JP7010007B2 - How to manufacture assembled batteries - Google Patents

How to manufacture assembled batteries Download PDF

Info

Publication number
JP7010007B2
JP7010007B2 JP2018003303A JP2018003303A JP7010007B2 JP 7010007 B2 JP7010007 B2 JP 7010007B2 JP 2018003303 A JP2018003303 A JP 2018003303A JP 2018003303 A JP2018003303 A JP 2018003303A JP 7010007 B2 JP7010007 B2 JP 7010007B2
Authority
JP
Japan
Prior art keywords
cooling
battery
conductive material
heat conductive
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018003303A
Other languages
Japanese (ja)
Other versions
JP2019125426A (en
Inventor
壮滋 後藤
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018003303A priority Critical patent/JP7010007B2/en
Publication of JP2019125426A publication Critical patent/JP2019125426A/en
Application granted granted Critical
Publication of JP7010007B2 publication Critical patent/JP7010007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Description

本発明は,複数個の電池を組み合わせてなる組電池の製造方法に関する。さらに詳細には,組電池への組込み前の電池について冷却工程を行うとともに,各電池をその使用段階で冷却する冷却部材が組電池内に組み込まれる,組電池の製造方法に関するものである。 The present invention relates to a method for manufacturing an assembled battery in which a plurality of batteries are combined. More specifically, the present invention relates to a method for manufacturing an assembled battery, in which a cooling process is performed on the battery before it is incorporated into the assembled battery, and a cooling member for cooling each battery at the stage of its use is incorporated in the assembled battery.

従来から,リチウムイオン二次電池その他の電池の製造過程では,組立後の電池を活性化する活性化処理を行っている。活性化処理には,初期充電まで行った電池を高温域(例えば55~70℃程度)で一定時間保持する高温エージング工程と,その後に電池を常温域(例えば15~25℃程度)に戻して自己放電検査を行う検査工程とが含まれる(例えば特許文献1)。ここで高温エージング工程後には電池の温度を降下させることになる。これをより短時間で行うためには,自然放冷に頼るよりも奪熱部材に接触させる強制冷却の方が有利である。 Conventionally, in the manufacturing process of lithium ion secondary batteries and other batteries, an activation process for activating the assembled battery has been performed. The activation treatment involves a high-temperature aging step in which the battery that has been charged up to the initial charge is held in a high temperature range (for example, about 55 to 70 ° C.) for a certain period of time, and then the battery is returned to the normal temperature range (for example, about 15 to 25 ° C.). It includes an inspection step of performing a self-discharge inspection (for example, Patent Document 1). Here, the temperature of the battery is lowered after the high temperature aging step. In order to do this in a shorter time, forced cooling in contact with the heat-removing member is more advantageous than relying on natural cooling.

そのための奪熱部材として,特許文献2の図10に記載されているものを用いることが考えられる。同図には,「冷却プレート11」上に「熱伝導シート10a」を設置したものが描かれている(同図の「(a)」)。そして,「熱伝導シート10a」を介して「バッテリモジュール9」を「冷却プレート11」に押し付けることで「バッテリモジュール9」を冷却する様子が描かれている(同図の「(b)」)。「熱伝導シート10a」はシリコン樹脂シートなどの伸縮性を有するものであるため,接合面の密着が図られる(同文献の[0032])。このため高い冷却効率を期待できる。特に,「バッテリモジュール9」が複数の「バッテリセル9a」の集合体(同文献の[0030],図3)であることから,「熱伝導シート10a」の伸縮性は接合面の確実な密着のために有益である。各「バッテリセル9a」の接合面の高さにはある程度のばらつきが不可避だからである。 As the heat-removing member for that purpose, it is conceivable to use the one described in FIG. 10 of Patent Document 2. The figure shows a "heat conduction sheet 10a" installed on the "cooling plate 11" ("(a)" in the figure). Then, the state of cooling the "battery module 9" by pressing the "battery module 9" against the "cooling plate 11" via the "heat conduction sheet 10a" is drawn ("(b)" in the figure). .. Since the "heat conductive sheet 10a" has elasticity such as a silicon resin sheet, the joint surfaces can be brought into close contact with each other ([0032] in the same document). Therefore, high cooling efficiency can be expected. In particular, since the "battery module 9" is an aggregate of a plurality of "battery cells 9a" ([0030] in the same document, FIG. 3), the elasticity of the "heat conductive sheet 10a" ensures that the joint surface is firmly adhered. Beneficial for. This is because the height of the joint surface of each "battery cell 9a" inevitably varies to some extent.

