JP2019137574A - Glass-coated fluorescent aggregate and method for producing the same - Google Patents

Glass-coated fluorescent aggregate and method for producing the same Download PDF

Info

Publication number
JP2019137574A
JP2019137574A JP2018021105A JP2018021105A JP2019137574A JP 2019137574 A JP2019137574 A JP 2019137574A JP 2018021105 A JP2018021105 A JP 2018021105A JP 2018021105 A JP2018021105 A JP 2018021105A JP 2019137574 A JP2019137574 A JP 2019137574A
Authority
JP
Japan
Prior art keywords
glass
fluorescent
aggregate
coated
sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018021105A
Other languages
Japanese (ja)
Other versions
JP7009712B2 (en
Inventor
今井 敏夫
Toshio Imai
敏夫 今井
純男 海崎
Sumio Kaizaki
純男 海崎
亜也子 日置
Ayako Hioki
亜也子 日置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Osaka University NUC
Osaka Research Institute of Industrial Science and Technology
Original Assignee
Taiheiyo Cement Corp
Osaka University NUC
Osaka Research Institute of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp, Osaka University NUC, Osaka Research Institute of Industrial Science and Technology filed Critical Taiheiyo Cement Corp
Priority to JP2018021105A priority Critical patent/JP7009712B2/en
Publication of JP2019137574A publication Critical patent/JP2019137574A/en
Application granted granted Critical
Publication of JP7009712B2 publication Critical patent/JP7009712B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Luminescent Compositions (AREA)

Abstract

To provide a glass-coated fluorescent aggregate capable of preventing fluorescent characteristics from being degraded due to oxidation and hydrolysis and capable of being used for a member to be installed outside; to provide a method for producing the same; and to provide a fluorescent concrete member.SOLUTION: A glass-coated fluorescent aggregate 100 includes a glass 110 and a sulfide-based fluorescent material 120 dispersed in the glass, wherein an SiO concentration is 31.5 wt.% or more and 49 wt.% or less. Accordingly, fluorescent characteristics are prevented from being degraded due to oxidation and hydrolysis, and the fluorescent aggregate can be used while being put in a concrete outside.SELECTED DRAWING: Figure 1

Description

本発明は、励起光を受けて蛍光を発するガラス被覆蛍光骨材およびその製造方法ならびに蛍光コンクリート部材に関する。   The present invention relates to a glass-coated fluorescent aggregate that emits fluorescence upon receiving excitation light, a method for manufacturing the same, and a fluorescent concrete member.

従来、蛍光体は、標識、自動車、鉄道、航空部品、建材、玩具、雑貨等、多種多様な用途に用いられている。そして、例えば、アルミン酸ストロンチウム系蛍光材のように水に曝されると加水分解し機能が劣化する蛍光材は、特許文献1に記載されるようにガラスとの複合体に用いることが提案されている。   Conventionally, phosphors are used in a wide variety of applications such as signs, automobiles, railways, aviation parts, building materials, toys, miscellaneous goods, and the like. For example, as described in Patent Document 1, it is proposed to use a fluorescent material whose function is degraded by exposure to water, such as a strontium aluminate-based fluorescent material, as described in Patent Document 1. ing.

また、蛍光材として特許文献2、3に開示されているような硫化物系のものも知られている。水や酸素との接触により機能が劣化することは、アルミン酸ストロンチウム系蛍光材の場合と共通である。この耐候性を改善するため、他の材料との複合体として用いられることが知られている。例えば、特許文献4には、ガラスビーズの基材層の表面に硫化物系蛍光材を用いた蛍光体層を設けたものが開示されている。また、特許文献2には、ポリマーからなるプラスチックを用いたもの、特許文献5には、硫化物系蛍光材の粉末をガラス板に挟んだものが開示されている。   Further, sulfide-based materials as disclosed in Patent Documents 2 and 3 are also known as fluorescent materials. The deterioration of the function due to contact with water or oxygen is common to the case of the strontium aluminate fluorescent material. In order to improve this weather resistance, it is known to be used as a composite with other materials. For example, Patent Document 4 discloses that a phosphor layer using a sulfide-based phosphor is provided on the surface of a glass bead base layer. Patent Document 2 discloses a polymer plastic, and Patent Document 5 discloses a sulfide fluorescent material powder sandwiched between glass plates.

特公平06−062940号公報Japanese Patent Publication No. 06-062940 特許第5738299号Japanese Patent No. 5738299 特許第2933791号Japanese Patent No. 2933779 特開2005−307717号公報JP 2005-307717 A 特表2007−523221号公報Special table 2007-523221 gazette

上記の硫化物系蛍光材として、例えばZnSにCuをアクティベータとして添加したものが知られている。このような材料は、外気に曝され続けると酸化および加水分解し、蛍光特性の劣化が徐々に進行する。   As said sulfide type fluorescent material, what added Cu as an activator to ZnS is known, for example. Such materials are oxidized and hydrolyzed when exposed to the outside air, and the deterioration of the fluorescence characteristics gradually proceeds.

本発明は、このような事情に鑑みてなされたものであり、酸化および加水分解による蛍光特性の劣化を防止でき、屋外に設置される部材に用いることができるガラス被覆蛍光骨材およびその製造方法ならびに蛍光コンクリート部材を提供することを目的とする。   The present invention has been made in view of such circumstances, can prevent deterioration of fluorescence characteristics due to oxidation and hydrolysis, and can be used for a member installed outdoors, and a method for producing the same. An object of the present invention is to provide a fluorescent concrete member.

(1)上記の目的を達成するため、本発明のガラス被覆蛍光骨材は、ガラスと、前記ガラス内に分散した硫化物系蛍光材と、を備え、SiO濃度が31.5wt%以上49wt%以下であることを特徴としている。これにより、酸化および加水分解による蛍光特性の劣化を防止でき、屋外でコンクリートに埋め込んで用いることができる。 (1) In order to achieve the above object, the glass-coated fluorescent aggregate of the present invention comprises glass and a sulfide-based fluorescent material dispersed in the glass, and the SiO 2 concentration is 31.5 wt% or more and 49 wt%. % Or less. Thereby, deterioration of the fluorescence characteristic by oxidation and hydrolysis can be prevented, and it can be used by being embedded in concrete outdoors.

