JP7009206B2 - Rotary valve mechanism and ventilation valve and drainage pipe system using this - Google Patents

Rotary valve mechanism and ventilation valve and drainage pipe system using this Download PDF

Info

Publication number
JP7009206B2
JP7009206B2 JP2017253055A JP2017253055A JP7009206B2 JP 7009206 B2 JP7009206 B2 JP 7009206B2 JP 2017253055 A JP2017253055 A JP 2017253055A JP 2017253055 A JP2017253055 A JP 2017253055A JP 7009206 B2 JP7009206 B2 JP 7009206B2
Authority
JP
Japan
Prior art keywords
valve
valve body
rotary valve
rotary
negative pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017253055A
Other languages
Japanese (ja)
Other versions
JP2019027584A (en
Inventor
和弘 青木
達朗 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitz Corp
Original Assignee
Kitz Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitz Corp filed Critical Kitz Corp
Priority to PCT/JP2018/010590 priority Critical patent/WO2018169075A1/en
Priority to CN201880018895.8A priority patent/CN110392800B/en
Publication of JP2019027584A publication Critical patent/JP2019027584A/en
Application granted granted Critical
Publication of JP7009206B2 publication Critical patent/JP7009206B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sink And Installation For Waste Water (AREA)
  • Lift Valve (AREA)
  • Self-Closing Valves And Venting Or Aerating Valves (AREA)

Description

本発明は、回転弁機構とこれを用いて排水設備の配水管内に発生した負圧を解消させる通気弁並びに排水管システムに関する。 The present invention relates to a rotary valve mechanism, a ventilation valve for eliminating a negative pressure generated in a water distribution pipe of a drainage facility using the rotary valve mechanism, and a drainage pipe system.

従来、例えば、個別住宅、集合住宅等の建造物の排水設備においては、排水器具のトラップ封水を保護しつつ排水管内の負圧を解消してスムーズな排水をおこなうために、通気弁を用いた排水管システムが一般に知られている。 Conventionally, for example, in drainage facilities of buildings such as individual houses and apartment houses, a vent valve is used to protect the trap water of the drainage device and eliminate the negative pressure in the drain pipe to ensure smooth drainage. The drainage system that was used is generally known.

この種の排水管システムで用いられる通気弁として、例えば、特許文献1の安全弁が開示されている。このバルブではハウジングが通気管に接続され、ハウジング内の内室には弁座が設けられている。この弁座に対して圧力変動により昇降動される弁体が離接し、弁体に設けられた環状シール部材が吸気用流路を開閉する構造に設けられている。
このバルブにおいては、通常時には、弁体が自重により弁座に着座して通気管の閉状態が保たれる。一方、排水管内に負圧が発生した際に、大気との圧力差により弁体が自重に抗して弁座から持ち上がり、弁開状態となった通気弁を介して排水管内に大気が取り入れられて負圧が軽減される。
As a vent valve used in this type of drainage pipe system, for example, the safety valve of Patent Document 1 is disclosed. In this valve, the housing is connected to the ventilation pipe, and a valve seat is provided in the inner chamber inside the housing. A valve body that moves up and down due to pressure fluctuations is separated from the valve seat, and an annular seal member provided on the valve body is provided in a structure that opens and closes the intake flow path.
In this valve, normally, the valve body is seated on the valve seat by its own weight to keep the ventilation pipe closed. On the other hand, when a negative pressure is generated in the drain pipe, the valve body lifts up from the valve seat against its own weight due to the pressure difference with the atmosphere, and the atmosphere is taken into the drain pipe through the vent valve in the valve open state. Negative pressure is reduced.

さらに、上記の構造の通気弁に対して、弁体とキャップとの間に圧縮ばねが加えられた通気弁も提案されている。この通気弁では、弁閉時の弁体の自重に加えて、圧縮ばねの弾発力を働かせることにより、弁閉状態を維持しようとしている。 Further, for a vent valve having the above structure, a vent valve in which a compression spring is added between the valve body and the cap has also been proposed. In this vent valve, in addition to the weight of the valve body when the valve is closed, the elastic force of the compression spring is exerted to maintain the valve closed state.

