JP7013167B2 - Ecg信号の分類化 - Google Patents

Ecg信号の分類化 Download PDF

Info

Publication number
JP7013167B2
JP7013167B2 JP2017155088A JP2017155088A JP7013167B2 JP 7013167 B2 JP7013167 B2 JP 7013167B2 JP 2017155088 A JP2017155088 A JP 2017155088A JP 2017155088 A JP2017155088 A JP 2017155088A JP 7013167 B2 JP7013167 B2 JP 7013167B2
Authority
JP
Japan
Prior art keywords
unipolar
signal
bipolar
time
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017155088A
Other languages
English (en)
Other versions
JP2018023788A (ja
Inventor
リオール・ボッツァー
メイル・バル-タル
エラド・ナカル
ノガ・サロモン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of JP2018023788A publication Critical patent/JP2018023788A/ja
Application granted granted Critical
Publication of JP7013167B2 publication Critical patent/JP7013167B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/25Bioelectric electrodes therefor
    • A61B5/279Bioelectric electrodes therefor specially adapted for particular uses
    • A61B5/28Bioelectric electrodes therefor specially adapted for particular uses for electrocardiography [ECG]
    • A61B5/283Invasive
    • A61B5/287Holders for multiple electrodes, e.g. electrode catheters for electrophysiological study [EPS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • A61B5/352Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6847Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive mounted on an invasive device
    • A61B5/6852Catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6846Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive
    • A61B5/6867Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be brought in contact with an internal body part, i.e. invasive specially adapted to be attached or implanted in a specific body part
    • A61B5/6869Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7285Specific aspects of physiological measurement analysis for synchronising or triggering a physiological measurement or image acquisition with a physiological event or waveform, e.g. an ECG signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2505/00Evaluating, monitoring or diagnosing in the context of a particular type of medical care
    • A61B2505/05Surgical care
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • A61B2576/023Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part for the heart

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Artificial Intelligence (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Psychiatry (AREA)
  • Signal Processing (AREA)
  • Evolutionary Computation (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

