JP2019125426A - Method of manufacturing battery pack - Google Patents

Method of manufacturing battery pack Download PDF

Info

Publication number
JP2019125426A
JP2019125426A JP2018003303A JP2018003303A JP2019125426A JP 2019125426 A JP2019125426 A JP 2019125426A JP 2018003303 A JP2018003303 A JP 2018003303A JP 2018003303 A JP2018003303 A JP 2018003303A JP 2019125426 A JP2019125426 A JP 2019125426A
Authority
JP
Japan
Prior art keywords
battery
cooling
heat
heat conductive
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018003303A
Other languages
Japanese (ja)
Other versions
JP7010007B2 (en
Inventor
壮滋 後藤
Soji Goto
壮滋 後藤
極 小林
Kyoku Kobayashi
極 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2018003303A priority Critical patent/JP7010007B2/en
Publication of JP2019125426A publication Critical patent/JP2019125426A/en
Application granted granted Critical
Publication of JP7010007B2 publication Critical patent/JP7010007B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)

Abstract

To provide a method of manufacturing a battery pack in which each battery can be surely cooled in a cooling step in a manufacturing process of the battery pack formed by combining a plurality of batteries.SOLUTION: Disclosed is a method of manufacturing a battery pack formed by combining a plurality of single batteries 2 and a cooling member for cooling each single battery 2. This method includes: a cooling step of cooling a battery 2, while bringing a heat conduction material 4 arranged on the cooling surface which is a part of the battery 2 surface at a stage after high temperature aging and before self-discharge inspection into a heat removal member 13 different from the cooling member; an inspection step of subjecting the battery 2 after the cooling step to the self-discharge inspection; and an assembling step of incorporating the battery 2 after the inspection step into the battery pack so that the heat conduction material 4 comes into close contact with the cooling member while leaving the heat conduction material 4.SELECTED DRAWING: Figure 4

Description

本発明は,複数個の電池を組み合わせてなる組電池の製造方法に関する。さらに詳細には,組電池への組込み前の電池について冷却工程を行うとともに,各電池をその使用段階で冷却する冷却部材が組電池内に組み込まれる,組電池の製造方法に関するものである。   The present invention relates to a method of manufacturing an assembled battery formed by combining a plurality of batteries. More specifically, the present invention relates to a method of manufacturing a battery assembly in which a cooling step is performed on the battery before being incorporated into the battery assembly, and a cooling member for cooling each battery at its use stage is incorporated into the battery assembly.

従来から,リチウムイオン二次電池その他の電池の製造過程では,組立後の電池を活性化する活性化処理を行っている。活性化処理には,初期充電まで行った電池を高温域(例えば55〜70℃程度)で一定時間保持する高温エージング工程と,その後に電池を常温域(例えば15〜25℃程度)に戻して自己放電検査を行う検査工程とが含まれる(例えば特許文献1)。ここで高温エージング工程後には電池の温度を降下させることになる。これをより短時間で行うためには,自然放冷に頼るよりも奪熱部材に接触させる強制冷却の方が有利である。   Conventionally, in the manufacturing process of lithium ion secondary batteries and other batteries, an activation process is performed to activate the assembled battery. In the activation process, a high temperature aging step is performed to hold the battery, which has been subjected to initial charge, in a high temperature range (for example, about 55 to 70 ° C.) for a certain period of time, And an inspection step of performing a self-discharge inspection (e.g., Patent Document 1). Here, after the high temperature aging process, the temperature of the battery is lowered. In order to do this in a shorter time, forced cooling in which the heat removal member is in contact is more advantageous than relying on natural cooling.

