JP7011791B2 - Germination induction method and sterilization method - Google Patents

Germination induction method and sterilization method Download PDF

Info

Publication number
JP7011791B2
JP7011791B2 JP2018019022A JP2018019022A JP7011791B2 JP 7011791 B2 JP7011791 B2 JP 7011791B2 JP 2018019022 A JP2018019022 A JP 2018019022A JP 2018019022 A JP2018019022 A JP 2018019022A JP 7011791 B2 JP7011791 B2 JP 7011791B2
Authority
JP
Japan
Prior art keywords
sterilization
light
germination
irradiation
infrared light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018019022A
Other languages
Japanese (ja)
Other versions
JP2019135915A (en
Inventor
敬祐 内藤
順博 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ushio Denki KK
Original Assignee
Ushio Denki KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ushio Denki KK filed Critical Ushio Denki KK
Priority to JP2018019022A priority Critical patent/JP7011791B2/en
Priority to CN201910101986.4A priority patent/CN110115334A/en
Publication of JP2019135915A publication Critical patent/JP2019135915A/en
Application granted granted Critical
Publication of JP7011791B2 publication Critical patent/JP7011791B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L3/00Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs
    • A23L3/34Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals
    • A23L3/3409Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor
    • A23L3/3445Preservation of foods or foodstuffs, in general, e.g. pasteurising, sterilising, specially adapted for foods or foodstuffs by treatment with chemicals in the form of gases, e.g. fumigation; Compositions or apparatus therefor in a controlled atmosphere comprising other gases in addition to CO2, N2, O2 or H2O
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/30Physical treatment, e.g. electrical or magnetic means, wave energy or irradiation

Description

本発明は、特に、食品等に含まれる芽胞を有する芽胞形成菌の発芽誘導方法および、当該発芽誘導方法を用いた殺菌方法に関するものである。 The present invention particularly relates to a method for inducing germination of spore-forming bacteria having spores contained in foods and the like, and a sterilization method using the method for inducing germination.

従来から、食品や器具等の物体が有する細菌、飲料中に含まれる細菌を不活化する方法が知られている。
例えば、オゾンを用いた粉体の殺菌処理方法が知られている。この殺菌方法によれば、非加熱状態で殺菌できるために、殺菌対象物の劣化を抑制することができる。
しかしながら、このような殺菌方法においては、殺菌の再現性が取れないことがある。即ち、殺菌対象物を同程度オゾンに暴露したとしても、殺菌の程度が処理ごとに異なってしまうという事態が発生する。
この殺菌の再現性が取れない現象について発明者が鋭意検討したところ、
(1)殺菌対象物が有する細菌が芽胞を形成する。
(2)その芽胞の形成状態が処理のタイミングにより異なる。
ことに起因していることを突き止めた。
Conventionally, there have been known methods for inactivating bacteria contained in objects such as foods and utensils and bacteria contained in beverages.
For example, a method for sterilizing powder using ozone is known. According to this sterilization method, since sterilization can be performed in a non-heated state, deterioration of the sterilized object can be suppressed.
However, in such a sterilization method, the reproducibility of sterilization may not be obtained. That is, even if the object to be sterilized is exposed to ozone to the same extent, the degree of sterilization may differ depending on the treatment.
When the inventor diligently examined the phenomenon that this sterilization cannot be reproduced,
(1) Bacteria contained in the sterilized object form spores.
(2) The formation state of the spores differs depending on the timing of treatment.
I found out that it was caused by that.

上記のような問題を解消するために、芽胞を一旦発芽(=発芽誘導)させた後に殺菌処理することが考えられる。例えば、特開2002-153247号公報(特許文献1)には、発芽誘導物質(L-アラニン)の水溶液を殺菌対象に噴霧し、その後オゾンや紫外線で殺菌処理することが記載されている。
また、特開2015-199723号公報(特許文献2)には、芽胞形成菌とジピコリン酸又はその塩とをpH6以下の条件下で接触させることで、芽胞を一旦発芽させる方法が記載されている。
更には、特開平3-038857号公報(特許文献3)には、水分リッチな状態で、菌数の生育に適した温度(20℃~40℃)で数時間保持する方法が開示されている。
ところで、このような公知の発芽誘導方法では、化学物質(栄養物質)を使用したり、あるいは、長時間の処理が必要になったりするため、例えば食品の発芽誘導方法としては、不向きであり実用上好ましいものとはいえない。
In order to solve the above problems, it is conceivable that the spores are once germinated (= germination induction) and then sterilized. For example, Japanese Patent Application Laid-Open No. 2002-153247 (Patent Document 1) describes that an aqueous solution of a germination-inducing substance (L-alanine) is sprayed on a sterilization target and then sterilized with ozone or ultraviolet rays.
Further, Japanese Patent Application Laid-Open No. 2015-199723 (Patent Document 2) describes a method for temporarily germinating spores by contacting a spore-forming bacterium with dipicolinic acid or a salt thereof under a condition of pH 6 or less. ..
Further, Japanese Patent Application Laid-Open No. 3-038857 (Patent Document 3) discloses a method of holding a water-rich state at a temperature (20 ° C. to 40 ° C.) suitable for growing the number of bacteria for several hours. ..
By the way, such a known germination induction method uses a chemical substance (nutrient substance) or requires long-term treatment, and is therefore unsuitable and practical as a germination induction method for foods, for example. It cannot be said that it is preferable.