一方、特許文献2の通気装置では、弁体が軸着部を介して片持ち支持状態でボデー内に取付けられ、この弁体に設けられた弁座パッキンがボデー内の斜め弁座面に接離して弁開閉可能に設けられている。
この通気装置の場合、常時は、弁体が自重により軸受部を中心に回転して弁座に着座して弁閉状態となる。一方、排水管が負圧になると、差圧により弁体が軸受部を中心に回転して弁開状態になって負圧が軽減されるようになっている。
On the other hand, in the ventilation device of Patent Document 2, the valve body is mounted in the body in a cantilevered support state via the shaft attachment portion, and the valve seat packing provided on the valve body is in contact with the diagonal valve seat surface in the body. It is provided so that the valve can be opened and closed separately.
In the case of this ventilation device, the valve body always rotates around the bearing portion due to its own weight and sits on the valve seat to close the valve. On the other hand, when the drainage pipe becomes a negative pressure, the valve body rotates around the bearing portion due to the differential pressure to open the valve, and the negative pressure is reduced.

特公平1-37628号公報Special Fair 1-376228 Gazette 特許第3490413号公報Japanese Patent No. 3490413

特許文献1の通気弁の場合、弁体が自重により弁閉状態となる構造であるため、弁閉力、すなわち弁閉方向に働く力が弁体の自重に依存することになり、弁開度に係らず弁閉力の大きさが一定値となる。
負圧発生時には、弁体が上昇して通気がおこなわれ、わずかな弁体のリフト量で弁口径面積に相当する円筒状の通気面積が確保されて負圧が緩和される。負圧の緩和過程においては、弁体が弁閉方向に下降しようとするものの、排水管内の排水の流下は、トイレや洗面台等の排水器具の使用状況により暫く継続し、しかもその流れは一定とは限らないことから、負圧は変化しながら減衰するものとなる。この負圧により弁体が持ち上げられる力、すなわち弁開力が、弁体の自重による弁閉力よりも大きい場合には、この弁閉力に抗して弁体が再度上昇する。このように、弁体の自重のみにより弁閉動作する通気弁の場合、弁開状態で自重による一定の弁閉力しか働かないため、負圧が変化したときに、この変化する負圧により弁体が一定の開口状態を保つことが難しくなる。その結果、微小な負圧変化によって弁体が上昇(弁開動作)と、下降(弁閉動作)とを繰り返すことで、弁体が弁座に頻繁に当接する、いわゆるチャタリング現象が発生しやすくなる。そして、排水管内の圧力変動により弁開度が変動しやすくなり、弁開時における昇降方向の力のバランスが急激に崩れて弁閉方向への力が働き、弁体の自重で弁閉動作の勢いが強くなることもある。
In the case of the vent valve of Patent Document 1, since the valve body is in a valve closed state due to its own weight, the valve closing force, that is, the force acting in the valve closing direction depends on the valve body's own weight, and the valve opening degree. Regardless of this, the magnitude of the valve closing force becomes a constant value.
When a negative pressure is generated, the valve body rises to perform ventilation, and a cylindrical ventilation area corresponding to the valve diameter area is secured with a small lift amount of the valve body to alleviate the negative pressure. In the process of relaxing the negative pressure, the valve body tries to descend in the valve closing direction, but the drainage in the drainage pipe continues to flow for a while depending on the usage of drainage equipment such as toilets and wash basins, and the flow is constant. Since it is not always the case, the negative pressure is attenuated while changing. When the force by which the valve body is lifted by this negative pressure, that is, the valve opening force is larger than the valve closing force due to the weight of the valve body, the valve body rises again against the valve closing force. In this way, in the case of a vent valve that closes the valve only by its own weight of the valve body, only a certain valve closing force by its own weight works in the valve open state, so when the negative pressure changes, the valve due to this changing negative pressure. It becomes difficult for the body to maintain a constant open state. As a result, the valve body repeatedly rises (valve opening operation) and descends (valve closing operation) due to a slight negative pressure change, so that the valve body frequently contacts the valve seat, so-called chattering phenomenon is likely to occur. Become. Then, the valve opening tends to fluctuate due to the pressure fluctuation in the drain pipe, the balance of the force in the ascending / descending direction at the time of valve opening is suddenly lost, the force in the valve closing direction acts, and the valve closing operation is performed by the own weight of the valve body. The momentum may be stronger.

