JP7012881B2 - Scroll compressor - Google Patents

Scroll compressor Download PDF

Info

Publication number
JP7012881B2
JP7012881B2 JP2020562036A JP2020562036A JP7012881B2 JP 7012881 B2 JP7012881 B2 JP 7012881B2 JP 2020562036 A JP2020562036 A JP 2020562036A JP 2020562036 A JP2020562036 A JP 2020562036A JP 7012881 B2 JP7012881 B2 JP 7012881B2
Authority
JP
Japan
Prior art keywords
chamber
control valve
low pressure
unload
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020562036A
Other languages
Japanese (ja)
Other versions
JPWO2020136786A1 (en
Inventor
昌之 角田
渉 岩竹
圭 佐々木
雷人 河村
慎 関屋
英人 中尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020136786A1 publication Critical patent/JPWO2020136786A1/en
Application granted granted Critical
Publication of JP7012881B2 publication Critical patent/JP7012881B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は冷凍又は空調用途等に用いられるスクロール圧縮機に関する。 The present invention relates to a scroll compressor used for freezing or air conditioning applications.

広い容量範囲で用いるために、圧縮室内の圧縮ガスを吸込側に戻すバイパス穴を有する容量制御型のスクロール圧縮機がある。この種のスクロール圧縮機では、バイパス穴をバイパス弁で開閉することで、吐出量が100%のフルロードと、吐出量が低減されたアンロードとに運転状態を切り替えるようにしている。 For use in a wide capacity range, there is a capacity control type scroll compressor having a bypass hole for returning the compressed gas in the compression chamber to the suction side. In this type of scroll compressor, the bypass hole is opened and closed by a bypass valve to switch the operating state between a full load with a discharge rate of 100% and an unload with a reduced discharge rate.

スクロール圧縮機では、固定値の組込容積比が存在するため、高低圧差が比較的小さい運転条件では、圧縮機構で流体を圧縮し過ぎる、所謂過圧縮が発生する場合がある。このため、圧縮室に開口するリリーフポートを設け、リリーフポートから圧縮室内の圧縮ガスを吐出側に逃す、所謂高圧バイパスによる過圧縮リリーフを行うことで、過圧縮を防止するものがある(例えば、特許文献1参照)。 Since the scroll compressor has a fixed built-in volume ratio, so-called overcompression, in which the fluid is compressed too much by the compression mechanism, may occur under operating conditions where the high / low pressure difference is relatively small. For this reason, there is a method of preventing overcompression by providing a relief port that opens in the compression chamber and performing overcompression relief by so-called high-pressure bypass in which the compressed gas in the compression chamber is released from the relief port to the discharge side (for example). See Patent Document 1).

特開2000-018182号公報Japanese Unexamined Patent Publication No. 2000-018182

特許文献1において高圧バイパスによる過圧縮リリーフを行うためのリリーフ機構は、固定スクロールに設けたリリーフポートとリリーフ弁であり、密閉容器内で完結している。しかし、低圧バイパスによるアンロードを行うアンロード機構は、密閉容器に貫通して配管を設け、配管と圧縮機構部とを接続する必要があると共に、更に弁類も備える必要のある構成となっており、コスト増大が避けられなかった。 In Patent Document 1, the relief mechanism for performing overcompression relief by high-pressure bypass is a relief port and a relief valve provided on a fixed scroll, and is completed in a closed container. However, the unloading mechanism that unloads by low-pressure bypass needs to be provided with piping through the closed container to connect the piping and the compression mechanism, and also needs to be equipped with valves. Therefore, an increase in cost was unavoidable.

本発明はこのような点を鑑みなされたもので、低圧バイパスによるアンロードを密閉容器外から圧縮機構部へ配管接続することなく行うことが可能なスクロール圧縮機を得ることを目的とする。 The present invention has been made in view of these points, and an object of the present invention is to obtain a scroll compressor capable of unloading by low pressure bypass from outside the closed container without connecting a pipe to the compression mechanism portion.

本発明のスクロール圧縮機は、密閉容器と、密閉容器内を高圧空間と低圧空間とに区画するセパレータと、固定スクロール及び揺動スクロールを有し、固定スクロール及び揺動スクロールを噛み合わせて形成された圧縮室に、低圧空間から流体を吸入して圧縮し、高圧空間に吐出する圧縮機構部と、圧縮室内から低圧空間へ流体をバイパスすることにより、吐出量を制限するアンロードを行うアンロード機構とを備え、固定スクロールの揺動スクロールとは反対側の端面とセパレータとの間には、固定スクロールに形成された抽気孔を介して、圧縮途中の圧縮室に連通する背圧室が形成され、セパレータには、背圧室と低圧空間とを連通するアンロード経路の一部を構成するアンロード孔が形成されており、アンロード機構は、アンロード孔内での位置が移動することでアンロード経路を開閉する制御弁を備え、運転中、制御弁の移動方向の一方の端面に低圧空間の低圧が作用すると共に、他方の端面に密閉容器内から導かれて低圧空間よりも高い圧力が作用し、運転条件に応じて、制御弁の両端面とに作用する圧力差が変化することで制御弁が移動してアンロード経路を開閉するものであり、アンロード経路は、背圧室に一端が開口する背圧室連通路と、低圧空間に一端が開口する低圧空間連通路と、背圧室連通路の他端と低圧空間連通路の他端とを連通する制御弁小径部外周空間とから構成され、セパレータには、制御弁の一方の端面が面する空間に低圧空間の低圧を導入する低圧導入孔と、制御弁の他方の端面が面する空間に高圧空間の高圧を導入する高圧導入孔とが形成されているものである。 The scroll compressor of the present invention has a closed container, a separator that divides the inside of the closed container into a high pressure space and a low pressure space, a fixed scroll and a swinging scroll, and is formed by engaging the fixed scroll and the swinging scroll. A compression mechanism that sucks fluid from the low-pressure space, compresses it, and discharges it to the high-pressure space, and unloads that limit the discharge amount by bypassing the fluid from the compression chamber to the low-pressure space. A back pressure chamber is formed between the separator and the end face on the opposite side of the swinging scroll of the fixed scroll, which is provided with a mechanism and communicates with the compression chamber during compression through the extraction hole formed in the fixed scroll. The separator is formed with an unload hole that forms part of the unload path that connects the back pressure chamber and the low pressure space, and the unload mechanism moves its position within the unload hole. Equipped with a control valve that opens and closes the unload path, the low pressure in the low pressure space acts on one end face of the control valve in the moving direction, and the other end face is guided from inside the closed container and is higher than the low pressure space. When pressure acts and the pressure difference acting on both end faces of the control valve changes according to the operating conditions, the control valve moves to open and close the unload path, and the unload path is the back pressure. A small diameter control valve that communicates a back pressure chamber communication passage with one end opening in the chamber, a low pressure space communication passage with one end opening in the low pressure space, and the other end of the back pressure chamber communication passage and the other end of the low pressure space communication passage. It is composed of an outer peripheral space, and the separator has a low pressure introduction hole that introduces the low pressure of the low pressure space into the space facing one end face of the control valve, and the high pressure of the high pressure space into the space facing the other end face of the control valve. A high-pressure introduction hole to be introduced is formed .

本発明によれば、圧縮室内から低圧空間へ流体をバイパスすることにより、吐出量を制限するアンロードを、アンロードに係る構造が密閉容器内で完結し、密閉容器外から圧縮機構部へ配管接続することなく行うことができる。 According to the present invention, the unloading that limits the discharge amount by bypassing the fluid from the compression chamber to the low pressure space is completed in the closed container, and the piping from the outside of the closed container to the compression mechanism section. It can be done without connecting.

本発明の実施の形態1によるスクロール圧縮機の縦断面模式図である。It is a schematic vertical sectional view of the scroll compressor according to Embodiment 1 of this invention. 図1のスクロール圧縮機の揺動スクロールの偏心旋回に伴う圧縮行程を示す図である。It is a figure which shows the compression process which accompanies the eccentric turning of the swing scroll of the scroll compressor of FIG. 本発明の実施の形態1によるスクロール圧縮機のアンロード時の要部断面模式図である。It is sectional drawing of the main part at the time of unloading of the scroll compressor according to Embodiment 1 of this invention. 本発明の実施の形態1によるスクロール圧縮機のアンロード時のアンロード機構部の拡大模式図である。It is an enlarged schematic diagram of the unloading mechanism part at the time of unloading of the scroll compressor according to Embodiment 1 of this invention. 本発明の実施の形態1によるスクロール圧縮機の非アンロード時の要部断面模式図である。FIG. 3 is a schematic cross-sectional view of a main part of the scroll compressor according to the first embodiment of the present invention when it is not unloaded. 本発明の実施の形態1によるスクロール圧縮機の非アンロード時のアンロード機構部の拡大模式図である。It is an enlarged schematic diagram of the unloading mechanism part at the time of non-unloading of the scroll compressor according to Embodiment 1 of this invention. 本発明の実施の形態2によるスクロール圧縮機の縦断面模式図である。FIG. 3 is a schematic vertical sectional view of a scroll compressor according to a second embodiment of the present invention. 本発明の実施の形態2によるスクロール圧縮機の要部断面模式図である。It is sectional drawing of the main part of the scroll compressor according to Embodiment 2 of this invention. 本発明の実施の形態2によるスクロール圧縮機のアンロード時のアンロード機構部の拡大模式図である。It is an enlarged schematic diagram of the unloading mechanism part at the time of unloading of the scroll compressor according to Embodiment 2 of this invention. 本発明の実施の形態2によるスクロール圧縮機の非アンロード時のアンロード機構部の拡大模式図である。It is an enlarged schematic diagram of the unloading mechanism part at the time of non-unloading of the scroll compressor according to Embodiment 2 of this invention. 図7の固定スクロールを渦巻側から見た図である。It is a figure which looked at the fixed scroll of FIG. 7 from the spiral side. 図7の固定スクロールを反渦巻側から見た図である。It is a figure which looked at the fixed scroll of FIG. 7 from the anti-swirl side. 図7の揺動スクロールを渦巻側から見た図である。FIG. 7 is a view of the swing scroll of FIG. 7 as viewed from the spiral side. 図7の揺動スクロールを反渦巻側から見た図である。FIG. 7 is a view of the swing scroll of FIG. 7 as viewed from the anti-swirl side. 本発明の実施の形態2によるスクロール圧縮機のアンロード時の渦巻組み合わせ状態を示す平面形状図である。It is a plan view which shows the spiral combination state at the time of unloading of the scroll compressor by Embodiment 2 of this invention. 図15のアンロード機構部の拡大形状図である。It is an enlarged shape view of the unload mechanism part of FIG. 図7のアンロード機構部品である制御弁の形状図である。It is a shape diagram of the control valve which is an unload mechanism component of FIG. 7. 図7のアンロード機構部品であるばね座の形状図である。It is a shape diagram of the spring seat which is an unload mechanism component of FIG. 7. 図7のアンロード機構部品であるプラグの形状図である。It is a shape diagram of the plug which is an unload mechanism component of FIG. 7. 本発明の実施の形態2によるスクロール圧縮機の非アンロード時の渦巻組み合わせ状態を示す平面形状図である。It is a plan view which shows the spiral combination state at the time of non-unloading of the scroll compressor according to Embodiment 2 of this invention. 図20のアンロード機構部の拡大形状図である。It is an enlarged shape view of the unload mechanism part of FIG.

実施の形態1.
図1は、本発明の実施の形態1によるスクロール圧縮機の縦断面模式図である。図1及び後述の各図において、同一の符号を付したものは、同一の又はこれに相当するものであり、これは明細書の全文において共通している。更に、明細書全文に表れている構成要素の形態は、あくまで例示であってこれらの記載に限定されるものではない。また、温度及び圧力の高低については、特に絶対的な値との関係で高低が定まっているものではなく、システム及び装置等における状態及び動作等において相対的に定まるものとする。また、模式図は、実施の形態の加工性及び組立性まで考慮した構造を忠実に提示するものではなく、構成をシンプルに説明するための簡易的なものである。
Embodiment 1.
FIG. 1 is a schematic vertical sectional view of a scroll compressor according to the first embodiment of the present invention. In FIG. 1 and each figure described later, those having the same reference numerals are the same or equivalent thereof, which are common to the entire text of the specification. Furthermore, the forms of the components appearing in the entire specification are merely examples and are not limited to these descriptions. In addition, the high and low temperatures and pressures are not fixed in relation to the absolute values, but are relatively fixed in the state and operation of the system, the device, and the like. Further, the schematic diagram does not faithfully present the structure in consideration of the workability and the assembling property of the embodiment, but is a simple one for simply explaining the configuration.

このスクロール圧縮機1は、冷媒等の流体を吸入し、圧縮して高圧の状態として吐出させる機能を有し、外殻を構成する密閉容器21の内部に、圧縮機構部10、モータ18及びその他の構成部品を収納する。圧縮機構部10とモータ18とは軸15で連結されている。図1に示すように、密閉容器21内において、圧縮機構部10が上方に、モータ18は圧縮機構部10の下側に、それぞれ配置されている。密閉容器21の下方は油溜めとなっており、潤滑油22が貯留されている。 The scroll compressor 1 has a function of sucking a fluid such as a refrigerant, compressing it, and discharging it as a high-pressure state. Inside the closed container 21 constituting the outer shell, a compression mechanism portion 10, a motor 18, and others Stores the components of. The compression mechanism portion 10 and the motor 18 are connected by a shaft 15. As shown in FIG. 1, in the closed container 21, the compression mechanism portion 10 is arranged above and the motor 18 is arranged below the compression mechanism portion 10. The lower part of the closed container 21 is an oil reservoir, and the lubricating oil 22 is stored.

密閉容器21の内部には、フレーム14とサブフレーム19とが配置されている。フレーム14は、モータ18の上側に配置されてモータ18と圧縮機構部10との間に位置している。サブフレーム19は、モータ18の下側に位置している。フレーム14及びサブフレーム19は、密閉容器21に固着されている。フレーム14の中央部には主軸受14aが設けられており、サブフレーム19の中央部には副軸受19aが設けられている。主軸受14a及び副軸受19aに軸15が回転自在に支持されている。 A frame 14 and a subframe 19 are arranged inside the closed container 21. The frame 14 is arranged above the motor 18 and is located between the motor 18 and the compression mechanism portion 10. The subframe 19 is located below the motor 18. The frame 14 and the subframe 19 are fixed to the closed container 21. A main bearing 14a is provided in the central portion of the frame 14, and an auxiliary bearing 19a is provided in the central portion of the subframe 19. The shaft 15 is rotatably supported by the main bearing 14a and the auxiliary bearing 19a.