(関連出願の相互参照)
本出願は、2016年8月11日に出願された米国仮特許出願第62/373,465号の利益を主張する。同仮出願は、参照により本明細書に組み込まれる。本出願は、本出願と同日に出願された「Annotation of a Wavefront」と題する出願に関連する。
(発明の分野)
本発明は、心電図(ECG)信号に関し、より詳細には信号の分類化のための方法に関する。
心臓の電気信号のマッピング及び画像化は、通常、カテーテルのECG信号により示される局所興奮時間(LAT)を信号の空間的位置と組み合わせることに基づく。かような方法は、カリフォルニア州ダイヤモンドバーのBiosense Webster社製のCARTO(登録商標)3 Systemで用いられている。
本特許出願に参照により組み込まれる文献は、いずれかの用語がこれらの組み込まれた文献において、本明細書に明確に又は暗示的になされる定義と矛盾する形で定義されている場合には、本明細書中の定義のみが考慮されるべきである点を除いて、本出願の一部とみなされるものとする。
本発明の実施形態は、ヒト被検者の心筋に近接する一対の電極からバイポーラ信号を受信することと、前記一対の電極の選択された一方からユニポーラ信号を受信することとを含む方法を提供する。更に方法は、ユニポーラ及びバイポーラ信号のための関心窓(WOI)を規定することと、WOI内でユニポーラ信号の局所ユニポーラ最小導関数、及び局所ユニポーラ最小導関数の発生時間を計算することとを含む。
方法は更に、WOI内で、発生時間におけるバイポーラ信号のバイポーラ導関数を計算することと、局所ユニポーラ最小導関数に対するバイポーラ導関数の比を評価することと、比が事前設定された比の閾値よりも大きい場合、前記発生時間を心筋の興奮時間として割り当てることと、興奮時間の回数を計数することと、前記回数によりユニポーラ信号を分類することとを含む。
開示された実施形態では、バイポーラ導関数が事前設定されたバイポーラ導関数閾値よりも小さい場合、発生時間を心筋の興奮時間として割り当てる。
更に開示された実施形態では、局所ユニポーラ最小導関数が、事前設定されたユニポーラ導関数閾値よりも小さい場合、発生時間を心筋の興奮時間として割り当てる。
典型的に、ユニポーラ信号を分類することは、ユニポーラ信号の複数の事前設定された分類を定義することを含む。複数には、前記回数が0である第1の分類、前記回数が1である第2の分類、前記回数が2又は3である第3の分類、及び前記回数が3よりも大きい第4の分類が含まれうる。
代替的な実施形態では、方法は、所定の発生時間に関連付けられた信頼度が事前設定された信頼度よりも大きい場合、前記所定の発生時間を前記所定の心筋の興奮時間として割り当てることのみを含む。いくつかの実施形態では、対応するバイポーラ信号の振幅が事前設定されたバイポーラ信号の閾値よりも大きい場合、所定の発生時間を、心筋の所定の興奮時間として割り当てられることのみ可能である。
本発明のある実施形態により、装置が更に提供され、この装置は、
ヒト被検者の心筋に近接して配置されるように構成された一対の電極と、
プロセッサであって、
前記一対の電極からバイポーラ信号を受信し、
前記一対の電極の選択された一方からユニポーラ信号を受信し、
前記ユニポーラ及びバイポーラ信号の関心窓(WOI)を規定し、
前記WOI内でユニポーラ信号の局所ユニポーラ最小導関数、及び局所ユニポーラ最小導関数の発生時間を計算し、
前記WOI内で発生時間におけるバイポーラ信号のバイポーラ導関数を計算し、
局所ユニポーラ最小導関数に対するバイポーラ導関数の比を評価し、
前記比が事前設定された比の閾値よりも大きい場合、発生時間を心筋の興奮時間として割り当て、
前記興奮時間の回数を計数し、
前記回数によりユニポーラ信号を分類するように構成されたプロセッサと、を含む。
以下の本開示の実施形態の詳細な説明を図面と併せ読むことで本開示のより完全な理解が得られるであろう。
本発明の一実施形態によるアルゴリズムの概略ブロック図である。 本発明の一実施形態によるバイポーラ信号及びユニポーラ正極信号により測定される活動の例である。 本発明の一実施形態によるベースラインワンダー除去を示すグラフである。 本発明の一実施形態によるベースラインワンダー除去システムのブロック図である。 本発明の一実施形態による2つのガウシアンフィルタのグラフである。 本発明の一実施形態によるアノテーション検出器ブロックの概略的ブロック図である。 本発明の一実施形態によるユニポーラ及びバイポーラ信号と、それらの導関数のグラフである。 本発明の一実施形態によるアノテーションアルゴリズムの第1拒否フェーズを表すグラフを示す。 本発明の一実施形態による局所及び遠距離場候補アノテーションを表すグラフを示す。 本発明の一実施形態による候補アノテーションのマージ及び拒否基準の使用方法を示す図である。 本発明の一実施形態によるユニポーラ導関数ファジー関数のグラフである。 本発明の一実施形態によるユニポーラ信号セグメンテーションを示すグラフである。 本発明の一実施形態によるユニポーラ持続時間ファジー関数のグラフである。 本発明の一実施形態によるユニポーラ振幅ファジー関数のグラフである。 本発明の一実施形態によるユニポーラ持続時間対振幅比ファジー関数のグラフである。 本発明の一実施形態によるバイポーラ振幅ファジー関数のグラフである。 本発明の一実施形態による分類アルゴリズムの概略的ブロック図である。 本発明の一実施形態による分類アルゴリズムの工程を示すフローチャートである。 本発明の一実施形態によるシングルイベント分類を示す。 本発明の一実施形態による分類に関するアノテーション時間の効果を示す。 本発明の一実施形態によるスプリット分類を示す。 本発明の一実施形態によるマルチ分類を示す。 本発明の一実施形態による装置を用いた侵襲性医療処置の概略図である。
概説
本発明の実施形態では、2種類のECG信号(バイポーラ信号とその関連するユニポーラ信号の1つ)の特性を組み合わせて正確な信号アノテーションを生成するように機能する波面アノテーションアルゴリズムを用いる。本発明者らは、このアルゴリズムが遠距離場干渉の影響を受けない正確なアノテーションを与えることを確認した。
この波面アノテーションアルゴリズムは、比較的短時間に多数のLATポイントの取得及びアノテーションを可能にするアノテーションポイントの自動的及び信頼性のある検出を提供する。この多数のLATポイントのために、信号に埋め込まれている可能性のある更なる重要な臨床情報について心臓内信号の1つ1つを調べることは、ユーザにとって困難であり時間がかかる。
そのため、本発明の実施形態では、波面アノテーションアルゴリズムから導出される結果が、追加された臨床的に重要であり得るキー信号を自動的に識別する分類アルゴリズムを用いる。具体的には、分類アルゴリズムによる自動識別は、興奮イベントなし、単一興奮イベント及び複数の興奮イベントを区別し、複数の興奮イベント内で、多数の興奮を有するポイントと数回の興奮のみを有するポイントとを区別する。
分類アルゴリズムはそれらのコンプレキシティによりECG信号を分類する。このアルゴリズムは、所定の時間窓内で検出された有効興奮の数を計数するによる列挙を用いてコンプレキシティを測定する。アルゴリズムへの入力は、波面アノテーションアルゴリズムからの波面検出された興奮、及びコンプレキシティ計算が要求される時間セグメント(WOI)である。分類アルゴリズムの出力は、ECG信号の分類である。アルゴリズム分類タイプは、NO-Lat、シングル、スプリット及びマルチである。
本発明の一実施形態は、ヒト被検者の心筋に近接する一対の電極からバイポーラ信号を受信することと、該一対の電極の選択された一方からユニポーラ信号を受信することとを含む方法を提供する。関心窓(WOI)は、ユニポーラ及びバイポーラ信号について規定され、WOI内でユニポーラ信号の局所ユニポーラ最小導関数及び局所ユニポーラ最小導関数の発生時間が計算される。
加えて、WOI内で発生時間におけるバイポーラ信号のバイポーラ導関数が計算され、局所ユニポーラ最小導関数に対するバイポーラ導関数の比が評価される。この比が事前設定された比の閾値よりも大きい場合、発生時間は心筋の興奮時間として割り当てられ、興奮時間の回数が計数され、ユニポーラ信号はこの回数により分類される。
以下の説明は2つのセクションに分けられる。第1のセクションでは、波面アノテーションアルゴリズムを説明する。第2のセクションでは、分類アルゴリズムを説明する。
1.波面アノテーションアルゴリズム
図1は、本発明の一実施形態による波面アノテーション(wavefront annotation)アルゴリズムの概略ブロック図である。アルゴリズム入力は、単一バイポーラ信号及びそのユニポーラ信号のうちの1つからなり、それらは通常、アルゴリズムを作動するプロセッサ20に供給された後、500Hzのカットオフを備える低域フィルタ及びパワー除去フィルタに供給される。プロセッサ20の動作を、図23を参照して以下により詳細に示す。ユニポーラ信号の極性は、既知であると仮定される(即ち、正又は負極のいずれか一方から導出される)。プロセッサは、スタンドアロンプロセッサ、及び/又は通常はコンピュータを作動する汎用プロセッサであってよい。アルゴリズムは、ここで要約される多くの段階を含む。
前処理段階22は、ベースラインワンダーの除去、低域フィルタリング及び任意の順序の差別化を含む。ベースラインワンダーの除去は、アーチファクトであり、機械的カテーテル動作又は呼吸のような様々な理由に起因する付加的な低周波信号の除去を含む。この低周波信号は、信号の推定された導関数を変化させる場合があり、したがって通常は除去される。
特徴の抽出段階24は、処理後の信号を用い、候補アノテーション毎の特徴を抽出する。
第1のアノテーション検出器段階26は、特徴のサブセットに基づき候補アノテーションの消去を実行する。
次に、ペア消去段階28において、要求された特徴閾値を満たすが、別の非常に近い興奮に対して重要でない候補アノテーションは、破棄されてもよい。
最後に、第2のアノテーション検出器段階30において、各々の候補アノテーションにその特徴値に基づきスコアが与えられる。スコア閾値を超える候補アノテーションのみが有効アノテーションと見なされ、そしてこれらのタイミング及び特徴は、候補アノテーションのマップの生成のようなプロセッサの更なる動作においてプロセッサにより用いられる。
アルゴリズムの要素を、以下により詳細に説明する。