特開2002-153247号公報JP-A-2002-153247. 特開2015-199723号公報JP-A-2015-199723 特開平3-038857号公報Japanese Unexamined Patent Publication No. 3-038857

この発明は、上記従来技術の問題点に鑑みて、食品等の被処理物が有する芽胞形成菌を殺菌するにあたり、芽胞形成菌を発芽誘導させる方法において、化学物質を利用することなく、かつ、短時間で発芽させることができる発芽誘導方法およびこの発芽誘導方法を用いた殺菌方法を提供せんとするものである。 In view of the above-mentioned problems of the prior art, the present invention is a method for inducing germination of spore-forming bacteria in sterilizing spore-forming bacteria contained in an object to be treated such as food, without using a chemical substance and. It is intended to provide a germination induction method capable of germination in a short time and a sterilization method using this germination induction method.

上記課題を解決するために、この発明に係わる発芽誘導方法は、被処理物が有する芽胞形成菌に対して、波長700nm~1050nmにピーク波長を有する光を照射する工程を有することを特徴とする。
また、前記光は750nm~970nmにピーク波長を有するものであることを特徴とする。
また、前記光の照射量が1.7J/cm~201.2J/cmであることを特徴とする。
また、前記光の照射量が3.4J/cm~134.2J/cmであることを特徴とする。
また、前記被処理物が固形物であり、当該被処理物における水分活性が0.7以上の状態で、前記芽胞形成菌に前記光を照射することを特徴とする。
また、前記光の照射中における前記被処理物の温度が、5℃~50℃であることを特徴とする。
また、前記被処理物の殺菌方法において、前記発芽誘導方法からなる第一工程と、前記被処理物を殺菌処理する第二工程とを有することを特徴とする。
In order to solve the above problems, the germination induction method according to the present invention is characterized by having a step of irradiating the spore-forming bacteria contained in the object to be treated with light having a peak wavelength in the wavelength range of 700 nm to 1050 nm. ..
Further, the light is characterized by having a peak wavelength in the range of 750 nm to 970 nm.
Further, the irradiation amount of the light is 1.7 J / cm 2 to 2011.2 J / cm 2 .
Further, the irradiation amount of the light is 3.4 J / cm 2 to 134.2 J / cm 2 .
Further, the object to be treated is a solid substance, and the spore-forming bacteria are irradiated with the light in a state where the water activity in the object to be treated is 0.7 or more.
Further, the temperature of the object to be treated during irradiation with the light is 5 ° C to 50 ° C.
Further, the method for sterilizing the object to be treated is characterized by having a first step including the method for inducing germination and a second step for sterilizing the object to be treated.

この発明にかかる発芽誘導方法によれば、食品等の被処理物が有する芽胞形成菌を殺菌するにあたり、化学物質(栄養物質)を使用することなく芽胞形成菌を短時間で発芽誘導できるので、殺菌処理後に化学物質が残存することがなく、不活化しきれなかった菌が、保管中に増殖するリスクを低減できる。
そして、食品等が有する細菌が発芽した状態で殺菌処理されるので、殺菌処理後の細菌の不活化の程度におけるバラツキが低減する。
According to the germination induction method according to the present invention, in sterilizing the spore-forming bacteria contained in the object to be treated such as food, the spore-forming bacteria can be induced to germinate in a short time without using a chemical substance (nutrient substance). No chemical substances remain after the sterilization treatment, and the risk of growth of bacteria that could not be inactivated during storage can be reduced.
Then, since the sterilization treatment is performed in the state where the bacteria possessed by the food or the like are germinated, the variation in the degree of inactivation of the bacteria after the sterilization treatment is reduced.

本発明の発芽誘導方法と、殺菌方法のフロー図。The flow chart of the germination induction method and the sterilization method of this invention. 本発明の他の実施例のフロー図。The flow chart of another Example of this invention. 照射光の波長による殺菌率を示す表1。Table 1 showing the sterilization rate according to the wavelength of the irradiation light. 実施例1における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Example 1. FIG. 実施例2における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Example 2. FIG. 実施例3における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Example 3. FIG. 実施例4、31~39における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Examples 4, 31-39. 実施例5における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Example 5. 実施例6における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Example 6. 実施例7における照射光の分光スペクトルを示す図。The figure which shows the spectroscopic spectrum of the irradiation light in Example 7. 照射光の照射量による殺菌率を示す表2。Table 2 showing the sterilization rate according to the irradiation amount of the irradiation light. 水分活性による殺菌率を示す表3。Table 3 showing the sterilization rate due to water activity. 温度による殺菌率を示す表4。Table 4 showing the sterilization rate by temperature. 照度を変え、かつ照射量を一定としたときの殺菌率を示す表5。Table 5 showing the sterilization rate when the illuminance is changed and the irradiation amount is constant.