そのための奪熱部材として,特許文献2の図10に記載されているものを用いることが考えられる。同図には,「冷却プレート11」上に「熱伝導シート10a」を設置したものが描かれている(同図の「(a)」)。そして,「熱伝導シート10a」を介して「バッテリモジュール9」を「冷却プレート11」に押し付けることで「バッテリモジュール9」を冷却する様子が描かれている(同図の「(b)」)。「熱伝導シート10a」はシリコン樹脂シートなどの伸縮性を有するものであるため,接合面の密着が図られる(同文献の[0032])。このため高い冷却効率を期待できる。特に,「バッテリモジュール9」が複数の「バッテリセル9a」の集合体(同文献の[0030],図3)であることから,「熱伝導シート10a」の伸縮性は接合面の確実な密着のために有益である。各「バッテリセル9a」の接合面の高さにはある程度のばらつきが不可避だからである。   As the heat removal member for that purpose, it is conceivable to use the one described in FIG. 10 of Patent Document 2. In the same figure, what installed "the heat conductive sheet 10a" on the "cooling plate 11" is drawn ("(a)" of the same figure). Then, a state is shown in which the "battery module 9" is cooled by pressing the "battery module 9" against the "cooling plate 11" via the "heat conductive sheet 10a" ("(b)" in the figure). . Since the “heat conductive sheet 10 a” has stretchability such as a silicon resin sheet, the bonding surface is closely adhered ([0032] in the same document). Therefore, high cooling efficiency can be expected. In particular, since the "battery module 9" is an assembly of a plurality of "battery cells 9a" (FIG. 3, [0030] in the same document), the stretchability of the "heat conductive sheet 10a" Is beneficial for This is because a certain degree of variation is inevitable in the height of the bonding surface of each "battery cell 9a".

特開2015-090806号公報JP, 2015-090806, A 特開2015-153743号公報JP, 2015-153743, A

しかしながら前記した従来の技術には,次のような問題点があった。前述の特許文献2の図10の奪熱部材を電池の組立後の活性化処理に利用すると,その「熱伝導シート10a」付き「冷却プレート11」は何度も反復使用されることとなる。そうすると,「熱伝導シート10a」がクリープ変形してその伸縮性が失われてしまう。「熱伝導シート10a」がこのように疲弊した状況ではもはや,接合面の確実な密着ができず,高い冷却効率を期待することができない。特に,複数の「バッテリセル9a」の集合体である「バッテリモジュール9」を冷却対象とする場合には,冷却の程度が「バッテリセル9a」ごとにばらついてしまう。かといって1回ごとに「熱伝導シート10a」を交換していたのでは無駄が大きい。   However, the above-described conventional techniques have the following problems. When the heat removal member shown in FIG. 10 of Patent Document 2 described above is used for activation processing after assembly of the battery, the “cooling plate 11” with the “heat conductive sheet 10a” is repeatedly used many times. Then, the “heat conductive sheet 10 a” is creep-deformed and its stretchability is lost. In the situation where the "heat conductive sheet 10a" is thus exhausted, the bonding surface can no longer be firmly adhered and high cooling efficiency can not be expected. In particular, when the "battery module 9" which is an assembly of a plurality of "battery cells 9a" is to be cooled, the degree of cooling varies among the "battery cells 9a". However, it is wasteful to replace the “heat conductive sheet 10 a” once each time.

本発明は,前記した従来の技術が有する問題点を解決するためになされたものである。すなわちその課題とするところは,複数個の電池を組み合わせてなる組電池の製造過程中の冷却工程にて各電池を確実に冷却できる,組電池の製造方法を提供することにある。   The present invention has been made to solve the problems of the above-described conventional techniques. That is, it is an object of the present invention to provide a method of manufacturing an assembled battery capable of reliably cooling each battery in the cooling step in the process of manufacturing the assembled battery formed by combining a plurality of batteries.