(2)また、本発明のガラス被覆蛍光骨材は、前記ガラスをコーティングする透光性の樹脂膜を更に備えることを特徴としている。このようにガラスが樹脂で覆われているため、外気が蛍光材と接触し難くなり、蛍光特性の劣化を防止できる。   (2) Moreover, the glass-coated fluorescent aggregate of the present invention is characterized by further comprising a translucent resin film for coating the glass. Since the glass is thus covered with the resin, it is difficult for outside air to come into contact with the fluorescent material, and deterioration of the fluorescence characteristics can be prevented.

(3)また、本発明の蛍光コンクリート部材は、励起光を受けて蛍光を発する蛍光コンクリート部材であって、セメント硬化体と、前記セメント硬化体の表面に埋め込まれた上記(1)または(2)のガラス被覆蛍光骨材と、を備えることを特徴としている。これにより、蛍光特性の劣化を防止した蛍光コンクリート部材を実現できる。   (3) The fluorescent concrete member of the present invention is a fluorescent concrete member that emits fluorescence upon receiving excitation light, and is a hardened cement body and the above (1) or (2) embedded in the surface of the hardened cement body And a glass-coated fluorescent aggregate. Thereby, the fluorescent concrete member which prevented the deterioration of the fluorescence characteristic is realizable.

(4)また、本発明のガラス被覆蛍光骨材の製造方法は、励起光を受けて蛍光を発するガラス被覆蛍光骨材の製造方法であって、硫化物系蛍光材と廃瓶ガラスの粉末とを、前記廃瓶ガラスの粉末が内割で45wt%以上70wt%以下の範囲で含まれるように混合する工程と、前記混合された材料を不活性雰囲気または還元雰囲気下800℃以上950℃以下で焼成する工程と、前記焼成された材料を冷却し、前記冷却により得られた固化体を破砕して、SiOを31.5wt%以上49wt%以下含有するガラスと前記硫化物系蛍光材とで実質的に形成されるガラス被覆蛍光骨材を生成する工程と、を含むことを特徴としている。これにより、蛍光特性の劣化を防止しつつ、蛍光骨材のコンクリートからの脱落を防止してガラス被覆蛍光骨材を製造できる。 (4) Moreover, the manufacturing method of the glass covering fluorescent aggregate of this invention is a manufacturing method of the glass covering fluorescent aggregate which emits fluorescence in response to excitation light, Comprising: And mixing so that the waste bottle glass powder is contained in the range of 45 wt% to 70 wt% in an internal ratio, and the mixed material in an inert atmosphere or a reducing atmosphere at 800 ° C. or more and 950 ° C. or less. in the firing, the fired material was cooled and crushed solidified body obtained by the cooling, and the glass containing SiO 2 less 31.5Wt% or more 49 wt% the sulfide fluorescent material Producing a glass-coated fluorescent aggregate that is substantially formed. Thereby, it is possible to manufacture the glass-coated fluorescent aggregate by preventing the fluorescent aggregate from falling off from the concrete while preventing the deterioration of the fluorescent characteristics.

(5)また、本発明のガラス被覆蛍光骨材の製造方法は、前記焼成する工程では、外燃式の炉を用いることを特徴としている。これにより、雰囲気を制御し、不活性雰囲気または還元雰囲気で焼成することができる。   (5) Moreover, the manufacturing method of the glass covering fluorescent aggregate of this invention is characterized by using an external combustion type furnace in the said baking process. Thereby, the atmosphere can be controlled and firing can be performed in an inert atmosphere or a reducing atmosphere.

本発明によれば、酸化および加水分解による蛍光特性の劣化を防止でき、屋外に設置される部材に用いることができる。   ADVANTAGE OF THE INVENTION According to this invention, deterioration of the fluorescence characteristic by oxidation and hydrolysis can be prevented, and it can use for the member installed outdoors.

(a)、(b)それぞれ本発明のガラス被覆蛍光骨材および蛍光コンクリート部材を示す断面図である。(A), (b) is sectional drawing which shows the glass covering fluorescent aggregate and fluorescent concrete member of this invention, respectively. (a)、(b)それぞれ樹脂膜を有するガラス被覆蛍光骨材を示す断面図および表面に樹脂膜を有する蛍光コンクリート部材である。(A), (b) It is a fluorescent concrete member which has sectional drawing which shows the glass-coated fluorescent aggregate which each has a resin film, and a resin film on the surface. (a)、(b)それぞれ特定の配合で形成されたガラス被覆蛍光骨材の発光スペクトルを示すグラフである。(A), (b) It is a graph which shows the emission spectrum of the glass covering fluorescent aggregate formed by the specific mixing | blending, respectively.

次に、本発明の実施の形態について、図面を参照しながら説明する。   Next, embodiments of the present invention will be described with reference to the drawings.