密閉容器21の内部を高圧空間211と低圧空間212とに区画するセパレータ29が圧縮機構部10の上側に配置されている。セパレータ29よりも上方が高圧空間211、下方が低圧空間212となっている。セパレータ29は、密閉容器21に固着されている。 A separator 29 that divides the inside of the closed container 21 into a high-pressure space 211 and a low-pressure space 212 is arranged above the compression mechanism portion 10. The upper part of the separator 29 is the high pressure space 211, and the lower part is the low pressure space 212. The separator 29 is fixed to the closed container 21.

固定スクロール11の揺動スクロール12とは反対側の端面とセパレータ29との間には、固定スクロール11に形成された第1吐出ポート111に連通する吐出室291aが形成されている。セパレータ29の中央部には、入口側が吐出室291aに開口し、出口側が高圧空間211に開口し、圧縮室9内で圧縮された流体を高圧空間211へ吐出する第2吐出ポート292が形成されている。第2吐出ポート292の出口側には、吐出室291aへの流体の逆流を防ぐため、第2吐出ポート292を開閉する吐出弁25と、吐出弁25のリフト量を制限する吐出弁ストッパ25bとが設けられている。圧縮室9内で流体が所定圧力まで圧縮されると、吐出弁25がその弾性力に逆らって持ち上げられ、圧縮された流体が第2吐出ポート292から高圧空間211内に吐出され、吐出管24を通ってスクロール圧縮機1の外部に吐出される。 A discharge chamber 291a communicating with the first discharge port 111 formed in the fixed scroll 11 is formed between the end surface of the fixed scroll 11 opposite to the swing scroll 12 and the separator 29. At the center of the separator 29, a second discharge port 292 is formed in which the inlet side opens into the discharge chamber 291a, the outlet side opens in the high pressure space 211, and the fluid compressed in the compression chamber 9 is discharged to the high pressure space 211. ing. On the outlet side of the second discharge port 292, there is a discharge valve 25 that opens and closes the second discharge port 292 and a discharge valve stopper 25b that limits the lift amount of the discharge valve 25 in order to prevent backflow of fluid to the discharge chamber 291a. Is provided. When the fluid is compressed to a predetermined pressure in the compression chamber 9, the discharge valve 25 is lifted against the elastic force, and the compressed fluid is discharged from the second discharge port 292 into the high pressure space 211, and the discharge pipe 24 is discharged. It is discharged to the outside of the scroll compressor 1 through.

セパレータ29には更に、リリーフ機構220及びアンロード機構230等が設けられているが、これらの構成については改めて詳述する。 The separator 29 is further provided with a relief mechanism 220, an unload mechanism 230, and the like, and these configurations will be described in detail again.

密閉容器21には、低圧空間212に連通し流体を吸入するための吸入管23と、高圧空間211に連通し流体を吐出するための吐出管24が設けられている。 The closed container 21 is provided with a suction pipe 23 for sucking the fluid communicating with the low pressure space 212 and a discharge pipe 24 for discharging the fluid communicating with the high pressure space 211.

圧縮機構部10は、吸入管23から吸入した流体を圧縮し、密閉容器21内の上方に形成されている高圧空間211に排出する。圧縮機構部10は、固定スクロール11と揺動スクロール12とを備え、図1に示すように、固定スクロール11は上側に、揺動スクロール12は下側に配置されている。固定スクロール11は、固定台板11aと、固定台板11aの一方の面に立設された渦巻状突起である固定渦巻歯11bとで構成されている。揺動スクロール12は、揺動台板12aと、揺動台板12aの一方の面に立設された渦巻状突起である揺動渦巻歯12bとで構成されている。 The compression mechanism unit 10 compresses the fluid sucked from the suction pipe 23 and discharges it into the high-pressure space 211 formed above the closed container 21. The compression mechanism unit 10 includes a fixed scroll 11 and a swing scroll 12, and as shown in FIG. 1, the fixed scroll 11 is arranged on the upper side and the swing scroll 12 is arranged on the lower side. The fixed scroll 11 is composed of a fixed base plate 11a and fixed spiral teeth 11b which are spiral protrusions erected on one surface of the fixed base plate 11a. The swing scroll 12 is composed of a swing base plate 12a and swing spiral teeth 12b which are spiral protrusions erected on one surface of the swing base plate 12a.

固定渦巻歯11b及び揺動渦巻歯12bは、例えばインボリュート曲線にならって形成されており、固定渦巻歯11b及び揺動渦巻歯12bが噛み合って組み合わされることで、固定渦巻歯11bと揺動渦巻歯12bとの間に、複数の圧縮室9が形成される。 The fixed spiral tooth 11b and the swinging spiral tooth 12b are formed, for example, following an involute curve, and the fixed spiral tooth 11b and the swinging spiral tooth 12b are meshed and combined to form the fixed spiral tooth 11b and the swinging spiral tooth 12b. A plurality of compression chambers 9 are formed between the 12b and the 12b.

固定スクロール11と揺動スクロール12はセパレータ29とフレーム14との間に配置されている。固定スクロール11は、固定スクロール11の外周に複数配置された径方向ガイド部材28によって平面位置と姿勢とが規制される。固定スクロール11の固定台板11aには、一端が圧縮室9に開口し、他端が後述の背圧室291bに開口する一対の抽気孔112が形成されている。 The fixed scroll 11 and the swing scroll 12 are arranged between the separator 29 and the frame 14. The plane position and posture of the fixed scroll 11 are regulated by a plurality of radial guide members 28 arranged on the outer periphery of the fixed scroll 11. The fixed base plate 11a of the fixed scroll 11 is formed with a pair of air extraction holes 112 having one end opened in the compression chamber 9 and the other end opening in the back pressure chamber 291b described later.

揺動スクロール12において揺動渦巻歯12bの形成面とは反対側の面の中心部に、円筒形状のボス部121が形成されている。揺動スクロール12は、このボス部121に軸15の上端に設けられた後述の偏心部15aが嵌入されて、固定スクロール11に対して自転することなく偏心旋回運動を行う。 In the swing scroll 12, a cylindrical boss portion 121 is formed at the center of a surface of the swing scroll 12 opposite to the formation surface of the swing spiral tooth 12b. The eccentric portion 15a, which will be described later, is fitted into the boss portion 121 at the upper end of the shaft 15, and the oscillating scroll 12 performs an eccentric turning motion without rotating with respect to the fixed scroll 11.

モータ18は、ステータ18aと、ステータ18aの内周側で回転可能な軸15に固定されたロータ18bからなる。ステータ18aは、通電されることによってロータ18bを回転させる。ステータ18aは、外周面が焼き嵌め等により密閉容器21に固着支持されている。ロータ18bは、ステータ18aに通電がされることにより回転し、軸15を駆動する。 The motor 18 includes a stator 18a and a rotor 18b fixed to a shaft 15 rotatable on the inner peripheral side of the stator 18a. The stator 18a rotates the rotor 18b by being energized. The outer peripheral surface of the stator 18a is fixedly supported by the closed container 21 by shrink fitting or the like. The rotor 18b rotates when the stator 18a is energized to drive the shaft 15.

軸15は、上端部に偏心部15aが形成されており、偏心部15aが揺動スクロール12のボス部121に嵌合され、軸15の回転により揺動スクロール12が偏心旋回運動する。 The shaft 15 has an eccentric portion 15a formed at the upper end thereof, the eccentric portion 15a is fitted to the boss portion 121 of the swing scroll 12, and the swing scroll 12 makes an eccentric turning motion by the rotation of the shaft 15.

軸15には、モータ18の上側に第1バランサ16が取り付けられている。また、ロータ18bの下側に第2バランサ17が取り付けられている。第1バランサ16は、偏心部15aと偏心方向が逆向きになるように取り付けられている。 A first balancer 16 is attached to the shaft 15 on the upper side of the motor 18. Further, a second balancer 17 is attached to the lower side of the rotor 18b. The first balancer 16 is attached so that the eccentricity direction is opposite to that of the eccentric portion 15a.

軸15の下端部には、給油ポンプ27が装着されている。給油ポンプ27は軸15の回転に従い、油溜めに保有している潤滑油22を軸15内部に設けられた給油孔152を通して各摺動部に供給する。 A refueling pump 27 is attached to the lower end of the shaft 15. The lubrication pump 27 supplies the lubricating oil 22 held in the oil reservoir to each sliding portion through the lubrication hole 152 provided inside the shaft 15 according to the rotation of the shaft 15.

圧縮機構部10内には、揺動スクロール12の偏心旋回運動中における自転運動を阻止するためのオルダムリング等の姿勢規制手段13が配設されている。この姿勢規制手段13は、フレーム14と揺動スクロール12との間に配設され、揺動スクロール12の自転運動を阻止すると共に、公転運動である偏心旋回運動を可能とする。 In the compression mechanism portion 10, a posture regulating means 13 such as an old dam ring for preventing the rotation motion of the swing scroll 12 during the eccentric turning motion is provided. The posture regulating means 13 is disposed between the frame 14 and the swing scroll 12, and prevents the swing scroll 12 from rotating and enables an eccentric turning motion which is a revolution motion.

図1において、密閉容器21に設けられた図示省略の電源端子に通電されると、ステータ18aとロータ18bとの間にトルクが発生し、主軸受14aと副軸受19aとで支持された軸15が回転する。軸15の回転により、揺動スクロール12が姿勢規制手段13により自転を規制されて偏心旋回運動する。 In FIG. 1, when the power supply terminal (not shown) provided in the closed container 21 is energized, torque is generated between the stator 18a and the rotor 18b, and the shaft 15 supported by the main bearing 14a and the auxiliary bearing 19a. Rotates. Due to the rotation of the shaft 15, the swing scroll 12 is restricted from rotating by the posture regulating means 13 and makes an eccentric turning motion.

揺動スクロール12の運動に伴うアンバランスは、軸15に取り付けられた第1バランサ16とロータ18bに取り付けられた第2バランサ17とによって釣り合わせるようになっている。軸15の回転により、密閉容器21の下部に貯留した潤滑油22が給油ポンプ27で汲み上げられ、軸15内に設けられた給油孔152から各摺動部に供給される。 The imbalance caused by the movement of the swing scroll 12 is balanced by the first balancer 16 attached to the shaft 15 and the second balancer 17 attached to the rotor 18b. By the rotation of the shaft 15, the lubricating oil 22 stored in the lower part of the closed container 21 is pumped up by the refueling pump 27 and supplied to each sliding portion from the refueling hole 152 provided in the shaft 15.

吸入管23から密閉容器21内に吸入されたガスは、揺動スクロール12の偏心旋回運動に伴い、複数の圧縮室9のうち最外周の圧縮室9に取り込まれる。 The gas sucked into the closed container 21 from the suction pipe 23 is taken into the outermost compression chamber 9 among the plurality of compression chambers 9 due to the eccentric swirling motion of the rocking scroll 12.

ガスを取り込んだ圧縮室9は、揺動スクロール12の偏心旋回運動に伴い、外周部から中心方向に移動しながら容積を減じ、流体を圧縮する。圧縮された流体は、固定スクロール11に設けた第1吐出ポート111及びセパレータ29に設けた第2吐出ポート292から吐出弁25を押し上げて高圧空間211に吐出され、吐出管24から密閉容器21外に排出される。 The compression chamber 9 that has taken in the gas reduces the volume while moving from the outer peripheral portion toward the center along with the eccentric swirling motion of the swing scroll 12, and compresses the fluid. The compressed fluid is discharged into the high-pressure space 211 by pushing up the discharge valve 25 from the first discharge port 111 provided in the fixed scroll 11 and the second discharge port 292 provided in the separator 29, and is discharged from the discharge pipe 24 to the outside of the closed container 21. Is discharged to.

以下、渦巻の動作及び抽気孔112の位置に関する記述は実施の形態1及び実施の形態2に共通である。 Hereinafter, the description regarding the operation of the swirl and the position of the bleeding hole 112 is common to the first embodiment and the second embodiment.

図2は、図1のスクロール圧縮機の揺動スクロールの偏心旋回に伴う圧縮行程を示す図である。図2において、複数の圧縮室9のうち、最も内側の圧縮室9を最内室9a、最も外側の圧縮室9を最外室9c、最内室9aと最外室9cとの間の圧縮室9を、内側から数えて2つ目の圧縮室という意味で第2室9bという。図2には、2.5巻程度の渦巻仕様の例を示している。 FIG. 2 is a diagram showing a compression stroke associated with eccentric turning of the oscillating scroll of the scroll compressor of FIG. In FIG. 2, of the plurality of compression chambers 9, the innermost compression chamber 9 is the innermost chamber 9a, the outermost compression chamber 9 is the outermost chamber 9c, and the compression between the innermost chamber 9a and the outermost chamber 9c. The chamber 9 is called the second chamber 9b in the sense that it is the second compression chamber counted from the inside. FIG. 2 shows an example of a spiral specification of about 2.5 turns.

図2(b)は、クランク角が吸入完了角の状態を示している。すなわち、最も外側の圧縮室9における流体の吸入が完了し、固定渦巻歯11bと揺動渦巻歯12bとによって形成される複数の圧縮室9として、内側から順に、最内室9aと、一対の第2室9bと、一対の最外室9cとが形成されたところを示している。以下、吸入完了角とは、渦巻歯の巻き終わり側で圧縮室9の吸入が完了したときのクランク角を指す。 FIG. 2B shows a state in which the crank angle is the suction completion angle. That is, the suction of the fluid in the outermost compression chamber 9 is completed, and the plurality of compression chambers 9 formed by the fixed spiral teeth 11b and the swinging spiral teeth 12b are, in order from the inside, the innermost chamber 9a and a pair. It shows the place where the second chamber 9b and the pair of outermost chambers 9c are formed. Hereinafter, the suction completion angle refers to the crank angle when the suction of the compression chamber 9 is completed on the winding end side of the spiral tooth.

図2(c)は、クランク角が連通角の状態を示している。上記図2(b)では、固定渦巻歯11bと揺動渦巻歯12bとが巻き始め側で接触してシール形成点130を形成していることで、最内室9aと一対の第2室9bとが形成されている。これに対し、図2(c)では、シール形成点130が離間する直前、第2室9bが最内室9aと合流して一室となるところである。以下、連通角とは、第2室9bが最内室9aと合流して一室となるときのクランク角を指す。 FIG. 2C shows a state in which the crank angle is the communication angle. In FIG. 2B, the fixed spiral tooth 11b and the swinging spiral tooth 12b are in contact with each other on the winding start side to form a seal forming point 130, so that the innermost chamber 9a and the pair of second chambers 9b are formed. And are formed. On the other hand, in FIG. 2C, immediately before the seal forming point 130 is separated, the second chamber 9b merges with the innermost chamber 9a to become one chamber. Hereinafter, the communication angle refers to the crank angle when the second chamber 9b merges with the innermost chamber 9a to form one chamber.