特開2015-090806号公報JP-A-2015-090806 特開2015-153743号公報JP-A-2015-153743

しかしながら前記した従来の技術には,次のような問題点があった。前述の特許文献2の図10の奪熱部材を電池の組立後の活性化処理に利用すると,その「熱伝導シート10a」付き「冷却プレート11」は何度も反復使用されることとなる。そうすると,「熱伝導シート10a」がクリープ変形してその伸縮性が失われてしまう。「熱伝導シート10a」がこのように疲弊した状況ではもはや,接合面の確実な密着ができず,高い冷却効率を期待することができない。特に,複数の「バッテリセル9a」の集合体である「バッテリモジュール9」を冷却対象とする場合には,冷却の程度が「バッテリセル9a」ごとにばらついてしまう。かといって1回ごとに「熱伝導シート10a」を交換していたのでは無駄が大きい。 However, the above-mentioned conventional technique has the following problems. When the heat-removing member of FIG. 10 of Patent Document 2 described above is used for the activation process after assembling the battery, the "cooling plate 11" with the "heat conduction sheet 10a" is used repeatedly. Then, the "heat conductive sheet 10a" is creep-deformed and loses its elasticity. In a situation where the "heat conductive sheet 10a" is exhausted in this way, the joint surfaces can no longer be reliably adhered to each other, and high cooling efficiency cannot be expected. In particular, when the "battery module 9", which is an aggregate of a plurality of "battery cells 9a", is targeted for cooling, the degree of cooling varies from "battery cell 9a" to each other. However, it would be wasteful if the "heat conductive sheet 10a" was replaced every time.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,複数個の電池を組み合わせてなる組電池の製造過程中の冷却工程にて各電池を確実に冷却できる,組電池の製造方法を提供することにある。 The present invention has been made to solve the problems of the above-mentioned conventional techniques. That is, the problem is to provide a method for manufacturing an assembled battery, which can surely cool each battery in the cooling process during the manufacturing process of the assembled battery formed by combining a plurality of batteries.

本発明の一態様における組電池の製造方法は,複数個の電池と,各電池を冷却する冷却部材とを組み合わせてなる組電池を製造する方法であって,各電池に対して,高温エージングより前に,その表面の一部である冷却面に伸縮性のある熱伝導材を配置する熱伝導材配置工程と,高温エージング後で自己放電検査前の段階での電池熱伝導材を,冷却部材とは別の奪熱部材に接触させつつ電池を冷却する冷却工程と,冷却工程後の電池を自己放電検査に供する検査工程と,検査工程後の電池を,熱伝導材を残したまま,熱伝導材が冷却部材に接触するように組電池に組み込む組み込み工程とを有し,冷却工程を,複数個の電池を拘束具で拘束したアセンブリ状態で行い,奪熱部材は,組電池に組み込まれないものであることとしている。 The method for manufacturing an assembled battery according to one aspect of the present invention is a method for manufacturing an assembled battery in which a plurality of batteries and a cooling member for cooling each battery are combined, and the each battery is subjected to high temperature aging. Before, the heat conductive material placement process in which the elastic heat conductive material is placed on the cooling surface that is a part of the surface, and the heat conductive material of the battery in the stage after high temperature aging and before the self-discharge inspection are cooled. A cooling process in which the battery is cooled while in contact with a heat-removing member other than the member, an inspection process in which the battery after the cooling process is subjected to a self-discharge inspection, and a battery after the inspection process are left with the heat conductive material. It has a built-in process of incorporating the heat conductive material into the assembled battery so that it comes into contact with the cooling member, and the cooling process is performed in an assembled state in which a plurality of batteries are restrained by a restraint, and the heat-removing member is incorporated into the assembled battery. It is supposed to be something that cannot be done.