本発明の一態様における組電池の製造方法は,複数個の電池と,各電池を冷却する冷却部材とを組み合わせてなる組電池を製造する方法であって,高温エージング後で自己放電検査前の段階での電池であってその表面の一部である冷却面に伸縮性のある熱伝導材が配置されているものにおける熱伝導材を,冷却部材とは別の奪熱部材に接触させつつ電池を冷却する冷却工程と,冷却工程後の電池を自己放電検査に供する検査工程と,検査工程後の電池を,熱伝導材を残したまま,熱伝導材が冷却部材に接触するように組電池に組み込む組み込み工程とを有している。   A method of manufacturing a battery pack according to an aspect of the present invention is a method of manufacturing a battery pack comprising a plurality of batteries and a cooling member for cooling each battery, the method comprising the steps of: The heat conducting material in the battery in the stage where the heat conducting material having stretchability is disposed on the cooling surface which is a part of the surface is brought into contact with the heat removal member separate from the cooling member. Cooling step of cooling the battery, inspection step of subjecting the battery after the cooling step to self-discharge inspection, and battery after the inspection step, the assembled battery so that the heat conducting material contacts the cooling member while leaving the heat conducting material. And a built-in process to be incorporated into the

上記態様における組電池の製造方法では,冷却工程にて,熱伝導材の伸縮性により,電池から奪熱部材への良好な排熱性が得られる。このため冷却工程が短時間で済む。そして熱伝導材は電池の冷却面に配置された状態のまま組電池に組み込まれるので,多数回にわたり反復使用されることはない。このため熱伝導材にクリープ変形が生じて排熱性が損なわれることがない。   In the method of manufacturing a battery assembly in the above aspect, good heat removal from the battery to the heat removal member can be obtained due to the stretchability of the heat conductive material in the cooling step. Therefore, the cooling process can be completed in a short time. Since the heat transfer material is incorporated into the assembled battery while being disposed on the cooling surface of the battery, it is not repeatedly used many times. For this reason, creep deformation does not occur in the heat conductive material, and the heat discharging property is not impaired.

本構成によれば,複数個の電池を組み合わせてなる組電池の製造過程中の冷却工程にて各電池を確実に冷却できる,組電池の製造方法が提供されている。   According to this configuration, there is provided a method of manufacturing a battery assembly, which can reliably cool each battery in the cooling step in the process of manufacturing the battery assembly in which a plurality of batteries are combined.

組電池の一例を示す斜視図である。It is a perspective view which shows an example of an assembled battery. 単電池の外観を示す斜視図である。It is a perspective view which shows the external appearance of a cell. 活性化処理時のアセンブリを示す模式図である。It is a schematic diagram which shows the assembly at the time of activation processing. 冷却工程時の状況を示す模式図である。It is a schematic diagram which shows the condition at the time of a cooling process.

以下,本発明を具体化した実施の形態について,添付図面を参照しつつ詳細に説明する。本形態は,例えば図1に示されるような組電池1の製造過程に本発明を適用したものである。図1の組電池1は,多数の単電池2を一方向に配列し,両端に端部板12を配置したものである。組電池1の各単電池2は,角形平板状の外形を有している。組電池1においては,各単電池2の厚み方向と,組電池1の配列方向とが平行となっている。また,両端の端部板12同士が,締結ロッド15により締結されている。これにより組電池1は一体化されている。また,各単電池2は厚み方向に圧迫されている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the attached drawings. In this embodiment, for example, the present invention is applied to the manufacturing process of a battery assembly 1 as shown in FIG. The battery assembly 1 of FIG. 1 has a large number of unit cells 2 arranged in one direction, and end plates 12 arranged at both ends. Each unit cell 2 of the battery pack 1 has a rectangular flat outer shape. In the assembled battery 1, the thickness direction of each unit cell 2 and the arrangement direction of the assembled battery 1 are parallel. Further, the end plates 12 of the both ends are fastened by a fastening rod 15. Thus, the battery pack 1 is integrated. Further, each unit cell 2 is compressed in the thickness direction.

