JP7009712B2 - Glass-coated fluorescent aggregate and its manufacturing method - Google Patents

Glass-coated fluorescent aggregate and its manufacturing method Download PDF

Info

Publication number
JP7009712B2
JP7009712B2 JP2018021105A JP2018021105A JP7009712B2 JP 7009712 B2 JP7009712 B2 JP 7009712B2 JP 2018021105 A JP2018021105 A JP 2018021105A JP 2018021105 A JP2018021105 A JP 2018021105A JP 7009712 B2 JP7009712 B2 JP 7009712B2
Authority
JP
Japan
Prior art keywords
glass
fluorescent
aggregate
cement
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018021105A
Other languages
Japanese (ja)
Other versions
JP2019137574A (en
Inventor
敏夫 今井
純男 海崎
亜也子 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Osaka University NUC
Osaka Research Institute of Industrial Science and Technology
Original Assignee
Taiheiyo Cement Corp
Osaka University NUC
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Osaka University NUC, Osaka Research Institute of Industrial Science and Technology filed Critical Taiheiyo Cement Corp
Priority to JP2018021105A priority Critical patent/JP7009712B2/en
Publication of JP2019137574A publication Critical patent/JP2019137574A/en
Application granted granted Critical
Publication of JP7009712B2 publication Critical patent/JP7009712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Luminescent Compositions (AREA)

Description

本発明は、励起光を受けて蛍光を発するガラス被覆蛍光骨材およびその製造方法ならびに蛍光コンクリート部材に関する。 The present invention relates to a glass-coated fluorescent aggregate that emits fluorescence in response to excitation light, a method for producing the same, and a fluorescent concrete member.

従来、蛍光体は、標識、自動車、鉄道、航空部品、建材、玩具、雑貨等、多種多様な用途に用いられている。そして、例えば、アルミン酸ストロンチウム系蛍光材のように水に曝されると加水分解し機能が劣化する蛍光材は、特許文献1に記載されるようにガラスとの複合体に用いることが提案されている。 Conventionally, fluorescent materials have been used in a wide variety of applications such as signs, automobiles, railways, aviation parts, building materials, toys, and miscellaneous goods. Then, for example, it has been proposed to use a fluorescent material, such as a strontium aluminate-based fluorescent material, which hydrolyzes and its function deteriorates when exposed to water, as a complex with glass as described in Patent Document 1. ing.

また、蛍光材として特許文献2、3に開示されているような硫化物系のものも知られている。水や酸素との接触により機能が劣化することは、アルミン酸ストロンチウム系蛍光材の場合と共通である。この耐候性を改善するため、他の材料との複合体として用いられることが知られている。例えば、特許文献4には、ガラスビーズの基材層の表面に硫化物系蛍光材を用いた蛍光体層を設けたものが開示されている。また、特許文献2には、ポリマーからなるプラスチックを用いたもの、特許文献5には、硫化物系蛍光材の粉末をガラス板に挟んだものが開示されている。 Further, as a fluorescent material, a sulfide-based material as disclosed in Patent Documents 2 and 3 is also known. The deterioration of the function due to contact with water or oxygen is common to the case of the strontium aluminate-based fluorescent material. In order to improve this weather resistance, it is known to be used as a complex with other materials. For example, Patent Document 4 discloses that a phosphor layer using a sulfide-based fluorescent material is provided on the surface of a base material layer of glass beads. Further, Patent Document 2 discloses a plastic made of a polymer, and Patent Document 5 discloses a sulfide-based fluorescent material powder sandwiched between glass plates.

特公平06-062940号公報Tokusho 06-062940 Gazette 特許第5738299号Patent No. 5738299 特許第2933791号Patent No. 2933791 特開2005-307717号公報Japanese Unexamined Patent Publication No. 2005-307717 特表2007-523221号公報Japanese Patent Publication No. 2007-523221

上記の硫化物系蛍光材として、例えばZnSにCuをアクティベータとして添加したものが知られている。このような材料は、外気に曝され続けると酸化および加水分解し、蛍光特性の劣化が徐々に進行する。 As the above-mentioned sulfide-based fluorescent material, for example, one in which Cu is added as an activator to ZnS is known. When such a material is continuously exposed to the outside air, it is oxidized and hydrolyzed, and the deterioration of the fluorescent property gradually progresses.

本発明は、このような事情に鑑みてなされたものであり、酸化および加水分解による蛍光特性の劣化を防止でき、屋外に設置される部材に用いることができるガラス被覆蛍光骨材およびその製造方法ならびに蛍光コンクリート部材を提供することを目的とする。 The present invention has been made in view of such circumstances, and is a glass-coated fluorescent aggregate that can prevent deterioration of fluorescent characteristics due to oxidation and hydrolysis and can be used for a member installed outdoors, and a method for producing the same. Also, it is an object of the present invention to provide a fluorescent concrete member.

(1)上記の目的を達成するため、本発明のガラス被覆蛍光骨材は、ガラスと、前記ガラス内に分散した硫化物系蛍光材と、を備え、SiO濃度が31.5wt%以上49wt%以下であることを特徴としている。これにより、酸化および加水分解による蛍光特性の劣化を防止でき、屋外でコンクリートに埋め込んで用いることができる。 (1) In order to achieve the above object, the glass-coated fluorescent aggregate of the present invention comprises glass and a sulfide-based fluorescent material dispersed in the glass, and the SiO 2 concentration is 31.5 wt% or more and 49 wt. It is characterized by being less than%. This makes it possible to prevent deterioration of the fluorescent characteristics due to oxidation and hydrolysis, and it can be used by embedding it in concrete outdoors.