[第1の実施形態]
(ガラス被覆蛍光骨材の構成)
図1(a)は、ガラス被覆蛍光骨材100を示す断面図である。図1(a)に示すように、ガラス被覆蛍光骨材100は、実質的にガラス110と硫化物系蛍光材120とで形成されている。「実質的に」とは、これら以外に不純物を含んでもよいことを意味する。ガラス110内に硫化物系蛍光材120が分散しているため、ガラス被覆蛍光骨材100には、硫化物系蛍光材120がガラス110で被覆されている。その結果、コンクリートに埋め込んで用いる等、屋外用の材料として用いても硫化物系蛍光材120が直接大気に露出せず、酸化および加水分解が防止されるため長期間にわたり蛍光特性の劣化を防止できる。
[First Embodiment]
(Configuration of glass-coated fluorescent aggregate)
FIG. 1A is a cross-sectional view showing a glass-coated fluorescent aggregate 100. As shown in FIG. 1A, the glass-coated fluorescent aggregate 100 is substantially formed of glass 110 and a sulfide-based fluorescent material 120. “Substantially” means that impurities other than these may be contained. Since the sulfide-based fluorescent material 120 is dispersed in the glass 110, the sulfide-based fluorescent material 120 is covered with the glass 110 on the glass-coated fluorescent aggregate 100. As a result, even when used as an outdoor material, such as embedded in concrete, the sulfide-based fluorescent material 120 is not directly exposed to the atmosphere, and oxidation and hydrolysis are prevented, preventing deterioration of fluorescent properties over a long period of time. it can.

ガラス被覆蛍光骨材100の平均粒径は、2mm以上10mm以下であることが好ましい。コンクリートに埋設されるため道路の中央や横断歩道線の表示のための塗料などに用いられる硫化物系蛍光材120のガラス固化材よりも粒径が大きいことが好適である。   The average particle size of the glass-coated fluorescent aggregate 100 is preferably 2 mm or more and 10 mm or less. It is preferable that the particle size is larger than the vitrified material of the sulfide-based fluorescent material 120 used for paint for displaying the center of a road or a pedestrian crossing because it is embedded in concrete.

ガラス被覆蛍光骨材100は、SiOを31.5wt%以上49wt%以下含有している。ガラス被覆蛍光骨材100にケイ酸分が多いと、コンクリート部材に埋設した際にセメント硬化体のアルカリとガラス被覆蛍光骨材100のケイ酸分が反応して、いわゆるアルカリ骨材反応が顕著になり、ガラス被覆蛍光骨材100がコンクリート部材から脱落するリスクが高まる。ガラス被覆蛍光骨材100は、SiO含有率が49wt%以下なのでセメント硬化体とSiOとの間にアルカリ骨材反応が生じない。 The glass-coated fluorescent aggregate 100 contains 31.5 wt% or more and 49 wt% or less of SiO 2 . When the glass-coated fluorescent aggregate 100 has a high silicic acid content, the alkali of the cement hardened body reacts with the silicic acid content of the glass-coated fluorescent aggregate 100 when embedded in a concrete member, so that the so-called alkali aggregate reaction becomes remarkable. This increases the risk that the glass-coated fluorescent aggregate 100 will fall off the concrete member. Since the glass-coated fluorescent aggregate 100 has a SiO 2 content of 49 wt% or less, an alkali aggregate reaction does not occur between the hardened cement body and SiO 2 .

ガラス被覆蛍光骨材100のSiOの含有率は技術的な効果の面ではいくらでも低減することができるが、その分、硫化物系蛍光材120の割合が増加する。SiO含有率を31.5wt%以上とすることで、硫化物系蛍光材120の量を抑え材料のコストを低減できる。 Although the SiO 2 content of the glass-coated fluorescent aggregate 100 can be reduced as much as possible in terms of technical effects, the proportion of the sulfide-based fluorescent material 120 increases accordingly. By setting the SiO 2 content to 31.5 wt% or more, the amount of the sulfide-based fluorescent material 120 can be suppressed and the cost of the material can be reduced.

硫化物系蛍光材120には、Cuをアクティベータとする硫化亜鉛(ZnS)を用いることができる。硫化亜鉛(ZnS)が入手容易であり好ましいが、硫化カルシウム(CaS)、硫化マグネシウム(MgS)、硫化ストロンチウム(SrS)、硫化バリウム(BaS)を用いてもよい。硫化物系蛍光材120は、数〜数十μmの粒径を有している。   For the sulfide-based fluorescent material 120, zinc sulfide (ZnS) using Cu as an activator can be used. Zinc sulfide (ZnS) is easily available and preferable, but calcium sulfide (CaS), magnesium sulfide (MgS), strontium sulfide (SrS), and barium sulfide (BaS) may be used. The sulfide-based fluorescent material 120 has a particle size of several to several tens of μm.

蛍光は励起光の照射を止めると直ちに消光するのに対して、蓄光は励起光が途絶えた後も発光が持続する現象である。このように厳密には蛍光と蓄光は異なる現象を指すが、「蛍光材」には、蛍光性を有するもののみならず蓄光性を有するものも含まれる。道路での表示に用いられる場合には、励起光が照射されてから長時間残光を生じることが好ましく、その点では蓄光性であることが適している。また、硫化物系蛍光材120は、道路での発光を検知しやすいように例えば波長430〜580nmの黄色の光を発する種類であることが好ましい。   Fluorescence extinguishes immediately when excitation light is stopped, while phosphorescence is a phenomenon in which light emission continues even after the excitation light stops. Strictly speaking, fluorescence and light storage are different phenomena, but “fluorescent materials” include not only fluorescent materials but also phosphorescent materials. When used for display on the road, it is preferable that afterglow occurs for a long time after the excitation light is applied, and in that respect, it is suitable to be phosphorescent. The sulfide-based fluorescent material 120 is preferably of a type that emits yellow light with a wavelength of, for example, 430 to 580 nm so that light emission on the road can be easily detected.

(ガラス被覆蛍光骨材の製造方法)
上記のように構成されるガラス被覆蛍光骨材100の製造方法の一例を説明する。まず、硫化物系蛍光材120と透光性の廃瓶ガラスの粉末とを、廃瓶ガラスの粉末が内割で45wt%以上70wt%以下の範囲で含まれるように混合する。硫化物系蛍光材120には、市販の材料(例えばネモトルミマテリアル社製蓄光顔料GSS)を用いることができる。瓶ガラスには、ソーダガラスと呼ばれる材料が用いられ、SiOとCaOとNaOの3成分で主成分の大半が占められている。
(Method for producing glass-coated fluorescent aggregate)
An example of the manufacturing method of the glass covering fluorescent aggregate 100 comprised as mentioned above is demonstrated. First, the sulfide-based fluorescent material 120 and the translucent waste bottle glass powder are mixed so that the waste bottle glass powder is contained in the range of 45 wt% or more and 70 wt% or less. As the sulfide-based fluorescent material 120, a commercially available material (for example, a phosphorescent pigment GSS manufactured by Nemotorumi Materials Co., Ltd.) can be used. A material called soda glass is used for the bottle glass, and most of the main components are occupied by three components of SiO 2 , CaO and Na 2 O.