図2(d)は、シール形成点130が離間し、第2室9bが最内室9aと合わさって一室となった状態、最内室9aと最外室9cとの2室状態を示している。 FIG. 2D shows a state in which the seal forming points 130 are separated from each other and the second chamber 9b is combined with the innermost chamber 9a to form one chamber, and two chambers, the innermost chamber 9a and the outermost chamber 9c. ing.

図2(e)~図2(f)も、最内室9aと最外室9cの2室状態を示している。 2 (e) to 2 (f) also show the state of two chambers, the innermost chamber 9a and the outermost chamber 9c.

以上のように、クランク角0~2πの揺動スクロール12の偏心旋回1回転の間に、吸入完了角と連通角とに対するクランク角の大小により、圧縮室9は2室又は3室となる。すなわち、吸入完了角から連通角の間は、最外室9c、第2室9b及び最内室9aの3室となる。連通角から吸入完了角の間は、最外室9cと最内室9aとの2室となる。そして、吸入完了角において新たな最外室9cが形成されて、それまでの最外室9cが第2室9bとなり、最外室9c、第2室9b及び最内室9aの3室となる。 As described above, the compression chamber 9 has two or three chambers depending on the magnitude of the crank angle with respect to the suction completion angle and the communication angle during one eccentric turning of the swing scroll 12 having a crank angle of 0 to 2π. That is, between the suction completion angle and the communication angle, there are three chambers, the outermost chamber 9c, the second chamber 9b, and the innermost chamber 9a. Between the communication angle and the suction completion angle, there are two chambers, the outermost chamber 9c and the innermost chamber 9a. Then, a new outermost chamber 9c is formed at the suction completion angle, and the outermost chamber 9c up to that point becomes the second chamber 9b, and becomes the outermost chamber 9c, the second chamber 9b, and the innermost chamber 9a. ..

図2(a)~図2(f)において、図2(b)で吸入が完了した最外室9cは、揺動スクロール12の偏心旋回により、図2(c)、図2(d)、図2(e)、図2(f)、図2(a)を経て、容積が小さくなることで、流体の圧縮を行う。そして、再び図2(b)に到達することで新たに最外室9cができるため、これまでの最外室9cが第2室9bとなる。この第2室9bが、図2(c)の連通角において最内室9aに合流し始める。 2 (a) to 2 (f), the outermost chamber 9c in which suction is completed in FIG. 2 (b) is eccentric swiveled by the swing scroll 12, and FIGS. 2 (c) and 2 (d). The fluid is compressed by reducing the volume through FIGS. 2 (e), 2 (f), and 2 (a). Then, by reaching FIG. 2B again, the outermost chamber 9c is newly created, so that the outermost chamber 9c so far becomes the second chamber 9b. The second chamber 9b begins to join the innermost chamber 9a at the communication angle of FIG. 2 (c).

一対の抽気孔112は、それぞれ固定渦巻歯11bの内向面/外向面に沿って設けられ、内向面/外向面各々の巻き終わり部11ba及び巻き終わり部11bb(図2(b)参照)から伸開角で約2.5π内側に位置している。 The pair of bleeding holes 112 are provided along the inward / outward surfaces of the fixed spiral teeth 11b, respectively, and extend from the winding end 11ba and the winding end 11bb (see FIG. 2B) of the inward / outward surfaces, respectively. It is located about 2.5π inside at the open angle.

吸入完了時のクランク角を0とすると、クランク角0で吸入完了した最外室9cは揺動スクロール12の偏心旋回運動に伴って渦巻中心方向に移動する。クランク角が約π/2のとき、つまり吸入完了後1/4回転前後で第2室/最外室間のシール形成点が抽気孔位置を通過すると、最外室9cに抽気孔112が開口し始める。そして、抽気孔112が開口した最外室9cが、渦巻中心方向に容積を減少しながら移動し、吸入完了時から揺動スクロール12が1回転偏心旋回運動した2回目の吸入完了角において、最外室9cが第2室9bとなる。このように最外室9cが第2室9bになった後も、次の第2室/最外室間シール形成点の抽気孔位置通過まではこの第2室9bに抽気孔112が開口している。 Assuming that the crank angle at the time of completion of suction is 0, the outermost chamber 9c whose suction is completed at the crank angle of 0 moves toward the center of the spiral with the eccentric turning motion of the swing scroll 12. When the crank angle is about π / 2, that is, when the seal forming point between the second chamber and the outermost chamber passes through the extraction hole position around 1/4 turn after the suction is completed, the extraction hole 112 opens in the outermost chamber 9c. Begin to. Then, the outermost chamber 9c in which the extraction hole 112 is opened moves in the direction of the center of the spiral while reducing the volume, and at the second suction completion angle in which the swing scroll 12 makes one eccentric swirling motion from the time when the suction is completed. The outer room 9c becomes the second room 9b. Even after the outermost chamber 9c becomes the second chamber 9b in this way, the extraction hole 112 is opened in the second chamber 9b until the extraction hole position of the next second chamber / outermost chamber seal forming point is passed. ing.

最内室(連通角以前の場合は第2室)/最外室間のシール形成点の抽気孔位置通過が連通角よりも後となる設定では、揺動スクロール12の偏心旋回運動が進み、連通角での第2室9bと最内室9aの合流以降は、最内室9aに抽気孔112が開口する。シール形成点が抽気孔位置を通過した時点で抽気孔112は第2室に開口する。前記2回目の吸入完了角からクランク角が約π/4になると、第2室9bへの抽気孔112の開口が終了し、2回目の吸入完了角後1/4回転前後の最外室9cに抽気孔112が開口し始める。 In the setting where the passage through the extraction hole position of the seal forming point between the innermost chamber (the second chamber in the case before the communication angle) / the outermost chamber is after the communication angle, the eccentric turning motion of the swing scroll 12 proceeds. After the confluence of the second chamber 9b and the innermost chamber 9a at the communication angle, the extraction hole 112 opens in the innermost chamber 9a. The bleeding hole 112 opens to the second chamber when the seal forming point passes through the bleeding hole position. When the crank angle becomes about π / 4 from the second suction completion angle, the opening of the air extraction hole 112 to the second chamber 9b is completed, and the outermost chamber 9c about 1/4 turn after the second suction completion angle is completed. The air extraction hole 112 begins to open.

揺動スクロール12の偏心旋回により、抽気孔112から見れば、近づいてくる最外室9cに開口してから、この最外室9cが第2室9bを経て最内室9aとなるまで開口し続けた後、次に近づいてくる最外室9cに開口し始める、という動作が繰り返される。抽気孔112は、揺動スクロール12の偏心旋回1回転中常に何れかの圧縮室9即ち中間圧圧縮室37に開口し、圧縮室9内の圧力を後述の背圧室291bに供給する。図2によると、抽気孔112が揺動渦巻歯12bによって塞がれ、厳密には圧縮室9に開口しない時間もあるが、開口しない時間は僅かであって、実質的には常に何れかの圧縮室9に開口している。 Due to the eccentric rotation of the swing scroll 12, when viewed from the air extraction hole 112, the outermost chamber 9c is opened to the approaching outermost chamber 9c, and then the outermost chamber 9c is opened through the second chamber 9b until it becomes the innermost chamber 9a. After that, the operation of starting to open to the next approaching outermost chamber 9c is repeated. The bleeding hole 112 always opens to any of the compression chambers 9, that is, the intermediate pressure compression chamber 37 during one rotation of the eccentric rotation of the swing scroll 12, and supplies the pressure in the compression chamber 9 to the back pressure chamber 291b described later. According to FIG. 2, the extraction hole 112 is closed by the swinging spiral tooth 12b, and strictly speaking, there is a time when the compression chamber 9 is not opened, but the time when the extraction hole 112 is not opened is short, and practically any one of them is substantially always used. It is open to the compression chamber 9.

スクロール圧縮機においては、渦巻仕様が決まることで組込容積比、すなわち(吸入完了容積)/(連通角到達時の第2室の容積)が決まる。スクロール圧縮機1では、上述したように、吸入完了角で最外室9cが形成された後、揺動スクロール12が1回転偏心旋回運動して再び吸入完了角に到達することで最外室9cが第2室9bになり、更に揺動スクロール12が偏心旋回運動して連通角に到達することで、その第2室9bが最内室9aに合流する。つまり、最外室9cが形成されてから、その最外室9cが連通角において最内室9aと合流して第1吐出ポート111と連通するまでの間、その圧縮室9では運転条件の高低圧に関わらず圧縮が行われる。 In the scroll compressor, the built-in volume ratio, that is, (suction completion volume) / (volume of the second chamber when the communication angle is reached) is determined by determining the spiral specification. In the scroll compressor 1, as described above, after the outermost chamber 9c is formed at the suction completion angle, the swing scroll 12 makes one rotation eccentric turning motion to reach the suction completion angle again, so that the outermost chamber 9c is formed. Becomes the second chamber 9b, and the swing scroll 12 further eccentric swivels to reach the communication angle, so that the second chamber 9b joins the innermost chamber 9a. That is, from the formation of the outermost chamber 9c until the outermost chamber 9c merges with the innermost chamber 9a at the communication angle and communicates with the first discharge port 111, the operating conditions of the compression chamber 9 are high. Compression is performed regardless of the low pressure.

圧縮比或いは圧力比は、ある圧縮室が吸入完了時点からどれだけ圧縮されたかを、容積減少の結果の昇圧に着目して示す指標であって、同じ渦巻仕様であっても冷媒物性及び吸入状態量によって異なってくる。渦巻仕様としては組込容積比で定義する方が合理的である。 The compression ratio or pressure ratio is an index that indicates how much the compression chamber has been compressed from the time when suction is completed, focusing on the increase in pressure as a result of volume reduction. It depends on the amount. It is more rational to define the swirl specification by the built-in volume ratio.

通常、スクロール圧縮機では、組込容積比は固定値である。このため、吸入圧と吐出圧との圧力差が例えば比較的小さい運転条件では、圧縮機構部で冷媒を圧縮し過ぎる過圧縮が生じる。つまり、上述したように、揺動スクロールが吸入完了角から1回転偏心旋回運動し、更に連通角に到達するまで、圧縮室では圧縮が継続されるので、組込容積比まで圧縮したときに、圧縮室内の圧力が高圧を上回ると、必要以上に昇圧することによる損失、所謂過圧縮損失を生じる。 Normally, in a scroll compressor, the built-in volume ratio is a fixed value. Therefore, under operating conditions where the pressure difference between the suction pressure and the discharge pressure is relatively small, for example, overcompression occurs in which the refrigerant is excessively compressed by the compression mechanism unit. That is, as described above, the oscillating scroll makes a one-turn eccentric turning motion from the suction completion angle, and compression is continued in the compression chamber until the communication angle is further reached. Therefore, when compressed to the built-in volume ratio, When the pressure in the compression chamber exceeds the high pressure, a loss due to the pressure increase more than necessary, that is, a so-called overcompression loss occurs.

組込容積比を持つことによる過圧縮損失を低減することは、スクロール圧縮機の圧縮機構特有の課題である。その1つの手段が、連通角到達以前の圧縮室から高圧側への吐出、つまり高圧バイパスを行う、所謂リリーフ機構であり、本実施の形態1ではリリーフ機構として後述のリリーフポート295及びリリーフ弁26等を設けている。 Reducing the overcompression loss due to having the built-in volume ratio is a problem peculiar to the compression mechanism of the scroll compressor. One of the means is a so-called relief mechanism that discharges from the compression chamber to the high pressure side before reaching the communication angle, that is, performs high pressure bypass. In the first embodiment, the relief port 295 and the relief valve 26, which will be described later, are used as the relief mechanism. Etc. are provided.

本実施の形態1の低圧バイパスによるアンロードを、密閉容器21外から圧縮機構部10へ接続する配管等を用いることなく可能とした構造について、以下に説明する。 The structure that enables unloading by the low pressure bypass of the first embodiment without using a pipe or the like connecting from the outside of the closed container 21 to the compression mechanism portion 10 will be described below.

図3は、本発明の実施の形態1によるスクロール圧縮機のアンロード時の要部断面模式図である。図4は、本発明の実施の形態1によるスクロール圧縮機のアンロード時のアンロード機構の拡大模式図である。図5は、本発明の実施の形態1によるスクロール圧縮機の非アンロード時の要部断面模式図である。図6は、本発明の実施の形態1によるスクロール圧縮機の非アンロード時のアンロード機構の拡大模式図である。 FIG. 3 is a schematic cross-sectional view of a main part of the scroll compressor according to the first embodiment of the present invention when the scroll compressor is unloaded. FIG. 4 is an enlarged schematic view of the unloading mechanism at the time of unloading the scroll compressor according to the first embodiment of the present invention. FIG. 5 is a schematic cross-sectional view of a main part of the scroll compressor according to the first embodiment of the present invention when it is not unloaded. FIG. 6 is an enlarged schematic view of the unloading mechanism of the scroll compressor according to the first embodiment of the present invention when it is not unloaded.

固定スクロール11の揺動スクロール12とは反対側の端面とセパレータ29との間には、背圧室291bが形成されている。背圧室291bは、セパレータ29の低圧空間212側の面に形成された円環状の凹部で構成されている。背圧室291bの内周面118の溝には環状のシール部材33が配置されている。また、背圧室291bの外周面119の溝には環状のシール部材34が配置されている。これにより、固定スクロール11の固定台板11aとセパレータ29との間には、円筒状の吐出室291aと、環状の背圧室291bとが区画される。 A back pressure chamber 291b is formed between the end surface of the fixed scroll 11 opposite to the swing scroll 12 and the separator 29. The back pressure chamber 291b is composed of an annular recess formed on the surface of the separator 29 on the low pressure space 212 side. An annular sealing member 33 is arranged in the groove of the inner peripheral surface 118 of the back pressure chamber 291b. Further, an annular seal member 34 is arranged in the groove of the outer peripheral surface 119 of the back pressure chamber 291b. As a result, a cylindrical discharge chamber 291a and an annular back pressure chamber 291b are partitioned between the fixed base plate 11a of the fixed scroll 11 and the separator 29.