上記態様における組電池の製造方法では,冷却工程にて,熱伝導材の伸縮性により,電池から奪熱部材への良好な排熱性が得られる。このため冷却工程が短時間で済む。そして熱伝導材は電池の冷却面に配置された状態のまま組電池に組み込まれるので,多数回にわたり反復使用されることはない。このため熱伝導材にクリープ変形が生じて排熱性が損なわれることがない。 In the method for manufacturing an assembled battery in the above aspect, good heat exhaustability from the battery to the heat-removing member can be obtained by the elasticity of the heat conductive material in the cooling step. Therefore, the cooling process can be completed in a short time. Since the heat conductive material is incorporated into the assembled battery while being arranged on the cooling surface of the battery, it is not used repeatedly many times. Therefore, the heat conductive material is not creep-deformed and the heat exhaust property is not impaired.

本構成によれば,複数個の電池を組み合わせてなる組電池の製造過程中の冷却工程にて各電池を確実に冷却できる,組電池の製造方法が提供されている。 According to this configuration, there is provided a method for manufacturing an assembled battery capable of reliably cooling each battery in a cooling step during the manufacturing process of the assembled battery composed of a combination of a plurality of batteries.

組電池の一例を示す斜視図である。It is a perspective view which shows an example of an assembled battery. 単電池の外観を示す斜視図である。It is a perspective view which shows the appearance of a cell. 活性化処理時のアセンブリを示す模式図である。It is a schematic diagram which shows the assembly at the time of an activation process. 冷却工程時の状況を示す模式図である。It is a schematic diagram which shows the situation at the time of a cooling process.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態は,例えば図1に示されるような組電池1の製造過程に本発明を適用したものである。図1の組電池1は,多数の単電池2を一方向に配列し,両端に端部板12を配置したものである。組電池1の各単電池2は,角形平板状の外形を有している。組電池1においては,各単電池2の厚み方向と,組電池1の配列方向とが平行となっている。また,両端の端部板12同士が,締結ロッド15により締結されている。これにより組電池1は一体化されている。また,各単電池2は厚み方向に圧迫されている。 Hereinafter, embodiments embodying the present invention will be described in detail with reference to the accompanying drawings. In this embodiment, for example, the present invention is applied to the manufacturing process of the assembled battery 1 as shown in FIG. In the assembled battery 1 of FIG. 1, a large number of cell cells 2 are arranged in one direction, and end plates 12 are arranged at both ends. Each cell 2 of the assembled battery 1 has a square flat plate-shaped outer shape. In the assembled battery 1, the thickness direction of each cell 2 is parallel to the arrangement direction of the assembled battery 1. Further, the end plates 12 at both ends are fastened to each other by the fastening rod 15. As a result, the assembled battery 1 is integrated. Further, each cell 2 is pressed in the thickness direction.

図1の組電池1では,各単電池2は冷却盤3の上で列状に配列されている。冷却盤3と各単電池2との間には,熱伝導材4が配置されている。図2に,単電池2の斜視図を示す。図1では省略されているが単電池2の上面には正負の端子5,6が突出して設けられている。単電池2の表面の一部である底面上には,前述の熱伝導材4が配置されている。なお,単電池2の電池種としては主としてリチウムイオン二次電池を想定しているが,本発明はそれに限定されるものではない。 In the assembled battery 1 of FIG. 1, each cell 2 is arranged in a row on the cooling board 3. A heat conductive material 4 is arranged between the cooling board 3 and each cell 2. FIG. 2 shows a perspective view of the cell 2 as a cell. Although omitted in FIG. 1, positive and negative terminals 5 and 6 are provided on the upper surface of the cell 2 so as to project. The above-mentioned heat conductive material 4 is arranged on the bottom surface which is a part of the surface of the cell 2. The battery type of the cell 2 is mainly assumed to be a lithium ion secondary battery, but the present invention is not limited thereto.