本発明の発芽誘導方法を用いた殺菌方法のフロー図の一例が図1に示されている。この実施例では、殺菌対象である被処理物は、食品、例えば、ブラックペッパーなどの固形物である。
被処理物の表面には芽胞形成菌が付着しており、この芽胞形成菌を発芽させて後続のオゾンによる殺菌を効果的なものとするものである。
そのプロセスが図1に示されている。
<水分賦活工程>
殺菌対象である食品(ブラックペッパー)を純水に浸漬する工程である。この工程は芽胞を発芽させる際に必要となる水分活性を付与するために行われる。この工程は、水分活性が一定以上ある状態でないと、次工程で近赤外光を照射しても十分に発芽しない、という知見に基づく処理である。
ここで、水分活性とは、被処理物である食品中の自由水の割合を示す数値で、食品の保存性の指標とされる。この水分活性は、アズワン社の水分活性測定器(SP-W)を使用して測定した。
また、水分賦活処理としては、上記純水への浸漬以外に、加湿空気の噴霧、ミストエアロゾルの噴霧、水の噴霧などの手段が採用できる。
An example of a flow chart of a sterilization method using the germination induction method of the present invention is shown in FIG. In this embodiment, the object to be sterilized is a food product, for example, a solid substance such as black pepper.
Spore-forming bacteria are attached to the surface of the object to be treated, and the spore-forming bacteria are germinated to make subsequent sterilization with ozone effective.
The process is shown in Figure 1.
<Moisture activation process>
This is a process of immersing food (black pepper) to be sterilized in pure water. This step is performed to impart the water activity required for germination of spores. This step is a process based on the finding that germination does not occur sufficiently even if near-infrared light is irradiated in the next step unless the water activity is above a certain level.
Here, the water activity is a numerical value indicating the ratio of free water in the food to be treated, and is used as an index of food preservation. This water activity was measured using a water activity measuring instrument (SP-W) manufactured by AS ONE Corporation.
Further, as the water activation treatment, in addition to the immersion in pure water, means such as spraying humidified air, spraying mist aerosol, and spraying water can be adopted.

<発芽誘導工程>
殺菌対象である食品に近赤外光を照射して、食品に付着した芽胞形成菌を発芽させる工程である。
照射近赤外光の波長としては、700nm~1050nmのものが利用できる。本実施形態においては、波長850nmにピーク波長を有する近赤外光を発するLEDを光源としている。なお、光源としては、LED以外にハロゲンランプなどを用いることもできる。
ただし、近赤外光を照射しているとき、被処理物の温度が5℃~50℃の範囲にあることが好ましい。この範囲外であるとき、芽胞の発芽効率が低下する惧れがある。近赤外光を照射しているときに上記の温度範囲となるようにする方法としては、被処理物に照射される光に被処理物が吸収する波長の光が含まれないようにする方法や、光源を間欠的に点灯させて被処理物の温度上昇を防ぐ方法が採用され得る。光源としてLEDを用いる構成は、被処理物に照射される光に被処理物が吸収する波長の光が含まれない状態とすることが容易であるため好ましい。
また、この近赤外光を放射する光源としては、波長400nm以下の光(紫外光)を放射しないものであることが好ましい。この範囲の紫外光を放射するものでは、近赤外光と紫外光が同時に照射されてしまい、芽胞の発芽効率が低下してしまう惧れがある。
更には、被処理物への近赤外光の照射量は、1.7J/cm~134.2J/cmの範囲であることが好ましく、より好適には、3.43J/cm~134.2J/cmの範囲であることが更に好ましく、これより少なすぎたり多すぎたりすると発芽が効果的に行われない。
<Germination induction process>
This is a step of irradiating the food to be sterilized with near-infrared light to germinate the spore-forming bacteria attached to the food.
As the wavelength of the irradiated near-infrared light, those having a wavelength of 700 nm to 1050 nm can be used. In the present embodiment, an LED that emits near-infrared light having a peak wavelength at a wavelength of 850 nm is used as a light source. As the light source, a halogen lamp or the like can be used in addition to the LED.
However, when irradiating with near infrared light, the temperature of the object to be treated is preferably in the range of 5 ° C to 50 ° C. When it is out of this range, the germination efficiency of spores may decrease. As a method of keeping the temperature within the above temperature range when irradiating near-infrared light, a method of preventing the light irradiated to the object to be processed from including the light having a wavelength absorbed by the object to be processed. Alternatively, a method of intermittently turning on the light source to prevent the temperature of the object to be processed from rising can be adopted. A configuration using an LED as a light source is preferable because it is easy to make the light irradiating the object to be processed not include light having a wavelength absorbed by the object to be processed.
Further, as the light source that radiates this near-infrared light, it is preferable that the light source does not radiate light having a wavelength of 400 nm or less (ultraviolet light). Those that emit ultraviolet light in this range may be irradiated with near-infrared light and ultraviolet light at the same time, and the germination efficiency of spores may decrease.
Further, the irradiation amount of near-infrared light on the object to be treated is preferably in the range of 1.7 J / cm 2 to 134.2 J / cm 2 , and more preferably 3.43 J / cm 2 to. It is more preferably in the range of 134.2 J / cm 2 , and if it is too small or too large, germination will not be effective.

<殺菌工程>
殺菌対象である食品に殺菌処理を施す工程であって、本実施形態では、前記発芽誘導工程で発芽した芽胞形成菌を有する被処理物をオゾンに曝すことによって殺菌処理するオゾン殺菌処理を採用している。
殺菌手段としては、殺菌対象の食品の劣化を抑制する観点から、殺菌対象の温度が上がらないものが好ましく、上記オゾン殺菌や、紫外線照射による殺菌などが挙げられる。
<Sterilization process>
This is a step of sterilizing a food to be sterilized, and in the present embodiment, an ozone sterilization treatment is adopted in which an object to be treated having spore-forming bacteria germinated in the germination induction step is sterilized by exposing it to ozone. ing.
As the sterilization means, from the viewpoint of suppressing deterioration of the food to be sterilized, it is preferable that the temperature of the sterilization target does not rise, and examples thereof include ozone sterilization and sterilization by ultraviolet irradiation.