(2)また、本発明のガラス被覆蛍光骨材は、前記ガラスをコーティングする透光性の樹脂膜を更に備えることを特徴としている。このようにガラスが樹脂で覆われているため、外気が蛍光材と接触し難くなり、蛍光特性の劣化を防止できる。 (2) Further, the glass-coated fluorescent aggregate of the present invention is further provided with a translucent resin film for coating the glass. Since the glass is covered with the resin in this way, it becomes difficult for the outside air to come into contact with the fluorescent material, and deterioration of the fluorescent characteristics can be prevented.

(3)また、本発明の蛍光コンクリート部材は、励起光を受けて蛍光を発する蛍光コンクリート部材であって、セメント硬化体と、前記セメント硬化体の表面に埋め込まれた上記(1)または(2)のガラス被覆蛍光骨材と、を備えることを特徴としている。これにより、蛍光特性の劣化を防止した蛍光コンクリート部材を実現できる。 (3) Further, the fluorescent concrete member of the present invention is a fluorescent concrete member that emits fluorescence by receiving excitation light, and is a cement hardened body and the above-mentioned (1) or (2) embedded in the surface of the cement hardened body. ) Is provided with a glass-coated fluorescent aggregate. This makes it possible to realize a fluorescent concrete member in which deterioration of the fluorescent characteristics is prevented.

(4)また、本発明のガラス被覆蛍光骨材の製造方法は、励起光を受けて蛍光を発するガラス被覆蛍光骨材の製造方法であって、硫化物系蛍光材と廃瓶ガラスの粉末とを、前記廃瓶ガラスの粉末が内割で45wt%以上70wt%以下の範囲で含まれるように混合する工程と、前記混合された材料を不活性雰囲気または還元雰囲気下800℃以上950℃以下で焼成する工程と、前記焼成された材料を冷却し、前記冷却により得られた固化体を破砕して、SiOを31.5wt%以上49wt%以下含有するガラスと前記硫化物系蛍光材とで実質的に形成されるガラス被覆蛍光骨材を生成する工程と、を含むことを特徴としている。これにより、蛍光特性の劣化を防止しつつ、蛍光骨材のコンクリートからの脱落を防止してガラス被覆蛍光骨材を製造できる。 (4) Further, the method for producing a glass-coated fluorescent aggregate of the present invention is a method for producing a glass-coated fluorescent aggregate that emits fluorescence by receiving excitation light, and includes a sulfide-based fluorescent material and waste bottle glass powder. In the step of mixing the waste bottle glass powder so as to be contained in the range of 45 wt% or more and 70 wt% or less in the internal division, and the mixed material in an inert atmosphere or a reducing atmosphere at 800 ° C. or more and 950 ° C. or less. In the step of firing, the fired material is cooled, the solidified body obtained by the cooling is crushed, and the glass containing 31.5 wt% or more and 49 wt% or less of SiO 2 and the sulfide-based fluorescent material are used. It is characterized by comprising a step of producing a glass-coated fluorescent aggregate that is substantially formed. This makes it possible to produce a glass-coated fluorescent aggregate by preventing the fluorescent aggregate from falling off from the concrete while preventing deterioration of the fluorescent characteristics.

(5)また、本発明のガラス被覆蛍光骨材の製造方法は、前記焼成する工程では、外燃式の炉を用いることを特徴としている。これにより、雰囲気を制御し、不活性雰囲気または還元雰囲気で焼成することができる。 (5) Further, the method for producing a glass-coated fluorescent aggregate of the present invention is characterized in that an external combustion type furnace is used in the firing step. Thereby, the atmosphere can be controlled and firing can be performed in an inert atmosphere or a reducing atmosphere.

本発明によれば、酸化および加水分解による蛍光特性の劣化を防止でき、屋外に設置される部材に用いることができる。 According to the present invention, deterioration of fluorescent characteristics due to oxidation and hydrolysis can be prevented, and the member can be used for a member installed outdoors.

(a)、(b)それぞれ本発明のガラス被覆蛍光骨材および蛍光コンクリート部材を示す断面図である。It is sectional drawing which shows (a) and (b) the glass-coated fluorescent aggregate and the fluorescent concrete member of this invention, respectively. (a)、(b)それぞれ樹脂膜を有するガラス被覆蛍光骨材を示す断面図および表面に樹脂膜を有する蛍光コンクリート部材である。(A) and (b) are a cross-sectional view showing a glass-coated fluorescent aggregate having a resin film and a fluorescent concrete member having a resin film on the surface. (a)、(b)それぞれ特定の配合で形成されたガラス被覆蛍光骨材の発光スペクトルを示すグラフである。It is a graph which shows the emission spectrum of the glass-coated fluorescent aggregate formed in each of (a) and (b) a specific composition.

次に、本発明の実施の形態について、図面を参照しながら説明する。 Next, an embodiment of the present invention will be described with reference to the drawings.

[第1の実施形態]
(ガラス被覆蛍光骨材の構成)
図1(a)は、ガラス被覆蛍光骨材100を示す断面図である。図1(a)に示すように、ガラス被覆蛍光骨材100は、実質的にガラス110と硫化物系蛍光材120とで形成されている。「実質的に」とは、これら以外に不純物を含んでもよいことを意味する。ガラス110内に硫化物系蛍光材120が分散しているため、ガラス被覆蛍光骨材100には、硫化物系蛍光材120がガラス110で被覆されている。その結果、コンクリートに埋め込んで用いる等、屋外用の材料として用いても硫化物系蛍光材120が直接大気に露出せず、酸化および加水分解が防止されるため長期間にわたり蛍光特性の劣化を防止できる。
[First Embodiment]
(Composition of glass-coated fluorescent aggregate)
FIG. 1A is a cross-sectional view showing a glass-coated fluorescent aggregate 100. As shown in FIG. 1A, the glass-coated fluorescent aggregate 100 is substantially formed of the glass 110 and the sulfide-based fluorescent material 120. By "substantially" is meant that impurities may be contained in addition to these. Since the sulfide-based fluorescent material 120 is dispersed in the glass 110, the sulfide-based fluorescent material 120 is coated on the glass-coated fluorescent aggregate 100 with the glass 110. As a result, the sulfide-based fluorescent material 120 is not directly exposed to the atmosphere even when used as an outdoor material such as by embedding it in concrete, and oxidation and hydrolysis are prevented, so that deterioration of fluorescent characteristics is prevented for a long period of time. can.