次に、混合された材料を不活性雰囲気または還元雰囲気下、好ましくは不活性雰囲気下800℃以上950℃以下で焼成する。具体的には、例えば窒素雰囲気で焼成可能である。このように焼成は、ガラス粉末が溶けて硫化物系蛍光材120が十分に被覆される条件で行う。特に廃瓶ガラスを用いて硫化物系蛍光材120を被覆すれば、ガラス被覆蛍光骨材100を低コストで製造できる。なお、焼成する工程では、外燃式の炉(キルン)を用いることが好ましい。これにより、雰囲気の制御を行い、不活性雰囲気または還元雰囲気で焼成することができる。   Next, the mixed material is fired at 800 ° C. or higher and 950 ° C. or lower in an inert atmosphere or a reducing atmosphere, preferably in an inert atmosphere. Specifically, for example, firing can be performed in a nitrogen atmosphere. In this way, the firing is performed under the condition that the glass powder is melted and the sulfide-based fluorescent material 120 is sufficiently covered. In particular, if the sulfide-based fluorescent material 120 is coated using waste bottle glass, the glass-coated fluorescent aggregate 100 can be manufactured at a low cost. In the firing step, it is preferable to use an external combustion furnace (kiln). Thereby, the atmosphere can be controlled and firing can be performed in an inert atmosphere or a reducing atmosphere.

次に、焼成された材料を冷却し、冷却により得られた固化体を破砕する。その結果、SiOを31.5wt%以上49wt%以下含有するガラス被覆蛍光骨材100が得られる。このように、市販の硫化亜鉛系の蓄光材を廃ガラスの粉末と混合し、不活性雰囲気または還元雰囲気中で850ないし950℃で焼成すると、蛍光性を保持し、無機ガラスで被覆された蛍光骨材が簡便に得られる。そして、蛍光特性の劣化を防止しつつ、蛍光骨材のコンクリートからの脱落を防止できる。 Next, the fired material is cooled, and the solidified body obtained by cooling is crushed. As a result, a glass-coated fluorescent aggregate 100 containing 31.5 wt% or more and 49 wt% or less of SiO 2 is obtained. Thus, when a commercially available zinc sulfide-based phosphorescent material is mixed with waste glass powder and baked at 850 to 950 ° C. in an inert atmosphere or a reducing atmosphere, the fluorescence is maintained and the fluorescent material coated with inorganic glass is used. Aggregates can be obtained easily. Further, it is possible to prevent the fluorescent aggregate from falling off from the concrete while preventing the deterioration of the fluorescent characteristics.

(蛍光コンクリート部材の構成)
上記のガラス被覆蛍光骨材100は、コンクリート部材に埋設して用いることもできる。図1(b)は、蛍光コンクリート部材200の構成を示す断面図である。図1(b)に示すように、蛍光コンクリート部材200は、セメント硬化体210とガラス被覆蛍光骨材100とを備えており、セメント硬化体210の表面に埋め込まれたガラス被覆蛍光骨材100の部分が励起光を受けて蛍光を発する。このような蛍光コンクリート部材200は、道路上や道路の両脇の舗装に用い、誘導や注意喚起の表示に用いることができる。特に、道路両脇であれば表面が摩耗しにくいため好適である。セメント硬化体210には、ガラス被覆蛍光骨材100の他に川砂等の細骨材を混合してもよい。
(Configuration of fluorescent concrete member)
The glass-coated fluorescent aggregate 100 can be used by being embedded in a concrete member. FIG. 1B is a cross-sectional view showing the configuration of the fluorescent concrete member 200. As shown in FIG. 1B, the fluorescent concrete member 200 includes a cement hardened body 210 and a glass-coated fluorescent aggregate 100, and the glass-coated fluorescent aggregate 100 embedded in the surface of the cement hardened body 210. The part emits fluorescence upon receiving excitation light. Such a fluorescent concrete member 200 can be used for pavement on the road or on both sides of the road, and can be used for guidance and warning display. In particular, both sides of the road are suitable because the surface is less likely to wear. The hardened cement body 210 may be mixed with fine aggregates such as river sand in addition to the glass-coated fluorescent aggregate 100.

蛍光コンクリート部材200の厚さは、10mm以上50mm以下であることが好ましい。これにより、強度を維持しつつ適度にガラス被覆蛍光骨材100を埋め込むことができる。また、セメント硬化体210は、水/セメント比が0.35以上0.50以下で混合された結果形成されていることが好ましい。これにより、蛍光による光の取出し量を確保するとともに、部材としての強度を維持できる。   The thickness of the fluorescent concrete member 200 is preferably 10 mm or more and 50 mm or less. Thereby, the glass-coated fluorescent aggregate 100 can be appropriately embedded while maintaining the strength. Moreover, it is preferable that the cement hardened body 210 is formed as a result of mixing at a water / cement ratio of 0.35 to 0.50. Thereby, while ensuring the extraction amount of the light by fluorescence, the intensity | strength as a member is maintainable.