上記実施例は、殺菌対象が例えば、ブラックペッパーなどの固形物であるが、本発明の発芽誘導方法は液体にも適用できる。例えば、オレンジジュースなどの果汁飲料にも適用できる。
図2には、殺菌対象が液体の場合の発芽誘導方法と殺菌方法のフローが示されている。
<発芽誘導工程>
殺菌対象である果汁飲料などの液体状食品に近赤外光を照射して、液体中に含まれる芽胞形成菌を発芽させる工程であって、本実施形態では液体に近赤外光を照射する。この時の近赤外光の詳細は図1における近赤外光と同様である。
In the above embodiment, the sterilization target is a solid substance such as black pepper, but the germination induction method of the present invention can also be applied to a liquid. For example, it can be applied to fruit juice beverages such as orange juice.
FIG. 2 shows the flow of the germination induction method and the sterilization method when the sterilization target is a liquid.
<Germination induction process>
It is a step of irradiating a liquid food such as a fruit juice beverage to be sterilized with near-infrared light to germinate spore-forming bacteria contained in the liquid, and in the present embodiment, the liquid is irradiated with near-infrared light. .. The details of the near-infrared light at this time are the same as those of the near-infrared light in FIG.

<殺菌工程>
殺菌対象である液体状食品に殺菌処理を施す工程であって、本実施形態では、前記発芽誘導工程で発芽した芽胞形成菌に紫外光(UV)を照射して殺菌する方法を採用している。殺菌対象が果汁飲料などのように風味が重要なものである場合には、波長280nm~300nmの紫外光(UV)が好適に利用される。この紫外光殺菌により、風味の劣化を招くことなく殺菌処理を効果的に行うことができる。
このような紫外光光源としては、発光ガスとしてXeBrが封入されたエキシマランプなどが利用でき、本実施形態では、ピーク波長283nmの紫外光を放射するXeBrエキシマランプを使用している。
<Sterilization process>
This is a step of sterilizing a liquid food to be sterilized, and in the present embodiment, a method of sterilizing the spore-forming bacteria germinated in the germination induction step by irradiating them with ultraviolet light (UV) is adopted. .. When the sterilization target is a fruit juice beverage or the like in which flavor is important, ultraviolet light (UV) having a wavelength of 280 nm to 300 nm is preferably used. By this ultraviolet light sterilization, the sterilization treatment can be effectively performed without causing deterioration of the flavor.
As such an ultraviolet light source, an excimer lamp or the like in which XeBr is enclosed as a light emitting gas can be used, and in the present embodiment, an XeBr excimer lamp that emits ultraviolet light having a peak wavelength of 283 nm is used.

次に、各種条件をパラメータとして実験を行った。
まず、殺菌対象サンプルとして未殺菌状態の黒コショウ(ブラックペッパー)(産地:マレーシア)を用意した。なお、以下の実験で使用する黒コショウは、その表面に汚れや微粒子などが付着していない状態であることが確認されたものを使用した。
1.サンプルを純水に10分間浸漬した(水分賦活工程)。
2.1を真空乾燥装置(DP200、ヤマト科学社製)に入れ、25℃、0.1kPaの条件で乾燥させた(時間を調整することでサンプルの水分活性を調整した)。
3.2のサンプルに対してLEDからの近赤外光を照射した(発芽誘導工程)。
具体的には、2のサンプルを殺菌ガラスシャーレ(直径35mm)に1g入れ、このシャーレを振動器に載せて振動させた状態で、照射装置からの光を照射した。なお、シャーレ内に照射される光の照度が照射面内において一定となるように、サンプルに対して近赤外光を照射した。
ここで、本発明における「照度」とは、被処理物に対して照射される光のうち、波長が300nm~1200nmの範囲にある光の、単位面積あたり強度のことをいう。
4.3のサンプルを、オゾン条件170ppm一定で6時間、オゾン処理した(殺菌工程)。具体的には、2のサンプルを滅菌ガラスシャーレ(直径35mm)に1g入れ、このシャーレを振動器に載せて振動させた状態で、170ppmのオゾンに6時間曝露した。
5.4のサンプルを滅菌水100mLに浸漬して、サンプルに付着している菌を滅菌水に移した。
6.5の菌抽出液1mLをとり、このうち0.1mLを寒天培地に塗布した。
7.6の寒天培地を37℃で24時間培養した。
8.7の寒天培地に発生しているコロニーの数を数えた。
Next, experiments were conducted with various conditions as parameters.
First, unsterilized black pepper (black pepper) (produced in Malaysia) was prepared as a sample to be sterilized. The black pepper used in the following experiments was confirmed to have no dirt or fine particles on its surface.
1. 1. The sample was immersed in pure water for 10 minutes (moisture activation step).
2.1 was placed in a vacuum dryer (DP200, manufactured by Yamato Kagaku Co., Ltd.) and dried under the conditions of 25 ° C. and 0.1 kPa (the water activity of the sample was adjusted by adjusting the time).
The sample of 3.2 was irradiated with near-infrared light from the LED (germination induction step).
Specifically, 1 g of the sample 2 was placed in a sterilized glass petri dish (diameter 35 mm), and the petri dish was placed on a vibrator and vibrated, and then irradiated with light from an irradiation device. The sample was irradiated with near-infrared light so that the illuminance of the light irradiated in the petri dish was constant in the irradiation surface.
Here, the "illuminance" in the present invention means the intensity per unit area of the light having a wavelength in the range of 300 nm to 1200 nm among the light irradiated to the object to be treated.
The sample of 4.3 was ozone-treated for 6 hours under constant ozone conditions of 170 ppm (sterilization step). Specifically, 1 g of the sample 2 was placed in a sterile glass petri dish (diameter 35 mm), and the petri dish was placed on a vibrator and vibrated, and then exposed to 170 ppm ozone for 6 hours.
The sample of 5.4 was immersed in 100 mL of sterile water, and the bacteria adhering to the sample were transferred to the sterile water.
1 mL of the bacterial extract of 6.5 was taken, and 0.1 mL of this was applied to the agar medium.
The 7.6 agar medium was cultured at 37 ° C. for 24 hours.
The number of colonies occurring on the 8.7 agar medium was counted.