さらに、上記の通気弁の弁体に圧縮ばねが装着された構造の通気弁の場合には、全閉時に弁体の自重に加えて圧縮ばねの弾発力が加わることで弁閉力がより大きくなる。そのため、負圧発生時には、弁開度が大きくなるにつれて圧縮ばねの弾発力も比例的に大きくなって弁閉力が比例的に増加する。このため、中間開度若しくは全開時から負圧を完全に解消する前に安易に弁体が閉じやすくなり、この弁閉動作の勢いが圧縮ばねにより一層強くなり、負圧発生に対する応答性も悪くなることから、チャタリング現象がより発生しやすくなる。 Further, in the case of a vent valve having a structure in which a compression spring is attached to the valve body of the above vent valve, the valve closing force is further increased by applying the elastic force of the compression spring in addition to the weight of the valve body when fully closed. growing. Therefore, when a negative pressure is generated, the elastic force of the compression spring increases proportionally as the valve opening degree increases, and the valve closing force increases proportionally. For this reason, it becomes easier to close the valve body easily before the negative pressure is completely eliminated from the intermediate opening or when it is fully opened, the momentum of this valve closing operation is further strengthened by the compression spring, and the responsiveness to the generation of negative pressure is also poor. Therefore, the chattering phenomenon is more likely to occur.

特許文献2の通気装置においては、弁閉力は、弁体の回転モーメントにより大きくなる構造であることから、全閉時に弁閉力が最も大きくなる。このため、中間開度若しくは全開時には、負圧が解消したときに加速度的に弁体が閉じやすくなり、負圧の変化に伴うチャタリングも生じやすい。
この場合、弁閉力が、弁体の自重と、弁体重心の回転軸からの距離とに基づく回転モーメントとなり、弁体の開度が大きくなるにつれて減少する。そのため、例えば、弁体の角度全開近傍まで弁開度を大きくすると、負圧解消時の弁閉作動が困難になり、例えば、弁体開度70%を超える弁開度では、負圧減少に伴う速やかな弁閉作動が難しくなる。このように、全開状態の弁体が負圧低減を阻害する構造であるため、通気量を確保するためには通気口径を大径に設定する必要が生じ、全体が大型化する。
In the ventilation device of Patent Document 2, since the valve closing force has a structure that is increased by the rotational moment of the valve body, the valve closing force becomes the largest when fully closed. Therefore, at the time of intermediate opening or full opening, the valve body tends to close at an accelerating rate when the negative pressure is eliminated, and chattering due to a change in the negative pressure tends to occur.
In this case, the valve closing force becomes a rotational moment based on the weight of the valve body and the distance of the valve body weight center from the rotation axis, and decreases as the opening degree of the valve body increases. Therefore, for example, if the valve opening is increased to the vicinity of the valve body opening at full angle, it becomes difficult to close the valve when the negative pressure is eliminated. For example, if the valve opening exceeds 70%, the negative pressure decreases. The prompt valve closing operation that accompanies it becomes difficult. As described above, since the valve body in the fully open state has a structure that hinders the reduction of the negative pressure, it is necessary to set the ventilation port diameter to a large diameter in order to secure the ventilation amount, and the whole becomes large.

本発明は、従来の課題を解決するために開発したものであり、その目的とするところは、負圧発生時に流路を開閉して負圧を解消する回転弁機構であり、負圧の変化に対しても弁体を安定状態に維持してチャタリング現象を抑制する新規の回転弁機構とこれを用いた通気弁並びに排水管システムを提供することにある。 The present invention has been developed to solve the conventional problems, and an object thereof is a rotary valve mechanism that opens and closes a flow path when a negative pressure is generated to eliminate the negative pressure, and changes in the negative pressure. It is an object of the present invention to provide a new rotary valve mechanism that keeps the valve body in a stable state and suppresses the chattering phenomenon, and a vent valve and a drainage pipe system using the mechanism.