セメント硬化体210は、石灰を主成分とする結合材であり、石灰石や粘土などを粉砕し、か焼、焼成して製造される。セメント硬化体210には、普通ポルトランドセメントを用いることが好ましいが、早強ポルトランドセメント、中庸熱ポルトランドセメント、低熱ポルトランドセメント、高炉セメント、シリカセメント等であってもよい。蛍光機能を有するコンクリート部材として用いることができるため、そのまま蛍光コンクリート部材200を道路の一部として設置でき、道路へ適用しやすい。   The hardened cement body 210 is a binder mainly composed of lime, and is manufactured by pulverizing, calcining and firing limestone and clay. The hardened cement body 210 is preferably ordinary portland cement, but may be early strong portland cement, moderately hot portland cement, low heat portland cement, blast furnace cement, silica cement or the like. Since it can be used as a concrete member having a fluorescent function, the fluorescent concrete member 200 can be installed as a part of the road as it is and can be easily applied to the road.

(蛍光コンクリート部材の製造方法)
上記のように構成された蛍光コンクリート部材200の製造方法を説明する。矩形の型枠を準備し、型枠に、水/セメント比0.35ないしは0.40で混練したセメントペーストまたは砂を混ぜたセメントモルタルを充填する。そして、流し込んだ材料をプレス板により押さえながら振動を与える。
(Method for producing fluorescent concrete member)
A method for manufacturing the fluorescent concrete member 200 configured as described above will be described. A rectangular mold is prepared, and the mold is filled with a cement mortar mixed with cement paste or sand kneaded at a water / cement ratio of 0.35 to 0.40. And the vibration is given, pressing the poured material with a press board.

その後セメントペーストまたはセメントモルタルが固まらないうちに、表面にガラス被覆蛍光骨材100を埋め込む。セメントペーストまたはセメントモルタル表面にばらまくことで、ガラス被覆蛍光骨材100は露出面を残してセメント硬化体210に埋め込まれる。   Then, before the cement paste or cement mortar is hardened, the glass-coated fluorescent aggregate 100 is embedded on the surface. By spreading on the surface of the cement paste or cement mortar, the glass-coated fluorescent aggregate 100 is embedded in the hardened cement body 210 leaving an exposed surface.

そして、そのまま材料を養生室へ運び所定の期間、養生する。セメント材料が硬化した後型枠を取り除くことでガラス被覆蛍光骨材100がセメント硬化体210に埋設された蛍光コンクリート部材200を生成できる。なお、上記の例では、流し込んだ材料にガラス被覆蛍光骨材100を埋め込むが、ガラス被覆蛍光骨材100を型枠底面にばらまき、そのガラス被覆蛍光骨材の隙間を充填するようにセメントモルタルを流し込んでもよい。   Then, the material is transferred to the curing room as it is and cured for a predetermined period. By removing the mold after the cement material has hardened, the fluorescent concrete member 200 in which the glass-coated fluorescent aggregate 100 is embedded in the hardened cement body 210 can be generated. In the above example, the glass-coated fluorescent aggregate 100 is embedded in the poured material. The glass-coated fluorescent aggregate 100 is dispersed on the bottom of the formwork, and cement mortar is filled so as to fill the gaps between the glass-coated fluorescent aggregate. It may be poured.

[第2の実施形態]
上記の実施形態では、ガラス被覆蛍光骨材100は、ガラス110と硫化物系蛍光材120との混合体そのものであるが、ガラス110と硫化物系蛍光材120との混合体が透光性の樹脂膜330でコーティングされていることがさらに好ましい。図2(a)は、樹脂膜330を有するガラス被覆蛍光骨材300の構成を示す断面図である。ガラス被覆蛍光骨材300は、ガラス110と硫化物系蛍光材120との混合体が樹脂膜330で覆われているため、外気が硫化物系蛍光材120と接触し難くなり、硫化物系蛍光材120の蛍光特性の劣化を防止できる。また、図2(b)は、表面に樹脂膜330を有する蛍光コンクリート部材400である。図2(b)に示すように、ガラス被覆蛍光骨材100がセメント硬化体210中に分散、埋設された蛍光コンクリート部材本体を樹脂膜330で被覆して蛍光コンクリート部材400を形成することもできる。
[Second Embodiment]
In the above embodiment, the glass-coated fluorescent aggregate 100 is a mixture of the glass 110 and the sulfide-based fluorescent material 120 itself, but the mixture of the glass 110 and the sulfide-based fluorescent material 120 is translucent. More preferably, it is coated with a resin film 330. FIG. 2A is a cross-sectional view showing a configuration of a glass-coated fluorescent aggregate 300 having a resin film 330. In the glass-coated fluorescent aggregate 300, since the mixture of the glass 110 and the sulfide-based fluorescent material 120 is covered with the resin film 330, the outside air hardly comes into contact with the sulfide-based fluorescent material 120, and the sulfide-based fluorescent material 300 Deterioration of the fluorescence characteristics of the material 120 can be prevented. FIG. 2B shows a fluorescent concrete member 400 having a resin film 330 on the surface. As shown in FIG. 2B, the fluorescent concrete member 400 can be formed by covering the fluorescent concrete member body in which the glass-coated fluorescent aggregate 100 is dispersed and embedded in the hardened cement body 210 with a resin film 330. .

樹脂膜330は、透光性を有し、可視光を透過する。「透光性」とは、「透明」のように光が透過する場合だけでなく、透過する光が拡散され、磨りガラスや乳白色のようにその材質を通して向こう側の形状等を明確に認識できない場合も含む。   The resin film 330 has translucency and transmits visible light. “Translucent” means not only when light is transmitted like “transparent”, but also when the transmitted light is diffused, and the shape on the other side cannot be clearly recognized through the material such as frosted glass or milky white. Including cases.

樹脂膜330の材料は、励起光として350〜450nmの波長の光が透過するものが好ましい。特に波長350nm以上370nm以下の励起光に対する透過性に優れていることが好ましい。これにより、樹脂膜330は励起光を透過させ蛍光を生じさせる。樹脂膜330は、例えばウレタンやアクリル、ポリエステルを主原料とした樹脂、シリコン樹脂、エポキシ樹脂などで形成できる。   The material of the resin film 330 is preferably a material that transmits light having a wavelength of 350 to 450 nm as excitation light. In particular, it is preferable to have excellent transparency to excitation light having a wavelength of 350 nm or more and 370 nm or less. Thereby, the resin film 330 transmits excitation light and generates fluorescence. The resin film 330 can be formed of, for example, a resin mainly made of urethane, acrylic, or polyester, a silicon resin, an epoxy resin, or the like.