本形態の製造方法では図1のような組電池1を,次の手順で製造する。このうちの「3.」および「4.」が,組立後の単電池2の活性化処理である。ただし本明細書の説明上,その後の「5.」および「6.」も活性化処理に含めることとする。
1.単電池2の組立
2.単電池2への熱伝導材4の配置
3.初充電
4.高温エージング
5.冷却
6.検査
7.組電池1への組み込み
In the manufacturing method of this embodiment, the assembled battery 1 as shown in FIG. 1 is manufactured by the following procedure. Of these, "3." and "4." are the activation treatments for the cell 2 after assembly. However, for the sake of description of the present specification, the subsequent "5." and "6." are also included in the activation process.
1. 1. Assembly of cell 2 2. 2. Arrangement of the heat conductive material 4 on the cell 2. First charge 4. High temperature aging 5. Cooling 6. Inspection 7. Incorporation into assembled battery 1

まず「1.」の組立であるがこれは,単電池2の外装ケースに発電要素と電解液とを封入することである。この工程は公知(例えば特許文献1の[0010]~[0014])であり,本発明としての特徴点は別段ない。組立をしただけの状態での単電池2には,熱伝導材4が配置されていない。 First, the assembly of "1." is to enclose the power generation element and the electrolytic solution in the outer case of the cell 2. This step is known (for example, [0010] to [0014] of Patent Document 1), and there are no particular features of the present invention. The heat conductive material 4 is not arranged on the cell 2 in the assembled state.

次に「2.」の熱伝導材4の配置を行う。熱伝導材4は,伸縮性と良好な熱伝導性とを兼ね備えた部材である。単電池2から外部への排熱を良好に行うために設けられるものである。このような材料としては,「放熱シート」と称されるものが各メーカーから供給されており,利用できる。このようなものとして例えば,3M社製の「ハイパーソフト放熱シート」を挙げることができる。同社サイトによればこれは,低硬度アクリル樹脂を主成分としており,熱伝導率は2.0~3.5[W/m・K],アスカーC硬度が15~38である。この工程では,上記のような放熱シートを,単電池2の底面の大きさに合わせてカットし,貼り付ける。あるいは,固化することにより上記のような性状となるペースト状の材質のものを単電池2の底面に塗布し,固化させてもよい。図2に外観を示した単電池2は,本工程後の段階のものである。 Next, the heat conductive material 4 of "2." is arranged. The heat conductive material 4 is a member having both elasticity and good heat conductivity. It is provided to satisfactorily exhaust heat from the cell 2 to the outside. As such a material, what is called a "heat dissipation sheet" is supplied by each manufacturer and can be used. As such, for example, "Hypersoft heat dissipation sheet" manufactured by 3M can be mentioned. According to the company's website, it is mainly composed of low-hardness acrylic resin, has a thermal conductivity of 2.0 to 3.5 [W / m · K], and has an Asker C hardness of 15 to 38. In this step, the heat dissipation sheet as described above is cut and attached according to the size of the bottom surface of the cell 2. Alternatively, a paste-like material having the above-mentioned properties by solidification may be applied to the bottom surface of the cell 2 and solidified. The cell 2 whose appearance is shown in FIG. 2 is at a stage after this step.

続いて,「3.」の初充電とその後の「4.」の高温エージングとを行う。これらの工程については,公知の方法(例えば特許文献1の[0015],[0016])で行えばよい。このうち高温エージングについては,処理のハンドリングの便宜のため,図3に示すように複数個の単電池2を適当な拘束具7で拘束したアセンブリ8の状態で実施する。なお,高温エージングの前の初充電もアセンブリ8の状態で実施することとしてもよい。 Subsequently, the initial charge of "3." and the subsequent high-temperature aging of "4." are performed. These steps may be performed by a known method (for example, [0015] and [0016] in Patent Document 1). Of these, high temperature aging is carried out in the state of the assembly 8 in which a plurality of cell cells 2 are restrained by an appropriate restraint 7 as shown in FIG. 3 for the convenience of processing handling. The initial charge before high temperature aging may also be performed in the state of the assembly 8.