ガラス被覆蛍光骨材100の平均粒径は、2mm以上10mm以下であることが好ましい。コンクリートに埋設されるため道路の中央や横断歩道線の表示のための塗料などに用いられる硫化物系蛍光材120のガラス固化材よりも粒径が大きいことが好適である。 The average particle size of the glass-coated fluorescent aggregate 100 is preferably 2 mm or more and 10 mm or less. Since it is buried in concrete, it is preferably larger in particle size than the vitrifying material of the sulfide-based fluorescent material 120 used as a paint for displaying the center of a road or a pedestrian crossing line.

ガラス被覆蛍光骨材100は、SiOを31.5wt%以上49wt%以下含有している。ガラス被覆蛍光骨材100にケイ酸分が多いと、コンクリート部材に埋設した際にセメント硬化体のアルカリとガラス被覆蛍光骨材100のケイ酸分が反応して、いわゆるアルカリ骨材反応が顕著になり、ガラス被覆蛍光骨材100がコンクリート部材から脱落するリスクが高まる。ガラス被覆蛍光骨材100は、SiO含有率が49wt%以下なのでセメント硬化体とSiOとの間にアルカリ骨材反応が生じない。 The glass-coated fluorescent aggregate 100 contains SiO 2 in an amount of 31.5 wt% or more and 49 wt% or less. When the glass-coated fluorescent aggregate 100 contains a large amount of silicic acid, the alkali of the cement-hardened material reacts with the silicic acid content of the glass-coated fluorescent aggregate 100 when embedded in a concrete member, and the so-called alkaline aggregate reaction becomes remarkable. Therefore, there is an increased risk that the glass-coated fluorescent aggregate 100 will fall off from the concrete member. Since the glass-coated fluorescent aggregate 100 has a SiO 2 content of 49 wt% or less, an alkaline aggregate reaction does not occur between the cement hardened body and SiO 2 .

ガラス被覆蛍光骨材100のSiOの含有率は技術的な効果の面ではいくらでも低減することができるが、その分、硫化物系蛍光材120の割合が増加する。SiO含有率を31.5wt%以上とすることで、硫化物系蛍光材120の量を抑え材料のコストを低減できる。 The content of SiO 2 in the glass-coated fluorescent aggregate 100 can be reduced as much as possible in terms of technical effect, but the proportion of the sulfide-based fluorescent material 120 increases by that amount. By setting the SiO 2 content to 31.5 wt% or more, the amount of the sulfide-based fluorescent material 120 can be suppressed and the cost of the material can be reduced.

硫化物系蛍光材120には、Cuをアクティベータとする硫化亜鉛(ZnS)を用いることができる。硫化亜鉛(ZnS)が入手容易であり好ましいが、硫化カルシウム(CaS)、硫化マグネシウム(MgS)、硫化ストロンチウム(SrS)、硫化バリウム(BaS)を用いてもよい。硫化物系蛍光材120は、数~数十μmの粒径を有している。 As the sulfide-based fluorescent material 120, zinc sulfide (ZnS) having Cu as an activator can be used. Zinc sulfide (ZnS) is easily available and preferable, but calcium sulfide (CaS), magnesium sulfide (MgS), strontium sulfide (SrS), and barium sulfide (BaS) may be used. The sulfide-based fluorescent material 120 has a particle size of several to several tens of μm.

蛍光は励起光の照射を止めると直ちに消光するのに対して、蓄光は励起光が途絶えた後も発光が持続する現象である。このように厳密には蛍光と蓄光は異なる現象を指すが、「蛍光材」には、蛍光性を有するもののみならず蓄光性を有するものも含まれる。道路での表示に用いられる場合には、励起光が照射されてから長時間残光を生じることが好ましく、その点では蓄光性であることが適している。また、硫化物系蛍光材120は、道路での発光を検知しやすいように例えば波長430~580nmの黄色の光を発する種類であることが好ましい。 Fluorescence is extinguished as soon as the irradiation of the excitation light is stopped, whereas phosphorescence is a phenomenon in which light emission continues even after the excitation light is cut off. Strictly speaking, fluorescence and phosphorescence refer to different phenomena, but the "fluorescent material" includes not only those having fluorescence but also those having phosphorescence. When used for display on a road, it is preferable that afterglow is generated for a long time after being irradiated with excitation light, and in that respect, phosphorescent light is suitable. Further, the sulfide-based fluorescent material 120 is preferably of a type that emits yellow light having a wavelength of, for example, 430 to 580 nm so as to easily detect light emission on the road.

(ガラス被覆蛍光骨材の製造方法)
上記のように構成されるガラス被覆蛍光骨材100の製造方法の一例を説明する。まず、硫化物系蛍光材120と透光性の廃瓶ガラスの粉末とを、廃瓶ガラスの粉末が内割で45wt%以上70wt%以下の範囲で含まれるように混合する。硫化物系蛍光材120には、市販の材料(例えばネモトルミマテリアル社製蓄光顔料GSS)を用いることができる。瓶ガラスには、ソーダガラスと呼ばれる材料が用いられ、SiOとCaOとNaOの3成分で主成分の大半が占められている。
(Manufacturing method of glass-coated fluorescent aggregate)
An example of a method for manufacturing the glass-coated fluorescent aggregate 100 configured as described above will be described. First, the sulfide-based fluorescent material 120 and the translucent waste bottle glass powder are mixed so that the waste bottle glass powder is contained in the range of 45 wt% or more and 70 wt% or less in the internal division. As the sulfide-based fluorescent material 120, a commercially available material (for example, phosphorescent pigment GSS manufactured by Nemotrumi Material Co., Ltd.) can be used. A material called soda glass is used for the bottle glass, and most of the main components are composed of the three components of SiO 2 , CaO, and Na 2O .

