN112053428A (en) Method and device for identifying nutritional information contained in food
Koulieris et al. An automated high-level saliency predictor for smart game balancing
TW200534705A (en) A specific image extraction method, storage medium and image pickup device using the same
CN104867046A (en) Method and device for selecting article intelligently
Chan et al. Declutterar: Mobile diminished reality and augmented reality to address hoarding by motivating decluttering and selling on online marketplace
CA2993010C (en) Analyzing user access of media for meal plans
CN113095897A (en) Recipe-based food material pushing method, refrigerator, system and storage medium
JP6318451B2 (en) Saliency image generating apparatus, method, and program
CN109242031A (en) Training method, application method, device and the processing equipment of pose refinement model
US20160379320A1 (en) Analyzing User Access of Media For Meal Plans
Shi et al. Skeleton modulated topological perception map for rapid viewpoint selection
Kim et al. An avatar expression method using biological signals of face-images

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20160317

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200206

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200521

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200820

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200820

C11 Written invitation by the commissioner to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C11

Effective date: 20200903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200917

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201008

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201009

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20201204

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20201208

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210326

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211110

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211209

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211209

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220107