吐出室291aは、第1吐出ポート111に連通しており、第1吐出ポート111から吐出された流体によって高圧となる。背圧室291bは、固定スクロール11に形成された抽気孔112を介して圧縮途中の圧縮室9即ち中間圧圧縮室37に連通しており、中間圧となる。 The discharge chamber 291a communicates with the first discharge port 111, and the high pressure is increased by the fluid discharged from the first discharge port 111. The back pressure chamber 291b communicates with the compression chamber 9 during compression, that is, the intermediate pressure compression chamber 37, via the extraction hole 112 formed in the fixed scroll 11, and becomes an intermediate pressure.

セパレータ29には、過圧縮リリーフを行うリリーフ機構220としてリリーフポート295、リリーフ弁26及びリリーフ弁26のリフト量を制限するリリーフ弁ストッパ26bが設けられている。リリーフポート295は、入口側が背圧室291bに開口し、出口側が高圧空間211に開口している。リリーフ弁26及びリリーフ弁ストッパ26bは、リリーフポート295の出口側に設けられている。 The separator 29 is provided with a relief port 295, a relief valve 26, and a relief valve stopper 26b that limits the lift amount of the relief valve 26 as a relief mechanism 220 for performing overcompression relief. The relief port 295 opens to the back pressure chamber 291b on the inlet side and opens to the high pressure space 211 on the outlet side. The relief valve 26 and the relief valve stopper 26b are provided on the outlet side of the relief port 295.

固定スクロールの軸方向位置が固定されているスクロール圧縮機においては、運転中の渦巻歯或いは台板の変形及び熱膨張等により、渦巻歯先が、対向する相手側のスクロールの台板に接触又は干渉することがある。最終的に渦巻歯先或いは相手台板の焼付きに至る可能性があるので、この不都合を避けるため、組立時に、渦巻歯先と対向する相手側のスクロールの台板との間に歯先すきまを設定する必要があった。組立時設定歯先すきまは、流体の漏れ経路となることから、圧縮機としての効率低下の要因となっていた。 In a scroll compressor in which the axial position of the fixed scroll is fixed, the tip of the spiral tooth comes into contact with or the base plate of the scroll on the opposite side due to deformation and thermal expansion of the spiral tooth or the base plate during operation. May interfere. In order to avoid this inconvenience, there is a possibility that the tip of the spiral tooth or the base plate of the mating plate will eventually seize. Had to be set. Since the tooth tip clearance set at the time of assembly serves as a fluid leakage path, it has been a factor in reducing the efficiency of the compressor.

これに対し、本実施の形態1のスクロール圧縮機1は、背圧室291bに中間圧力を導くと共に、吐出室291aに吐出圧を導くことで、固定スクロール11に軸方向の力を付加して揺動スクロール12側に押し付ける構造となっている。所謂、軸方向コンププライアント方式を採用しているので、予め、組立時において歯先すきまを設定する必要がない。これにより、歯先すきまを極小化して漏れ損失を低減できる。 On the other hand, the scroll compressor 1 of the first embodiment applies an axial force to the fixed scroll 11 by inducing an intermediate pressure to the back pressure chamber 291b and inducing a discharge pressure to the discharge chamber 291a. The structure is such that it is pressed against the rocking scroll 12 side. Since the so-called axial compliant method is adopted, it is not necessary to set the tooth tip clearance in advance at the time of assembly. As a result, the gap between the tooth tips can be minimized and the leakage loss can be reduced.

セパレータ29には更に、圧縮室9から低圧側へ流体をバイパスすることによりスクロール圧縮機1の吐出量を制限するアンロードと、吐出量100%のフルロードとを切り替えるアンロード機構230が組み込まれている。以下、フルロードを非アンロードということがある。 The separator 29 further incorporates an unload mechanism 230 that switches between an unload that limits the discharge amount of the scroll compressor 1 by bypassing the fluid from the compression chamber 9 to the low pressure side and a full load with a discharge amount of 100%. ing. Hereinafter, full load may be referred to as non-unload.

アンロード機構230は、スプール状の制御弁31と、ばね等の弾性体32とがセパレータ29内の径方向に形成されたアンロード孔296に配置されている。アンロード孔296の径方向内側の端部には、制御弁31による高圧導入孔294aの閉止を防ぐ凸部29aが形成されている。アンロード孔296の径方向外側の端部はプラグ35cで閉じられている。 The unload mechanism 230 is arranged in an unload hole 296 in which a spool-shaped control valve 31 and an elastic body 32 such as a spring are formed in the separator 29 in the radial direction. A convex portion 29a that prevents the high-pressure introduction hole 294a from being closed by the control valve 31 is formed at the radially inner end of the unload hole 296. The radial outer end of the unload hole 296 is closed with a plug 35c.

アンロード機構230は、中間圧圧縮室37内の流体を、抽気孔112と、背圧室291bと、セパレータ29に形成されたアンロード経路とを経由して低圧空間212にバイパスすることで、アンロードを行う。アンロード経路は、背圧室291bに一端が開口する背圧室連通路293aと、低圧空間212に一端が開口する低圧空間連通路293bと、アンロード孔296内の制御弁小径部外周空間293cとから構成される。 The unload mechanism 230 bypasses the fluid in the intermediate pressure compression chamber 37 to the low pressure space 212 via the air extraction hole 112, the back pressure chamber 291b, and the unload path formed in the separator 29. Unload. The unload path includes a back pressure chamber communication passage 293a having one end opened in the back pressure chamber 291b, a low pressure space communication passage 293b having one end opening in the low pressure space 212, and a control valve small diameter portion outer peripheral space 293c in the unload hole 296. It is composed of and.

制御弁31は、アンロード孔296内にスライド自在に配置されていて、アンロード孔296内をスライドすることで、アンロード孔296内での制御弁小径部外周空間293cの位置を移動させる。つまり、制御弁31は、背圧室連通路293aが制御弁小径部外周空間293cに対して開く位置(図4)と、閉じる位置(図6)とに移動してアンロード経路を開閉し、アンロードと非アンロードとを切り替える。 The control valve 31 is slidably arranged in the unload hole 296, and by sliding in the unload hole 296, the position of the control valve small diameter portion outer peripheral space 293c in the unload hole 296 is moved. That is, the control valve 31 moves to the position where the back pressure chamber communication passage 293a opens with respect to the control valve small diameter portion outer peripheral space 293c (FIG. 4) and the position where the back pressure chamber communication passage 293a closes (FIG. 6) to open and close the unload path. Switch between unload and non-unload.

セパレータ29には、アンロード孔296に開口する、高圧導入孔294a及び低圧導入孔294bが形成されている。高圧導入孔294aは、一端が高圧空間211に開口し、他端がアンロード孔296に開口し、高圧空間211の高圧流体を、アンロード孔296において制御弁31の移動方向の一方の端面31a側空間に導入する。低圧導入孔294bは、一端がアンロード孔296に開口し、他端が低圧空間212に開口し、低圧空間212の低圧流体を、アンロード孔296において制御弁31の移動方向の他方の端面31b側の低圧導入空間297に導入する。 The separator 29 is formed with a high pressure introduction hole 294a and a low pressure introduction hole 294b that open in the unload hole 296. The high-pressure introduction hole 294a has one end opened in the high-pressure space 211 and the other end opened in the unload hole 296, and the high-pressure fluid of the high-pressure space 211 is introduced into the unload hole 296 at one end surface 31a in the moving direction of the control valve 31. Introduce to the side space. The low pressure introduction hole 294b has one end opened in the unload hole 296 and the other end opened in the low pressure space 212, and the low pressure fluid in the low pressure space 212 is introduced to the other end surface 31b in the moving direction of the control valve 31 in the unload hole 296. It is introduced in the low pressure introduction space 297 on the side.

弾性体32は、制御弁31の他方の端面31b側の低圧導入空間297に配置されており、制御弁31を高圧側(図6の右側)に付勢している。制御弁31は、運転停止時、弾性体32の付勢力により高圧側に押圧されて一方の端面31aが凸部29aに接触した状態となっている。この状態において、制御弁31は、背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bからなるアンロード経路を開放している。 The elastic body 32 is arranged in the low pressure introduction space 297 on the other end surface 31b side of the control valve 31, and urges the control valve 31 to the high pressure side (right side in FIG. 6). When the operation of the control valve 31 is stopped, the control valve 31 is pressed toward the high pressure side by the urging force of the elastic body 32, and one end surface 31a is in contact with the convex portion 29a. In this state, the control valve 31 opens an unload path including a back pressure chamber communication passage 293a, a control valve small diameter portion outer peripheral space 293c, and a low pressure space communication passage 293b.

スクロール圧縮機1の運転条件が、高低圧差が設定値以下であるとき、制御弁31の一方の端面31aに作用する高圧と他方の端面31bに作用する低圧との差圧力よりも、弾性体32による弾性力が上回る。この場合、制御弁31は端面31a方向に押圧され、図3及び図4に示すように制御弁31の一方の端面31aが凸部29aに接触する位置まで移動して停止し、背圧室連通路293aと制御弁小径部外周空間293cとが連通する。つまり背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bからなるアンロード経路が開放される。その結果、中間圧圧縮室37内の流体が、抽気孔112、背圧室291b、背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bの順に通過して低圧空間212に排出される。このため、中間圧圧縮室37が抽気孔112に連通している間、言い換えれば中間圧圧縮室37の外周側シール形成点が抽気孔112を通過するまでの間は、中間圧圧縮室37では圧縮が為されず、容量制御、すなわちアンロード状態となる。 When the operating condition of the scroll compressor 1 is that the high / low pressure difference is equal to or less than the set value, the elastic body 32 is more than the differential pressure between the high pressure acting on one end face 31a of the control valve 31 and the low pressure acting on the other end face 31b. The elastic force due to is exceeded. In this case, the control valve 31 is pressed in the direction of the end surface 31a, moves to a position where one end surface 31a of the control valve 31 comes into contact with the convex portion 29a, and stops, as shown in FIGS. The passage 293a and the control valve small diameter portion outer peripheral space 293c communicate with each other. That is, the unload path including the back pressure chamber communication passage 293a, the control valve small diameter portion outer peripheral space 293c, and the low pressure space communication passage 293b is opened. As a result, the fluid in the intermediate pressure compression chamber 37 passes through the extraction hole 112, the back pressure chamber 291b, the back pressure chamber communication passage 293a, the control valve small diameter portion outer peripheral space 293c, and the low pressure space communication passage 293b in this order, and the low pressure space 212. Is discharged to. Therefore, in the intermediate pressure compression chamber 37, the intermediate pressure compression chamber 37 communicates with the extraction hole 112, in other words, until the outer peripheral side seal forming point of the intermediate pressure compression chamber 37 passes through the extraction hole 112. No compression is performed, and capacity control, that is, an unload state is established.

スクロール圧縮機1の運転条件が、高低圧差が設定値を超える場合には、制御弁31の一方の端面31aに作用する高圧と他方の端面31bに作用する低圧との差圧力が、弾性体32による弾性力を上回る。この場合、図5及び図6に示すように制御弁31が端面31b方向にスライドし、背圧室連通路293aが制御弁31によって塞がれる。これにより、背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bからなるアンロード経路が閉じられ、アンロード状態から非アンロード状態に切り替わる。 When the operating condition of the scroll compressor 1 exceeds the set value, the difference pressure between the high pressure acting on one end face 31a of the control valve 31 and the low pressure acting on the other end face 31b is the elastic body 32. Exceeds the elastic force of. In this case, as shown in FIGS. 5 and 6, the control valve 31 slides in the direction of the end surface 31b, and the back pressure chamber communication passage 293a is blocked by the control valve 31. As a result, the unload path including the back pressure chamber communication passage 293a, the control valve small diameter portion outer peripheral space 293c, and the low pressure space communication passage 293b is closed, and the unload state is switched to the non-unload state.

このようにアンロード機構230は、スクロール圧縮機1の運転条件に応じて制御弁31の一方の端面31aと他方の端面31bとに作用する圧力が変化することで、制御弁31が自動的に移動し、アンロードと非アンロードとを自動的に切り替える。アンロードと非アンロードとの切り替え点となる上記設定値は、制御弁31の両端面に作用する圧力を考慮して弾性体32のばね定数を選択することで、所望の値に調整することが可能である。 In this way, in the unload mechanism 230, the pressure acting on one end surface 31a and the other end surface 31b of the control valve 31 changes according to the operating conditions of the scroll compressor 1, so that the control valve 31 automatically operates. Move and automatically switch between unload and non-unload. The above set value, which is the switching point between unloading and non-unloading, can be adjusted to a desired value by selecting the spring constant of the elastic body 32 in consideration of the pressure acting on both end faces of the control valve 31. Is possible.

アンロード機構230は、制御弁31の両端面に作用させる高低圧を、密閉容器21内から導いているので、密閉容器21内で完結した構造であり、密閉容器21外から圧縮機構部10へ接続する配管等が不要である。 Since the unload mechanism 230 guides the high and low pressure acting on both end faces of the control valve 31 from the inside of the closed container 21, the structure is completed inside the closed container 21, and the structure is completed from the outside of the closed container 21 to the compression mechanism portion 10. No piping is required to connect.

次に、スクロール圧縮機1の動作を、吐出室291a及び背圧室291bの作用、並びにリリーフ機構220及びアンロード機構230の動作に着目して説明する。 Next, the operation of the scroll compressor 1 will be described focusing on the actions of the discharge chamber 291a and the back pressure chamber 291b, and the operations of the relief mechanism 220 and the unload mechanism 230.

運転時、固定スクロール11は、吐出室291a及び背圧室291bの圧力を受けて、固定スクロール11外周に複数配置された径方向ガイド部材28(図2参照)によって平面位置と姿勢を規制されながら、圧縮室9内の圧力に抗して軸方向に揺動スクロール12側へ押し付けられる。 During operation, the fixed scroll 11 receives the pressure of the discharge chamber 291a and the back pressure chamber 291b, and the plane position and the posture are regulated by a plurality of radial guide members 28 (see FIG. 2) arranged on the outer periphery of the fixed scroll 11. , It is pressed toward the swing scroll 12 side in the axial direction against the pressure in the compression chamber 9.

高低圧差が小さい条件での運転時は、上述したようにアンロード機構230において制御弁31が背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bからなるアンロード経路を開放する。これにより、中間圧圧縮室37内の流体が、抽気孔112、背圧室291b及びアンロード経路等を介して低圧空間212に排出され、アンロード状態となる。 During operation under conditions where the difference between high and low pressure is small, as described above, in the unload mechanism 230, the control valve 31 provides an unload path including a back pressure chamber communication passage 293a, a control valve small diameter portion outer peripheral space 293c, and a low pressure space communication passage 293b. Open. As a result, the fluid in the intermediate pressure compression chamber 37 is discharged to the low pressure space 212 through the extraction hole 112, the back pressure chamber 291b, the unload path, and the like, and is in the unload state.