[実験および評価]
上記の製造方法に沿って、ガラス被覆蛍光骨材の蛍光材含有率が、50wt%および30wt%のものをそれぞれ作製し、蛍光スペクトルを測定した(JIS K 0120)。それぞれのSiO含有率は、34.7%および48.5%であった。図3(a)は、蛍光材含有率50wt%のガラス被覆蛍光骨材の発光スペクトルを示すグラフである。図3(b)は、蛍光材含有率30wt%のガラス被覆蛍光骨材の発光スペクトルを示すグラフである。
[Experiment and evaluation]
In accordance with the above production method, glass-coated fluorescent aggregates having fluorescent material contents of 50 wt% and 30 wt% were respectively produced, and the fluorescence spectrum was measured (JIS K 0120). The respective SiO 2 contents were 34.7% and 48.5%. FIG. 3A is a graph showing an emission spectrum of a glass-coated fluorescent aggregate having a fluorescent material content of 50 wt%. FIG. 3B is a graph showing an emission spectrum of a glass-coated fluorescent aggregate having a fluorescent material content of 30 wt%.

(実施例1)
硫化亜鉛系の蛍光材にはネモトルミマテリアル社製の蓄光顔料GSSを使用した。無機ガラス組成物には、ボールミルで粒径50μm以下にまで粉砕した透明の瓶ガラスを使用した。上記の蛍光材50質量部と無機ガラス組成物50質量部とを混合し(配合(1))、次に、その混合原料を用いて、一軸加圧成形機により成形し、直径40mm、高さ10mmの円盤状のペレットを作製した。
Example 1
As the zinc sulfide-based fluorescent material, phosphorescent pigment GSS manufactured by Nemotomi Material Co., Ltd. was used. As the inorganic glass composition, a transparent bottle glass pulverized to a particle size of 50 μm or less with a ball mill was used. 50 parts by mass of the fluorescent material and 50 parts by mass of the inorganic glass composition are mixed (compound (1)), and then, using the mixed raw material, the mixture is molded by a uniaxial pressure molding machine, and has a diameter of 40 mm and a height. A 10 mm disk-shaped pellet was produced.

雰囲気式高速昇温電気炉((株)モトヤマ社製SBA-2025D)により、窒素雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。窒素ガスには、窒素濃度99.95パーセントの工業用グレードのものを用い、毎分1.8リットルで流通させた。冷却後、ガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長518nmにピークを有する黄色の蛍光を発現した(図3(a))。ガラス被覆蛍光骨材は蓄光特性を保持した。   A glass-coated fluorescent aggregate was obtained by holding at 850 ° C. for 1 hour in a nitrogen atmosphere with an atmosphere-type fast heating furnace (SBA-2025D manufactured by Motoyama Co., Ltd.). The nitrogen gas used was an industrial grade having a nitrogen concentration of 99.95 percent and was circulated at 1.8 liters per minute. When the emission spectrum of the glass-coated fluorescent aggregate was measured after cooling, yellow fluorescence having a peak at an emission wavelength of 518 nm was expressed at an excitation wavelength of 350 nm (FIG. 3A). The glass-coated fluorescent aggregate retained the phosphorescent properties.

(実施例2)
焼成雰囲気を還元ガスとした以外は、実施例1と同様にして、850℃に1時間保持することでガラス被覆蛍光骨材を得た。還元ガスには、水素3体積パーセント、窒素97パーセントの混合ガスを用いた。冷却後、ガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長464および511nmの黄色の蛍光を発現した(図3(a))。得られたガラス被覆蛍光骨材は、実施例1と同様に蓄光特性を保持した。
(Example 2)
A glass-coated fluorescent aggregate was obtained by holding at 850 ° C. for 1 hour in the same manner as in Example 1 except that the firing atmosphere was reduced gas. As the reducing gas, a mixed gas of 3 volume percent hydrogen and 97 percent nitrogen was used. When the emission spectrum of the glass-coated fluorescent aggregate was measured after cooling, yellow fluorescence having an emission wavelength of 464 and 511 nm was expressed at an excitation wavelength of 350 nm (FIG. 3A). The obtained glass-coated fluorescent aggregate retained the luminous characteristics as in Example 1.

(比較例1)
実施例1と同様にしてペレットを作製し、炉底昇降式電気炉((株)モトヤマ社製NHV-1515D)により、大気雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。冷却後、このガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長521nmの蛍光を発現した(図3(a))。しかしながら、実施例1および実施例2と比較すると、黄色の蓄光発光は著しく低下した。
(Comparative Example 1)
A pellet was prepared in the same manner as in Example 1, and the glass-coated fluorescent aggregate was obtained by holding it at 850 ° C. for 1 hour in an atmosphere with a furnace bottom elevating electric furnace (NHV-1515D manufactured by Motoyama Co., Ltd.). Obtained. When the emission spectrum of this glass-coated fluorescent aggregate was measured after cooling, fluorescence with an emission wavelength of 521 nm was expressed at an excitation wavelength of 350 nm (FIG. 3A). However, when compared with Example 1 and Example 2, yellow phosphorescent emission was significantly reduced.