以上の実験を、以下のパラメータごとに行った。
<近赤外光の波長をパラメータとしたときの実験>
1.近赤外光の照射条件
・光源:LED
・照度:55.9mW/cm
・照射時間:600秒
2.その他の光照射時の条件
・水分活性:0.9
・環境温度:24.5℃
・サンプル温度:30.0℃
3.オゾン殺菌条件
・オゾン濃度:170ppm
・処理時間:6時間
The above experiment was performed for each of the following parameters.
<Experiment when the wavelength of near infrared light is used as a parameter>
1. 1. Irradiation conditions for near-infrared light ・ Light source: LED
・ Illuminance: 55.9mW / cm 2
-Irradiation time: 600 seconds 2. Other conditions for light irradiation ・ Water activity: 0.9
・ Environmental temperature: 24.5 ℃
-Sample temperature: 30.0 ° C
3. 3. Ozone sterilization conditions ・ Ozone concentration: 170ppm
・ Processing time: 6 hours

その結果が図3の表1に示されている。表中の各項目は以下のとおりである。
・ピーク波長:LEDが放射する光のピーク波長
・オゾン処理後菌数CFU/g:サンプル(黒コショウ)1g中に存在する菌の数で、少ないほど良好。
・殺菌率:オゾン処理後の菌数がオゾン処理前と比較してどの程度減ったかを示す数値。
log(オゾン処理後菌数/オゾン処理前菌数)で計算する。処理前の菌数より処理後の菌数が小さくなればマイナスの値をとり、処理前の菌数より処理後の菌数が大きくなればプラスの値をとる。値が小さいほど良好。
また、実施例1~7における照射光の分光スペクトルをそれぞれ図4~10に示す。(実施例4における照射光の分光スペクトルは図7において実線で示されている。)
The results are shown in Table 1 of FIG. Each item in the table is as follows.
-Peak wavelength: Peak wavelength of light emitted by LED-Number of bacteria after ozone treatment CFU / g: The number of bacteria present in 1 g of sample (black pepper), the smaller the number, the better.
-Sterilization rate: A numerical value indicating how much the number of bacteria after ozone treatment has decreased compared to before ozone treatment.
Calculated by log (number of bacteria after ozone treatment / number of bacteria before ozone treatment). If the number of bacteria after treatment is smaller than the number of bacteria before treatment, a negative value is taken, and if the number of bacteria after treatment is larger than the number of bacteria before treatment, a positive value is taken. The smaller the value, the better.
Further, the spectral spectra of the irradiation light in Examples 1 to 7 are shown in FIGS. 4 to 10, respectively. (The spectral spectrum of the irradiation light in Example 4 is shown by a solid line in FIG. 7.)

表1に示すように、光照射しない比較例1と比較して、近赤外光を照射する実施例1~7はいずれも殺菌の程度が大きいことが分かる。つまり、この実験で用いたピーク波長700nm~1050nmの近赤外光照射処理は、いずれも芽胞の発芽を誘導しており、その後の殺菌処理を効果的にしていることが分かる。
とりわけ、実施例1、7に比較して、実施例2~6はいずれも殺菌の程度がさらに大きく、このことから、特に、ピーク波長700nm~970nmの光源を用いることにより、芽胞の発芽をより効率よく誘導できることが分かる。
As shown in Table 1, it can be seen that the degree of sterilization is higher in all of Examples 1 to 7 irradiated with near-infrared light as compared with Comparative Example 1 not irradiated with light. That is, it can be seen that the near-infrared light irradiation treatment with a peak wavelength of 700 nm to 1050 nm used in this experiment induces germination of spores, and the subsequent sterilization treatment is effective.
In particular, the degree of sterilization in all of Examples 2 to 6 is larger than that in Examples 1 and 7, and from this, in particular, by using a light source having a peak wavelength of 700 nm to 970 nm, germination of spores can be further enhanced. It can be seen that it can be guided efficiently.

次に、近赤外光の照射量をパラメータとした実験を行った。
<近赤外光の照射量(照射時間)をパラメータとしたときの実験>
1.近赤外光の照射条件
・光源:LED
・ピーク波長:850nm(分光スペクトルは図7において実線で示したものと同じ)
・照度:55.9mW/cm
2.その他の光照射時の条件
・水分活性:0.9
・環境温度:24.1℃
・サンプル温度:30.0℃
3.オゾン殺菌条件
・オゾン濃度:170ppm
・処理時間:6時間
Next, an experiment was conducted with the irradiation amount of near-infrared light as a parameter.
<Experiment when the irradiation amount (irradiation time) of near-infrared light is used as a parameter>
1. 1. Irradiation conditions for near-infrared light ・ Light source: LED
-Peak wavelength: 850 nm (spectral spectrum is the same as that shown by the solid line in FIG. 7)
・ Illuminance: 55.9mW / cm 2
2. 2. Other conditions for light irradiation ・ Water activity: 0.9
-Environmental temperature: 24.1 ° C
-Sample temperature: 30.0 ° C
3. 3. Ozone sterilization conditions ・ Ozone concentration: 170ppm
・ Processing time: 6 hours