次に、混合された材料を不活性雰囲気または還元雰囲気下、好ましくは不活性雰囲気下800℃以上950℃以下で焼成する。具体的には、例えば窒素雰囲気で焼成可能である。このように焼成は、ガラス粉末が溶けて硫化物系蛍光材120が十分に被覆される条件で行う。特に廃瓶ガラスを用いて硫化物系蛍光材120を被覆すれば、ガラス被覆蛍光骨材100を低コストで製造できる。なお、焼成する工程では、外燃式の炉(キルン)を用いることが好ましい。これにより、雰囲気の制御を行い、不活性雰囲気または還元雰囲気で焼成することができる。 Next, the mixed material is calcined under an inert atmosphere or a reducing atmosphere, preferably under an inert atmosphere at 800 ° C. or higher and 950 ° C. or lower. Specifically, for example, it can be fired in a nitrogen atmosphere. In this way, firing is performed under the condition that the glass powder is melted and the sulfide-based fluorescent material 120 is sufficiently covered. In particular, if the sulfide-based fluorescent material 120 is coated with waste bottle glass, the glass-coated fluorescent aggregate 100 can be manufactured at low cost. In the firing step, it is preferable to use an external combustion type furnace (kiln). As a result, the atmosphere can be controlled and firing can be performed in an inert atmosphere or a reducing atmosphere.

次に、焼成された材料を冷却し、冷却により得られた固化体を破砕する。その結果、SiOを31.5wt%以上49wt%以下含有するガラス被覆蛍光骨材100が得られる。このように、市販の硫化亜鉛系の蓄光材を廃ガラスの粉末と混合し、不活性雰囲気または還元雰囲気中で850ないし950℃で焼成すると、蛍光性を保持し、無機ガラスで被覆された蛍光骨材が簡便に得られる。そして、蛍光特性の劣化を防止しつつ、蛍光骨材のコンクリートからの脱落を防止できる。 Next, the fired material is cooled and the solidified body obtained by cooling is crushed. As a result, a glass-coated fluorescent aggregate 100 containing SiO 2 in an amount of 31.5 wt% or more and 49 wt% or less can be obtained. As described above, when a commercially available zinc sulfide-based phosphorescent material is mixed with the powder of waste glass and fired at 850 to 950 ° C. in an inert atmosphere or a reducing atmosphere, the fluorescence is maintained and the fluorescence is coated with inorganic glass. Aggregate can be easily obtained. Then, it is possible to prevent the fluorescent aggregate from falling off from the concrete while preventing the deterioration of the fluorescent characteristics.

(蛍光コンクリート部材の構成)
上記のガラス被覆蛍光骨材100は、コンクリート部材に埋設して用いることもできる。図1(b)は、蛍光コンクリート部材200の構成を示す断面図である。図1(b)に示すように、蛍光コンクリート部材200は、セメント硬化体210とガラス被覆蛍光骨材100とを備えており、セメント硬化体210の表面に埋め込まれたガラス被覆蛍光骨材100の部分が励起光を受けて蛍光を発する。このような蛍光コンクリート部材200は、道路上や道路の両脇の舗装に用い、誘導や注意喚起の表示に用いることができる。特に、道路両脇であれば表面が摩耗しにくいため好適である。セメント硬化体210には、ガラス被覆蛍光骨材100の他に川砂等の細骨材を混合してもよい。
(Structure of fluorescent concrete member)
The glass-coated fluorescent aggregate 100 can also be used by being embedded in a concrete member. FIG. 1B is a cross-sectional view showing the configuration of the fluorescent concrete member 200. As shown in FIG. 1 (b), the fluorescent concrete member 200 includes a cement hardened body 210 and a glass-coated fluorescent aggregate 100, and the glass-coated fluorescent aggregate 100 embedded in the surface of the cement hardened body 210. The part receives the excitation light and fluoresces. Such a fluorescent concrete member 200 can be used for pavement on the road or on both sides of the road, and can be used for displaying guidance or alerting. In particular, it is suitable on both sides of the road because the surface is less likely to wear. In addition to the glass-coated fluorescent aggregate 100, a fine aggregate such as river sand may be mixed with the cement hardened body 210.

蛍光コンクリート部材200の厚さは、10mm以上50mm以下であることが好ましい。これにより、強度を維持しつつ適度にガラス被覆蛍光骨材100を埋め込むことができる。また、セメント硬化体210は、水/セメント比が0.35以上0.50以下で混合された結果形成されていることが好ましい。これにより、蛍光による光の取出し量を確保するとともに、部材としての強度を維持できる。 The thickness of the fluorescent concrete member 200 is preferably 10 mm or more and 50 mm or less. As a result, the glass-coated fluorescent aggregate 100 can be appropriately embedded while maintaining the strength. Further, the cement hardened body 210 is preferably formed as a result of mixing at a water / cement ratio of 0.35 or more and 0.50 or less. As a result, it is possible to secure the amount of light extracted by fluorescence and maintain the strength as a member.

セメント硬化体210は、石灰を主成分とする結合材であり、石灰石や粘土などを粉砕し、か焼、焼成して製造される。セメント硬化体210には、普通ポルトランドセメントを用いることが好ましいが、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、シリカセメント等であってもよい。蛍光機能を有するコンクリート部材として用いることができるため、そのまま蛍光コンクリート部材200を道路の一部として設置でき、道路へ適用しやすい。 The cement hardened body 210 is a binder containing lime as a main component, and is produced by crushing, calcinating, and firing limestone, clay, and the like. It is preferable to use ordinary Portland cement for the hardened cement 210, but early-strength Portland cement, moderate heat Portland cement, low heat Portland cement, blast furnace cement, silica cement and the like may be used. Since it can be used as a concrete member having a fluorescent function, the fluorescent concrete member 200 can be installed as a part of the road as it is, and it is easy to apply to the road.