図1の組電池1では,各単電池2は冷却盤3の上で列状に配列されている。冷却盤3と各単電池2との間には,熱伝導材4が配置されている。図2に,単電池2の斜視図を示す。図1では省略されているが単電池2の上面には正負の端子5,6が突出して設けられている。単電池2の表面の一部である底面上には,前述の熱伝導材4が配置されている。なお,単電池2の電池種としては主としてリチウムイオン二次電池を想定しているが,本発明はそれに限定されるものではない。   In the battery assembly 1 of FIG. 1, the cells 2 are arranged in a row on the cooling plate 3. A heat conducting material 4 is disposed between the cooling plate 3 and each unit cell 2. FIG. 2 shows a perspective view of the unit cell 2. Although omitted in FIG. 1, positive and negative terminals 5 and 6 are provided on the upper surface of the unit cell 2 so as to protrude. The heat conductive material 4 described above is disposed on the bottom surface which is a part of the surface of the unit cell 2. In addition, although a lithium ion secondary battery is mainly assumed as a battery type of the unit cell 2, the present invention is not limited thereto.

本形態の製造方法では図1のような組電池1を,次の手順で製造する。このうちの「3.」および「4.」が,組立後の単電池2の活性化処理である。ただし本明細書の説明上,その後の「5.」および「6.」も活性化処理に含めることとする。
1.単電池2の組立
2.単電池2への熱伝導材4の配置
3.初充電
4.高温エージング
5.冷却
6.検査
7.組電池1への組み込み
In the manufacturing method of this embodiment, the battery assembly 1 as shown in FIG. 1 is manufactured in the following procedure. Among these, “3.” and “4.” are the activation processing of the unit cell 2 after assembly. However, for the explanation of this specification, the following "5." and "6." are also included in the activation process.
1. Assembly of unit cell 2 Arrangement of heat conductive material 4 to unit cell 2 First charge 4. High temperature aging 5. Cooling 6. Inspection 7. Built-in battery 1

まず「1.」の組立であるがこれは,単電池2の外装ケースに発電要素と電解液とを封入することである。この工程は公知(例えば特許文献1の[0010]〜[0014])であり,本発明としての特徴点は別段ない。組立をしただけの状態での単電池2には,熱伝導材4が配置されていない。   First, the assembly of “1.” is to enclose the power generation element and the electrolyte in the outer case of the unit cell 2. This process is known (for example, from [0010] to [0014] in Patent Document 1), and the feature point of the present invention is not particularly limited. The heat conductive material 4 is not disposed in the unit cell 2 in a state of being just assembled.

次に「2.」の熱伝導材4の配置を行う。熱伝導材4は,伸縮性と良好な熱伝導性とを兼ね備えた部材である。単電池2から外部への排熱を良好に行うために設けられるものである。このような材料としては,「放熱シート」と称されるものが各メーカーから供給されており,利用できる。このようなものとして例えば,3M社製の「ハイパーソフト放熱シート」を挙げることができる。同社サイトによればこれは,低硬度アクリル樹脂を主成分としており,熱伝導率は2.0〜3.5[W/m・K],アスカーC硬度が15〜38である。この工程では,上記のような放熱シートを,単電池2の底面の大きさに合わせてカットし,貼り付ける。あるいは,固化することにより上記のような性状となるペースト状の材質のものを単電池2の底面に塗布し,固化させてもよい。図2に外観を示した単電池2は,本工程後の段階のものである。   Next, the heat conductive material 4 of "2." is arranged. The heat conductive material 4 is a member having both stretchability and good thermal conductivity. It is provided in order to favorably perform the exhaust heat from the unit cell 2 to the outside. As such a material, what is called a "heat dissipation sheet" is supplied from each manufacturer and can be used. As such a thing, the "hyper soft thermal radiation sheet" by 3M company can be mentioned, for example. According to the company's site, this is mainly composed of low hardness acrylic resin, thermal conductivity is 2.0 to 3.5 [W / m · K], and Asker C hardness is 15 to 38. In this process, the heat dissipation sheet as described above is cut and attached according to the size of the bottom surface of the unit cell 2. Alternatively, a paste-like material having the above-mentioned properties by solidification may be applied to the bottom of the unit cell 2 and then solidified. The unit cell 2 whose appearance is shown in FIG. 2 is at a stage after this process.