アルゴリズムのコアは3つの基本的な観測に依存する。
・ユニポーラ活動は、信号振幅の急激な下向きの偏向によりマークされる。これらの偏向は、活動速度信号の極小値(即ち、ユニポーラ信号の導関数)として容易に識別され得る。しかしながら、極小値の全てが活動を表すのではなく、いくつかはノイズ又は遠距離場活動の結果である。したがって、アルゴリズムの目的は、局所リアル興奮に相関する速度信号の極小値とそうでないものとを区別することである。これは、次の観測を用いて可能になる。
・遠距離場興奮は、ユニポーラ対の電位にほぼ同じ影響を及ぼす。したがって、バイポーラ相対物は、遠距離場興奮の間の残留活動のみを有する。これは、一方の電極が興奮に近接し、他方の電極が比較的遠く(数mmで十分)にある場合の局所活動測定の際には該当しない。この場合では、更にバイポーラ信号はユニポーラ信号における勾配変化と同時に勾配変化を示すであろう(図2及び以下のその説明を参照)。この現象を用いて、近距離場興奮から生じるユニポーラの急激な偏向と遠距離場興奮から生じる偏向とを区別することができる。
・候補アノテーションの複数の特徴を組み合わせることで、より安定したアノテーション検出を行う方法を提供する。例えば、局所興奮の結果としてのバイポーラ振幅変化は特徴として利用される場合がある。しかし、遠距離場興奮がバイポーラ成分を有する場合もある(例えば、心室弁近傍の下方心房をマッピングする場合)。したがって、単にバイポーラ振幅に基づき決定を行うことは失敗する場合がある。しかし、信号の更なる特徴を用いる場合、意思決定がより堅牢となる場合がある。1つのそのような特徴は、興奮周囲のユニポーラ振幅であり得る(図2)。
図2は、本発明の一実施形態による、バイポーラ信号及びユニポーラ正極信号により測定された場合の活動例である。グラフ40は、バイポーラ信号を示し、グラフ44は、ユニポーラ信号を示す。領域「A」における左側の急激な下向きの偏向は、ユニポーラ及びバイポーラ信号で同時に発生する近距離場興奮である。領域「B」に示すように、遠距離場心室興奮の間、ユニポーラ信号は変化するが、バイポーラ活動は無視できる。本発明の実施形態は、先に例示したものと同様の複数の信号の特徴を用いて、局所興奮と遠距離場興奮との間の区別を支援する。例えば、領域Aでは、ユニポーラ振幅及びそのレートはバイポーラ信号に類似し、一方、領域Bでは、ユニポーラ信号振幅はバイポーラ信号よりも大幅に大きく、そのレートは大幅に速い。
以下の説明は、図1に示すアルゴリズムの要素を説明する。
前処理及び特徴の抽出段階22及び24(図1)
これら前処理及び特徴の抽出段階の目的は、ユニポーラ及びバイポーラ信号における干渉を除去し、かつ減衰するのと同時に、後続する段階に用いられる信号のこれらの特徴を維持し、かつ強調することである。簡潔化のため、本明細書に説明する作用は、段階22及び24で生じると仮定されるが、これらの作用の少なくともいくつかはアルゴリズムの別の段階において生じ得ることを理解されたい。興奮の形態は、それが勾配変化を反映するために保持することを望む特徴である。通常、破棄される特徴は、勾配測定を損なわせる場合がある付加的信号として作用するベースラインワンダーと、更に高周波ノイズである。段階22及び24は、4つのサブ段階に分割される。
1.ユニポーラ前処理サブ段階
ユニポーラ前処理段階は、以下の工程を連続して適用することからなる。
1.1KHzでのベースライン推定及び減算(中央値フィルタ+低域フィルタ(LPF)を用いる)
2.8KHzへのアップサンプリング(8のファクターでのサンプル及びホールド又は別のアップサンプリング技術)
3.第1の平滑化フィルタとして、LPF FIR(-6db@155Hz、145タップ)。フィルタは、500Hzの65タップ等リプルフィルタ及びガウシアン10ms窓の畳み込みである。
4.第2の平滑化フィルタとして、用いられるフィルタは、システムのアンチエイリアスLPF、通常500Hzの低域フィルタである。
5.導関数
工程5の導関数は、第1のアノテーション検出器段階26(図1)におけるユニポーラアノテーション検出器(フェーズI)への入力として用いられる。工程4の付加的フィルタ信号出力は、アルゴリズムの特徴の抽出段階24に用いられる。
2.バイポーラ前処理サブ段階
バイポーラ前処理段階は、以下の工程を連続して適用することからなる。
1.1KHzでのベースライン推定及び減算(中央値フィルタ+LPF)
2.8KHzへのアップサンプリング(8のファクターでのサンプル及びホールド)
3.平滑化として、LPF FIR(-6db @310Hz、113タップ)。フィルタは、500Hzの65タップの等リプルフィルタ及びガウシアン6ms窓の畳み込みである。
4.導関数
バイポーラ前処理段階の最終出力(バイポーラ導関数)は、上記(図1)を参照してユニポーラアノテーション検出器への入力(フェーズI)として用いられる。
3.ベースラインワンダーの推定サブ段階
心臓内(IC)信号は、カテーテルの移動、被検者の動作、及び組織との境界を変える呼吸から生じる付加的ベースラインワンダー信号を含む場合がある(図3及びその以下の説明を参照)。これらの運動アーチファクトが含む成分は、ほとんどが低周波成分である。しかし、近距離場活動信号もまた、これらのスペクトル帯に有意なエネルギーを含む場合がある。したがって、高域IIR又はFIRフィルタによる従来の除去方法には問題があり、IC信号に歪み及び形態変化を引き起こす場合がある。そのため、我々が用いる選択された手法は、ベースラインワンダー(図3)及び信号からのその減算の推定に基づく。
図3は、本発明の一実施形態による、ベースラインワンダー除去を示すグラフである。ユニポーラ信号50には、元々、ベースラインワンダーに寄与する低周波アーチファクトが混入している。ベースライン推定の目的は、その後に信号から減算されるベースラインを計算することである。図面において、計算されたベースライン54は、ユニポーラ信号に重なっている。ベースラインワンダー除去は、ベースラインワンダーがユニポーラ導関数の推定にノイズを加える場合があり、したがってアノテーション検出に影響を及ぼし得るために重要である。
ベースラインワンダーの推定、及びそのオリジナルからの減算は、図4に示されるように、連続する2つのフィルタを用いて近距離場活動の除去により達成される。
図4は、本発明の一実施形態による、ベースラインワンダー除去システムのブロック図である。通常、60msの窓を有する中央値フィルタ60は、未加工信号から活動を除去するようにデザインされており、一方、1つの実施形態では、約10Hzの典型的カットオフを備える89タップのFIRハニングフィルタであるLPF 64が、中央値フィルタから生じたエッジを平滑化するようにデザインされている。最後に、ベースライン推定を、無効化68、その後に合計72のプロセスにより、未加工信号から減算し、ベースラインワンダーのない信号を生じる。
4.平滑化導関数サブ段階
図5は、本発明の一実施形態による、2つのガウシアンフィルタのグラフである。信号における鋭い偏向ポイントの検出は、信号の速度に基づくものであり、したがって導関数手法を使用する。しかしながら、導関数は高域フィルタ(HPF)として作用し、したがって、高周波ノイズを高める。したがって、我々は導関数推定においてノイズを減じる平滑化関数を用いる。我々が用いる平滑化関数は、正規化ゼロ平均のガウス関数であり、図5に示すように、ユニポーラガウス関数80及びバイポーラガウス関数84を含む。これらユニポーラ及びバイポーラガウシアンフィルタは、それぞれ±2ms及び±1msの時間窓で90%のエネルギーを有する。したがって、これらの値よりも大きい活性化又は遠距離場に近づくことは、事実上無視され、導関数値には影響しない。
アノテーション検出器-I段階26(図1)
次に、図6~図9を参照する。図6は、アノテーション検出器-I段階26の概略的ブロック図である。図7は、ユニポーラ及びバイポーラ信号、並びにそれらの導関数のグラフである。本発明の一実施形態により、図8はアノテーションアルゴリズムの第1の拒否フェーズを示すグラフを有し、図9は、局所及び遠距離場候補アノテーションを示すグラフを有する。
図6を参照すると、以下の表Iは、検出器に用いられるパラメータ、及びブロック図において対応する頭字語を呈する。
Figure 0007013167000001
図7は、ユニポーラアノテーションの周りのバイポーラゼロ勾配の例を示す。グラフは、ユニポーラ遠位信号100、その導関数102、その局所興奮(A)並びにバイポーラ信号104、及びその導関数106を示す。ユニポーラ偏向ポイント(A)では、バイポーラ導関数はほぼ0でありバイポーラ振幅に大きな変化を示さないことに留意されたい。
図8は、図1のアノテーションアルゴリズムの第1の拒否段階を示すグラフである。上のグラフ110はユニポーラ信号を示し、下のグラフ114はその平滑化導関数を示す。黒色ドット118は、閾値以下の導関数信号の最小値であり、更に可能なアノテーションポイントとして考えられ、灰色ドット122は拒否される閾値を上回る最小値をマークする。
図9は、本明細書に記載したバイポーラとユニポーラ導関数比特徴を用いた、局所(A)と遠距離場(B)候補アノテーションとの間の区別を示す。図は、ユニポーラ信号130及びバイポーラ信号132、並びにユニポーラ導関数136及びバイポーラ導関数138を示す。局所興奮において、バイポーラ導関数の変化は、2msの活動窓140により示されるようにバイポーラ導関数の変化によって達成される。しかし、窓144で示されるように、遠距離場導出偏向(B)においての場合ではなく、遠距離場に関してバイポーラとユニポーラ勾配の変化間の比は、要求される比の閾値以下となるであろう。
図6を再度参照すると、アノテーション検出器Iブロック用の入力は、試験中の関連するユニポーラ信号導関数、その極性及びその平滑化バイポーラ導関数である。ブロックの出力はアノテーション指標及びそれらの勾配値(アノテーション指標でのユニポーラ導関数値)である。勾配値はアノテーションのスコアとして作用する。
本発明の一実施形態では、ユニポーラ信号の右下がり勾配における偏向ポイントは、ブロック90及び92において、閾値(通常、-0.01mv/ms)以下の最小ポイントを見つけることで検出され、図8も参照する。活動は、通常、別の2つを加えてこの条件を満たす。