上記目的を達成するため、請求項1に係る発明は、回転弁体により流路を開閉する回転弁機構であって、回転弁体の弁閉力のピークを、弁開度全閉から弁開度全開の間に設定することにより、回転弁体と弁座とのチャタリング現象を抑制した回転弁機構である。 In order to achieve the above object, the invention according to claim 1 is a rotary valve mechanism for opening and closing a flow path by a rotary valve body, in which the peak of the valve closing force of the rotary valve body is opened from the valve opening fully closed. It is a rotary valve mechanism that suppresses the chattering phenomenon between the rotary valve body and the valve seat by setting it while the valve seat is fully open.

請求項2に係る発明は、回転弁体の弁閉力のピークを、弁開度5%から50%の間に設定した回転弁機構である。 The invention according to claim 2 is a rotary valve mechanism in which the peak of the valve closing force of the rotary valve body is set between the valve opening degree of 5% and 50%.

請求項3に係る発明は、回転弁体の回転中心が二重に偏心された二重偏心構造である回転弁機構である。 The invention according to claim 3 is a rotary valve mechanism having a double eccentric structure in which the rotation center of the rotary valve body is doubly eccentric.

請求項4に係る発明は、回転弁体を支持する弁体支持部の回転弁体に対する偏心率40%以上とした回転弁機構である。


The invention according to claim 4 is a rotary valve mechanism in which the eccentricity of the valve body support portion that supports the rotary valve body with respect to the rotary valve body is 40% or more.


請求項5に係る発明は、回転弁体は、ジスク本体の自重により弁開となる位置に配置され、ジスク本体に設けられた錘部とのバランスにより弁閉状態となる回転弁機構である。 The invention according to claim 5 is a rotary valve mechanism in which the rotary valve body is arranged at a position where the valve is opened by the weight of the disc body, and the valve is closed due to the balance with the weight portion provided on the disc body.

請求項6に係る発明は、回転弁機構が用いられた通気弁である。 The invention according to claim 6 is a vent valve using a rotary valve mechanism.

請求項7に係る発明は、通気弁が、伸頂通気管又はあふれ縁下部に装着されている排水管システムである。 The invention according to claim 7 is a drainage pipe system in which a vent valve is mounted on an extension vent pipe or a lower part of an overflow edge.

請求項1に係る発明によると、内部に負圧が発生したときには、回転弁体により流路を開閉して負圧を解消する。その際、回転弁体の弁閉力のピークを、弁開度全閉から全開の間に設定していることで、この中間開度の状態を弁体が維持しようとし、負圧に変化が生じた場合にも安定状態で動作可能になる。これにより、弁微開時を含む弁体動作時において、この回転弁体の微小な開閉動作の繰り返しによるチャタリング現象を抑制しつつ、負圧を確実に解消できる新規の回転弁機構を提供できる。 According to the first aspect of the present invention, when a negative pressure is generated inside, the rotary valve body opens and closes the flow path to eliminate the negative pressure. At that time, by setting the peak of the valve closing force of the rotary valve body between the valve opening fully closed and the valve opening fully opened, the valve body tries to maintain the state of this intermediate opening, and the negative pressure changes. Even if it occurs, it can operate in a stable state. As a result, it is possible to provide a new rotary valve mechanism capable of reliably eliminating the negative pressure while suppressing the chattering phenomenon due to the repetition of the minute opening / closing operation of the rotary valve body during the valve body operation including the time when the valve is slightly opened.

請求項2に係る発明によると、回転弁体の弁閉力のピークを、弁開度5%から50%の間に設定することにより、回転弁体を確実に弁閉状態まで復帰可能にしつつ、中間開度において回転弁体の弁閉力を最大に設定できる。回転弁体が、全閉位置近傍の微開度域であれば、負圧が変動したときにもこの回転弁体のバランス状態を維持して着座を防ぎ、チャタリング現象を防止する。 According to the second aspect of the present invention, by setting the peak of the valve closing force of the rotary valve body between 5% and 50% of the valve opening degree, the rotary valve body can be reliably returned to the valve closed state. , The valve closing force of the rotary valve body can be set to the maximum at the intermediate opening. If the rotary valve body has a slight opening range near the fully closed position, the balance state of the rotary valve body is maintained to prevent seating even when the negative pressure fluctuates, and the chattering phenomenon is prevented.