アンロード時において、吸入完了角から1/4回転までの間は、最外室9cすなわち中間圧圧縮室37で必ずしも必要ではない圧縮作用を行うことになる。しかし、吸入完了直後の容積変化に対する昇圧幅が小さい領域なので性能低下は限られたものとなり、実用上は問題ない。 At the time of unloading, the outermost chamber 9c, that is, the intermediate pressure compression chamber 37, performs a compression action that is not always necessary from the suction completion angle to 1/4 rotation. However, since the pressure-increasing range with respect to the volume change immediately after the completion of inhalation is small, the deterioration in performance is limited, and there is no problem in practical use.

高低圧差が設定値を超える条件での運転時は、上述したようにアンロード機構230において制御弁31が背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bからなるアンロード経路を閉じ、非アンロード状態となる。 During operation under the condition that the high / low pressure difference exceeds the set value, as described above, the control valve 31 in the unload mechanism 230 is composed of the back pressure chamber communication passage 293a, the control valve small diameter portion outer peripheral space 293c, and the low pressure space communication passage 293b. The load path is closed and the non-unload state is set.

また、非アンロードで低圧縮比の運転時に背圧室291bに連通する中間圧圧縮室37の圧力が吐出圧を上回ると、リリーフ弁26がその弾性力に逆らって持ち上げられる。揺動スクロール12が吸入完了角から1回転偏心旋回運動し、更に連通角に到達するまでの間に、中間圧圧縮室37である第2室9b内の圧力が吐出圧を上回ると、リリーフ弁26がその弾性力に逆らって持ち上げられる。これにより、背圧室291bの流体がリリーフポート295から高圧空間211内にリリーフされ、過圧縮損失が低減される。 Further, when the pressure of the intermediate pressure compression chamber 37 communicating with the back pressure chamber 291b during non-unloading and low compression ratio operation exceeds the discharge pressure, the relief valve 26 is lifted against the elastic force. When the pressure in the second chamber 9b, which is the intermediate pressure compression chamber 37, exceeds the discharge pressure while the swing scroll 12 makes a one-turn eccentric turning motion from the suction completion angle and further reaches the communication angle, the relief valve is used. 26 is lifted against its elastic force. As a result, the fluid in the back pressure chamber 291b is relieved from the relief port 295 into the high pressure space 211, and the overcompression loss is reduced.

以上に説明した過圧縮リリーフとアンロードの何れの場合も、圧縮室9から直接、高圧空間211又は低圧空間212に流体を排出するのではなく、背圧室291bを経由して排出するため、背圧室291bとその前後の流路とがバッファとなる。これにより、圧縮室9内の圧力変動と、過圧縮リリーフ及びアンロード側の脈動とが、ダイレクトに影響し合うことのない安定した過圧縮損失の低減及び容量制御を実現できる。 In both cases of overcompression relief and unloading described above, the fluid is not discharged directly from the compression chamber 9 into the high pressure space 211 or the low pressure space 212, but is discharged via the back pressure chamber 291b. The back pressure chamber 291b and the flow paths before and after it serve as a buffer. As a result, stable reduction of overcompression loss and capacity control can be realized in which the pressure fluctuation in the compression chamber 9 and the overcompression relief and the pulsation on the unload side do not directly affect each other.

また、アンロード時、抽気孔112が開口している圧縮室9の実質的な吸入完了は、抽気孔112が開口しなくなったタイミングとなる。このため、アンロード時の圧縮室9の昇圧部分の圧力及びその受圧面積である圧縮室9の平面投影面積は、非アンロード時よりも減少する。したがって、アンロード時は、固定スクロール11を軸方向上向きに押し上げて揺動スクロール12から引き離そうとする力が、非アンロード時よりも減少する。このため、固定スクロール11に作用する軸方向下向きの力が、軸方向上向きの力に比べて過剰とならないように、アンロード時は非アンロード時よりも背圧力を減らす必要がある。 Further, at the time of unloading, the substantially suction completion of the compression chamber 9 in which the extraction hole 112 is open is the timing when the extraction hole 112 is no longer opened. Therefore, the pressure of the boosted portion of the compression chamber 9 at the time of unloading and the plane projected area of the compression chamber 9 which is the pressure receiving area thereof are smaller than those at the time of non-unloading. Therefore, at the time of unloading, the force for pushing up the fixed scroll 11 upward in the axial direction and pulling it away from the swing scroll 12 is less than that at the time of non-unloading. Therefore, it is necessary to reduce the back pressure during unloading as compared with non-unloading so that the axial downward force acting on the fixed scroll 11 does not become excessive as compared with the axial upward force.

しかし、何らかの理由により背圧室291bに中間圧が残った状態でアンロードとなると、固定スクロール11を揺動スクロール12に押し付けようとする背圧力が減少しないことになる。この場合、軸方向コンプライアントの押付け力、つまり軸方向下向きの力が過剰となり、摺動損失の増大から歯先の焼付きに至るといった不具合が生じる可能性がある。 However, if the unloading is performed with the intermediate pressure remaining in the back pressure chamber 291b for some reason, the back pressure for pressing the fixed scroll 11 against the swing scroll 12 does not decrease. In this case, the pressing force of the axial compliant, that is, the downward force in the axial direction becomes excessive, and there is a possibility that problems such as an increase in sliding loss and seizure of the tooth tip may occur.

本実施の形態1では、アンロードと背圧室291bの圧力開放とが同じ制御弁31という要素によって行われるため、背圧室291bに中間圧が残った状態でアンロードになることがなく、このような不具合が生じることが避けられる。 In the first embodiment, since the unloading and the pressure release of the back pressure chamber 291b are performed by the same element called the control valve 31, the unloading does not occur with the intermediate pressure remaining in the back pressure chamber 291b. It is possible to avoid such a problem.

以上説明したように、本実施の形態1は、セパレータ29にアンロード孔296が形成されており、制御弁31がアンロード孔296内で移動することでアンロード経路を開閉するアンロード機構230を備えている。制御弁31の位置を移動させるために制御弁31の両端面に作用させる低圧及び高圧を、密閉容器21内から導く構成とし、アンロードに係る構造が、密閉容器21内で完結している。このため、アンロードを、密閉容器21外から圧縮機構部10へ配管接続することなく行うことができる。したがって、従来のように圧縮機構部10と密閉容器21外の配管とを接続したり、その配管に弁類を備えたりする必要が無く、コストの低減を図ることができる。 As described above, in the first embodiment, the unloading hole 296 is formed in the separator 29, and the control valve 31 moves in the unloading hole 296 to open and close the unloading path 230. It is equipped with. The low pressure and high pressure acting on both end faces of the control valve 31 to move the position of the control valve 31 are guided from the inside of the closed container 21, and the structure related to unloading is completed in the closed container 21. Therefore, unloading can be performed without connecting the pipe from the outside of the closed container 21 to the compression mechanism portion 10. Therefore, it is not necessary to connect the compression mechanism portion 10 to the pipe outside the closed container 21 or to provide valves in the pipe as in the conventional case, and the cost can be reduced.

また、本実施の形態1では、アンロードと非アンロードとの切り替えが運転条件に応じて自動的に切り替えられる。つまり、非アンロードからアンロードへの移行及びアンロードから非アンロードへの復帰が自動で行われる。このため、外部からの切り替え操作のための配管接続によるコスト増大を避けることができ、また、切り替え弁等の操作が不要である。これにより、幅広い容量で効率の良いスクロール圧縮機1を得ることができる。 Further, in the first embodiment, switching between unloading and non-unloading is automatically switched according to the operating conditions. That is, the transition from non-unload to unload and the return from unload to non-unload are automatically performed. Therefore, it is possible to avoid an increase in cost due to the pipe connection for the switching operation from the outside, and it is not necessary to operate the switching valve or the like. This makes it possible to obtain an efficient scroll compressor 1 with a wide range of capacities.

本実施の形態1において、制御弁31は、高低圧差が予め設定した設定値を超えるとき、アンロード経路を閉、高低圧差が設定値以下のとき、アンロード経路を開とする。このように、高低圧差に応じてアンロードと非アンロードとを切り替えることができる。 In the first embodiment, the control valve 31 closes the unload path when the high / low pressure difference exceeds a preset value, and opens the unload path when the high / low pressure difference is equal to or less than the set value. In this way, unloading and non-unloading can be switched according to the difference between high and low pressure.

本実施の形態1において、アンロード機構230は、制御弁31を高圧側に付勢して、制御弁31を、アンロード経路を開放する位置に位置させる弾性体32を備えている。制御弁31は、運転条件に応じて変化する高低圧差に応じた差圧力が弾性体32の付勢力を上回ることで、アンロード経路を開放する位置から閉じる位置に移動する。これにより、非アンロードからアンロードへの移行及びアンロードから非アンロードへの復帰を自動で行える。 In the first embodiment, the unload mechanism 230 includes an elastic body 32 that urges the control valve 31 to the high pressure side to position the control valve 31 at a position that opens the unload path. The control valve 31 moves from the position where the unload path is opened to the position where the unload path is closed when the differential pressure corresponding to the high / low pressure difference that changes according to the operating conditions exceeds the urging force of the elastic body 32. As a result, the transition from non-unload to unload and the return from unload to non-unload can be automatically performed.

本実施の形態1において、アンロード孔296はセパレータ29に形成されている。アンロード経路は、背圧室291bに一端が開口する背圧室連通路293aと、低圧空間212に一端が開口する低圧空間連通路293bと、制御弁小径部外周空間293cとから構成されている。セパレータ29には、制御弁31の一方の端面31bが面する空間に低圧空間212の低圧を導入する低圧導入孔294bと、制御弁31の他方の端面31aが面する空間に高圧空間211の高圧を導入する高圧導入孔294aとが形成されている。この構造により、制御弁31の両端面に密閉容器21内から高低圧を作用させることができる。 In the first embodiment, the unload hole 296 is formed in the separator 29. The unload path is composed of a back pressure chamber communication passage 293a having one end opened in the back pressure chamber 291b, a low pressure space communication passage 293b having one end opening in the low pressure space 212, and a control valve small diameter portion outer peripheral space 293c. .. In the separator 29, the low pressure introduction hole 294b for introducing the low pressure of the low pressure space 212 into the space facing one end surface 31b of the control valve 31 and the high pressure of the high pressure space 211 in the space facing the other end surface 31a of the control valve 31. A high-pressure introduction hole 294a for introducing the above is formed. With this structure, high and low pressure can be applied to both end faces of the control valve 31 from inside the closed container 21.

また、本実施の形態1では、リリーフポート295及びアンロード経路がセパレータ29に形成され、それぞれが背圧室291bに連通し、背圧室291bが、固定スクロール11に設けた抽気孔112を介して中間圧圧縮室37に連通している。リリーフ機構220とアンロード機構230とで共通の抽気孔112が中間圧圧縮室37に開口する構成により、過圧縮リリーフ及びアンロードの何れにおいても、圧縮室9に開口するポートは抽気孔112のみである。したがって、過圧縮リリーフ及びアンロードの各々について、独立のポートが必要であった従来の構成に比べて、圧縮室9に開口するポート数を最少とすることができる。 Further, in the first embodiment, the relief port 295 and the unload path are formed in the separator 29, each communicating with the back pressure chamber 291b, and the back pressure chamber 291b passes through the air extraction hole 112 provided in the fixed scroll 11. It communicates with the intermediate pressure compression chamber 37. Due to the configuration in which the extraction hole 112 common to the relief mechanism 220 and the unload mechanism 230 opens in the intermediate pressure compression chamber 37, the extraction hole 112 is the only port that opens in the compression chamber 9 in both overcompression relief and unloading. Is. Therefore, the number of ports opened in the compression chamber 9 can be minimized as compared with the conventional configuration in which independent ports are required for each of the overcompression relief and the unload.

本実施の形態1では、吐出室291a及び背圧室291bの圧力による固定スクロール11の揺動スクロール12側への押圧により、歯先すきまを最小化でき、圧縮効率を高効率化することができる。また、背圧室からの高圧側リリーフによる低圧縮比条件での過圧縮損失低減と併せて、幅広い条件及び容量範囲で高効率のスクロール圧縮機を得ることが可能となる。 In the first embodiment, the tooth tip clearance can be minimized and the compression efficiency can be improved by pressing the fixed scroll 11 toward the swing scroll 12 side by the pressure of the discharge chamber 291a and the back pressure chamber 291b. .. Further, in addition to reducing the overcompression loss under the low compression ratio condition by the high pressure side relief from the back pressure chamber, it becomes possible to obtain a highly efficient scroll compressor under a wide range of conditions and capacitance range.

なお、本実施の形態1では、制御弁31で背圧室連通路293aを塞ぐことで背圧室連通路293a、制御弁小径部外周空間293c、低圧空間連通路293bからなるアンロード経路を閉じるようにしているが、低圧空間連通路293bを塞ぐことでアンロード経路を閉じるようにしてもよい。 In the first embodiment, the back pressure chamber communication passage 293a is closed by the control valve 31 to close the unload path including the back pressure chamber communication passage 293a, the control valve small diameter portion outer peripheral space 293c, and the low pressure space communication passage 293b. However, the unload path may be closed by blocking the low pressure space communication passage 293b.

実施の形態2.
上記実施の形態1では、アンロード孔296がセパレータ29に形成されていたが、実施の形態2では、固定スクロール11にアンロード孔117が形成されている。以下、実施の形態2が実施の形態1と異なる点を中心に説明する。
Embodiment 2.
In the first embodiment, the unload hole 296 is formed in the separator 29, but in the second embodiment, the unload hole 117 is formed in the fixed scroll 11. Hereinafter, the points where the second embodiment is different from the first embodiment will be mainly described.

図7は、本発明の実施の形態2によるスクロール圧縮機の縦断面模式図である。図8は、本発明の実施の形態2によるスクロール圧縮機の要部断面模式図である。図8において点線で囲った部分がアンロード機構230に相当する。図9は、本発明の実施の形態2によるスクロール圧縮機のアンロード時のアンロード機構の拡大模式図である。図10は、本発明の実施の形態2によるスクロール圧縮機の非アンロード時のアンロード機構の拡大模式図である。図8~図10において操作圧導入横孔124及び受圧ポケット115に示した矢印は油圧の向きを示している。 FIG. 7 is a schematic vertical cross-sectional view of the scroll compressor according to the second embodiment of the present invention. FIG. 8 is a schematic cross-sectional view of a main part of the scroll compressor according to the second embodiment of the present invention. The portion surrounded by the dotted line in FIG. 8 corresponds to the unload mechanism 230. FIG. 9 is an enlarged schematic view of the unloading mechanism at the time of unloading the scroll compressor according to the second embodiment of the present invention. FIG. 10 is an enlarged schematic view of the unloading mechanism of the scroll compressor at the time of non-unloading according to the second embodiment of the present invention. In FIGS. 8 to 10, the arrows shown in the operating pressure introduction side hole 124 and the pressure receiving pocket 115 indicate the direction of the hydraulic pressure.