(蛍光コンクリート部材の製造方法)
上記のように構成された蛍光コンクリート部材200の製造方法を説明する。矩形の型枠を準備し、型枠に、水/セメント比0.35ないしは0.40で混練したセメントペーストまたは砂を混ぜたセメントモルタルを充填する。そして、流し込んだ材料をプレス板により押さえながら振動を与える。
(Manufacturing method of fluorescent concrete member)
A method for manufacturing the fluorescent concrete member 200 configured as described above will be described. A rectangular formwork is prepared and the formwork is filled with cement paste mixed with water / cement ratio 0.35 or 0.40 or cement mortar mixed with sand. Then, the poured material is pressed by the press plate while vibrating.

その後セメントペーストまたはセメントモルタルが固まらないうちに、表面にガラス被覆蛍光骨材100を埋め込む。セメントペーストまたはセメントモルタル表面にばらまくことで、ガラス被覆蛍光骨材100は露出面を残してセメント硬化体210に埋め込まれる。 Then, before the cement paste or cement mortar hardens, the glass-coated fluorescent aggregate 100 is embedded in the surface. By scattering on the surface of the cement paste or cement mortar, the glass-coated fluorescent aggregate 100 is embedded in the cement hardened body 210 leaving an exposed surface.

そして、そのまま材料を養生室へ運び所定の期間、養生する。セメント材料が硬化した後型枠を取り除くことでガラス被覆蛍光骨材100がセメント硬化体210に埋設された蛍光コンクリート部材200を生成できる。なお、上記の例では、流し込んだ材料にガラス被覆蛍光骨材100を埋め込むが、ガラス被覆蛍光骨材100を型枠底面にばらまき、そのガラス被覆蛍光骨材の隙間を充填するようにセメントモルタルを流し込んでもよい。 Then, the material is carried to the curing room as it is and cured for a predetermined period. By removing the formwork after the cement material has hardened, the glass-coated fluorescent aggregate 100 can generate a fluorescent concrete member 200 embedded in the cement hardened body 210. In the above example, the glass-coated fluorescent aggregate 100 is embedded in the poured material, but the glass-coated fluorescent aggregate 100 is scattered on the bottom surface of the mold, and cement mortar is applied so as to fill the gaps in the glass-coated fluorescent aggregate. You may pour it.

[第2の実施形態]
上記の実施形態では、ガラス被覆蛍光骨材100は、ガラス110と硫化物系蛍光材120との混合体そのものであるが、ガラス110と硫化物系蛍光材120との混合体が透光性の樹脂膜330でコーティングされていることがさらに好ましい。図2(a)は、樹脂膜330を有するガラス被覆蛍光骨材300の構成を示す断面図である。ガラス被覆蛍光骨材300は、ガラス110と硫化物系蛍光材120との混合体が樹脂膜330で覆われているため、外気が硫化物系蛍光材120と接触し難くなり、硫化物系蛍光材120の蛍光特性の劣化を防止できる。また、図2(b)は、表面に樹脂膜330を有する蛍光コンクリート部材400である。図2(b)に示すように、ガラス被覆蛍光骨材100がセメント硬化体210中に分散、埋設された蛍光コンクリート部材本体を樹脂膜330で被覆して蛍光コンクリート部材400を形成することもできる。
[Second Embodiment]
In the above embodiment, the glass-coated fluorescent aggregate 100 is the mixture itself of the glass 110 and the sulfide-based fluorescent material 120, but the mixture of the glass 110 and the sulfide-based fluorescent material 120 is translucent. It is more preferable that it is coated with the resin film 330. FIG. 2A is a cross-sectional view showing the structure of the glass-coated fluorescent aggregate 300 having the resin film 330. In the glass-coated fluorescent aggregate 300, since the mixture of the glass 110 and the sulfide-based fluorescent material 120 is covered with the resin film 330, it becomes difficult for the outside air to come into contact with the sulfide-based fluorescent material 120, and the sulfide-based fluorescence It is possible to prevent deterioration of the fluorescence characteristics of the material 120. Further, FIG. 2B is a fluorescent concrete member 400 having a resin film 330 on the surface. As shown in FIG. 2B, the fluorescent concrete member body 100 in which the glass-coated fluorescent aggregate 100 is dispersed and embedded in the cement hardened body 210 can be coated with the resin film 330 to form the fluorescent concrete member 400. ..

樹脂膜330は、透光性を有し、可視光を透過する。「透光性」とは、「透明」のように光が透過する場合だけでなく、透過する光が拡散され、磨りガラスや乳白色のようにその材質を通して向こう側の形状等を明確に認識できない場合も含む。 The resin film 330 has translucency and transmits visible light. "Transparent" means not only when light is transmitted like "transparent", but also when the transmitted light is diffused and the shape of the other side cannot be clearly recognized through the material like frosted glass or milky white. Including cases.

樹脂膜330の材料は、励起光として350~450nmの波長の光が透過するものが好ましい。特に波長350nm以上370nm以下の励起光に対する透過性に優れていることが好ましい。これにより、樹脂膜330は励起光を透過させ蛍光を生じさせる。樹脂膜330は、例えばウレタンやアクリル、ポリエステルを主原料とした樹脂、シリコン樹脂、エポキシ樹脂などで形成できる。 The material of the resin film 330 is preferably one that transmits light having a wavelength of 350 to 450 nm as excitation light. In particular, it is preferable that the wavelength is excellent in transparency to excitation light having a wavelength of 350 nm or more and 370 nm or less. As a result, the resin film 330 transmits the excitation light and causes fluorescence. The resin film 330 can be formed of, for example, urethane, acrylic, a resin mainly made of polyester, a silicon resin, an epoxy resin, or the like.