高温エージング後には,「5.」の冷却を行う。「6.」の検査を常温で実施するためである。冷却は,アセンブリ8の状態のまま,各単電池2の底面の熱伝導材4を図4に示すように奪熱部材13に押し付けつつ行う。すなわち単電池2においてはその底面が冷却面である。奪熱部材13には,冷媒液F(水等)が通されている。このため,高温エージング後の単電池2を短時間で常温に降温させることができる。なお奪熱部材13は,生産過程で使用するものであり,組電池1に組み込まれるものではない。すなわち前述の冷却盤3とは別のものである。また,奪熱部材13の表面上に熱伝導材4と同様の部材を配置しておく必要はない。 After high temperature aging, the cooling of "5." is performed. This is to carry out the inspection of "6." at room temperature. Cooling is performed while keeping the state of the assembly 8 while pressing the heat conductive material 4 on the bottom surface of each cell 2 against the heat absorbing member 13 as shown in FIG. That is, in the cell 2, the bottom surface thereof is the cooling surface. A refrigerant liquid F (water or the like) is passed through the heat-removing member 13. Therefore, the temperature of the cell 2 after high temperature aging can be lowered to room temperature in a short time. The heat-removing member 13 is used in the production process and is not incorporated in the assembled battery 1. That is, it is different from the cooling board 3 described above. Further, it is not necessary to arrange a member similar to the heat conductive material 4 on the surface of the heat absorbing member 13.

ここで熱伝導材4が重要な役割を果たす。アセンブリ8の状態では,各単電池2の底面の高さが厳密に均一とは限らないからである。このため,熱伝導材4なしで冷却を行った場合,単電池2によっては奪熱部材13とあまり接触しないため冷却が不十分となることがある。伸縮性かつ良熱伝導性の熱伝導材4があることで,すべての単電池2が十分に冷却されるのである。 Here, the heat conductive material 4 plays an important role. This is because the height of the bottom surface of each cell 2 is not exactly uniform in the state of the assembly 8. Therefore, when cooling is performed without the heat conductive material 4, depending on the cell 2, the cooling may be insufficient because it does not make much contact with the heat absorbing member 13. By having the heat conductive material 4 having elasticity and good heat conductivity, all the cells 2 are sufficiently cooled.

その後,「6.」の検査を行う。すなわち,単電池2を自己放電させ,その状況により単電池2の良否を判定する。これも具体的手法は公知のもの(例えば特許文献1の[0017]~[0023])でよい。この検査は,アセンブリ8の状態のままで行ってもよいし,アセンブリ8を解体して個々の単電池2の状態で行ってもよい。 After that, the inspection of "6." is performed. That is, the cell 2 is self-discharged, and the quality of the cell 2 is determined according to the situation. As for this, the specific method may be a known one (for example, [0017] to [0023] of Patent Document 1). This inspection may be performed in the state of the assembly 8 or may be performed in the state of the individual cells 2 by disassembling the assembly 8.

そして,「7.」の組み込みを行う。すなわち,「6.」の検査で良品と判定された単電池2のみを集めて,図1に示したような組電池1とするのである。その際,単電池2から熱伝導材4を剥ぎ取ることなく,そのまま残す。このため組電池1としての使用過程においても,単電池2から冷却盤3への排熱が,熱伝導材4を介して効率よく行われる。また,組電池1を車両や家電製品等の機器に搭載した状態では,機器から冷却盤3に冷媒液を通すことができる。 Then, "7." is incorporated. That is, only the cell cells 2 judged to be non-defective by the inspection of "6." are collected to form the assembled battery 1 as shown in FIG. At that time, the heat conductive material 4 is left as it is without being peeled off from the cell 2. Therefore, even in the process of using the assembled battery 1, the heat exhausted from the cell 2 to the cooling board 3 is efficiently exhausted via the heat conductive material 4. Further, in a state where the assembled battery 1 is mounted on a device such as a vehicle or a home electric appliance, the refrigerant liquid can be passed from the device to the cooling board 3.