1.ユニポーラ偏向ポイント(通常、±2ms)の周りの時間窓におけるバイポーラ平滑化導関数信号(S-BIP)の値は、負の方向に閾値TH-BIPを超えるべきである。
したがって、S-BIP<TH-BIPとなる。一実施形態において、TH-BIPは典型的に、約0.008mv/msである。
2.このバイポーラ平滑化導関数値とユニポーラ平滑化導関数勾配値との間の比は、Th-比、典型的に約0.2よりも大きくなるべきである。
♯1及び♯2は、ブロック94及び96、並びに決定98で評価される。
図6を参照すると、バイポーラ導関数値(S-bip)は、正極と負極で異なる方法で算出される。開示した実施形態では、正極では、バイポーラ導関数値は2ms時間窓内の最小値であり、負極では、時間窓内の最大値の負の値である。アノテーションポイントで時間窓を用いて導関数を用いない理由は、ある病態及び/又は(カテーテル及び波面伝播方向の)方向付けにおいて、ユニポーラ活動間の活動の時間遅延が打ち消されるため、所定のポイントでのバイポーラ信号が小さく、あるいは0でさえあり得ることである(図7)。正極での先端の活動はバイポーラ信号において右下がり勾配として認められ、一方、負極での活動はバイポーラ信号において右上がり勾配として認められるので、その値は、正極と負極では異なるやり方で計算される。
ユニポーラ導関数とバイポーラ導関数との間の比は、分類基準が近距離場と遠距離場活動との間を識別できるため、更に分類基準として用いられてもよい。近距離場活動では、右下がり勾配の活動の少なくともいくらかは、バイポーラ信号で典型的に表され、一方、遠距離場の場合は、バイポーラ信号は残留活動を有するのみの場合がある。
ペア消去段階28(図1)
アルゴリズムのペア消去段階は、単一活動から生じる2つのアノテーションをマージする任を担う。このスプリット現象は、いくつかの理由により、近距離場活動の下向きの勾配が、他の電極で記録された活動、あるいは他方よりも一方の電極に影響を及ぼす遠距離場活動のいずれかからの瞬間的な右上がり勾配を含む場合に生じ得る。瞬間の右上がり勾配は、信号の導関数に2つの最小値を生じ、これらが十分に強い場合、2つのアノテーションをもたらす。これらの場合を排除するために、我々は右上がり勾配による信号の変化を評価する。
遠くに離れすぎていない(典型的に50ms未満)同じユニポーラ信号の全てのアノテーション対は、スプリットに関して解析される。ユニポーラ導関数信号での2つの候補アノテーション間のセグメントは、右上がり勾配に関して解析される。右上がり勾配振幅が有意であると考えられる場合、2つのアノテーションは維持される。有意でないと考えられる場合、小さい右下がり勾配を備えるアノテーションが破棄される。
図10は、本発明の一実施形態による、候補アノテーションのマージ、及び拒否基準の使用方法を示すグラフ150である。ユニポーラ導関数信号及び2つの可能なアノテーション(A[i]及びA[i+1]とマークされた円)をグラフに示す。
ペア消去ブロック38の目的は、最小の導関数振幅と2つの可能なアノテーション間のピークPとの間の右上がり勾配振幅変化(垂直両矢印でマークされる)が有意であるか否かを決定することである。変化が有意であると考えられる場合、両アノテーションは維持され、そうでない場合は弱い方の活動であるA[i]が破棄される。
これにより、破棄されるアノテーションA[i]に関して、50ms時間窓A[i+1]内でより強い勾配を備える任意の隣接する候補アノテーション間のピーク振幅(P)に対する相対変化が考慮される。ピークが著しく高い場合、このポイントは拒否されない。1つの実施形態において、数学的には、(P-A[i])/(0.02-A[i])の値が0.5よりも低い場合、アノテーションA[i]は破棄される。即ち、アノテーションA[i]は、50ms時間窓での1つ又は2つ以上のアノテーションが上記規則に従う場合、拒否される。
アノテーション検出器II段階30(図1)
以前のフェーズを通過した候補アノテーションは、このブロックで追加の特徴及びメトリックを用いて再評価される。このブロックを通過し、更に閾値で制御されたユーザバイポーラ電圧を通過するアノテーションのみが、有効アノテーションと見なされる。各アノテーションに対して、複数の特徴が計算される。各特徴値は、特徴の信頼値に対応して、0から1までの範囲にあるファジースコアを与えられる。最後に、全てのスコアは互いに組み合わされ、それらの値はグローバルスコア閾値に対して試験される。グローバルスコア閾値を通過した、即ち、高い信頼値を有するこれらのアノテーションは、有効アノテーションと見なされ、通過しない、即ち信頼値の低いアノテーションは拒否される。
本明細書に記載したファジー関数は、本発明の1つの実施形態で用いられる、このような関数の例である。しかし、別のかようなファジー関数又は別の確率論の用語/関数は、当業者には明らかであり、そのような関数の全ては、本発明の範囲内に含まれると想定される。更に、特定の要件に関して、複数のファジースコアを用いることができる(例えば、強い又は小さいバイポーラ信号を強調するファジー関数等)。
全てのファジー関数は、0~1の間に限定される。
ブロックで用いる特徴は、
1.ユニポーラ導関数値
2.ユニポーラ勾配の持続時間s
3.時間窓でのユニポーラ勾配の振幅s
4.上記持続時間と振幅との間の比
5.時間窓内のバイポーラ信号振幅s、である。
5つの特徴を以下に説明する。
1.ユニポーラ導関数
図11は、本発明の一実施形態による、ユニポーラ導関数ファジー関数のグラフ160である。グラフは、導関数に割り当てられたスコアf(s)を供給し、導関数値は本明細書ではsである。グラフに示すように、-0.07以下の導関数の値はスコア1を受け、-0.07よりも大きい値は直線的に減少し、-0.018の勾配でスコア0.5に達する。-0.01よりも小さい導関数値は、スコア0を受ける。
ユニポーラ導関数sは、両検出器段階で用いられるが、0.01mv/msの二分法閾値を有する第1の段階と異なり、その値はスコアf(s)を供給するのに用いられる。スコアが高い程、これがこの特徴のみによる有効アノテーションである可能性が大きい。
2.ユニポーラ活動セグメンテーション及び持続時間
図12は、本発明の一実施形態による、ユニポーラ信号セグメンテーションを表すグラフを示す。セグメンテーションを更に以下に記載する。ユニポーラ信号170及びその導関数174は、候補アノテーション時間指標176の周りに描かれる(黒色ドット)。閾値を表す水平方向の破線180は、両方向に探索セグメント(典型的に約±25ms)をマークする。1つの実施形態では、セグメント値は、アノテーションポイントでの絶対最大ユニポーラ導関数値の20%として定義される。セグメントA、Bは、信号導関数が閾値以下である探索窓内に時間間隔をマークする。この例での最終セグメントは、セグメントAであり得るか、又はある条件(以下に記載する)を満たす場合、Aの開始からBの終了まで始まるジョイントセグメントであってもよい。
ユニポーラ信号から我々が導出した特徴は、候補アノテーションの周りの右下がり勾配セグメントの持続時間sである。ユニポーラ右下がり勾配をその下降の始まりから右上がり勾配が始まるまでを検出することを目的とする。持続時間、振幅、及びそれらの関係性の特性のような、そのセグメントにおける信号の特徴を精査し、それらを分類のための基礎として用いることをモチベーションとする。発明者らは、この課題に対していくつかの方法を検討し、それらの全ては明らかな単一勾配の場合には良好に機能するが、本明細書に記載した方法は、勾配セグメント内に勾配傾向変化及び局所ピークを有する複雑な場合で良好に機能するために選択された。
図12を参照すると、セグメンテーションは、以下の工程を介したユニポーラ導関数の解析に基づく。
1.候補アノテーション時間指標176に中心を合わせたユニポーラ信号導関数174の50msセグメントは、セグメントが定義され得るための閾値線180の最大スパンとして考えられる。図12では、スパンは、線180のエンドポイント182と186との間である。我々は、ユニポーラ信号右下がり勾配セグメントは、この50ms時間窓に制限されていると仮定する。セグメントがこれよりも大きい場合、この50ms間隔に強制的に制限される。
2.導関数セグメント振幅は、一定閾値に対して比較される。本明細書に記載される実施形態において閾値は、候補アノテーション時間でユニポーラ導関数値の20%であると仮定される。その値以下である線180上のセグメントは、図12で2つのセグメントA及びBとしてマークされる。
3.次の工程は、セグメント境界を計算し、これらセグメントの信号の絶対値を合計することに対応して、各サブセグメントでの導関数の下の面積を別々に合計することである。
4.セグメントマージでは、セグメントの間隔及びそれらの面積に基づき、最終セグメントにメインセグメント(A)又は追加のセグメント(B)を含むべきか否かの決定を行う。1つの実施形態では、隣接するエンドポイントを結合するためにセグメントは、互いから1ms以下でなければならず、追加のセグメント(B)は、メインセグメントの30%未満の面積を有するべきであり、Bのための信号デルタは、Aのための信号デルタの30%未満であるべきである。
次に、本明細書においてsと呼ぶ、上記の工程から求められた持続時間が、図13を参照して以下に記載されるファジー関数を用いてスコアf(s)に割り当てられる。
図13は、本発明の一実施形態によるユニポーラ持続時間ファジー関数のグラフ190である。2ms未満の非常に短い勾配は、実際の興奮から起こる可能性が低く、非常に長い興奮は恐らく遠距離場イベントである。追加的に、局所有効興奮のためのユニポーラ持続時間は、極度に短くなり得ず、極度に長くなり得ない。上記観測は、図13のファジー関数でカプセル化され、スコアf(s)を与える。関数ポイント192、194は、{2,0.5}.{19,0.5}であり、勾配はそれぞれ0.5と-0.5である。
3.ユニポーラ振幅
図14は、本発明の一実施形態による、ユニポーラ振幅ファジー関数のグラフ200である。ユニポーラ振幅は、検出された活動セグメント(ピークからピーク)持続時間sにおけるユニポーラ信号の振幅(本明細書ではsとする)である。1つの実施形態では、ファジー関数勾配はポイント202、204:{0.1,0.5},{0.42,1}を交差する。ファジー関数から導出されたスコアf(s)は、信号の振幅が高い程に高くなる。即ち、高いスコア及び高い振幅に関して、遠距離場信号が大きな振幅を有していない限り、信号が局所興奮に起因する可能性が高い。