続いて,「3.」の初充電とその後の「4.」の高温エージングとを行う。これらの工程については,公知の方法(例えば特許文献1の[0015],[0016])で行えばよい。このうち高温エージングについては,処理のハンドリングの便宜のため,図3に示すように複数個の単電池2を適当な拘束具7で拘束したアセンブリ8の状態で実施する。なお,高温エージングの前の初充電もアセンブリ8の状態で実施することとしてもよい。   Subsequently, the first charging of "3." and the high temperature aging of "4." thereafter are performed. These steps may be performed by known methods (for example, [0015] and [0016] of Patent Document 1). Among these, high temperature aging is carried out in the state of an assembly 8 in which a plurality of single cells 2 are restrained by an appropriate restraint 7 as shown in FIG. The initial charge before high temperature aging may also be performed in the state of the assembly 8.

高温エージング後には,「5.」の冷却を行う。「6.」の検査を常温で実施するためである。冷却は,アセンブリ8の状態のまま,各単電池2の底面の熱伝導材4を図4に示すように奪熱部材13に押し付けつつ行う。すなわち単電池2においてはその底面が冷却面である。奪熱部材13には,冷媒液F(水等)が通されている。このため,高温エージング後の単電池2を短時間で常温に降温させることができる。なお奪熱部材13は,生産過程で使用するものであり,組電池1に組み込まれるものではない。すなわち前述の冷却盤3とは別のものである。また,奪熱部材13の表面上に熱伝導材4と同様の部材を配置しておく必要はない。   After high temperature aging, cool down "5." This is to carry out the inspection of “6.” at normal temperature. Cooling is performed while pressing the heat conduction member 4 on the bottom of each unit cell 2 against the heat removal member 13 as shown in FIG. That is, in the unit cell 2, the bottom surface is a cooling surface. A coolant liquid F (water or the like) is passed through the heat removal member 13. For this reason, the single battery 2 after high temperature aging can be cooled to normal temperature in a short time. The heat removal member 13 is used in the production process, and is not incorporated in the assembled battery 1. That is, the cooling plate 3 is different from the cooling plate 3 described above. Further, it is not necessary to arrange the same member as the heat conductive material 4 on the surface of the heat removal member 13.

ここで熱伝導材4が重要な役割を果たす。アセンブリ8の状態では,各単電池2の底面の高さが厳密に均一とは限らないからである。このため,熱伝導材4なしで冷却を行った場合,単電池2によっては奪熱部材13とあまり接触しないため冷却が不十分となることがある。伸縮性かつ良熱伝導性の熱伝導材4があることで,すべての単電池2が十分に冷却されるのである。   Here, the heat conductive material 4 plays an important role. In the state of the assembly 8, the height of the bottom of each unit cell 2 is not necessarily strictly uniform. For this reason, when cooling is performed without the heat conducting material 4, some cells 2 do not contact the heat removal member 13 so much that the cooling may be insufficient. The presence of the heat conductive material 4 which is stretchable and has a good heat conductivity sufficiently cools all the unit cells 2.

その後,「6.」の検査を行う。すなわち,単電池2を自己放電させ,その状況により単電池2の良否を判定する。これも具体的手法は公知のもの(例えば特許文献1の[0017]〜[0023])でよい。この検査は,アセンブリ8の状態のままで行ってもよいし,アセンブリ8を解体して個々の単電池2の状態で行ってもよい。   After that, perform the test of "6." That is, the unit cell 2 is self-discharged, and the quality of the unit cell 2 is determined based on the situation. This specific method may be known one (for example, [0017] to [0023] of Patent Document 1). This inspection may be performed in the state of the assembly 8 or may be disassembled and performed in the state of the individual single battery 2.