なお,この組み込みを,スタッキングとパッキングとに分けて行うことがある。スタッキングとは,多数の単電池2を積み重ねて拘束することであり,図1の組電池1のうち冷却盤3を除いた状態のものを得ることに相当する。パッキングとは,スタッキングしたものをパック容器に収納して電池パックとすることである。パック容器の底面部分に,冷却盤3もしくはそれに相当するものが配置されている。 This integration may be divided into stacking and packing. Stacking is to stack and restrain a large number of cells 2 and corresponds to obtaining a battery 1 in FIG. 1 in a state excluding the cooling board 3. Packing is to store the stacked items in a pack container to make a battery pack. A cooling board 3 or an equivalent is arranged on the bottom surface of the pack container.

以上詳細に説明したように本実施の形態によれば,組み立てた単電池2に,冷却工程に至るよりも前に熱伝導材4を配置することとしている。そしてこの熱伝導材4を,冷却工程で排熱に使用するのみならず,そのまま組電池1に組み込み使用段階でも排熱に使用することとしている。このことにより次のような利点がある。 As described in detail above, according to the present embodiment, the heat conductive material 4 is arranged in the assembled cell 2 before the cooling step is reached. The heat conductive material 4 is not only used for exhaust heat in the cooling process, but is also incorporated into the assembled battery 1 as it is and used for exhaust heat even in the use stage. This has the following advantages.

まず,冷却工程でも使用段階でも単電池2の高さ方向位置のばらつきに関わらず,すべての単電池2にて良好な排熱性が得られる。特に,冷却工程で良好な排熱性が得られることにより,活性化処理の要処理時間が短くて済む。なお,初充電工程も単電池2を冷却しつつ行うことができ,その場合にも熱伝導材4による良好な排熱性の効果が得られる。その一方で,熱伝導材4自体は,冷却工程を含む活性化処理を1回経験するだけで組電池1に組み込まれてしまう。このため,組電池1に組み込まれる以前において熱伝導材4が圧縮とその開放とを反復する回数は高々数回程度である。したがって,組電池1への組み込みの時点で熱伝導材4にクリープ変形が発生していることはない。よって,使用段階での排熱性も十分に得られる。 First, good heat exhaustability can be obtained in all the cells 2 regardless of the variation in the height direction position of the cells 2 in both the cooling step and the use stage. In particular, since good heat exhaustability is obtained in the cooling step, the treatment time required for the activation treatment can be shortened. The initial charging step can also be performed while cooling the cell 2, and even in that case, the effect of good heat exhaustion by the heat conductive material 4 can be obtained. On the other hand, the heat conductive material 4 itself is incorporated into the assembled battery 1 only by experiencing the activation process including the cooling step once. Therefore, the number of times that the heat conductive material 4 repeats compression and its release before being incorporated in the assembled battery 1 is at most several times. Therefore, creep deformation does not occur in the heat conductive material 4 at the time of incorporation into the assembled battery 1. Therefore, sufficient heat dissipation at the stage of use can be obtained.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,図1に示した端部板12や締結ロッド15の形状や組み合わせは任意である。組電池1の一体性を維持できるいかなるものであってもよい。また,熱伝導材4として使用できる具体的なものは,例示したものに限らず他メーカーによる相当品でもよい。また,熱伝導材4の伸縮性は,少なくともその厚み方向に対してあれば十分である。また,活性化処理の段階でのアセンブリ8は,組み付け後の組電池1とは別のものとしたが,それに限らない。アセンブリ8に含まれる単電池2の検査結果がすべて良であった場合にそのまま冷却盤3を付加して組電池1とできるようにしてもよい。 It should be noted that the present embodiment is merely an example and does not limit the present invention in any way. Therefore, as a matter of course, the present invention can be improved and modified in various ways without departing from the gist of the present invention. For example, the shape and combination of the end plate 12 and the fastening rod 15 shown in FIG. 1 are arbitrary. Anything that can maintain the integrity of the assembled battery 1 may be used. Further, the specific material that can be used as the heat conductive material 4 is not limited to the illustrated material, and may be an equivalent product manufactured by another manufacturer. Further, the elasticity of the heat conductive material 4 is sufficient if it is at least in the thickness direction thereof. Further, the assembly 8 at the stage of the activation process is different from the assembled battery 1 after assembly, but is not limited to this. If the inspection results of the cell cells 2 included in the assembly 8 are all good, the cooling board 3 may be added as it is so that the assembled battery 1 can be used.