[実験および評価]
上記の製造方法に沿って、ガラス被覆蛍光骨材の蛍光材含有率が、50wt%および30wt%のものをそれぞれ作製し、蛍光スペクトルを測定した(JIS K 0120)。それぞれのSiO含有率は、34.7%および48.5%であった。図3(a)は、蛍光材含有率50wt%のガラス被覆蛍光骨材の発光スペクトルを示すグラフである。図3(b)は、蛍光材含有率30wt%のガラス被覆蛍光骨材の発光スペクトルを示すグラフである。
[Experiment and evaluation]
According to the above manufacturing method, glass-coated fluorescent aggregates having a fluorescent material content of 50 wt% and 30 wt% were prepared, respectively, and their fluorescence spectra were measured (JIS K 0120). The SiO 2 content was 34.7% and 48.5%, respectively. FIG. 3A is a graph showing an emission spectrum of a glass-coated fluorescent aggregate having a fluorescent material content of 50 wt%. FIG. 3B is a graph showing an emission spectrum of a glass-coated fluorescent aggregate having a fluorescent material content of 30 wt%.

(実施例1)
硫化亜鉛系の蛍光材にはネモトルミマテリアル社製の蓄光顔料GSSを使用した。無機ガラス組成物には、ボールミルで粒径50μm以下にまで粉砕した透明の瓶ガラスを使用した。上記の蛍光材50質量部と無機ガラス組成物50質量部とを混合し(配合(1))、次に、その混合原料を用いて、一軸加圧成形機により成形し、直径40mm、高さ10mmの円盤状のペレットを作製した。
(Example 1)
As the zinc sulfide-based fluorescent material, the phosphorescent pigment GSS manufactured by Nemotrumi Material Co., Ltd. was used. As the inorganic glass composition, transparent bottle glass pulverized with a ball mill to a particle size of 50 μm or less was used. 50 parts by mass of the above fluorescent material and 50 parts by mass of the inorganic glass composition are mixed (blending (1)), and then molded by a uniaxial pressure molding machine using the mixed raw material, the diameter is 40 mm and the height is 40 mm. A 10 mm disk-shaped pellet was prepared.

雰囲気式高速昇温電気炉((株)モトヤマ社製SBA-2025D)により、窒素雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。窒素ガスには、窒素濃度99.95パーセントの工業用グレードのものを用い、毎分1.8リットルで流通させた。冷却後、ガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長518nmにピークを有する黄色の蛍光を発現した(図3(a))。ガラス被覆蛍光骨材は蓄光特性を保持した。 A glass-coated fluorescent aggregate was obtained by holding at 850 ° C. for 1 hour in a nitrogen atmosphere using an atmosphere-type high-speed heating electric furnace (SBA-2025D manufactured by Motoyama Co., Ltd.). As the nitrogen gas, an industrial grade gas having a nitrogen concentration of 99.95% was used and distributed at 1.8 liters per minute. After cooling, the emission spectrum of the glass-coated fluorescent aggregate was measured and revealed yellow fluorescence having a peak at an emission wavelength of 518 nm at an excitation wavelength of 350 nm (FIG. 3A). The glass-coated fluorescent aggregate retained its phosphorescent properties.

(実施例2)
焼成雰囲気を還元ガスとした以外は、実施例1と同様にして、850℃に1時間保持することでガラス被覆蛍光骨材を得た。還元ガスには、水素3体積パーセント、窒素97パーセントの混合ガスを用いた。冷却後、ガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長464および511nmの黄色の蛍光を発現した(図3(a))。得られたガラス被覆蛍光骨材は、実施例1と同様に蓄光特性を保持した。
(Example 2)
A glass-coated fluorescent aggregate was obtained by holding at 850 ° C. for 1 hour in the same manner as in Example 1 except that the firing atmosphere was a reducing gas. As the reducing gas, a mixed gas of 3% by volume of hydrogen and 97% of nitrogen was used. After cooling, the emission spectrum of the glass-coated fluorescent aggregate was measured, and as a result, yellow fluorescence with emission wavelengths of 464 nm and 511 nm was exhibited at an excitation wavelength of 350 nm (FIG. 3A). The obtained glass-coated fluorescent aggregate maintained the phosphorescent characteristics as in Example 1.

(比較例1)
実施例1と同様にしてペレットを作製し、炉底昇降式電気炉((株)モトヤマ社製NHV-1515D)により、大気雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。冷却後、このガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長521nmの蛍光を発現した(図3(a))。しかしながら、実施例1および実施例2と比較すると、黄色の蓄光発光は著しく低下した。
(Comparative Example 1)
Pellets were prepared in the same manner as in Example 1, and the glass-coated fluorescent aggregate was prepared by holding the glass-coated fluorescent aggregate at 850 ° C. for 1 hour in an atmospheric atmosphere using an electric furnace for raising and lowering the bottom of the furnace (NHV-1515D manufactured by Motoyama Co., Ltd.). Obtained. After cooling, the emission spectrum of this glass-coated fluorescent aggregate was measured, and the fluorescence was exhibited at an excitation wavelength of 350 nm and an emission wavelength of 521 nm (FIG. 3A). However, as compared with Example 1 and Example 2, the yellow phosphorescent emission was significantly reduced.