請求項3に係る発明によると、回転弁体の開閉動作時における弁体シール側と弁座シール側との摺動範囲をごくわずかに抑えてこれらの接触抵抗を低下し、摩耗を防ぎつつ低トルクで円滑に回転弁体を開閉動作させることが可能になり、弁閉時には高いシール性を発揮する。 According to the third aspect of the present invention, the sliding range between the valve body seal side and the valve seat seal side during the opening / closing operation of the rotary valve body is suppressed very slightly to reduce their contact resistance, and the contact resistance is lowered while preventing wear. It is possible to smoothly open and close the rotary valve body with torque, and it exhibits high sealing performance when the valve is closed.

請求項4に係る発明によると、弁体支持部に対するジスク本体の弁閉側の重量と弁開側の重量とを機能的に分離でき、弁体支持部の回転弁体に対する偏心率を介して、通常時には弁閉状態を確実に維持し、圧力変動が生じた際にも、弁開トルクに対する弁体重量による閉方向トルクの特性を大きくしてチャタリング現象の発生を阻止して安定した弁閉状態を維持できる。負圧発生時には、回転弁体が弁体支持部を介してアンバランストルクによる弁閉動作を防止して円滑に弁開動作して負圧を解消し、負圧の解消後には、回転弁体が緩やかに動作して弁閉状態に復帰する。 According to the invention of claim 4, the weight on the valve closing side and the weight on the valve opening side of the disc body with respect to the valve body support can be functionally separated, and the eccentricity of the valve body support with respect to the rotary valve body can be used. Normally, the valve closed state is surely maintained, and even when pressure fluctuations occur, the characteristics of the closing direction torque due to the valve body weight with respect to the valve opening torque are increased to prevent the occurrence of chattering phenomenon and stable valve closing. The state can be maintained. When negative pressure is generated, the rotary valve body prevents the valve closing operation due to unbalance torque via the valve body support part and smoothly opens the valve to eliminate the negative pressure, and after the negative pressure is eliminated, the rotary valve body Operates slowly and returns to the valve closed state.

請求項5に係る発明によると、通常時には、錘部とのバランスにより回転弁体に弁閉方向の力が加わって弁閉状態を安定状態で維持する。負圧発生時には、回転弁体に弁開方向の力が加わることで錘部の重量に抗して回転弁体がスムーズに弁開動作し、圧力変動に応じて高い応答性を発揮しつつ開閉動作する。 According to the fifth aspect of the present invention, normally, a force in the valve closing direction is applied to the rotary valve body due to the balance with the weight portion to maintain the valve closed state in a stable state. When a negative pressure is generated, a force in the valve opening direction is applied to the rotary valve body, so that the rotary valve body smoothly opens the valve against the weight of the weight part, and opens and closes while exhibiting high responsiveness in response to pressure fluctuations. Operate.

請求項6に係る発明によると、排水管システムの通気管に取付け可能であり、その取付時には、省スペース化を図りつつ狭い配管スペースにも設置できる。内部の圧力が、大気圧時又は内部に正圧が発生したときには、弁閉状態を維持してシール性を確保できる。一方、本体内に負圧が発生したときには、通気抵抗を抑えて通気量を大きく確保し、高い応答性により弁開状態までスムーズに動作する。これにより、チャタリング現象を抑制しつつ、負圧時には外部から十分に大気を吸気して確実に解消し、排水時の騒音や外部への臭気漏れも防止できる通気弁を提供できる。 According to the invention of claim 6, it can be attached to the ventilation pipe of the drainage pipe system, and when it is attached, it can be installed in a narrow piping space while saving space. When the internal pressure is at atmospheric pressure or when a positive pressure is generated inside, the valve closed state can be maintained and the sealing property can be ensured. On the other hand, when a negative pressure is generated in the main body, the ventilation resistance is suppressed to secure a large amount of ventilation, and the high responsiveness allows smooth operation until the valve is opened. As a result, it is possible to provide a ventilation valve that can suppress the chattering phenomenon, sufficiently inhale the atmosphere from the outside at the time of negative pressure and surely eliminate it, and prevent noise at the time of drainage and leakage of odor to the outside.