4.ユニポーラ持続時間対振幅比
図15は、本発明の一実施形態による、ユニポーラ持続時間対振幅比ファジー関数のグラフ210である。ユニポーラ持続時間対振幅比は、活動がより長く、振幅がより小さい程、偽アノテーションである可能性が高いため、高い比の値を排除する。1つの実施形態では、ファジー関数線の方程式は、
f(s)=-0.0184・s+1.283 (1)
ここで、sは、持続時間対振幅比であり、
f(s)は比に割り当てられたスコアである。
5.バイポーラ振幅
図16は、本発明の一実施形態による、バイポーラ振幅ファジー関数のグラフ220である。ユニポーラ活動セグメント(ピークからピーク)内のバイポーラ振幅sは、候補アノテーションの尤度をスコア付けするためにも用いられる。値が高い程、真の興奮である可能性が高い。
ファジー関数の方程式は、
f(s)=25・s,0≦s≦0.04;f(s)=1,s>0.04 (2)
ここでsはバイポーラ振幅であり、
f(s)は振幅に割り当てられたスコアである。
振幅は、ガウシアン及びアンチアリアシングフィルタの低域通過後にバイポーラ平滑化信号が拒否されたベースラインで計算される。
6.最終スコア
上述のように、各特徴はスコアを受け、スコアはグローバルスコアの生成において共に用いられる。特徴がアノテーションの包含又は排除において互いに支持できるということに着目する。1つの実施形態において、我々が用いたスコア方法は、以下のように定義される。
Figure 0007013167000002
ここでGSはグローバルスコアである。
GSの値は、アノテーションを有効として見なすために、特定閾値、例えば0.8を通過すべきである。
上記に例示したものとは異なるが、同等の結果を有するグローバルスコアが本発明の実施形態において使用され得ることを当業者は理解するであろう。そのようなグローバルスコアは、実質的に個々のスコアの加重平均、及び/又は個々のスコアの内積の任意の組み合わせを含むことができる。更に、そのようなグローバルスコアは、ファジー特徴のサブセットに基づきスコアの成分を含み得る。本発明のスコアは、全てのそのようなグローバルスコアを含む。
バイポーラ振幅フィルタリング
いくつかの実施形態では、アルゴリズムの最終段階は、低いバイポーラ振幅を有する場合に検出されたアノテーションを消去する能力をユーザに与えるように設計される。要求された振幅閾値は、ユーザによって制御される。バイポーラ振幅フィルタリングは、後処理段階を通過した各アノテーションのバイポーラ振幅を閾値と比較する。閾値を超過するバイポーラ振幅を有するアノテーションのみが、システムに渡される。(ユーザは本段階をスキップしたい場合、閾値を0に設定してもよく、本段階の規則は消去される。)
各アノテーションのバイポーラ振幅は、ピークからピーク振幅の測定、除去されたベースライン、アノテーション時間(最大ユニポーラ速度ポイント)の周りに中心を置かれた14ms窓の1KHzバイポーラ信号により定義される。1つの実施形態では、バイポーラ振幅閾値のシステムデフォルト値は30マイクロボルトに設定される。
このバイポーラ振幅は、固定間隔で決定されるため、ファジー制御されたバイポーラ振幅(上述)とは異なる。ファジー分類子は、ユニポーラ活動の動的セグメントを用い、したがっていくつかの実施形態では、動的セグメントは分類子としてより有意義であり得る。更に、この分類子は、二分法ユーザ制御された閾値として用いられる。
アルゴリズム最終出力
ファジースコア及びバイポーラユーザ制御されたバイポーラ振幅を通過した全てのアノテーションは、プロセッサにより用いられ得る有効アノテーションと見なされる。
1つの実施形態では、各々のアノテーションは以下の特徴を有する。
1.アノテーション時間指標
2.ユニポーラ及びバイポーラ導関数値
3.ファジースコア
4.ユニポーラ検出された右下がり勾配セグメント持続時間
5.セグメント内のユニポーラ振幅
6.セグメント内のバイポーラ振幅
7.ユーザ制御値のためのバイポーラ振幅
更に、トレースファイルが供給されてもよく、
1.各々の特徴のための特定ファジースコア
2.ユニポーラセグメント開始及び終了指標、を含む。
2.分類アルゴリズム
図17は、本発明の一実施形態による、分類アルゴリズムの概略的ブロック図である。アルゴリズム入力は、波面アノテーションアルゴリズム最終出力(出力は上記に列挙される)から導出されるECG信号のアノテーションデータ、及び関心窓(WOI)からなる。WOIは、ECG信号を含む任意の都合のよい時間セグメントであってもよく、典型的に頻脈タイプ及びマッピングタイプのような因子に基づき、アルゴリズムユーザにより選択される。アルゴリズムへの更なる入力は、図18を参照して以下に記載される。
波面アノテーションは、局所ユニポーラ信号勾配の絶対値が最小となる時間の位置である。
各波面アノテーションに関連するデータは、LAT(局所興奮時間)、局所ユニポーラ及びバイポーラ勾配(dv/dt)及び0~1の範囲のスコア値を含み、それぞれ波面アノテーションアルゴリズム最終出力セクションのアイテム1、2、及び3に対応する。スコア属性は、アノテーションポイントが適切なアノテーションポイントである尤度を確立する。これら属性は、典型的に波面アルゴリズムを用いて検出される電気解剖学的興奮にのみ存在する。
図17は、ロジックブロック230において、分類アルゴリズムが、それぞれブロック232及び234で示される興奮の数と興奮間の時間差を適用することを示す。ロジックブロックで実行される作用を、図18を参照して以下に記載する。
図18は、本発明の一実施形態による、ロジックブロック230で実行される分類アルゴリズムの工程を示すフローチャートである。上記の入力に加えて、アルゴリズムへの追加入力を図18に示す。これらの入力は、
1.必要最小限のバイポーラ振幅。各アノテーションポイントは、列挙のための有効ポイントとして考慮されるために閾値(Bip-Th)を超過しなければならない。
2.必要最小限の尤度スコア。各アノテーションポイントスコア値は、列挙プロセスのための有効ポイントとして考慮されるために閾値(Fuz-Th)を超過しなければならない。スコア値は、各マッピングチャンバ(心室/心房)で異なってもよい。
3.コンプレックス分類のための必要最小限の興奮時間、最小間隔。この値は、2つ以上の有効アノテーションがWOIに存在する場合に用いられる。最初と最後の興奮の時間間隔がこの閾値よりも小さい場合、興奮はシングルイベントとして分類され、そうでない場合、WOI内の興奮の数に応じてスプリットあるいはマルチのいずれかとして分類される。
上記説明が最小間隔のための1つの値と仮定される一方で、本発明の実施形態は、必要に応じてECG信号を発する異なる解剖学的領域のために異なる値の最小間隔の選択を含む。更に、WOIは、動的に変化してもよい。解析されたECG信号はまた、特定のバイポーラ振幅の上下いずれか、又は混合された振幅(ある値以上の少なくとも1つ及び別のある値以上の少なくとも別の1つ)を有するものに制限されてもよい。
選択ブロック240では、WOI内の、かつ以下の式が成立するアノテーションのみが選択される。
Bip(n)>Bip-Th及びFuz(n)>Fuz-Th
選択されたアノテーションは、計数ブロック242で計数されて数Nの結果を出し、選択されたアノテーションのグループは、その後、4つの比較244、246、248、及び250で分類される。
比較244は、N=0であるかをチェックし、その場合、グループは第1分類ブロック252でNo-Latとして分類される。
比較246は、N=1であるかをチェックし、その場合、グループは第2分類ブロック254で「シングル」として分類される。比較246が否定を返す場合、最大LAT差DTの更なる計算が計算ブロック260でなされ、そして比較248においてDT<最小間隔である場合、アノテーションは1つのアノテーションであるとして取り扱われ、グループもまた、ブロック254でシングルとして分類される。
比較248が否定を返す場合、2つ以上の想定されたアノテーションが存在し、N>3をチェックする比較252に分類される。比較252が肯定を返す場合、グループは第3の分類ブロック256でマルチとして分類される。比較252が否定を返す場合、N=2又はN=3の場合では、グループはスプリットとして第4の分類ブロック258で分類される。
分類結果は、通常、アルゴリズムユーザに以下に図23の説明で参照される表示画面450のような表示画面上で提示されてもよい。
我々は、以下にアノテーション入力及びWOI入力と共に、ユニポーラ及びバイポーラ信号のいくつかの実施例を提示する。各実施例は、予測されるコンプレックスポイント分類の説明を含む。記載される実施例が2つのユニポーラ信号、遠位及び近位信号を有する一方で、本明細書に記載されるアルゴリズムは1つのユニポーラ信号のみを必要とすることが理解されよう。
図19は、本発明の実施形態によるシングルイベント分類を示す。図は、マークされた分類アルゴリズムへの入力アノテーションと共に、別個の遠位及び近位ユニポーラ信号を示す。方形270は、アルゴリズムが作動する関心窓(WOI)をマークする。WOIの外部の他のアノテーションは、分類に関与しない。
遠位及び近位電極の両方は、関心領域にシングルアノテーションイベントを有し、したがって電極のそれぞれに「シングルイベント」の分類をもたらす。
図20は、本発明の一実施形態による分類に関するアノテーション時間の効果を示す。図19に関するように、方形280は、アルゴリズムが作動する関心窓(WOI)をマークする。WOIの外部の他のアノテーションは、分類に関与しない。
遠位アノテーションは、時間的に非常に近く、2つのポイント284でWOI内にマークされる、2つの連続イベントを有し、「シングルイベント」の分類をもたらす。この場合、フローチャートの流れはN=1?となる。いいえ最大LAT差(DT)を計算する。DT<最小間隔?はい。
近位アノテーションであるポイント288は、更に離れ、「スプリットイベント」の分類をもたらす。この場合、フローチャートの流れは、比較246のN=1?において、いいえ、となる。ブロック260で最大LAT差(DT)を計算する。比較248のDT<最小間隔?で、いいえ。N>3?比較250で、いいえ。