そして,「7.」の組み込みを行う。すなわち,「6.」の検査で良品と判定された単電池2のみを集めて,図1に示したような組電池1とするのである。その際,単電池2から熱伝導材4を剥ぎ取ることなく,そのまま残す。このため組電池1としての使用過程においても,単電池2から冷却盤3への排熱が,熱伝導材4を介して効率よく行われる。また,組電池1を車両や家電製品等の機器に搭載した状態では,機器から冷却盤3に冷媒液を通すことができる。   Then, install "7." That is, only the unit cells 2 determined to be non-defective in the inspection of "6." are collected to form the assembled battery 1 as shown in FIG. At that time, the heat conductive material 4 is left as it is without being peeled off from the unit cell 2. For this reason, also in the process of use as the assembled battery 1, the exhaust heat from the unit cell 2 to the cooling plate 3 is efficiently performed via the heat conduction member 4. Further, in a state where the battery assembly 1 is mounted on a device such as a vehicle or a home appliance, the refrigerant liquid can be passed from the device to the cooling plate 3.

なお,この組み込みを,スタッキングとパッキングとに分けて行うことがある。スタッキングとは,多数の単電池2を積み重ねて拘束することであり,図1の組電池1のうち冷却盤3を除いた状態のものを得ることに相当する。パッキングとは,スタッキングしたものをパック容器に収納して電池パックとすることである。パック容器の底面部分に,冷却盤3もしくはそれに相当するものが配置されている。   This incorporation may be divided into stacking and packing. Stacking refers to stacking and restraining a large number of single cells 2 and corresponds to obtaining a state in which the cooling plate 3 is removed from the assembled battery 1 of FIG. 1. Packing means to store the stacked ones in a pack container to make a battery pack. A cooling plate 3 or the equivalent is disposed on the bottom of the pack container.

以上詳細に説明したように本実施の形態によれば,組み立てた単電池2に,冷却工程に至るよりも前に熱伝導材4を配置することとしている。そしてこの熱伝導材4を,冷却工程で排熱に使用するのみならず,そのまま組電池1に組み込み使用段階でも排熱に使用することとしている。このことにより次のような利点がある。   As described above in detail, according to the present embodiment, the heat conductive material 4 is disposed in the assembled unit cell 2 before the cooling step. Then, the heat conductive material 4 is used not only for exhaust heat in the cooling step but also as it is incorporated in the battery assembly 1 and used for exhaust heat even in the use stage. This has the following advantages.

まず,冷却工程でも使用段階でも単電池2の高さ方向位置のばらつきに関わらず,すべての単電池2にて良好な排熱性が得られる。特に,冷却工程で良好な排熱性が得られることにより,活性化処理の要処理時間が短くて済む。なお,初充電工程も単電池2を冷却しつつ行うことができ,その場合にも熱伝導材4による良好な排熱性の効果が得られる。その一方で,熱伝導材4自体は,冷却工程を含む活性化処理を1回経験するだけで組電池1に組み込まれてしまう。このため,組電池1に組み込まれる以前において熱伝導材4が圧縮とその開放とを反復する回数は高々数回程度である。したがって,組電池1への組み込みの時点で熱伝導材4にクリープ変形が発生していることはない。よって,使用段階での排熱性も十分に得られる。   First, regardless of the variation in the position in the height direction of the unit cell 2 in the cooling step or in the use stage, good heat removal can be obtained in all the unit cells 2. In particular, since good heat removal properties can be obtained in the cooling step, the time required for the activation process can be shortened. The initial charging step can also be performed while cooling the unit cell 2, and also in this case, a good effect of heat removal by the heat conductive material 4 can be obtained. On the other hand, the heat conductive material 4 itself is incorporated into the battery assembly 1 only by one activation process including a cooling step. Therefore, the number of times the heat conductive material 4 repeats compression and release thereof before being incorporated into the battery assembly 1 is about several times at most. Therefore, creep deformation does not occur in the heat conductive material 4 at the time of incorporation into the assembled battery 1. Therefore, the heat removal property at the use stage can be sufficiently obtained.