(実施例3)
硫化亜鉛系の蓄光材30質量部と無機ガラス組成物70質量部とを混合し(配合(2))、実施例1と同様にして円盤状のペレットを作製し、窒素雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。ガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長518nmにピークを有する黄色の蛍光を発現した(図3(b))。得られたガラス被覆蛍光骨材は蓄光特性を保持した。
(Example 3)
30 parts by mass of a zinc sulfide-based phosphorescent material and 70 parts by mass of an inorganic glass composition were mixed (formulation (2)), and a disk-shaped pellet was produced in the same manner as in Example 1, and the temperature was maintained at 850 ° C. in a nitrogen atmosphere. A glass-coated fluorescent aggregate was obtained by holding for 1 hour. When the emission spectrum of the glass-coated fluorescent aggregate was measured, yellow fluorescence having a peak at an emission wavelength of 518 nm was expressed at an excitation wavelength of 350 nm (FIG. 3B). The obtained glass-coated fluorescent aggregate retained the luminous properties.

(実施例4)
焼成雰囲気を還元ガスとした以外は、実施例3と同様にして、850℃に1時間保持することでガラス被覆蛍光骨材を得た。冷却後、得られたガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長466および511nmの黄色の蛍光を発現した(図3(b))。このガラス被覆蛍光骨材は、実施例3と同様に蓄光特性を保持した。
Example 4
A glass-coated fluorescent aggregate was obtained by holding at 850 ° C. for 1 hour in the same manner as in Example 3 except that the firing atmosphere was reduced gas. When the emission spectrum of the obtained glass-coated fluorescent aggregate was measured after cooling, yellow fluorescence having an emission wavelength of 466 and 511 nm was expressed at an excitation wavelength of 350 nm (FIG. 3B). This glass-coated fluorescent aggregate retained the phosphorescent characteristics as in Example 3.

[比較例2]
実施例3と同様にしてペレットを作製し、炉底昇降式電気炉((株)モトヤマ社製NHV-1515D)により、大気雰囲気下、850℃に1時間保持することでガラス被覆蛍光骨材を得た。冷却後、得られたガラス被覆蛍光骨材の発光スペクトルを測定したところ、励起波長350nmで発光波長517nmの蛍光を発現した(図3(b))。しかしながら、硫化物系の蓄光材の割合を高めた場合も、実施例3および実施例4と比較すると、黄色の蓄光発光は大きく低下した。
[Comparative Example 2]
A pellet was prepared in the same manner as in Example 3, and the glass-coated fluorescent aggregate was obtained by holding it at 850 ° C. for 1 hour in an atmosphere with a furnace bottom elevating electric furnace (NHV-1515D manufactured by Motoyama Co., Ltd.). Obtained. After cooling, when the emission spectrum of the obtained glass-coated fluorescent aggregate was measured, fluorescence with an emission wavelength of 517 nm was expressed at an excitation wavelength of 350 nm (FIG. 3B). However, even when the ratio of the sulfide-based phosphorescent material was increased, the yellow phosphorescent emission was greatly reduced as compared with Example 3 and Example 4.

以上から、本発明のガラス被覆蛍光骨材の製造方法は、硫化物系の蓄光材を用いても、加水分解および酸化による劣化を抑制できるため、屋外での使用可能な蛍光材を製造できることができる。市販の硫化物系蓄光材ZnS(Cu)でも、同様のガラス被覆が可能かどうかを検討した。アルミン酸ストロンチウム系よりも安価な硫化亜鉛系の蓄光体の無機ガラスによる被覆を実現した。煩雑な工程を必要とすることなく、屋外での使用に耐えうる蓄光骨材が提供できる。   From the above, the method for producing a glass-coated fluorescent aggregate of the present invention can suppress deterioration due to hydrolysis and oxidation even when a sulfide-based phosphorescent material is used, so that a fluorescent material that can be used outdoors can be produced. it can. Whether a similar glass coating was possible with a commercially available sulfide-based phosphorescent material ZnS (Cu) was examined. A zinc sulfide phosphor is cheaper than strontium aluminate. A phosphorescent aggregate that can withstand outdoor use can be provided without requiring complicated steps.

100 ガラス被覆蛍光骨材
110 ガラス
120 硫化物系蛍光材
200、400 蛍光コンクリート部材
210 セメント硬化体
300 ガラス被覆蛍光骨材
330 樹脂膜
100 Glass-coated fluorescent aggregate 110 Glass 120 Sulfide-based fluorescent material 200, 400 Fluorescent concrete member 210 Cement hardened body 300 Glass-coated fluorescent aggregate 330 Resin film

Claims (5)

ガラスと、
前記ガラス内に分散した硫化物系蛍光材と、を備え、
SiO濃度が31.5wt%以上49wt%以下であることを特徴とするガラス被覆蛍光骨材。
Glass,
A sulfide-based fluorescent material dispersed in the glass,
A glass-coated fluorescent aggregate having a SiO 2 concentration of 31.5 wt% or more and 49 wt% or less.
前記ガラスをコーティングする透光性の樹脂膜を更に備えることを特徴とする請求項1記載のガラス被覆蛍光骨材。   The glass-coated fluorescent aggregate according to claim 1, further comprising a translucent resin film that coats the glass. 励起光を受けて蛍光を発する蛍光コンクリート部材であって、
セメント硬化体と、
前記セメント硬化体の表面に埋め込まれた請求項1または請求項2記載のガラス被覆蛍光骨材と、を備えることを特徴とする蛍光コンクリート部材。
A fluorescent concrete member that emits fluorescence in response to excitation light,
Hardened cement,
A fluorescent concrete member comprising: the glass-coated fluorescent aggregate according to claim 1 or 2 embedded in a surface of the hardened cement body.
励起光を受けて蛍光を発するガラス被覆蛍光骨材の製造方法であって、
硫化物系蛍光材と廃瓶ガラスの粉末とを、前記廃瓶ガラスの粉末が内割で45wt%以上70wt%以下の範囲で含まれるように混合する工程と、
前記混合された材料を不活性雰囲気または還元雰囲気下800℃以上950℃以下で焼成する工程と、
前記焼成された材料を冷却し、前記冷却により得られた固化体を破砕して、SiOを31.5wt%以上49wt%以下含有するガラスと前記硫化物系蛍光材とで実質的に形成されるガラス被覆蛍光骨材を生成する工程と、を含むことを特徴とする製造方法。
A method for producing a glass-coated fluorescent aggregate that emits fluorescence in response to excitation light,
Mixing the sulfide-based fluorescent material and the waste bottle glass powder so that the waste bottle glass powder is contained in a range of 45 wt% or more and 70 wt% or less in an internal ratio;
Baking the mixed material at 800 ° C. or higher and 950 ° C. or lower in an inert atmosphere or a reducing atmosphere;
The fired material is cooled, the solidified body obtained by the cooling is crushed, and is substantially formed of glass containing 31.5 wt% to 49 wt% of SiO 2 and the sulfide-based fluorescent material. Producing a glass-coated fluorescent aggregate.
前記焼成する工程では、外燃式の炉を用いることを特徴とする請求項4記載の製造方法。   The manufacturing method according to claim 4, wherein an external combustion furnace is used in the firing step.
JP2018021105A 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method Active JP7009712B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018021105A JP7009712B2 (en) 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018021105A JP7009712B2 (en) 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method