(実施例3)
硫化亜鉛系の蓄光材30質量部と無機ガラス組成物70質量部とを混合し(配合(2))、実施例1と同様にして円盤状のペレットを作製し、窒素雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。ガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長518nmにピークを有する黄色の蛍光を発現した(図3(b))。得られたガラス被覆蛍光骨材は蓄光特性を保持した。
(Example 3)
30 parts by mass of a zinc sulfide-based phosphorescent material and 70 parts by mass of an inorganic glass composition were mixed (blending (2)) to prepare disc-shaped pellets in the same manner as in Example 1, and the temperature was adjusted to 850 ° C. under a nitrogen atmosphere. A glass-coated fluorescent aggregate was obtained by holding for 1 hour. When the emission spectrum of the glass-coated fluorescent aggregate was measured, yellow fluorescence having a peak at an emission wavelength of 518 nm was expressed at an excitation wavelength of 350 nm (FIG. 3 (b)). The obtained glass-coated fluorescent aggregate retained its phosphorescent properties.

(実施例4)
焼成雰囲気を還元ガスとした以外は、実施例3と同様にして、850℃に1時間保持することでガラス被覆蛍光骨材を得た。冷却後、得られたガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長466および511nmの黄色の蛍光を発現した(図3(b))。このガラス被覆蛍光骨材は、実施例3と同様に蓄光特性を保持した。
(Example 4)
A glass-coated fluorescent aggregate was obtained by holding at 850 ° C. for 1 hour in the same manner as in Example 3 except that the firing atmosphere was a reducing gas. After cooling, the emission spectra of the obtained glass-coated fluorescent aggregate were measured, and as a result, yellow fluorescence with emission wavelengths of 466 and 511 nm was exhibited at an excitation wavelength of 350 nm (FIG. 3 (b)). This glass-coated fluorescent aggregate maintained the phosphorescent characteristics as in Example 3.

[比較例2]
実施例3と同様にしてペレットを作製し、炉底昇降式電気炉((株)モトヤマ社製NHV-1515D)により、大気雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。冷却後、得られたガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長517nmの蛍光を発現した(図3(b))。しかしながら、硫化物系の蓄光材の割合を高めた場合も、実施例3および実施例4と比較すると、黄色の蓄光発光は大きく低下した。
[Comparative Example 2]
Pellets were prepared in the same manner as in Example 3, and the glass-coated fluorescent aggregate was prepared by holding the glass-coated fluorescent aggregate at 850 ° C. for 1 hour in an atmospheric atmosphere using an electric furnace for raising and lowering the bottom of the furnace (NHV-1515D manufactured by Motoyama Co., Ltd.). Obtained. After cooling, the emission spectrum of the obtained glass-coated fluorescent aggregate was measured, and the fluorescence was exhibited at an excitation wavelength of 350 nm and an emission wavelength of 517 nm (FIG. 3 (b)). However, even when the proportion of the sulfide-based phosphorescent material was increased, the yellow phosphorescent emission was significantly reduced as compared with Examples 3 and 4.

以上から、本発明のガラス被覆蛍光骨材の製造方法は、硫化物系の蓄光材を用いても、加水分解および酸化による劣化を抑制できるため、屋外での使用可能な蛍光材を製造できることができる。市販の硫化物系蓄光材ZnS(Cu)でも、同様のガラス被覆が可能かどうかを検討した。アルミン酸ストロンチウム系よりも安価な硫化亜鉛系の蓄光体の無機ガラスによる被覆を実現した。煩雑な工程を必要とすることなく、屋外での使用に耐えうる蓄光骨材が提供できる。 From the above, the method for producing a glass-coated fluorescent aggregate of the present invention can suppress deterioration due to hydrolysis and oxidation even if a sulfide-based phosphorescent material is used, so that a fluorescent material that can be used outdoors can be produced. can. It was examined whether the same glass coating could be achieved with a commercially available sulfide-based phosphorescent material ZnS (Cu). We have realized the coating of zinc sulfide-based phosphorescent material, which is cheaper than strontium aluminate, with inorganic glass. It is possible to provide a phosphorescent aggregate that can withstand outdoor use without requiring a complicated process.

100 ガラス被覆蛍光骨材
110 ガラス
120 硫化物系蛍光材
200、400 蛍光コンクリート部材
210 セメント硬化体
300 ガラス被覆蛍光骨材
330 樹脂膜
100 Glass-coated fluorescent aggregate 110 Glass 120 Sulfur-based fluorescent material 200, 400 Fluorescent concrete member 210 Cement hardened material 300 Glass-coated fluorescent aggregate 330 Resin film

Claims (3)