図11は、図7の固定スクロールを渦巻側から見た図である。図12は、図7の固定スクロールを反渦巻側から見た図である。図13は、図7の揺動スクロールを渦巻側から見た図である。図14は、図7の揺動スクロールを反渦巻側から見た図である。 FIG. 11 is a view of the fixed scroll of FIG. 7 as viewed from the spiral side. FIG. 12 is a view of the fixed scroll of FIG. 7 as viewed from the anti-swirl side. FIG. 13 is a view of the swing scroll of FIG. 7 as viewed from the spiral side. FIG. 14 is a view of the swing scroll of FIG. 7 as viewed from the anti-swirl side.

図15は、本発明の実施の形態2によるスクロール圧縮機のアンロード時の渦巻組み合わせ状態を示す平面形状図である。図16は、図15のアンロード機構の拡大形状図である。図17は、図7のアンロード機構の制御弁の形状図である。図18は、図7のアンロード機構のばね座36の形状図である。図19は、図7のアンロード機構のプラグの形状図である。図20は、本発明の実施の形態2によるスクロール圧縮機の非アンロード時の渦巻組み合わせ状態を示す平面形状図である。図21は、図20のアンロード機構の拡大形状図である。 FIG. 15 is a plan view showing a spiral combination state at the time of unloading of the scroll compressor according to the second embodiment of the present invention. FIG. 16 is an enlarged view of the unloading mechanism of FIG. FIG. 17 is a shape diagram of the control valve of the unload mechanism of FIG. 7. FIG. 18 is a shape view of the spring seat 36 of the unload mechanism of FIG. 7. FIG. 19 is a shape diagram of the plug of the unload mechanism of FIG. 7. FIG. 20 is a plan view showing a spiral combination state when the scroll compressor according to the second embodiment of the present invention is not unloaded. 21 is an enlarged view of the unloading mechanism of FIG. 20.

本実施の形態2のアンロード機構230は、スプール状の制御弁31と、ばね等の弾性体32と、ばね座36とが、固定スクロール11の固定台板11aに形成されたアンロード孔117に配置されている。アンロード孔117は、図11及び図12に示すように、固定スクロール11の固定台板11aの外周から渦巻中心を通過せずに固定台板11aを貫通して形成されている。アンロード孔117の一端側は図16に示すようにプラグ35aで塞がれ、他端側はばね座36で塞がれている。 In the unload mechanism 230 of the second embodiment, the spool-shaped control valve 31, the elastic body 32 such as a spring, and the spring seat 36 are unload holes 117 formed in the fixed base plate 11a of the fixed scroll 11. Is located in. As shown in FIGS. 11 and 12, the unload hole 117 is formed so as to penetrate the fixed base plate 11a from the outer periphery of the fixed base plate 11a of the fixed scroll 11 without passing through the spiral center. As shown in FIG. 16, one end side of the unload hole 117 is closed with a plug 35a, and the other end side is closed with a spring seat 36.

アンロード機構230は、中間圧圧縮室37内の流体を、抽気孔112と、背圧室291bと、固定台板11aに形成されたアンロード孔117に構成されたアンロード経路とを介して低圧空間212にバイパスすることで、アンロードを行う。アンロード経路は、背圧室291bに一端が開口する背圧室連通路113と、低圧空間212に一端が開口する低圧空間連通路114と、背圧室連通路113の他端と低圧空間連通路114の他端とを連通する制御弁小径部外周空間120とから構成される。制御弁小径部外周空間120は、アンロード孔117の一部である。 The unload mechanism 230 allows the fluid in the intermediate pressure compression chamber 37 to pass through the bleeding hole 112, the back pressure chamber 291b, and the unload path configured in the unload hole 117 formed in the fixed base plate 11a. Unloading is performed by bypassing to the low pressure space 212. The unload path consists of a back pressure chamber communication passage 113 having one end opened in the back pressure chamber 291b, a low pressure space communication passage 114 having one end opening in the low pressure space 212, and the other end of the back pressure chamber communication passage 113 and a low pressure space connection. It is composed of a control valve small diameter portion outer peripheral space 120 that communicates with the other end of the passage 114. The control valve small diameter portion outer peripheral space 120 is a part of the unload hole 117.

制御弁31は、アンロード孔117にスライド自在に配置されて、一方の端面31aとばね座36との間に配置された弾性体32によってアンロード孔117のプラグ35a方向(図16の左方)に押圧されている。これにより、制御弁31は、他方の端面31bがプラグ35aの先端に当接した状態でアンロード孔117内に配置されている。プラグ35aは図16及び図19に示すように先端部が後方のアンロード孔117閉止部よりも小径に形成されており、固定スクロール11に形成されている後述の操作圧導入孔116を塞がないようになっている。なお、図7~図9では、プラグ35aの形状等が上記の説明と異なるが、図7~図9は模式図であって、図19に示した形状も具体的形状の一例に過ぎない。 The control valve 31 is slidably arranged in the unload hole 117, and is oriented toward the plug 35a of the unload hole 117 (left side in FIG. 16) by the elastic body 32 arranged between one end surface 31a and the spring seat 36. ) Is pressed. As a result, the control valve 31 is arranged in the unload hole 117 with the other end surface 31b in contact with the tip of the plug 35a. As shown in FIGS. 16 and 19, the tip of the plug 35a is formed to have a smaller diameter than the rear unload hole 117 closing portion, and blocks the operation pressure introduction hole 116 described later formed in the fixed scroll 11. There is no such thing. In FIGS. 7 to 9, the shape of the plug 35a and the like are different from the above description, but FIGS. 7 to 9 are schematic views, and the shape shown in FIG. 19 is only an example of a specific shape.

ばね座36は図18に示すように、先端部がアンロード孔117の径よりも小径に形成され、その小径部分外周とアンロード孔117内面の間に弾性体32が挿入される。ばね座36の中心部には均圧用の細孔36aが貫通している。 As shown in FIG. 18, the tip of the spring seat 36 is formed to have a diameter smaller than the diameter of the unload hole 117, and the elastic body 32 is inserted between the outer circumference of the small diameter portion and the inner surface of the unload hole 117. A pressure equalizing pore 36a penetrates the central portion of the spring seat 36.

固定スクロール11の固定台板11a及び固定渦巻歯11bには、固定渦巻歯11bの立設方向に貫通する操作圧導入孔116が形成されている。操作圧導入孔116の一端はアンロード孔117に、制御弁31のプラグ35a側の端面31bが面する操作圧導入空間298で、開口している。操作圧導入孔116の他端は、固定渦巻歯11bの歯先面に形成された円形で凹状の受圧ポケット115に開口している。受圧ポケット115の径は、後述の操作圧導入縦孔125の揺動軌跡を包含できる径に設定されており、受圧ポケット115は操作圧導入縦孔125に常に連通している。 The fixed base plate 11a and the fixed spiral tooth 11b of the fixed scroll 11 are formed with an operating pressure introduction hole 116 that penetrates the fixed spiral tooth 11b in the vertical direction. One end of the operating pressure introduction hole 116 is opened in the unload hole 117 in the operating pressure introduction space 298 facing the end surface 31b on the plug 35a side of the control valve 31. The other end of the operating pressure introduction hole 116 is opened in a circular and concave pressure receiving pocket 115 formed on the tooth tip surface of the fixed spiral tooth 11b. The diameter of the pressure receiving pocket 115 is set to a diameter that can include the swing locus of the operating pressure introducing vertical hole 125, which will be described later, and the pressure receiving pocket 115 always communicates with the operating pressure introducing vertical hole 125.

揺動スクロール12の揺動台板12aには、図8及び図14に示すように揺動スクロール12のボス部121内から給油圧を固定スクロール11の受圧ポケット115に導く操作圧導入横孔124及び操作圧導入縦孔125が形成されている。操作圧導入横孔124は、揺動台板12aの平面方向横穴であり、操作圧導入縦孔125は、操作圧導入横孔124から縦に延びて揺動台板12a上面に開口する縦穴である。 As shown in FIGS. 8 and 14, the rocking base plate 12a of the rocking scroll 12 has an operating pressure introduction side hole 124 that guides hydraulic pressure from inside the boss portion 121 of the rocking scroll 12 to the pressure receiving pocket 115 of the fixed scroll 11. And the operating pressure introduction vertical hole 125 is formed. The operating pressure introduction horizontal hole 124 is a horizontal horizontal hole of the rocking base plate 12a, and the operating pressure introduction vertical hole 125 is a vertical hole extending vertically from the operating pressure introduction horizontal hole 124 and opening on the upper surface of the rocking base plate 12a. be.

軸15の回転により給油ポンプ27が駆動されて潤滑油22が給油孔152を上昇し、ボス部121の上部内側に供給される。ボス部121に供給された潤滑油22は、操作圧導入横孔124、操作圧導入縦孔125、受圧ポケット115、操作圧導入孔116を経てアンロード孔117に供給される。これにより、制御弁31の操作圧導入空間298側の端面31bに、揺動スクロール12のボス部121内上部から下流側の抵抗と、給油ポンプ27のポンプ圧とに応じた油圧が作用する。 The lubrication pump 27 is driven by the rotation of the shaft 15, and the lubricating oil 22 rises in the lubrication hole 152 and is supplied to the inside of the upper part of the boss portion 121. The lubricating oil 22 supplied to the boss portion 121 is supplied to the unload hole 117 via the operating pressure introduction horizontal hole 124, the operating pressure introduction vertical hole 125, the pressure receiving pocket 115, and the operating pressure introduction hole 116. As a result, hydraulic pressure corresponding to the resistance from the upper part to the downstream side of the boss portion 121 of the swing scroll 12 and the pump pressure of the refueling pump 27 acts on the end surface 31b on the operating pressure introduction space 298 side of the control valve 31.

制御弁31の操作圧導入空間298と反対側の端面31aには常に低圧が作用している。これは、制御弁31の端面31aが面する空間が、ばね座36に形成された細孔36aによって低圧空間212と均圧していることに依る。 A low pressure always acts on the end face 31a on the opposite side of the operating pressure introduction space 298 of the control valve 31. This is because the space facing the end surface 31a of the control valve 31 is equalized with the low pressure space 212 by the pores 36a formed in the spring seat 36.

スクロール圧縮機1が比較的低速で運転される、つまり、軸15の回転数が設定回転数以下であるとき、給油ポンプ27の給油量は少なく、給油圧は低い。したがって、制御弁31の操作圧導入空間298側の端面31bへの作用圧由来の力よりも、操作圧導入空間298と反対側の端面31aへの作用圧由来の力と弾性体32の弾性力の合計の方が上回る。この場合、図15及び図16に示すように、制御弁31がプラグ35a側に移動してプラグ35aの先端に当接する。これにより、図9に示すように背圧室連通路113と、制御弁小径部外周空間120と、低圧空間連通路114とが連通し、アンロード経路が開放される。 When the scroll compressor 1 is operated at a relatively low speed, that is, when the rotation speed of the shaft 15 is equal to or less than the set rotation speed, the refueling amount of the refueling pump 27 is small and the refueling oil pressure is low. Therefore, the force derived from the acting pressure on the end face 31a on the opposite side of the operating pressure introduction space 298 and the elastic force of the elastic body 32 rather than the force derived from the acting pressure on the end surface 31b on the operating pressure introduction space 298 side of the control valve 31. The total of is higher. In this case, as shown in FIGS. 15 and 16, the control valve 31 moves toward the plug 35a and comes into contact with the tip of the plug 35a. As a result, as shown in FIG. 9, the back pressure chamber communication passage 113, the control valve small diameter portion outer peripheral space 120, and the low pressure space communication passage 114 communicate with each other, and the unload path is opened.

その結果、中間圧圧縮室37内の流体が、抽気孔112、背圧室291b、背圧室連通路113、制御弁小径部外周空間120、低圧空間連通路114の順に通過して低圧空間212に排出される。このため、中間圧圧縮室37が抽気孔112に連通している間、言い換えれば中間圧圧縮室37の外周側シール形成点が抽気孔112を通過するまでの間は、中間圧圧縮室37では圧縮が為されず、容量制御、すなわちアンロード状態となる。 As a result, the fluid in the intermediate pressure compression chamber 37 passes through the extraction hole 112, the back pressure chamber 291b, the back pressure chamber communication passage 113, the control valve small diameter portion outer peripheral space 120, and the low pressure space communication passage 114 in this order, and the low pressure space 212. Is discharged to. Therefore, in the intermediate pressure compression chamber 37, the intermediate pressure compression chamber 37 communicates with the extraction hole 112, in other words, until the outer peripheral side seal forming point of the intermediate pressure compression chamber 37 passes through the extraction hole 112. No compression is performed, and capacity control, that is, an unload state is established.

軸15の回転数が設定回転数を超えると、給油ポンプ27の給油量が増大し、給油圧が上昇する。これにより、制御弁31の操作圧導入空間298側の端面31bへの作用圧由来の力が、操作圧導入空間298と反対側の端面31aへの作用圧由来の力と弾性体32の弾性力の合計を上回る。このとき、図10、図20及び図21に示すように、制御弁31がプラグ35aから離れて弾性体32を圧縮する方向に移動し、図10に示すように低圧空間連通路114が制御弁31によって塞がれる。これにより、背圧室連通路113、制御弁小径部外周空間120及び低圧空間連通路114からなるアンロード経路が閉じられ、アンロード状態から非アンロード状態に切り替わる。 When the rotation speed of the shaft 15 exceeds the set rotation speed, the amount of refueling of the refueling pump 27 increases, and the refueling oil pressure rises. As a result, the force derived from the acting pressure on the end face 31b on the operating pressure introduction space 298 side of the control valve 31, the force derived from the acting pressure on the end face 31a on the opposite side of the operating pressure introduction space 298, and the elastic force of the elastic body 32. Exceeds the total of. At this time, as shown in FIGS. 10, 20, and 21, the control valve 31 moves away from the plug 35a in the direction of compressing the elastic body 32, and as shown in FIG. 10, the low-pressure space communication passage 114 is the control valve. It is blocked by 31. As a result, the unload path including the back pressure chamber communication passage 113, the control valve small diameter portion outer peripheral space 120, and the low pressure space communication passage 114 is closed, and the unload state is switched to the non-unload state.