図21は、本発明の一実施形態によるスプリット分類を示す。この実施例に関して、WOIは、示された全信号をカバーするように仮定される。この場合、両方の電極は、最初と最後の活動の時間差(各々別個の電極に対する)がフローチャート(図18)の「最小間隔」パラメータよりも長いため、ここではスプリットとして分類されるであろう。スプリットへの分類は、遠位電極におけるアノテーションの数が3であり、近位電極に対しては2であるためである。どちらの場合も、フローチャートはN>3?に達し、どちらの場合も、4つのアノテーションよりも少なく、回答は、いいえ、となる。
図22は、本発明の一実施形態によるマルチ分類を示す。図21に関し、WOIは示される全ての信号をカバーするように仮定される。この場合、遠位電極は、アノテーションの回数が3よりも大きく、かつ最初と最後の活動の時間差がフローチャートの「最小間隔」パラメータよりも長いため、「マルチ」として分類されるであろう。この場合、近位電極は、シングルイベントとして分類されるであろう。
最終分類は、更に、連続する拍動間の一貫性のチェックに基づくことができる。WOI内の任意の特定の拍動を考慮する場合、以前の数回の拍動(通常、1つ又は2つ前の拍動)を利用できる。各以前の拍動は、そのWOIに対して、以前に説明したようにその分類を個別に受け、一方、現在の拍動の最終分類は、多数決に基づき、異なる分類が相対的加重を割り当てられてもよい。例えば、シングルはマルチよりもより高い加重を有してもよく、マルチはスプリットよりも高い加重を有する。この場合では、現在の拍動がスプリットとして分類されるが、以前の拍動がシングルとして分類される場合、その後、現在の拍動の最終分類はシングルよりもむしろスプリットとなるであろう。これは、一貫性の最も基本的な形態であるが、当業者には明らかである更なる一貫性の測定には、ユニポーラ又はバイポーラ信号の形態的一致、あるいは拍動間の時間イベント解析を含んでもよい。全てのこのような一貫性の測定は、本発明の範囲内に含まれる。
図23は、本発明の一実施形態による、装置400を用いる侵襲性医療処置の概略図である。処置は、医療専門家402により行われ、一例として、本明細書の以下の説明における処置は、ヒトの患者406の心臓404からECG信号の取得を含むと仮定される。
信号を取得するために、専門家402は、患者の内腔内に事前に配置されたシース410の中へプローブ408を挿入する。シース410は、プローブの遠位端412が患者の心臓に入り、その後、シースの遠位端414が出て、心臓の組織に接触しうるように配置される。
プローブ408は、患者の心臓の中に挿入することができ、そして典型的に磁気トラッキングシステム及び/又はインピーダンス測定システムを用いて追跡され得る、任意のタイプのカテーテルを含んでもよい。例えば、プローブ408は、lassoカテーテル、シャフト状カテーテル、又はカリフォルニア州ダイヤモンドバーのBiosense Webster社製のpentaRayカテーテル、又は概してこれらのカテーテルに類似するカテーテルを含んでもよい。Biosense Webster社はまた、本発明の一実施形態で用いられてもよい磁気トラッキングシステム及びインピーダンス測定システムを製造する。
プローブ408は、少なくとも2つの電極411を含み、それらは、本明細書に記載されたアルゴリズムの実行においてプロセッサ20により使用されるECG信号を取得するために用いられる。
装置400は、プロセッサ20により制御され(図1)、そしてプロセッサは、通常、フィールドプログラマブルゲートアレイ(FPGA)として構成され、アナログデジタル(A/D)信号変換集積回路424が続く、リアルタイムノイズ減少回路420を含んでもよい。プロセッサは、A/D回路424から別のプロセッサへ信号を渡すことができ、そして本明細書に記載されたアルゴリズムを実行するようにプログラムされ得る。
プロセッサ20は、装置の操作コンソール430内に位置する。コンソール430は、専門家402がプロセッサと通信するために使用するコントロール432を備える。処置の間、プロセッサ20は、ECG信号を取得し、本明細書に記載されたアルゴリズムを実行するために、モジュールバンク440でECGモジュール436と通信する。
ECGモジュール436は、電極411からECG信号を受信する。1つの実施形態では、信号は、モジュール436で、低雑音前置増幅器438を通して、帯域通過フィルタ440を介し、主増幅器442へ転送される。モジュール436はまた、アナログデジタル変換機(ADC)444を含み、本明細書に記載したアルゴリズムのプロセッサによる実行のために、ECG信号のデジタル化された値をプロセッサ20に転送する。通常、プロセッサ20は、前置増幅器438、フィルタ440、増幅器442、及びADC 444の動作を制御する。
したがって、ECGモジュール436は、プロセッサ20が、本明細書を参照してECG信号を含む、電極411によって受信したEP(電気生理学)信号を取得し解析することを可能にする。信号は、通常、電圧時間グラフとして専門家402に提示され、リアルタイムに表示画面450上で更新される。
プロセッサ20及びモジュールバンク440のソフトウェアは、例えば、ネットワークで、電子的な形でプロセッサにダウンロードすることができる。あるいは又は更には、ソフトウェアは、例えば、光学的、磁気的、又は電子的記憶媒体のような非一時的有形媒体上で提供され得る。
装置12を作動するため、モジュールバンク50は典型的に、プロセッサがプローブ408の遠位端を追跡可能にする1つ又は2つ以上のトラッキングモジュールのような、上述されたECGモジュール以外のモジュールを含む。簡潔化のために、かかる他のモジュールは、図1に図示されていない。すべてのモジュールは、ハードウェア要素並びにソフトウェア要素を含み得る。
電極411によって取得したECG信号を表示する画面450に加えて、本明細書に記載したアルゴリズムの結果452は、表示画面上でアルゴリズムユーザに提示されてもよい。
上に述べた実施形態は例として挙げたものであり、本発明は上記に具体的に示し、説明したものに限定されない点は理解されよう。むしろ、本発明の範囲は、上記されている種々の特徴の組み合わせ及び部分的組み合わせと、前述の説明を読むことに基づいて当業者が想起するであろう、先行技術に開示されていない変形例及び修飾との両方を含む。
〔実施の態様〕
(1) ヒト被検者の心筋に近接する一対の電極からバイポーラ信号を受信することと、
前記一対の電極の選択された一方からユニポーラ信号を受信することと、
前記ユニポーラ及びバイポーラ信号の関心窓(WOI)を規定することと、
前記WOI内で前記ユニポーラ信号の局所ユニポーラ最小導関数、及び前記局所ユニポーラ最小導関数の発生時間を計算することと、
前記WOI内で前記発生時間における前記バイポーラ信号のバイポーラ導関数を計算することと、
前記局所ユニポーラ最小導関数に対する前記バイポーラ導関数の比を評価することと、
前記比が事前設定された比の閾値よりも大きい場合、前記発生時間を前記心筋の興奮時間として割り当てることと、
前記興奮時間の回数を計数することと、
前記回数により前記ユニポーラ信号を分類することと、
を含む、方法。
(2) 前記パイポーラ導関数が、事前設定されたバイポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、実施態様1に記載の方法。
(3) 前記局所ユニポーラ最小導関数が、事前設定されたユニポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、実施態様1に記載の方法。
(4) 前記ユニポーラ信号を分類することが、前記ユニポーラ信号の複数の事前設定された分類を定義することを含む、実施態様1に記載の方法。
(5) 前記複数は、前記回数が0である第1の分類、前記回数が1である第2の分類、前記回数が2又は3である第3の分類、及び前記回数が3よりも大きい第4の分類を含む、実施態様4に記載の方法。
(6) 所定の発生時間に関連付けられた信頼度が事前設定された信頼度よりも大きい場合に、前記所定の発生時間を前記心筋の所定の興奮時間として割り当てることのみを含む、実施態様1に記載の方法。
(7) 対応するバイポーラ信号の振幅が事前設定されたバイポーラ信号の閾値よりも大きい場合に、前記所定の発生時間を前記心筋の前記所定の興奮時間として割り当てることのみを含む、実施態様6に記載の方法。
(8) ヒト被検者の心筋に近接して配置されるように構成された一対の電極と、
プロセッサであって、
前記一対の電極からバイポーラ信号を受信し、
前記一対の電極の選択された一方からユニポーラ信号を受信し、
前記ユニポーラ及びバイポーラ信号の関心窓(WOI)を規定し、
前記WOI内で、前記ユニポーラ信号の局所ユニポーラ最小導関数、及び前記局所ユニポーラ最小導関数の発生時間を計算し、
前記WOI内で、前記発生時間における前記バイポーラ信号のバイポーラ導関数を計算し、
前記局所ユニポーラ最小導関数に対する前記バイポーラ導関数の比を評価し、
前記比が事前設定された比の閾値よりも大きい場合、前記発生時間を前記心筋の興奮時間として割り当て、
前記興奮時間の回数を計数し、
前記回数により前記ユニポーラ信号を分類するように構成されたプロセッサと、
を含む、装置。
(9) 前記バイポーラ導関数が事前設定されたバイポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、実施態様8に記載の装置。
(10) 前記局所ユニポーラ最小導関数が事前設定されたユニポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、実施態様8に記載の装置。
(11) 前記ユニポーラ信号を分類することが、前記ユニポーラ信号の複数の事前設定された分類を定義することを含む、実施態様8に記載の装置。
(12) 前記複数は、前記回数が0である第1の分類、前記回数が1である第2の分類、前記回数が2又は3である第3の分類、及び前記回数が3よりも大きい第4の分類を含む、実施態様11に記載の装置。
(13) 所定の発生時間に関連付けられた信頼度が事前設定された信頼度よりも大きい場合に、前記所定の発生時間を前記心筋の所定の興奮時間として割り当てることのみを含む、実施態様8に記載の装置。
(14) 対応するバイポーラ信号の振幅が事前設定されたバイポーラ信号閾値よりも大きい場合に、前記所定の発生時間を前記心筋の前記所定の興奮時間として割り当てることのみを含む、実施態様13に記載の装置。