その結果が図11の表2に示されている。
比較例1と比較して、実施例8~16は、いずれも殺菌の程度が大きく、照射量0.6J/cm~201.2J/cmの近赤外光は、いずれも芽胞の発芽を誘導しており、その後の殺菌処理を効果的にしていることが分かる。
また、実施例8と比較して、実施例9~16はいずれも殺菌の程度がさらに大きく、このことから、特に、近赤外光の照射量を1.7J/cm~201.2J/cmとすることにより、芽胞の発芽を効率良く誘導できることが分かる。
さらに、実施例8、9、16と比較して、実施例10~15はいずれも殺菌の程度がさらに大きく、このことから、特に、近赤外光の照射量を3.4J/cm~134.2J/cmとすることにより、芽胞の発芽を効率良く誘導できることが分かる。
なお、後述する実験の結果により、照度を変えた場合においても、照射量が同じであれば同様の効率で発芽を誘導できることが分かる。
The results are shown in Table 2 of FIG.
Compared with Comparative Example 1, in Examples 8 to 16, the degree of sterilization was large, and near-infrared light having an irradiation dose of 0.6 J / cm 2 to 2001.2 J / cm 2 all caused spore germination. It can be seen that the subsequent sterilization treatment is effective.
Further, as compared with Example 8, the degree of sterilization is further greater in all of Examples 9 to 16, and therefore, in particular, the irradiation amount of near-infrared light is 1.7 J / cm 2 to 2001.2 J /. It can be seen that the germination of spores can be efficiently induced by setting the size to cm 2 .
Further, as compared with Examples 8, 9 and 16, the degree of sterilization is further greater in all of Examples 10 to 15, and therefore, in particular, the irradiation amount of near infrared light is 3.4 J / cm 2 to. It can be seen that the germination of spores can be efficiently induced by setting 134.2 J / cm 2 .
From the results of the experiments described later, it can be seen that germination can be induced with the same efficiency even when the illuminance is changed if the irradiation amount is the same.

次に、水分活性をパラメータとした実験を行った。
<水分活性をパラメータとしたときの実験>
1.近赤外光の照射条件
・光源:LED
・ピーク波長:850nm(分光スペクトルは図7において実線で示したものと同じ)
・照度:55.9mW/cm
・照射時間:600秒
2.その他の光照射時の条件
・環境温度:24.3℃
・サンプル温度:30.0℃
3.オゾン殺菌条件
・オゾン濃度:170ppm
・処理時間:6時間
Next, an experiment was conducted with water activity as a parameter.
<Experiment with water activity as a parameter>
1. 1. Irradiation conditions for near-infrared light ・ Light source: LED
-Peak wavelength: 850 nm (spectral spectrum is the same as that shown by the solid line in FIG. 7)
・ Illuminance: 55.9mW / cm 2
-Irradiation time: 600 seconds 2. Other conditions for light irradiation ・ Environmental temperature: 24.3 ° C
-Sample temperature: 30.0 ° C
3. 3. Ozone sterilization conditions ・ Ozone concentration: 170ppm
・ Processing time: 6 hours

その結果が図12の表3に示されている。
比較例1と比較して、実施例17~23は、いずれも殺菌の程度が大きく、水分活性0.4~1.0のサンプル対する近赤外光照射はいずれも芽胞の発芽を誘導しており、その後の殺菌処理を効果的にしていることが分かる。
とりわけ、実施例17~19と比較して、実施例20~23はいずれも殺菌の程度がさらに大きく、このことから、特に、サンプルの水分活性を0.7~1.0とすることにより、芽胞の発芽を効率良く誘導できることが分かる。
The results are shown in Table 3 of FIG.
Compared with Comparative Example 1, in Examples 17 to 23, the degree of sterilization was large, and irradiation with near-infrared light for a sample having a water activity of 0.4 to 1.0 induced germination of spores. It can be seen that the subsequent sterilization treatment is effective.
In particular, the degree of sterilization was even greater in all of Examples 20 to 23 as compared with Examples 17 to 19, and from this, in particular, by setting the water activity of the sample to 0.7 to 1.0, It can be seen that the germination of spores can be efficiently induced.

次に、サンプル温度をパラメータとした実験を行った。
<近赤外光照射時のサンプル温度をパラメータとした実験>
1.近赤外光の照射条件
・光源:LED
・ピーク波長:850nm(分光スペクトルは図7において実線で示したものと同じ)
・照度:55.9mW/cm
・照射時間:600秒
2.その他の光照射時の条件
・水分活性:0.9
・環境温度:24.5℃
3.オゾン殺菌条件
・オゾン濃度:170ppm
・処理時間:6時間
Next, an experiment was conducted with the sample temperature as a parameter.
<Experiment using sample temperature during near-infrared light irradiation as a parameter>
1. 1. Irradiation conditions for near-infrared light ・ Light source: LED
-Peak wavelength: 850 nm (spectral spectrum is the same as that shown by the solid line in FIG. 7)
・ Illuminance: 55.9mW / cm 2
-Irradiation time: 600 seconds 2. Other conditions for light irradiation ・ Water activity: 0.9
・ Environmental temperature: 24.5 ℃
3. 3. Ozone sterilization conditions ・ Ozone concentration: 170ppm
・ Processing time: 6 hours