Publications (2)

Publication Number Publication Date
JP2019137574A true JP2019137574A (en) 2019-08-22
JP7009712B2 JP7009712B2 (en) 2022-01-26

Family

ID=67694979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018021105A Active JP7009712B2 (en) 2018-02-08 2018-02-08 Glass-coated fluorescent aggregate and its manufacturing method

Country Status (1)

Country Link
JP (1) JP7009712B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271754A (en) * 1988-03-24 1993-12-21 Sigurd Bauerecker Process for producing fluorescent or phosphorescent pigments coated with glass
JPH10273657A (en) * 1997-01-31 1998-10-13 Narumi China Corp Light storing adornment
JPH11293238A (en) * 1998-04-13 1999-10-26 Kazuo Saito Production of phosphor by utilizing glass powder particle
JP2000027114A (en) * 1998-07-13 2000-01-25 Yutoku Concrete Kk Light accumulating concrete block member and manufacture thereof
JP2000203904A (en) * 1999-01-05 2000-07-25 Crystal Clay Kk Aggregate
JP3247299B2 (en) * 1996-09-27 2002-01-15 伊藤忠セラテック株式会社 Road and building materials or fluorescent inorganic artificial aggregates for ships
JP2012131647A (en) * 2010-12-20 2012-07-12 Toru Mizukami Light storing aggregate for mixing in concrete, and method for manufacturing the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5271754A (en) * 1988-03-24 1993-12-21 Sigurd Bauerecker Process for producing fluorescent or phosphorescent pigments coated with glass
JP3247299B2 (en) * 1996-09-27 2002-01-15 伊藤忠セラテック株式会社 Road and building materials or fluorescent inorganic artificial aggregates for ships
JPH10273657A (en) * 1997-01-31 1998-10-13 Narumi China Corp Light storing adornment
JPH11293238A (en) * 1998-04-13 1999-10-26 Kazuo Saito Production of phosphor by utilizing glass powder particle
JP2000027114A (en) * 1998-07-13 2000-01-25 Yutoku Concrete Kk Light accumulating concrete block member and manufacture thereof
JP2000203904A (en) * 1999-01-05 2000-07-25 Crystal Clay Kk Aggregate
JP2012131647A (en) * 2010-12-20 2012-07-12 Toru Mizukami Light storing aggregate for mixing in concrete, and method for manufacturing the same

Also Published As

Publication number Publication date
JP7009712B2 (en) 2022-01-26

Similar Documents

Publication Publication Date Title
JP3311254B2 (en) Inorganic artificial ceramic granular product having luminous fluorescent properties and method for producing the same
CN104193346B (en) A kind of translucent fluorescent powder/glass recombination luminescence potsherd and preparation method thereof
US5271754A (en) Process for producing fluorescent or phosphorescent pigments coated with glass
JPH11256151A (en) Luminous composite material and its production
CN110240472B (en) Multi-color light-storage ceramic for fire indication and preparation method thereof
JP2014041984A (en) Wavelength conversion material
JP3247299B2 (en) Road and building materials or fluorescent inorganic artificial aggregates for ships
JP2011094041A (en) Water resistant stress-induced light-emitting material, method for producing the same, and coating composition and ink composition using the same
US20120138854A1 (en) Green luminescent glass for ultraviolet led and preparation method thereof
KR102660103B1 (en) Luminescence Pavement Tile Having Water Permeability and Method of Manufacturing It
JP7009712B2 (en) Glass-coated fluorescent aggregate and its manufacturing method
KR102484260B1 (en) LED Earth clean block having improvement of walking visibility and air purification effectiveness using functional composite aggregate inorganic binded with LED waste glass granules phosphorescent pigment and photocatalyst
JP3580653B2 (en) Road surface member for light emitting display
TWI823604B (en) Glass for wavelength conversion materials, wavelength conversion materials, wavelength conversion components and light-emitting devices
JP5358079B2 (en) Luminescent ceramic molding material composition, luminous ceramic molded body using this composition, and method for producing the same
JP2000027114A (en) Light accumulating concrete block member and manufacture thereof
JP6904831B2 (en) Fluorescent concrete member and its manufacturing method
JP6904830B2 (en) Fluorescent block and its manufacturing method
KR101899309B1 (en) Manufacturing method of retroreflective material containing phosphorescent property
JP2000072533A (en) Luminous ceramic product and its production
JP2019111685A (en) Fluorescent block and method for manufacturing the same
JP5517035B2 (en) Luminescent composite material
KR102687489B1 (en) Glass having low melting point, manufacturing method of the glass, phosphor in glass color conversion materials using the glass and manufacturing method of the phosphor in glass color conversion materials
JPH09328344A (en) Luminescent aggregate and production of the same
KR102190957B1 (en) Manufacturing method of color face brick

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201006

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211222

R150 Certificate of patent or registration of utility model

Ref document number: 7009712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150