なお,本実施の形態は単なる例示にすぎず,本発明を何ら限定するものではない。したがって本発明は当然に,その要旨を逸脱しない範囲内で種々の改良,変形が可能である。例えば,図1に示した端部板12や締結ロッド15の形状や組み合わせは任意である。組電池1の一体性を維持できるいかなるものであってもよい。また,熱伝導材4として使用できる具体的なものは,例示したものに限らず他メーカーによる相当品でもよい。また,熱伝導材4の伸縮性は,少なくともその厚み方向に対してあれば十分である。また,活性化処理の段階でのアセンブリ8は,組み付け後の組電池1とは別のものとしたが,それに限らない。アセンブリ8に含まれる単電池2の検査結果がすべて良であった場合にそのまま冷却盤3を付加して組電池1とできるようにしてもよい。   The present embodiment is merely an example and does not limit the present invention. Therefore, the present invention is naturally capable of various improvements and modifications without departing from the scope of the invention. For example, the shape and combination of the end plate 12 and the fastening rod 15 shown in FIG. 1 are arbitrary. It may be anything that can maintain the integrity of the battery pack 1. Moreover, the concrete thing which can be used as the heat conductive material 4 is not limited to the exemplified ones, but may be equivalent products from other manufacturers. Also, the stretchability of the heat conductive material 4 is sufficient if it is at least in the thickness direction. Further, although the assembly 8 at the activation processing stage is different from the assembled battery 1 after assembly, it is not limited thereto. If all the inspection results of the unit cells 2 included in the assembly 8 are good, the cooling plate 3 may be added as it is to make the assembled battery 1 possible.

また,図1では単電池2同士が密着しているように見えるが,それに限られない。単電池2同士の間に通風経路が存在するものであってもよい。また,活性化処理の段階でアセンブリ8を組むことは必須ではない。個々の単電池2のままで活性化処理を行う場合であっても本発明の効果はある程度得られる。また,単電池2に熱伝導材4を配置する時期は,冷却工程より前であればいつでもよい。また,奪熱部材13の表面上にも熱伝導材4と同様の部材を配置することを妨げない。また,冷却盤3や奪熱部材13は,冷媒液を利用するものに限らず,ペルティエ素子等の熱電効果による冷却を行うものであってもよい。   Moreover, although it seems that single cells 2 are in close contact with each other in FIG. 1, the present invention is not limited thereto. A ventilation path may exist between the unit cells 2. Moreover, it is not essential to assemble the assembly 8 at the stage of the activation process. Even when the activation process is performed with the individual single cells 2 as they are, the effect of the present invention can be obtained to some extent. Further, the heat conductive material 4 may be disposed in the unit cell 2 at any time before the cooling step. In addition, the same member as the heat conduction member 4 is not disposed on the surface of the heat removal member 13. Further, the cooling plate 3 and the heat removal member 13 are not limited to those using the refrigerant liquid, but may be cooling by the thermoelectric effect of a Peltier element or the like.

1 組電池
2 単電池
3 冷却盤
4 熱伝導材
13 奪熱部材
1 battery pack 2 single battery 3 cooling board 4 heat conduction material 13 heat removal member

Claims (1)

複数個の電池と,各前記電池を冷却する冷却部材とを組み合わせてなる組電池の製造方法であって,
高温エージング後で自己放電検査前の段階での前記電池であってその表面の一部である冷却面に伸縮性のある熱伝導材が配置されているものにおける前記熱伝導材を,前記冷却部材とは別の奪熱部材に接触させつつ前記電池を冷却する冷却工程と,
前記冷却工程後の前記電池を自己放電検査に供する検査工程と,
前記検査工程後の前記電池を,前記熱伝導材を残したまま,前記熱伝導材が前記冷却部材に接触するように組電池に組み込む組み込み工程とを有することを特徴とする組電池の製造方法。
A method of manufacturing an assembled battery comprising a plurality of batteries and a cooling member for cooling each of the batteries,
In the battery after the high temperature aging and before the self-discharge test, the heat conductive material in the heat conductive material disposed on the cooling surface which is a part of the surface is the heat conductive material, the cooling member Cooling the battery while in contact with another heat removal member,
An inspection step of subjecting the battery after the cooling step to a self-discharge inspection;
Incorporating the battery after the inspection step into the battery assembly so that the heat conductive material is in contact with the cooling member while leaving the heat conductive material. .
JP2018003303A 2018-01-12 2018-01-12 How to manufacture assembled batteries Active JP7010007B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018003303A JP7010007B2 (en) 2018-01-12 2018-01-12 How to manufacture assembled batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018003303A JP7010007B2 (en) 2018-01-12 2018-01-12 How to manufacture assembled batteries