その結果が図13の表4に示されている。なお、近赤外光照射時のサンプル温度は、サンプルを収納した筐体を加熱することで当該温度となるように調整した。近赤外光照射では、サンプルが上記波長の光を殆ど吸収しないので、温度が殆ど上昇しないためである。
比較例1と比較して、実施例24~30は、いずれも殺菌の程度が大きく、温度5℃~55℃のサンプルに対する近赤外光照射はいずれも芽胞の発芽を誘導しており、その後の殺菌処理を効果的にしていることが分かる。
とりわけ、実施例30と比較して、実施例24~29はいずれも殺菌の程度がさらに大きく、このことから、特に、近赤外光照射時のサンプルの温度を5℃~50℃とすることにより、芽胞の発芽を効率良く誘導できることが分かる。
また、近赤外光照射時のサンプルの温度が50℃以下であることが確認されているので、従来公知の殺菌方法、特に、ハロゲンヒータやキセノンランプを点灯照射する殺菌方法とは異なる作用であることが分かる。
The results are shown in Table 4 of FIG. The sample temperature at the time of irradiation with near-infrared light was adjusted so as to reach the temperature by heating the housing containing the sample. This is because in near-infrared irradiation, the sample hardly absorbs the light having the above wavelength, so that the temperature hardly rises.
Compared with Comparative Example 1, in Examples 24 to 30, the degree of sterilization was large, and irradiation with near-infrared light on a sample having a temperature of 5 ° C to 55 ° C all induced germination of spores. It can be seen that the sterilization treatment of is effective.
In particular, the degree of sterilization in all of Examples 24 to 29 is higher than that in Example 30, and therefore, in particular, the temperature of the sample at the time of near-infrared light irradiation is set to 5 ° C to 50 ° C. Therefore, it can be seen that the germination of spores can be efficiently induced.
Further, since it has been confirmed that the temperature of the sample at the time of near-infrared light irradiation is 50 ° C. or lower, the action is different from the conventionally known sterilization method, particularly the sterilization method of lighting and irradiating a halogen heater or a xenon lamp. It turns out that there is.

次に、照射量が同じ、且つ照度が異なる照射条件である場合に、殺菌率の差が生じるか確認するための実験を行った。
1.近赤外光の照射条件
・光源:LED
・ピーク波長:850nm
2.その他の光照射時の条件
・水分活性:0.9
・環境温度:24.5℃
3.オゾン殺菌条件
・オゾン濃度:170ppm
・処理時間:6時間
Next, an experiment was conducted to confirm whether or not a difference in sterilization rate occurs when the irradiation amount is the same and the illuminance is different.
1. 1. Irradiation conditions for near-infrared light ・ Light source: LED
-Peak wavelength: 850 nm
2. 2. Other conditions for light irradiation ・ Water activity: 0.9
・ Environmental temperature: 24.5 ℃
3. 3. Ozone sterilization conditions ・ Ozone concentration: 170ppm
・ Processing time: 6 hours

その結果が図14の表5に示されている。なお、実施例31、34、37の分光スペクトルは図7において実線で、実施例32、35、38の分光スペクトルは図7において点線で、実施例33、36、39の分光スペクトルは図7において破線で示されている。
実施例31~33、実施例34~36、実施例37~39の各群において、殺菌率が同一群内で同じであることが分かる。つまり、照度を変えた場合においても、照射量が同じであれば同様の効率で発芽を誘導できることが分かる。
The results are shown in Table 5 of FIG. The spectral spectra of Examples 31, 34, and 37 are solid lines in FIG. 7, the spectral spectra of Examples 32, 35, and 38 are dotted lines in FIG. 7, and the spectral spectra of Examples 33, 36, and 39 are shown in FIG. It is shown by a broken line.
It can be seen that in each group of Examples 31 to 33, Examples 34 to 36, and Examples 37 to 39, the sterilization rate is the same within the same group. That is, it can be seen that even when the illuminance is changed, germination can be induced with the same efficiency if the irradiation amount is the same.

以上説明したように、本発明に係る発芽誘導方法によれば、被処理物が有する芽胞形成菌に対して、波長700nm~1050nmにピーク波長を有する近赤外光を照射する工程を有することにより、化学物質(栄養物質)を使用することなく短時間で芽胞形成菌を発芽誘導できるので、殺菌処理後に化学物質が残存することがなく、不活化しきれなかった菌が、保管中に増殖するリスクを低減できる。
また、食品等が有する細菌が発芽した状態で効果的に殺菌処理されるので、殺菌処理後の細菌の不活化の程度におけるバラツキが低減する。


As described above, according to the germination induction method according to the present invention, the spore-forming bacteria contained in the object to be treated are irradiated with near-infrared light having a peak wavelength in the wavelength range of 700 nm to 1050 nm. Since germination of spore-forming bacteria can be induced in a short time without using chemical substances (nutrients), chemical substances do not remain after sterilization treatment, and bacteria that could not be inactivated grow during storage. Risk can be reduced.
In addition, since the bacteria contained in food or the like are effectively sterilized in a germinated state, the variation in the degree of inactivation of the bacteria after the sterilization treatment is reduced.