また,図1では単電池2同士が密着しているように見えるが,それに限られない。単電池2同士の間に通風経路が存在するものであってもよい。また,活性化処理の段階でアセンブリ8を組むことは必須ではない。個々の単電池2のままで活性化処理を行う場合であっても本発明の効果はある程度得られる。また,単電池2に熱伝導材4を配置する時期は,冷却工程より前であればいつでもよい。また,奪熱部材13の表面上にも熱伝導材4と同様の部材を配置することを妨げない。また,冷却盤3や奪熱部材13は,冷媒液を利用するものに限らず,ペルティエ素子等の熱電効果による冷却を行うものであってもよい。 Further, in FIG. 1, it seems that the cells 2 are in close contact with each other, but the present invention is not limited to this. A ventilation path may exist between the cell 2 cells. Further, it is not essential to assemble the assembly 8 at the stage of the activation process. Even when the activation treatment is performed with the individual cells 2 as they are, the effect of the present invention can be obtained to some extent. Further, the time for arranging the heat conductive material 4 in the cell 2 may be any time before the cooling step. Further, it does not prevent the same member as the heat conductive material 4 from being arranged on the surface of the heat absorbing member 13. Further, the cooling board 3 and the heat-removing member 13 are not limited to those using the refrigerant liquid, and may be those that cool by the thermoelectric effect of the Peltier element or the like.

1 組電池
2 単電池
3 冷却盤
4 熱伝導材
13 奪熱部材
1 set battery 2 cell cell 3 cooling board 4 heat conductive material 13 heat absorbing member

Claims (1)

複数個の電池と,各前記電池を冷却する冷却部材とを組み合わせてなる組電池の製造方法であって,
各前記電池に対して,高温エージングより前に,その表面の一部である冷却面に伸縮性のある熱伝導材を配置する熱伝導材配置工程と,
高温エージング後で自己放電検査前の段階での前記電池前記熱伝導材を,前記冷却部材とは別の奪熱部材に接触させつつ前記電池を冷却する冷却工程と,
前記冷却工程後の前記電池を自己放電検査に供する検査工程と,
前記検査工程後の前記電池を,前記熱伝導材を残したまま,前記熱伝導材が前記冷却部材に接触するように組電池に組み込む組み込み工程とを有し,
前記冷却工程を,複数個の前記電池を拘束具で拘束したアセンブリ状態で行い,
前記奪熱部材は,前記組電池に組み込まれないものであることを特徴とする組電池の製造方法。
It is a method for manufacturing an assembled battery, which comprises a combination of a plurality of batteries and a cooling member for cooling each of the batteries.
For each battery, a heat conductive material placement step of placing a stretchable heat conductive material on a cooling surface that is a part of the surface of the battery before high temperature aging, and a process of arranging the heat conductive material.
A cooling step of cooling the battery while contacting the heat conductive material of the battery in a stage after high temperature aging and before the self-discharge inspection with a heat absorbing member different from the cooling member.
An inspection step of subjecting the battery to a self-discharge inspection after the cooling step, and
It has a built-in step of incorporating the battery after the inspection step into the assembled battery so that the heat conductive material comes into contact with the cooling member while leaving the heat conductive material.
The cooling step is performed in an assembled state in which a plurality of the batteries are restrained by a restraint.
A method for manufacturing an assembled battery, wherein the heat-removing member is not incorporated in the assembled battery.
JP2018003303A 2018-01-12 2018-01-12 How to manufacture assembled batteries Active JP7010007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003303A JP7010007B2 (en) 2018-01-12 2018-01-12 How to manufacture assembled batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003303A JP7010007B2 (en) 2018-01-12 2018-01-12 How to manufacture assembled batteries