Publications (2)

Publication Number Publication Date
JP2019125426A true JP2019125426A (en) 2019-07-25
JP7010007B2 JP7010007B2 (en) 2022-02-10

Family

ID=67399396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018003303A Active JP7010007B2 (en) 2018-01-12 2018-01-12 How to manufacture assembled batteries

Country Status (1)

Country Link
JP (1) JP7010007B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156124A (en) * 2011-01-07 2012-08-16 Lithium Energy Japan:Kk Power storage element and power storage device
JP2013118048A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014238961A (en) * 2013-06-07 2014-12-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2015095333A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2015144068A (en) * 2014-01-31 2015-08-06 株式会社Gsユアサ Power storage element and power storage module
JP2015153743A (en) * 2014-02-19 2015-08-24 日立建機株式会社 Power storage device, and work machine mounting the same
JP2016225167A (en) * 2015-06-01 2016-12-28 トヨタ自動車株式会社 Manufacturing method of on-vehicle battery pack

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012156124A (en) * 2011-01-07 2012-08-16 Lithium Energy Japan:Kk Power storage element and power storage device
JP2013118048A (en) * 2011-12-01 2013-06-13 Toyota Motor Corp Secondary battery manufacturing method
JP2014238961A (en) * 2013-06-07 2014-12-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous electrolyte secondary battery
JP2015095333A (en) * 2013-11-11 2015-05-18 トヨタ自動車株式会社 Method for manufacturing nonaqueous secondary battery
JP2015144068A (en) * 2014-01-31 2015-08-06 株式会社Gsユアサ Power storage element and power storage module
JP2015153743A (en) * 2014-02-19 2015-08-24 日立建機株式会社 Power storage device, and work machine mounting the same
JP2016225167A (en) * 2015-06-01 2016-12-28 トヨタ自動車株式会社 Manufacturing method of on-vehicle battery pack

Also Published As

Publication number Publication date
JP7010007B2 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
An et al. A review on lithium-ion power battery thermal management technologies and thermal safety
US6811921B2 (en) Battery pack
JP7062164B2 (en) Battery module, battery pack containing it and car containing this battery pack
KR101736886B1 (en) Storage element and storage apparatus
JP6567553B2 (en) Battery pack
KR102067951B1 (en) Method for producing li-ion battery modules and a corresponding li-ion battery module
US9214705B2 (en) Battery cell of improved cooling efficiency
JP2012226995A (en) Battery assembly
US20110097617A1 (en) Battery Set with Heat Conducting Jelly
CN108475830B (en) Heat dissipation material, method of manufacturing the same, and battery module including the same
JP5159425B2 (en) Battery module
CN103904381B (en) Internal temperature of battery measurement apparatus
JP2009054403A (en) Battery pack device
US9680138B2 (en) Battery pack
KR20160013899A (en) Battery assembly
JP2005108693A (en) Battery pack and battery cell
JP2015049990A (en) Battery pack
KR102219142B1 (en) Heat transfer member, battery pack, and vehicle
CN111542964B (en) Battery module, battery pack including the same, and vehicle including the battery pack
JP2017010944A (en) Power storage element and power storage device
KR101488054B1 (en) Jig for charging and discharging with improved cooling performance
JP6625741B2 (en) Battery terminals with integrated springs or flexible pads
KR20220018801A (en) Battery module including a heat sink with a guide hole
JP2019125426A (en) Method of manufacturing battery pack
US20140041901A1 (en) Partition board, and method of restraining electrical storage elements

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210727

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R151 Written notification of patent or utility model registration

Ref document number: 7010007

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151