このようにアンロード機構230は、スクロール圧縮機1の運転回転数に応じて制御弁31の両端面に作用する圧力が変化することで、制御弁31が自動的に移動し、アンロードと非アンロードとを自動的に切り替える。アンロードと非アンロードとの切り替え点となる上記設定回転数は、制御弁31の両端面に作用する圧力を考慮して弾性体32のばね定数を選択することにより、所望の値に調整することが可能である。 In this way, in the unload mechanism 230, the pressure acting on both end faces of the control valve 31 changes according to the operating rotation speed of the scroll compressor 1, so that the control valve 31 automatically moves, and unloading and non-loading are performed. Automatically switch between unloading. The set rotation speed, which is the switching point between unloading and non-unloading, is adjusted to a desired value by selecting the spring constant of the elastic body 32 in consideration of the pressure acting on both end faces of the control valve 31. It is possible.

アンロード機構230は、制御弁31の一方の端面31a及び他方の端面31bに作用させる低圧及び操作圧である油圧を、密閉容器21内から導いている。つまり、アンロード機構230は、密閉容器21内で完結した構造であり、密閉容器21外から圧縮機構部10へ接続する配管等が不要である。 The unload mechanism 230 guides low pressure and hydraulic pressure, which are operating pressures, acting on one end surface 31a and the other end surface 31b of the control valve 31 from the inside of the closed container 21. That is, the unload mechanism 230 has a structure completed inside the closed container 21, and does not require a pipe or the like to connect from the outside of the closed container 21 to the compression mechanism portion 10.

以上説明したように、本実施の形態2によれば、実施の形態1と同様に、軸方向押付による歯先すきまの漏れ損失低減、高圧側リリーフによる低圧縮比条件での過圧縮損失低減の効果を得られる。また、本実施の形態2によれば実施の形態1と同様に、密閉容器内で完結したアンロード機構による容量制御の、圧縮室に開口するポート数最少での構成、圧縮室内の圧力変動とリリーフ側及びアンロード側の脈動とが影響し合わないことによる安定的動作、を実現できる。また、実施の形態2によれば実施の形態1と同様に、アンロードと背圧室の圧力開放とが制御弁という単一要素の動作によって行われるため信頼性が高い、広運転範囲、高効率のスクロール圧縮機を、低コストで得ることができる。 As described above, according to the second embodiment, as in the first embodiment, the leakage loss of the tooth tip clearance due to the axial pressing is reduced, and the overcompression loss is reduced under the low compression ratio condition by the high pressure side relief. You can get the effect. Further, according to the second embodiment, as in the first embodiment, the capacity is controlled by the unloading mechanism completed in the closed container, the configuration with the minimum number of ports opened in the compression chamber, and the pressure fluctuation in the compression chamber. Stable operation can be realized because the pulsations on the relief side and the unload side do not affect each other. Further, according to the second embodiment, as in the first embodiment, the unloading and the pressure release of the back pressure chamber are performed by the operation of a single element called the control valve, so that the reliability is high, the wide operating range, and the high. An efficient scroll compressor can be obtained at low cost.

また、本実施の形態2では、回転数に依存した油圧をアンロード機構の操作圧として利用することで実施の形態1に比べて、容量制御のより広範囲での利用が可能となる。空調用途の部分負荷条件では、負荷率が下がる程、より低圧縮比、より低差圧となる傾向がある。負荷率低下に運転回転数を減じることだけで対応しようとすると、低速運転に起因する漏れ損失の相対的増大を招くため、アンロード運転により非アンロード運転時よりも最低回転数を高く保つことが有効である。 Further, in the second embodiment, by using the hydraulic pressure depending on the rotation speed as the operating pressure of the unload mechanism, the capacity control can be used in a wider range as compared with the first embodiment. Under partial load conditions for air conditioning applications, the lower the load factor, the lower the compression ratio and the lower the differential pressure. If an attempt is made to respond to a decrease in the load factor simply by reducing the operating rotation speed, a relative increase in leakage loss due to low-speed operation will occur. Therefore, the minimum rotation speed should be maintained higher by unloading operation than during non-unloading operation. Is valid.

高低圧は冷凍サイクルの高温熱源と低温熱源の温度差に依存するので、上述の部分負荷条件のように温度差小と空調負荷減が相関を持っている場合は、実施の形態1の高低圧差依存でアンロード運転に移行するような機構で有効である。これに対して、例えば1台の室外機と多数の室内機で構成されるシステムでは、高低圧差に依らずアンロードした方が良い場合がある。高外気温時に室内機1台のみの冷房運転を行なうような場合、室内外の気温差に依存する高低圧差は大きくて、室内機の運転台数減により空調負荷が室外機容量に比して小さくなるので、アンロードするのが望ましい。 Since the high and low pressure depends on the temperature difference between the high temperature heat source and the low temperature heat source in the refrigeration cycle, when the small temperature difference and the reduction in the air conditioning load have a correlation as in the above partial load condition, the high and low pressure difference in the first embodiment. It is effective in a mechanism that shifts to unload operation depending on the dependency. On the other hand, for example, in a system composed of one outdoor unit and a large number of indoor units, it may be better to unload regardless of the difference in high and low pressure. When cooling operation of only one indoor unit is performed at high outside temperature, the difference in high and low pressure depending on the temperature difference between indoor and outdoor is large, and the air conditioning load is small compared to the capacity of the outdoor unit due to the decrease in the number of indoor units in operation. Therefore, it is desirable to unload it.

アンロードせずに運転回転数減のみで、室内機稼働台数極少に対応した室外機容量制御を行なうと、圧縮機は低速運転となり前述のように漏れ損失増大による性能低下を招く。また、差圧は温度差に起因するので圧縮機構の各部材に作用する差圧由来の荷重(例えば軸受負荷)が小さくなるわけではないので、低速高差圧運転による軸受焼き付き等を避けるために限界を超えた低回転数運転は出来ない。つまり、差圧依存で起動するアンロード機構が有効ではない運転条件が存在する。 If the outdoor unit capacity control corresponding to the minimum number of indoor units in operation is performed by reducing the operating rotation speed without unloading, the compressor operates at a low speed, which causes performance deterioration due to an increase in leakage loss as described above. In addition, since the differential pressure is caused by the temperature difference, the load derived from the differential pressure acting on each member of the compression mechanism (for example, the bearing load) is not small, so in order to avoid bearing seizure due to low-speed high differential pressure operation. It is not possible to operate at a low speed that exceeds the limit. That is, there are operating conditions in which the unloading mechanism that starts depending on the differential pressure is not effective.

実施の形態2の回転数依存でのアンロード運転移行によれば、低差圧ではないがシステムの容量に比して必要な冷凍能力が小さい、という場合に対応するときにも著しい低回転数運転を回避することが可能となるという効果がある。 According to the rotation speed-dependent unload operation transition of the second embodiment, the rotation speed is significantly low even when the refrigerating capacity required is small compared to the capacity of the system although the pressure difference is not low. There is an effect that it becomes possible to avoid driving.

本実施の形態2のスクロール圧縮機1は、軸15の下端部に給油ポンプ27を備える。給油ポンプ27は、軸15の回転により、密閉容器21の下部に溜められた潤滑油22を、軸15に貫通して設けられた給油孔152を介して圧縮機構部10に供給する。制御弁31の操作圧導入空間298側の端面31bには、給油ポンプ27から供給される潤滑油22の油圧が作用する。また、制御弁31の操作圧導入空間298と反対側の端面31aには低圧空間の低圧が作用する。この構成により、運転条件に応じて、制御弁31の両端面に作用する圧力差が変化し、制御弁31の位置が移動してアンロード経路の開閉を行うことができる。 The scroll compressor 1 of the second embodiment includes a refueling pump 27 at the lower end of the shaft 15. The lubrication pump 27 supplies the lubricating oil 22 stored in the lower part of the closed container 21 to the compression mechanism portion 10 through the lubrication hole 152 provided through the shaft 15 by the rotation of the shaft 15. The hydraulic pressure of the lubricating oil 22 supplied from the lubrication pump 27 acts on the end surface 31b on the operating pressure introduction space 298 side of the control valve 31. Further, a low pressure in the low pressure space acts on the end surface 31a on the side opposite to the operating pressure introduction space 298 of the control valve 31. With this configuration, the pressure difference acting on both end faces of the control valve 31 changes according to the operating conditions, and the position of the control valve 31 can be moved to open and close the unload path.

本実施の形態2において、制御弁31は、軸15の回転数が予め設定した設定回転数を超えるとき、アンロード経路を閉、回転数が設定回転数以下のとき、アンロード経路を開とする。このように、軸15の回転数に応じてアンロードと非アンロードとを切り替えることができる。 In the second embodiment, the control valve 31 closes the unload path when the rotation speed of the shaft 15 exceeds the preset rotation speed, and opens the unload path when the rotation speed is equal to or less than the set rotation speed. do. In this way, unloading and non-unloading can be switched according to the rotation speed of the shaft 15.

本実施の形態2において、アンロード孔117は固定スクロール11に形成されている。アンロード経路は、背圧室291bに一端が開口する背圧室連通路113と、低圧空間212に一端が開口する低圧空間連通路114と、制御弁小径部外周空間120とから構成されている。アンロード孔117内のばね座36には、制御弁31の反操作圧導入空間側である端面31a側に低圧空間212の低圧を導入する細孔36aが形成されている。また、固定スクロール11には、制御弁31の端面31b側の操作圧導入空間298に給油ポンプ27からの油圧を供給する操作圧導入経路である、受圧ポケット115及び操作圧導入孔116が形成されている。この構造により、制御弁31の両端面に密閉容器21内から低圧及び操作圧である油圧を作用させることができる。 In the second embodiment, the unload hole 117 is formed in the fixed scroll 11. The unload path is composed of a back pressure chamber communication passage 113 having one end opened in the back pressure chamber 291b, a low pressure space communication passage 114 having one end opening in the low pressure space 212, and a control valve small diameter portion outer peripheral space 120. .. In the spring seat 36 in the unload hole 117, pores 36a for introducing the low pressure of the low pressure space 212 are formed on the end face 31a side of the control valve 31 on the side of the counter-operated pressure introduction space. Further, the fixed scroll 11 is formed with a pressure receiving pocket 115 and an operating pressure introduction hole 116, which are operating pressure introduction paths for supplying hydraulic pressure from the oil supply pump 27 to the operating pressure introduction space 298 on the end surface 31b side of the control valve 31. ing. With this structure, low pressure and hydraulic pressure, which are operating pressures, can be applied to both end faces of the control valve 31 from inside the closed container 21.

なお、本実施の形態2では、制御弁31で低圧空間連通路114を塞ぐことで背圧室連通路113、制御弁小径部外周空間120、低圧空間連通路114からなるアンロード経路を閉じるようにしているが、背圧室連通路113を塞ぐことでアンロード経路を閉じるようにしてもよい。 In the second embodiment, the back pressure chamber communication passage 113, the control valve small diameter portion outer peripheral space 120, and the low pressure space communication passage 114 are closed by blocking the low pressure space communication passage 114 with the control valve 31. However, the unloading path may be closed by blocking the back pressure chamber communication passage 113.

1 スクロール圧縮機、9 圧縮室、9a 最内室、9b 第2室、9c 最外室、10 圧縮機構部、11 固定スクロール、11a 固定台板、11b 固定渦巻歯、11ba 巻き終わり部、11bb 巻き終わり部、12 揺動スクロール、12a 揺動台板、12b 揺動渦巻歯、13 姿勢規制手段、14 フレーム、14a 主軸受、15 軸、15a 偏心部、16 第1バランサ、17 第2バランサ、18 モータ、18a ステータ、18b ロータ、19 サブフレーム、19a 副軸受、21 密閉容器、22 潤滑油、23 吸入管、24 吐出管、25 吐出弁、25b 吐出弁ストッパ、26 リリーフ弁、26b リリーフ弁ストッパ、27 給油ポンプ、28 径方向ガイド部材、29 セパレータ、29a 凸部、31 制御弁、31a 端面、31b 端面、32 弾性体、33 シール部材、34 シール部材、35a プラグ、35b プラグ、35c プラグ、36 ばね座、36a 細孔、37 中間圧圧縮室、111 第1吐出ポート、112 抽気孔、113 背圧室連通路、114 低圧空間連通路、115 受圧ポケット、116 操作圧導入孔、117 アンロード孔、118 背圧室内周面、119 背圧室外周面、120 制御弁小径部外周空間、121 ボス部、124 操作圧導入横孔、125 操作圧導入縦孔、130 シール形成点、152 給油孔、211 高圧空間、212 低圧空間、220 リリーフ機構、230 アンロード機構、291a 吐出室、291b 背圧室、292 第2吐出ポート、293a 背圧室連通路、293b 低圧空間連通路、293c 制御弁小径部外周空間、294a 高圧導入孔、294b 低圧導入孔、295 リリーフポート、296 アンロード孔、297 低圧導入空間、298 操作圧導入空間。 1 scroll compressor, 9 compression chamber, 9a innermost chamber, 9b second chamber, 9c outermost chamber, 10 compression mechanism, 11 fixed scroll, 11a fixed base plate, 11b fixed spiral tooth, 11ba winding end, 11bb winding End, 12 swing scroll, 12a swing base plate, 12b swing spiral tooth, 13 posture regulating means, 14 frame, 14a main bearing, 15 axis, 15a eccentric part, 16 1st balancer, 17 2nd balancer, 18 Motor, 18a stator, 18b rotor, 19 subframe, 19a auxiliary bearing, 21 closed container, 22 lubricating oil, 23 suction pipe, 24 discharge pipe, 25 discharge valve, 25b discharge valve stopper, 26 relief valve, 26b relief valve stopper, 27 Refueling pump, 28 radial guide member, 29 separator, 29a convex part, 31 control valve, 31a end face, 31b end face, 32 elastic body, 33 seal member, 34 seal member, 35a plug, 35b plug, 35c plug, 36 spring Seat, 36a pore, 37 intermediate pressure compression chamber, 111 first discharge port, 112 extraction hole, 113 back pressure chamber communication passage, 114 low pressure space communication passage, 115 pressure receiving pocket, 116 operating pressure introduction hole, 117 unload hole, 118 Back pressure chamber peripheral surface, 119 Back pressure chamber outer peripheral surface, 120 Control valve small diameter outer peripheral space, 121 Boss, 124 Operating pressure introduction horizontal hole, 125 Operating pressure introduction vertical hole, 130 Seal formation point, 152 Refueling hole, 211 High pressure space, 212 Low pressure space, 220 relief mechanism, 230 unload mechanism, 291a discharge chamber, 291b back pressure chamber, 292 second discharge port, 293a back pressure chamber communication passage, 293b low pressure space connection passage, 293c Control valve small diameter outer circumference Space, 294a high pressure introduction hole, 294b low pressure introduction hole, 295 relief port, 296 unload hole, 297 low pressure introduction space, 298 operating pressure introduction space.