Claims (6)

固形物からなる被処理物が有する芽胞形成菌に対して、当該被処理物における水分活性が0.7以上の状態で、波長700nm~1050nmにピーク波長を有する光を照射する工程を有することを特徴とする芽胞形成菌の発芽誘導方法。 Having a step of irradiating a spore-forming bacterium possessed by a solid object to be treated with light having a peak wavelength at a wavelength of 700 nm to 1050 nm while the water activity in the object to be treated is 0.7 or more. A characteristic method for inducing germination of spore-forming bacteria. 前記光は750nm~970nmにピーク波長を有するものであることを特徴とする請求項1に記載の芽胞形成菌の発芽誘導方法。 The method for inducing germination of a spore-forming bacterium according to claim 1, wherein the light has a peak wavelength in the range of 750 nm to 970 nm. 前記光の照射量が1.7J/cm~201.2J/cmであることを特徴とする請求項1に記載の発芽誘導方法。 The germination induction method according to claim 1, wherein the irradiation amount of the light is 1.7 J / cm 2 to 2011.2 J / cm 2 . 前記光の照射量が3.4J/cm~134.2J/cmであることを特徴とする請求項1に記載の発芽誘導方法。 The germination induction method according to claim 1, wherein the irradiation amount of the light is 3.4 J / cm 2 to 134.2 J / cm 2 . 前記光の照射中における前記被処理物の温度が、5℃~50℃であることを特徴とする請求項1に記載の発芽誘導方法。 The germination induction method according to claim 1, wherein the temperature of the object to be treated during irradiation with light is 5 ° C to 50 ° C. 請求項1に記載の発芽誘導方法からなる第一工程と、前記被処理物を殺菌処理する第二工程とを有する、殺菌方法。
A sterilization method comprising a first step comprising the germination induction method according to claim 1 and a second step of sterilizing the object to be treated.
JP2018019022A 2018-02-06 2018-02-06 Germination induction method and sterilization method Active JP7011791B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018019022A JP7011791B2 (en) 2018-02-06 2018-02-06 Germination induction method and sterilization method
CN201910101986.4A CN110115334A (en) 2018-02-06 2019-02-01 Germinate abductive approach and method for disinfection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018019022A JP7011791B2 (en) 2018-02-06 2018-02-06 Germination induction method and sterilization method

Publications (2)

Publication Number Publication Date
JP2019135915A JP2019135915A (en) 2019-08-22
JP7011791B2 true JP7011791B2 (en) 2022-01-27

Family

ID=67520439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018019022A Active JP7011791B2 (en) 2018-02-06 2018-02-06 Germination induction method and sterilization method

Country Status (2)

Country Link
JP (1) JP7011791B2 (en)
CN (1) CN110115334A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153247A (en) 2000-11-17 2002-05-28 Hosokawa Micron Corp Sterilizing apparatus for powdery or granular material and method for sterilizing powdery or granular material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3037936B2 (en) * 1998-10-09 2000-05-08 コメット株式会社 Sterilization method by light irradiation
BR0106707A (en) * 2000-05-30 2002-07-23 Hoshin Kagaku Sangyosho Kk Method for sterilizing fungi and / or bacteria in a spore state, and sterilizing against fungi and / or bacteria in a spore state
JP4872048B2 (en) * 2007-11-14 2012-02-08 株式会社あじかん Method for germinating spores and method for sterilizing spores using the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002153247A (en) 2000-11-17 2002-05-28 Hosokawa Micron Corp Sterilizing apparatus for powdery or granular material and method for sterilizing powdery or granular material

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
International Biodeterioration & Biodegradation, 2009, Vol.63, pp.196-200
Journal of Biological Engineering, 2013, Vol.7, Article No.19 (pp.1-12)

Also Published As

Publication number Publication date
JP2019135915A (en) 2019-08-22
CN110115334A (en) 2019-08-13

Similar Documents

Publication Publication Date Title
JP2774796B2 (en) Method and apparatus for food preservation
AU621892B2 (en) Methods and apparatus for preservation of foodstuffs
Csapó et al. Effect of UV light on food quality and safety.
US20090311392A1 (en) Novel approach to the controlled decontamination and or detoxification of nuts, grains, fruits and vegetables
US20170028089A1 (en) Systems and methods of microbial sterilization using polychromatic light
JP2007521819A (en) Methods for controlling microorganisms in packaged foods
KR101839918B1 (en) Method of Sterilizing and Promoting Germination of Seed Using Non-thermal Plasma
Cassar et al. Microbial decontamination of food by light-based technologies: Ultraviolet (UV) light, pulsed UV light (PUV), and UV light-emitting diodes (UV-LED)
JP3037936B2 (en) Sterilization method by light irradiation
KR102375198B1 (en) Sterilization method, sterilization device
JP7011791B2 (en) Germination induction method and sterilization method
AU2017411157B2 (en) Advanced oxidative process for microbial reduction
US20180007936A1 (en) Systems and methods of microbial sterilization using polychromatic light
Krishnamurthy et al. 11 UV Pasteurization
Ibarz et al. Ultraviolet in food preservation and processing
Gayas et al. Ultraviolet light treatment of fresh fruits and vegetables
KR101465409B1 (en) Method of producing sterile plant seed using chlorine dioxide gas
RU2241338C2 (en) Method for reducing of microbiological seeding of bread surface
Bhalerao et al. Pulsed Light Technology Applied in Food Processing
RU2294124C2 (en) Method for sterilization of desiccated foodstuffs
WO2019193865A1 (en) Method for inducing germination and method for disinfection
JPS5929207B2 (en) How to sterilize food
CN109534440A (en) A kind of method of alicyclic acid bacillus pollution in control water
RU2333871C1 (en) Method of disinfection of consumer package with ultraviolet radiation made of polymer material
LT5567B (en) Process for dezinfecting food and surfaces interfacing therewith

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211230

R151 Written notification of patent or utility model registration

Ref document number: 7011791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151