Claims (14)

  1. ヒト被検者の心筋に近接する一対の電極からバイポーラ信号を受信することと、
    前記一対の電極の選択された一方からユニポーラ信号を受信することと、
    前記ユニポーラ及びバイポーラ信号の関心窓(WOI)を規定することと、
    前記WOI内で前記ユニポーラ信号の局所ユニポーラ最小導関数、及び前記局所ユニポーラ最小導関数の発生時間を計算することと、
    前記WOI内で前記発生時間における前記バイポーラ信号のバイポーラ導関数を計算することと、
    前記局所ユニポーラ最小導関数に対する前記バイポーラ導関数の比を評価することと、
    前記比が事前設定された比の閾値よりも大きい場合、前記発生時間を前記心筋の興奮時間として割り当てることと、
    前記WOI内における前記興奮時間の回数を計数することと、
    前記回数により前記ユニポーラ信号を分類することと、
    を含み、
    前記ユニポーラ信号を分類することが、
    前記回数=1である場合、前記ユニポーラ信号をシングルイベントとして分類し、
    前記回数=1でない場合、かつ、前記WOI内における最初と最後の前記興奮時間の間隔が50ms未満の場合は前記ユニポーラ信号を前記シングルイベントとして分類し、
    前記回数=2である場合、かつ、前記間隔が50ms以上の場合は前記ユニポーラ信号をスプリットイベントとして分類し、
    前記回数>3である場合、かつ、前記間隔が50ms以上の場合は前記ユニポーラ信号をマルチイベントとして分類する、
    方法。
  2. 前記パイポーラ導関数が、事前設定されたバイポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、請求項1に記載の方法。
  3. 前記局所ユニポーラ最小導関数が、事前設定されたユニポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、請求項1に記載の方法。
  4. 前記ユニポーラ信号を分類することが、前記ユニポーラ信号の複数の事前設定された分類を定義することを含む、請求項1に記載の方法。
  5. 前記複数の事前設定された分類は、前記回数が0である第1の分類、前記回数が1である第2の分類、前記回数が2又は3である第3の分類、及び前記回数が3よりも大きい第4の分類を含む、請求項4に記載の方法。
  6. 所定の発生時間に関連付けられた信頼度が事前設定された信頼度よりも大きい場合に、前記所定の発生時間を前記心筋の所定の興奮時間として割り当てることを含む、請求項1に記載の方法。
  7. 対応するバイポーラ信号の振幅が事前設定されたバイポーラ信号の閾値よりも大きい場合に、前記所定の発生時間を前記心筋の前記所定の興奮時間として割り当てることを含む、請求項6に記載の方法。
  8. ヒト被検者の心筋に近接して配置されるように構成された一対の電極と、
    プロセッサであって、
    前記一対の電極からバイポーラ信号を受信し、
    前記一対の電極の選択された一方からユニポーラ信号を受信し、
    前記ユニポーラ及びバイポーラ信号の関心窓(WOI)を規定し、
    前記WOI内で、前記ユニポーラ信号の局所ユニポーラ最小導関数、及び前記局所ユニポーラ最小導関数の発生時間を計算し、
    前記WOI内で、前記発生時間における前記バイポーラ信号のバイポーラ導関数を計算し、
    前記局所ユニポーラ最小導関数に対する前記バイポーラ導関数の比を評価し、
    前記比が事前設定された比の閾値よりも大きい場合、前記発生時間を前記心筋の興奮時間として割り当て、
    前記WOI内の前記興奮時間の回数を計数し、
    前記回数により前記ユニポーラ信号を分類するように構成されたプロセッサと、
    を含
    前記ユニポーラ信号を分類することが、
    前記回数=1である場合、前記ユニポーラ信号をシングルイベントとして分類し、
    前記回数=1でない場合、かつ、前記WOI内における最初と最後の前記興奮時間の間隔が50ms未満の場合は前記ユニポーラ信号を前記シングルイベントとして分類し、
    前記回数=2である場合、かつ、前記間隔が50ms以上の場合は前記ユニポーラ信号をスプリットイベントとして分類し、
    前記回数>3である場合、かつ、前記間隔が50ms以上の場合は前記ユニポーラ信号をマルチイベントとして分類する、装置。
  9. 前記バイポーラ導関数が事前設定されたバイポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、請求項8に記載の装置。
  10. 前記局所ユニポーラ最小導関数が事前設定されたユニポーラ導関数の閾値よりも小さい場合、前記発生時間を前記心筋の前記興奮時間として割り当てることを更に含む、請求項8に記載の装置。
  11. 前記ユニポーラ信号を分類することが、前記ユニポーラ信号の複数の事前設定された分類を定義することを含む、請求項8に記載の装置。
  12. 前記複数の事前設定された分類は、前記回数が0である第1の分類、前記回数が1である第2の分類、前記回数が2又は3である第3の分類、及び前記回数が3よりも大きい第4の分類を含む、請求項11に記載の装置。
  13. 所定の発生時間に関連付けられた信頼度が事前設定された信頼度よりも大きい場合に、前記所定の発生時間を前記心筋の所定の興奮時間として割り当てることを含む、請求項8に記載の装置。
  14. 対応するバイポーラ信号の振幅が事前設定されたバイポーラ信号閾値よりも大きい場合に、前記所定の発生時間を前記心筋の前記所定の興奮時間として割り当てることを含む、請求項13に記載の装置。
JP2017155088A 2016-08-11 2017-08-10 Ecg信号の分類化 Active JP7013167B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201662373465P 2016-08-11 2016-08-11
US62/373,465 2016-08-11
US15/646,393 US11058342B2 (en) 2016-08-11 2017-07-11 Classifying ECG signals
US15/646,393 2017-07-11