励起光を受けて蛍光を発する蛍光コンクリート部材であって、
セメント硬化体と、
前記セメント硬化体の表面に埋め込まれ、ガラスと、前記ガラス内に分散した硫化物系蛍光材と、前記ガラスをコーティングする透光性の樹脂膜と、を備え、SiO濃度が31.5wt%以上49wt%以下であるガラス被覆蛍光骨材と、を備えることを特徴とする蛍光コンクリート部材
A fluorescent concrete member that emits fluorescence in response to excitation light.
Cement hardened body and
It is provided with glass embedded in the surface of the hardened cement, a sulfide-based fluorescent material dispersed in the glass, and a translucent resin film for coating the glass, and the SiO 2 concentration is 31.5 wt%. A fluorescent concrete member comprising: a glass-coated fluorescent aggregate having a content of 49 wt% or less.
励起光を受けて蛍光を発するガラス被覆蛍光骨材がセメント硬化体の表面に埋め込まれた蛍光コンクリート部材の製造方法であって、
硫化物系蛍光材と廃瓶ガラスの粉末とを、前記廃瓶ガラスの粉末が内割で45wt%以上70wt%以下の範囲で含まれるように混合する工程と、
前記混合された材料を不活性雰囲気または還元雰囲気下800℃以上950℃以下で焼成する工程と、
前記焼成された材料を冷却し、前記冷却により得られた固化体を破砕して、SiOを31.5wt%以上49wt%以下含有するガラスと前記硫化物系蛍光材とで実質的に形成される混合体を生成する工程と、
前記混合体を透光性の樹脂膜でコーティングしてガラス被覆蛍光骨材を生成する工程と、
型枠に、水/セメント比0.35ないし0.40で混練したセメントペーストまたは砂を混ぜたセメントモルタルを充填する工程と、
セメントペーストまたはセメントモルタルが固まらないうちに、前記充填されたセメントペーストまたはセメントモルタルの表面に前記ガラス被覆蛍光骨材を埋め込む工程と、を含むことを特徴とする製造方法。
A method for manufacturing a fluorescent concrete member in which a glass-coated fluorescent aggregate that emits fluorescence in response to excitation light is embedded in the surface of a hardened cement .
A step of mixing the sulfide-based fluorescent material and the powder of the waste bottle glass so that the powder of the waste bottle glass is contained in the range of 45 wt% or more and 70 wt% or less in the internal division.
The step of firing the mixed material at 800 ° C. or higher and 950 ° C. or lower in an inert atmosphere or a reducing atmosphere, and
The fired material is cooled, and the solidified body obtained by the cooling is crushed to be substantially formed by the glass containing 31.5 wt% or more and 49 wt% or less of SiO 2 and the sulfide-based fluorescent material. And the process of producing a mixture
A step of coating the mixture with a translucent resin film to produce a glass-coated fluorescent aggregate.
The process of filling the mold with cement paste mixed with water / cement ratio of 0.35 to 0.40 or cement mortar mixed with sand, and
A production method comprising a step of embedding the glass-coated fluorescent aggregate on the surface of the filled cement paste or cement mortar before the cement paste or cement mortar is solidified .
前記焼成する工程では、外燃式の炉を用いることを特徴とする請求項記載の製造方法。 The manufacturing method according to claim 2 , wherein an external combustion type furnace is used in the firing step.
JP2018021105A 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method Active JP7009712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021105A JP7009712B2 (en) 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021105A JP7009712B2 (en) 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019137574A JP2019137574A (en) 2019-08-22
JP7009712B2 true JP7009712B2 (en) 2022-01-26

Family

ID=67694979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021105A Active JP7009712B2 (en) 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7009712B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000027114A (en) 1998-07-13 2000-01-25 Yutoku Concrete Kk Light accumulating concrete block member and manufacture thereof
JP2000203904A (en) 1999-01-05 2000-07-25 Crystal Clay Kk Aggregate
JP3247299B2 (en) 1996-09-27 2002-01-15 伊藤忠セラテック株式会社 Road and building materials or fluorescent inorganic artificial aggregates for ships
JP2012131647A (en) 2010-12-20 2012-07-12 Toru Mizukami Light storing aggregate for mixing in concrete, and method for manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271754A (en) * 1988-03-24 1993-12-21 Sigurd Bauerecker Process for producing fluorescent or phosphorescent pigments coated with glass
JPH10273657A (en) * 1997-01-31 1998-10-13 Narumi China Corp Light storing adornment
JPH11293238A (en) * 1998-04-13 1999-10-26 Kazuo Saito Production of phosphor by utilizing glass powder particle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3247299B2 (en) 1996-09-27 2002-01-15 伊藤忠セラテック株式会社 Road and building materials or fluorescent inorganic artificial aggregates for ships
JP2000027114A (en) 1998-07-13 2000-01-25 Yutoku Concrete Kk Light accumulating concrete block member and manufacture thereof
JP2000203904A (en) 1999-01-05 2000-07-25 Crystal Clay Kk Aggregate
JP2012131647A (en) 2010-12-20 2012-07-12 Toru Mizukami Light storing aggregate for mixing in concrete, and method for manufacturing the same

Also Published As

Publication number Publication date
JP2019137574A (en) 2019-08-22

Similar Documents

Publication Publication Date Title
US5271754A (en) Process for producing fluorescent or phosphorescent pigments coated with glass
JP3311254B2 (en) Inorganic artificial ceramic granular product having luminous fluorescent properties and method for producing the same
JP3247299B2 (en) Road and building materials or fluorescent inorganic artificial aggregates for ships
JP7009712B2 (en) Glass-coated fluorescent aggregate and its manufacturing method
KR102660103B1 (en) Luminescence Pavement Tile Having Water Permeability and Method of Manufacturing It
JP3580653B2 (en) Road surface member for light emitting display
KR102484260B1 (en) LED Earth clean block having improvement of walking visibility and air purification effectiveness using functional composite aggregate inorganic binded with LED waste glass granules phosphorescent pigment and photocatalyst
JP6904831B2 (en) Fluorescent concrete member and its manufacturing method
JP2003342903A (en) Stress luminous building material
US11725140B2 (en) Photoluminescent premixed compositions, related methods and uses
JP6904830B2 (en) Fluorescent block and its manufacturing method
JP5358079B2 (en) Luminescent ceramic molding material composition, luminous ceramic molded body using this composition, and method for producing the same
JP2000027114A (en) Light accumulating concrete block member and manufacture thereof
WO2019065011A1 (en) Glass for use in wavelength conversion material, wavelength conversion material, wavelength conversion member, and light-emitting device
JP6940397B2 (en) Fluorescent block and its manufacturing method
JP3373731B2 (en) Luminescent aggregate and method for producing the luminous aggregate
WO1992020757A1 (en) A photo-luminescent calcium silicate material, concrete and gravel material containing it and a method of producing a photo-luminescent calcium silicate material
JPS6077158A (en) Luminescent resin concrete
JP2000072533A (en) Luminous ceramic product and its production
JP2020158697A (en) Light-storing material coated with silicate, and method for manufacturing the same
JP5517035B2 (en) Luminescent composite material
KR102687489B1 (en) Glass having low melting point, manufacturing method of the glass, phosphor in glass color conversion materials using the glass and manufacturing method of the phosphor in glass color conversion materials
KR102190957B1 (en) Manufacturing method of color face brick
CN113354373B (en) Water-permeable light-transmitting self-luminous marking material for roads and preparation method thereof
JP2019056093A (en) Method for producing glass-coated fluorescent aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 7009712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150