Claims (8)

密閉容器と、
前記密閉容器内を高圧空間と低圧空間とに区画するセパレータと、
固定スクロール及び揺動スクロールを有し、前記固定スクロール及び前記揺動スクロールを噛み合わせて形成された圧縮室に、前記低圧空間から流体を吸入して圧縮し、前記高圧空間に吐出する圧縮機構部と、
前記圧縮室内から前記低圧空間へ前記流体をバイパスすることにより、吐出量を制限するアンロードを行うアンロード機構とを備え、
前記固定スクロールの前記揺動スクロールとは反対側の端面と前記セパレータとの間には、前記固定スクロールに形成された抽気孔を介して、圧縮途中の前記圧縮室に連通する背圧室が形成され、前記セパレータには、前記背圧室と前記低圧空間とを連通するアンロード経路の一部を構成するアンロード孔が形成されており、
前記アンロード機構は、
前記アンロード孔内での位置が移動することで前記アンロード経路を開閉する制御弁を備え、
運転中、前記制御弁の移動方向の一方の端面に前記低圧空間の低圧が作用すると共に、他方の端面に前記密閉容器内から導かれて前記低圧空間よりも高い圧力が作用し、
運転条件に応じて、前記制御弁の両端面とに作用する圧力差が変化することで前記制御弁が移動して前記アンロード経路を開閉するものであり、
前記アンロード経路は、前記背圧室に一端が開口する背圧室連通路と、前記低圧空間に一端が開口する低圧空間連通路と、前記背圧室連通路の他端と前記低圧空間連通路の他端とを連通する制御弁小径部外周空間とから構成され、
前記セパレータには、前記制御弁の前記一方の端面が面する空間に前記低圧空間の低圧を導入する低圧導入孔と、前記制御弁の前記他方の端面が面する空間に前記高圧空間の高圧を導入する高圧導入孔とが形成されている
スクロール圧縮機。
With a closed container
A separator that divides the inside of the closed container into a high-pressure space and a low-pressure space,
A compression mechanism unit having a fixed scroll and an oscillating scroll, sucking a fluid from the low pressure space into a compression chamber formed by engaging the fixed scroll and the oscillating scroll, compressing the fluid, and discharging the fluid into the high pressure space. When,
It is provided with an unloading mechanism that limits the discharge amount by bypassing the fluid from the compression chamber to the low pressure space.
A back pressure chamber communicating with the compression chamber during compression is formed between the end surface of the fixed scroll opposite to the swing scroll and the separator through an air extraction hole formed in the fixed scroll. The separator is formed with an unload hole forming a part of an unload path communicating the back pressure chamber and the low pressure space.
The unloading mechanism
A control valve that opens and closes the unload path by moving its position in the unload hole is provided.
During operation, the low pressure in the low pressure space acts on one end face in the moving direction of the control valve, and the pressure higher than that in the low pressure space guided from the inside of the closed container acts on the other end face.
The control valve moves to open and close the unload path by changing the pressure difference acting on both end faces of the control valve according to the operating conditions.
The unload path includes a back pressure chamber communication passage having one end opened in the back pressure chamber, a low pressure space communication passage having one end opening in the low pressure space, and the other end of the back pressure chamber communication passage and the low pressure space connection. It is composed of a control valve small diameter portion outer peripheral space that communicates with the other end of the passage.
The separator has a low pressure introduction hole for introducing a low pressure in the low pressure space into a space facing the one end face of the control valve, and a high pressure in the high pressure space in the space facing the other end face of the control valve. A scroll compressor in which a high-pressure introduction hole to be introduced is formed.
密閉容器と、
前記密閉容器内を高圧空間と低圧空間とに区画するセパレータと、
固定スクロール及び揺動スクロールを有し、前記固定スクロール及び前記揺動スクロールを噛み合わせて形成された圧縮室に、前記低圧空間から流体を吸入して圧縮し、前記高圧空間に吐出する圧縮機構部と
前記圧縮機構部を駆動する軸と、
前記軸の下端部に取り付けられ、前記軸の回転により、前記密閉容器の下部に溜められた潤滑油を、前記軸に貫通して設けられた給油孔を介して前記圧縮機構部に供給する給油ポンプと、
前記圧縮室内から前記低圧空間へ前記流体をバイパスすることにより、吐出量を制限するアンロードを行うアンロード機構とを備え、
前記固定スクロールの前記揺動スクロールとは反対側の端面と前記セパレータとの間には、前記固定スクロールに形成された抽気孔を介して、圧縮途中の前記圧縮室に連通する背圧室が形成され、前記固定スクロールには、前記背圧室と前記低圧空間とを連通するアンロード経路の一部を構成するアンロード孔が形成されており、
前記アンロード機構は、
前記アンロード孔内での位置が移動することで前記アンロード経路を開閉する制御弁を備え、
運転中、前記制御弁の移動方向の一方の端面に前記低圧空間の低圧が作用すると共に、他方の端面に前記密閉容器内から導かれて前記低圧空間よりも高い圧力が作用し、
運転条件に応じて、前記制御弁の両端面とに作用する圧力差が変化することで前記制御弁が移動して前記アンロード経路を開閉するものであり、
前記制御弁の前記他方の端面には、前記給油ポンプから供給される前記潤滑油の給油圧が作用するスクロール圧縮機。
With a closed container
A separator that divides the inside of the closed container into a high-pressure space and a low-pressure space,
A compression mechanism unit having a fixed scroll and an oscillating scroll, sucking a fluid from the low pressure space into a compression chamber formed by engaging the fixed scroll and the oscillating scroll, compressing the fluid, and discharging the fluid into the high pressure space. And the shaft that drives the compression mechanism
Lubricating oil attached to the lower end of the shaft and stored in the lower part of the closed container by rotation of the shaft is supplied to the compression mechanism portion through a lubrication hole provided through the shaft. With a pump,
It is provided with an unloading mechanism that limits the discharge amount by bypassing the fluid from the compression chamber to the low pressure space.
A back pressure chamber communicating with the compression chamber during compression is formed between the end surface of the fixed scroll opposite to the swing scroll and the separator through an air extraction hole formed in the fixed scroll. The fixed scroll is formed with an unload hole forming a part of an unload path communicating the back pressure chamber and the low pressure space.
The unloading mechanism
A control valve that opens and closes the unload path by moving its position in the unload hole is provided.
During operation, the low pressure in the low pressure space acts on one end face in the moving direction of the control valve, and the pressure higher than that in the low pressure space guided from the inside of the closed container acts on the other end face.
The control valve moves to open and close the unload path by changing the pressure difference acting on both end faces of the control valve according to the operating conditions.
A scroll compressor on which the hydraulic pressure of the lubricating oil supplied from the lubrication pump acts on the other end surface of the control valve.
前記軸の回転数が予め設定した設定回転数を超えるとき、前記アンロード経路を閉、前記回転数が前記設定回転数以下のとき、前記アンロード経路を開とする請求項2記載のスクロール圧縮機。 The scroll compression according to claim 2, wherein when the rotation speed of the shaft exceeds the preset rotation speed, the unload path is closed, and when the rotation speed is equal to or less than the set rotation speed, the unload path is opened. Machine. 記アンロード経路は、前記背圧室に一端が開口する背圧室連通路と、前記低圧空間に一端が開口する低圧空間連通路と、前記背圧室連通路の他端と前記低圧空間連通路の他端とを連通する制御弁小径部外周空間とから構成され、
前記固定スクロールには、前記制御弁の前記一方の端面が面する空間に前記低圧空間の低圧を導入する低圧導入孔と、前記制御弁の前記他方の端面が面する空間に前記給油ポンプからの前記給油圧を供給する操作圧導入孔とが形成されている請求項2又は請求項3記載のスクロール圧縮機。
The unload path includes a back pressure chamber communication passage having one end opened in the back pressure chamber, a low pressure space communication passage having one end opening in the low pressure space, and the other end of the back pressure chamber communication passage and the low pressure space. It is composed of a control valve small diameter portion outer peripheral space that communicates with the other end of the communication passage.
The fixed scroll has a low pressure introduction hole for introducing a low pressure in the low pressure space into a space facing the one end face of the control valve, and a space facing the other end face of the control valve from the refueling pump. The scroll compressor according to claim 2 or 3, wherein the operating pressure introduction hole for supplying the hydraulic pressure is formed.
前記制御弁は、高低圧差が予め設定した設定値を超えるとき、前記アンロード経路を閉、前記圧力差が前記設定値以下のとき、前記アンロード経路を開とする請求項1~請求項4の何れか一項に記載のスクロール圧縮機。 Claims 1 to 4 of the control valve close the unload path when the high / low pressure difference exceeds a preset value, and open the unload path when the pressure difference is equal to or less than the set value. The scroll compressor according to any one of the above. 前記アンロード機構は、前記制御弁を高圧側に付勢して、前記制御弁を前記アンロード経路を開放する位置に位置させる弾性体を備え、
前記圧力差に応じた差圧力が前記弾性体の付勢力を上回ることで前記制御弁が前記アンロード経路を開く位置から閉じる位置に移動する請求項1~請求項4の何れか一項に記載のスクロール圧縮機。
The unload mechanism includes an elastic body that urges the control valve to the high pressure side to position the control valve at a position that opens the unload path.
The invention according to any one of claims 1 to 4, wherein the control valve moves from a position where the unload path is opened to a position where the unload path is closed when the differential pressure corresponding to the pressure difference exceeds the urging force of the elastic body. Scroll compressor.
前記セパレータには、入口側が前記背圧室に開口し、出口側が前記高圧空間に開口するポートであって、前記圧縮室内において過圧縮となった流体を前記高圧空間へリリーフするリリーフポートが形成されており、前記リリーフポートの出口側に前記リリーフポートを開閉するリリーフ弁を有する請求項1~請求項6の何れか一項に記載のスクロール圧縮機。 The separator is formed with a port having an inlet side opening to the back pressure chamber and an outlet side opening to the high pressure space, and a relief port for relieving an overcompressed fluid in the compression chamber to the high pressure space. The scroll compressor according to any one of claims 1 to 6, further comprising a relief valve for opening and closing the relief port on the outlet side of the relief port. 前記固定スクロールの前記揺動スクロールとは反対側の端面と前記セパレータとの間には、前記固定スクロールに形成された第1吐出ポートが開口する吐出室が形成されており、前記セパレータには、入口側が前記吐出室に開口し、出口側が前記高圧空間に開口するポートであって、前記圧縮室内で圧縮された流体を前記高圧空間へ吐出する第2吐出ポートが形成され、前記第2吐出ポートの出口側に前記第2吐出ポートを開閉する吐出弁を有する請求項7記載のスクロール圧縮機。 A discharge chamber in which the first discharge port formed in the fixed scroll opens is formed between the end surface of the fixed scroll opposite to the swing scroll and the separator, and the separator has a discharge chamber. A second discharge port is formed in which the inlet side opens to the discharge chamber and the outlet side opens to the high pressure space, and the fluid compressed in the compression chamber is discharged to the high pressure space. The scroll compressor according to claim 7, further comprising a discharge valve that opens and closes the second discharge port on the outlet side of the above.
JP2020562036A 2018-12-27 2018-12-27 Scroll compressor Active JP7012881B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/048052 WO2020136786A1 (en) 2018-12-27 2018-12-27 Scroll compressor

Publications (2)

Publication Number Publication Date
JPWO2020136786A1 JPWO2020136786A1 (en) 2021-09-09
JP7012881B2 true JP7012881B2 (en) 2022-01-28

Family

ID=71126164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020562036A Active JP7012881B2 (en) 2018-12-27 2018-12-27 Scroll compressor

Country Status (2)

Country Link
JP (1) JP7012881B2 (en)
WO (1) WO2020136786A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113606136B (en) * 2021-08-27 2022-11-15 珠海格力电器股份有限公司 Compressor and air conditioner with same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506164A (en) 1998-03-05 2002-02-26 キャリア・コーポレーション Scroll compressor with combined pressure ratio / pressure difference relief valve
JP2018035748A (en) 2016-08-31 2018-03-08 ダイキン工業株式会社 Scroll compressor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3129365B2 (en) * 1993-08-30 2001-01-29 三菱重工業株式会社 Scroll type fluid machine
JP3750169B2 (en) * 1995-12-27 2006-03-01 ダイキン工業株式会社 Hermetic compressor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002506164A (en) 1998-03-05 2002-02-26 キャリア・コーポレーション Scroll compressor with combined pressure ratio / pressure difference relief valve
JP2018035748A (en) 2016-08-31 2018-03-08 ダイキン工業株式会社 Scroll compressor

Also Published As

Publication number Publication date
WO2020136786A1 (en) 2020-07-02
JPWO2020136786A1 (en) 2021-09-09

Similar Documents

Publication Publication Date Title
JP4516121B2 (en) Capacity changing device for rotary compressor and operation method of air conditioner provided with the same
JP6352011B2 (en) Scroll compressor having back pressure discharge means
CN106662104B (en) The screw compressor of capacity regulating
TW591175B (en) Scroll compressor
KR101185659B1 (en) Scroll fluid machine
US10865791B2 (en) Scroll compressor having a capacity variable device
JP2011052603A (en) Scroll compressor
KR20050062365A (en) Scroll compressor
AU1416801A (en) Scroll type compressor
KR20180093693A (en) Scroll compressor
US10982674B2 (en) Scroll compressor with back pressure chamber and back pressure passages
JP7012881B2 (en) Scroll compressor
EP2947320B1 (en) Scroll compressor
JP2005002886A (en) Scroll compressor
US11725656B2 (en) Scroll compressor including a fixed-side first region receiving a force which presses a movable scroll against a moveable scroll against a fixed scroll
JP2008133810A (en) Compressor
KR102547593B1 (en) Variable displacement swash plate type compressor
JP6102172B2 (en) Rotary compressor
JP5727348B2 (en) Gas compressor
JP6913842B2 (en) Scroll compressor
JP2016020651A (en) Screw compressor
KR20040007004A (en) Rotary compprersor
JP6692195B2 (en) Scroll compressor
WO2021120656A1 (en) Scroll compressor
KR102660782B1 (en) Scroll compressor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201221

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201221

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220118

R150 Certificate of patent or registration of utility model

Ref document number: 7012881

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150