Publications (2)

Publication Number Publication Date
JP2018023788A JP2018023788A (ja) 2018-02-15
JP7013167B2 true JP7013167B2 (ja) 2022-01-31

Family

ID=59592893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017155088A Active JP7013167B2 (ja) 2016-08-11 2017-08-10 Ecg信号の分類化

Country Status (7)

Country Link
US (2) US11058342B2 (ja)
EP (1) EP3281580B1 (ja)
JP (1) JP7013167B2 (ja)
CN (1) CN107714025B (ja)
AU (1) AU2017208227A1 (ja)
CA (1) CA2974408A1 (ja)
IL (1) IL253758B (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2573109B (en) * 2018-04-23 2022-09-14 Barts Health Nhs Trust Methods and systems useful in mapping heart rhythm abnormalities
CN112004463B (zh) * 2018-04-26 2024-03-22 圣犹达医疗用品心脏病学部门有限公司 用于标测心律失常驱动器位点的系统和方法
US11350867B2 (en) * 2018-04-27 2022-06-07 Duke University Small-scale time delay and single-shot conduction velocity analysis and mapping for cardiac electrophysiology
US20220183610A1 (en) * 2019-05-24 2022-06-16 St. Jude Medical, Cardiology Division, Inc. System and method for cardiac mapping
US11596341B2 (en) * 2019-06-20 2023-03-07 Boston Scientific Scimed, Inc. Systems and methods for identifying split activation histograms in cardiac mapping procedures
US20210169359A1 (en) * 2019-12-06 2021-06-10 Biosense Webster (Israel) Ltd. Intra-cardiac pattern matching
US11311226B2 (en) 2019-12-12 2022-04-26 Biosense Webster (Israel) Ltd. Detection of ventricular activity using unipolar and bipolar signals
US11684302B2 (en) * 2019-12-13 2023-06-27 Biosense Webster (Israel) Ltd. Automated graphical presentation of electrophysiological parameters
US11517218B2 (en) * 2019-12-20 2022-12-06 Biosense Webster (Israel) Ltd. Selective graphical presentation of electrophysiological parameters
US20220068479A1 (en) * 2020-08-26 2022-03-03 Biosense Webster (Israel) Ltd. Separating abnormal heart activities into different classes
US20230329617A1 (en) 2022-04-15 2023-10-19 Biosense Webster (Israel) Ltd. Neural network intracardiac egm annotation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144705A1 (en) 2009-12-11 2011-06-16 Sorin Crm S.A.S. System and Method For Detecting Atrial Activity Signal Using A Monobody Lead In A Single Chamber Implantable Cardioverter/Defibrillator
JP2013223730A (ja) 2012-04-23 2013-10-31 Biosense Webster (Israel) Ltd 心臓活動時間の検出
JP2015139706A (ja) 2014-01-29 2015-08-03 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 活性化波面のバイポーラ/ユニポーラハイブリッド検出
JP2016518166A5 (ja) 2014-03-14 2017-04-13

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222493A (en) * 1990-10-01 1993-06-29 Siemens Pacesetter, Inc. Verification of capture using an indifferent electrode mounted on the pacemaker connector top
US5231990A (en) * 1992-07-09 1993-08-03 Spacelabs, Medical, Inc. Application specific integrated circuit for physiological monitoring
US8050750B2 (en) 2009-01-27 2011-11-01 Medtronic, Inc. Event discrimination using unipolar and bipolar signal differences
US9050006B2 (en) 2011-05-02 2015-06-09 The Regents Of The University Of California System and method for reconstructing cardiac activation information
EP2526861A1 (en) 2011-05-23 2012-11-28 Maastricht University Non-invasive classification of atrial fibrillation by probabilistic interval analysis of a transesophageal electrocardiogram
US8700136B2 (en) * 2011-11-11 2014-04-15 Biosense Webster (Israel), Ltd. Accurate time annotation of intracardiac ECG signals
BR112015022401A2 (pt) * 2013-03-15 2017-07-18 Univ California método para reconstruir informações de ativação cardíaca, sistema para reconstruir informações de ativação cardíaca, e, método para tratar de um distúrbio de ritmo cardíaco
CN105307565B (zh) * 2013-05-07 2019-03-15 圣犹达医疗用品电生理部门有限公司 利用电极空间布置以用于表征心脏传导状况
US9554718B2 (en) * 2014-01-29 2017-01-31 Biosense Webster (Israel) Ltd. Double bipolar configuration for atrial fibrillation annotation
US20150245782A1 (en) * 2014-02-28 2015-09-03 Covidien Lp Systems and methods for capacitance sensing in medical devices
US10721178B2 (en) * 2016-01-22 2020-07-21 Medtronic, Inc. Systems, apparatus and methods facilitating data buffering and removal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110144705A1 (en) 2009-12-11 2011-06-16 Sorin Crm S.A.S. System and Method For Detecting Atrial Activity Signal Using A Monobody Lead In A Single Chamber Implantable Cardioverter/Defibrillator
JP2013223730A (ja) 2012-04-23 2013-10-31 Biosense Webster (Israel) Ltd 心臓活動時間の検出
JP2015139706A (ja) 2014-01-29 2015-08-03 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. 活性化波面のバイポーラ/ユニポーラハイブリッド検出
JP2016518166A5 (ja) 2014-03-14 2017-04-13

Also Published As

Publication number Publication date
IL253758A0 (en) 2017-09-28
US20210338131A1 (en) 2021-11-04
JP2018023788A (ja) 2018-02-15
US11690556B2 (en) 2023-07-04
US20180042505A1 (en) 2018-02-15
CN107714025A (zh) 2018-02-23
EP3281580B1 (en) 2021-03-03
AU2017208227A1 (en) 2018-03-01
EP3281580A1 (en) 2018-02-14
IL253758B (en) 2021-12-01
US11058342B2 (en) 2021-07-13
CA2974408A1 (en) 2018-02-11
CN107714025B (zh) 2022-06-07

Similar Documents

Publication Publication Date Title
JP7013167B2 (ja) Ecg信号の分類化
JP7002881B2 (ja) 波面のアノテーション
CN109561841B (zh) 用于测量心肌缺血、狭窄识别、定位和血流储备分数估计的非侵入式方法和系统
JP6526429B2 (ja) 活性化波面のバイポーラ/ユニポーラハイブリッド検出
US11357438B2 (en) Annotation histogram
JP2015139706A5 (ja)
JP2019188208A (ja) 心房細動アノテーションのための二重双極構成
JP6309205B2 (ja) 心臓活動時間の検出
JP7013166B2 (ja) 同じ波形を有するecg信号の識別
Podziemski et al. Fetal heart rate discovery: algorithm for detection of fetal heart rate from noisy, noninvasive fetal ECG recordings
JP2013223730A5 (ja)
US11596341B2 (en) Systems and methods for identifying split activation histograms in cardiac mapping procedures
JP6468986B2 (ja) ノイズ判定装置、方法、およびプログラム
Baijal et al. Performance evaluation of S-Golay and MA filter on the basis of white and flicker noise

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220104

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220119

R150 Certificate of patent or registration of utility model

Ref document number: 7013167

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150