Publications (2)

Publication Number Publication Date
JP2019125426A JP2019125426A (en) 2019-07-25
JP7010007B2 true JP7010007B2 (en) 2022-02-10

Family

ID=67399396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003303A Active JP7010007B2 (en) 2018-01-12 2018-01-12 How to manufacture assembled batteries

Country Status (1)

Country Link
JP (1) JP7010007B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156124A (en) 2011-01-07 2012-08-16 Lithium Energy Japan:Kk Power storage element and power storage device
JP2013118048A (en) 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014238961A (en) 2013-06-07 2014-12-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2015095333A (en) 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2015144068A (en) 2014-01-31 2015-08-06 株式会社Gsユアサ Power storage element and power storage module
JP2015153743A (en) 2014-02-19 2015-08-24 日立建機株式会社 Power storage device, and work machine mounting the same
JP2016225167A (en) 2015-06-01 2016-12-28 トヨタ自動車株式会社 Manufacturing method of on-vehicle battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156124A (en) 2011-01-07 2012-08-16 Lithium Energy Japan:Kk Power storage element and power storage device
JP2013118048A (en) 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014238961A (en) 2013-06-07 2014-12-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2015095333A (en) 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2015144068A (en) 2014-01-31 2015-08-06 株式会社Gsユアサ Power storage element and power storage module
JP2015153743A (en) 2014-02-19 2015-08-24 日立建機株式会社 Power storage device, and work machine mounting the same
JP2016225167A (en) 2015-06-01 2016-12-28 トヨタ自動車株式会社 Manufacturing method of on-vehicle battery pack

Also Published As

Publication number Publication date
JP2019125426A (en) 2019-07-25

Similar Documents

Publication Publication Date Title
KR102067951B1 (en) Method for producing li-ion battery modules and a corresponding li-ion battery module
KR102348298B1 (en) Secondary battery module
JP6567553B2 (en) Battery pack
CN108475830B (en) Heat dissipation material, method of manufacturing the same, and battery module including the same
US6811921B2 (en) Battery pack
KR101814735B1 (en) Battery module
KR101805559B1 (en) Strip of electrochemical cells for the production of a battery module for an electric or hybrid vehicle, and method for the production of such a module
JP7062164B2 (en) Battery module, battery pack containing it and car containing this battery pack
KR101713042B1 (en) High Temperature Pressing Device for Battery Cell
CN109075275B (en) Electric core group with buffer part
JP6157813B2 (en) Assembled battery
JP2009054403A (en) Battery pack device
JP6782841B2 (en) Battery module, battery pack including it and power storage device
JP2012226995A (en) Battery assembly
JP5105809B2 (en) Heater unit, battery structure with heater
US20140045005A1 (en) lithium-ion rechargeable battery and method for manufacturing same
JP2015049990A (en) Battery pack
US11139541B2 (en) Battery terminal comprising an integrated spring or a flexible pad
JP2010192333A (en) Battery pack
JP7150051B2 (en) Battery module, battery pack containing the battery module and automobile containing the battery pack
JP7010007B2 (en) How to manufacture assembled batteries
KR20200129991A (en) Battery module
KR102284380B1 (en) Battery module and battery pack including the same
KR101265935B1 (en) method for manufacturing a flexible solid-state secondary battery using neutral mechanical plane and the flexible solid-state secondary battery manufactured by the same
JP2020140804A (en) Battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R151 Written notification of patent or utility model registration

Ref document number: 7010007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151