請求項7に係る発明によると、個別住宅や集合住宅に配管された排水設備の伸頂通気管に装着して排水器具からつながる排水横枝管や排水立て管内部の負圧を大気中に開放でき、又は排水器具のあふれ縁下部に装着して個別の排水器具内に生ずる負圧を解消することができる。これにより、個別住宅や集合住宅に配管された様々な構造の排水設備の好ましい位置に配置して臭気漏れを防止しつつ排水音を抑えながらスムーズに排水可能になる。 According to the invention of claim 7, the negative pressure inside the drainage horizontal branch pipe and the drainage stand pipe connected to the drainage device by attaching to the extension ventilation pipe of the drainage facility installed in the individual house or the apartment house is released to the atmosphere. It can be done, or it can be attached to the lower part of the overflow edge of the drainage device to eliminate the negative pressure generated in the individual drainage device. As a result, it is possible to smoothly drain water while suppressing drainage noise while preventing odor leakage by arranging it at a preferable position of drainage facilities having various structures piped to individual houses or apartment houses.

排水管システムの一例を示す模式図である。It is a schematic diagram which shows an example of a drainage pipe system. 本発明の回転弁機構を通気弁に用いた第1実施形態を示す中央縦断面図である。It is a central vertical sectional view which shows the 1st Embodiment using the rotary valve mechanism of this invention as a vent valve. 図2の通気弁の弁開状態を示す中央縦断面図である。It is a central vertical sectional view which shows the valve open state of the vent valve of FIG. 図2のカバーを取り外した状態を示す平面図である。It is a top view which shows the state which removed the cover of FIG. 図2の通気弁の分離斜視図である。It is a separation perspective view of the ventilation valve of FIG. 図2の通気弁の模式図である。It is a schematic diagram of the vent valve of FIG. 比較例の通気装置を表す模式図である。It is a schematic diagram which shows the ventilation device of the comparative example. 弁開度と弁閉力との関係を示すグラフである。It is a graph which shows the relationship between a valve opening degree and a valve closing force. (a)は弁開度と弁閉力との関係を示す他のグラフである。(b)は負圧発生から負圧解消時までの負圧の大きさの変動を示すグラフである。(A) is another graph showing the relationship between the valve opening degree and the valve closing force. (B) is a graph showing the change in the magnitude of the negative pressure from the generation of the negative pressure to the time when the negative pressure is eliminated. 通気弁の第2実施形態を示す中央縦断面図である。It is a central vertical sectional view which shows the 2nd Embodiment of a vent valve. 図10の通気弁の弁開状態を示す中央縦断面図である。It is a central vertical sectional view which shows the valve open state of the vent valve of FIG. 通気弁の第3実施形態を示す中央断面図である。It is a central sectional view which shows the 3rd Embodiment of a vent valve. 図12の通気弁の弁開状態を示す中央縦断面図である。It is a central vertical sectional view which shows the valve open state of the vent valve of FIG.

以下に、本発明における回転弁機構とこれを用いた通気弁並びに排水管システムを実施形態に基づいて詳細に説明する。図1においては、排水管システムの一例を示し、図2~図5においては、本発明の回転弁機構を通気弁に用いた第1実施形態を示している。回転弁機構を有する通気弁(以下、バルブ本体100という)は、図1に示した排水管システム(以下、システム本体2という)に設けられる。 Hereinafter, the rotary valve mechanism, the ventilation valve using the rotary valve mechanism, and the drainage pipe system according to the present invention will be described in detail based on the embodiments. FIG. 1 shows an example of a drainage pipe system, and FIGS. 2 to 5 show a first embodiment in which the rotary valve mechanism of the present invention is used as a vent valve. A vent valve having a rotary valve mechanism (hereinafter referred to as a valve main body 100) is provided in the drainage pipe system (hereinafter referred to as a system main body 2) shown in FIG.

図1において、システム本体2は、例えば、個別住宅や集合住宅における外壁5と内壁6との間に設けられ、このシステム本体2において、バルブ本体100が排水管3から天井7よりも低い位置まで伸長された伸頂通気管4又は排水機器のあふれ縁下部に装着されている。これにより、システム本体2を介して排水管3内に発生した負圧が解消可能に設けられる。本実施形態では、バルブ本体100をシステム本体2の伸頂通気管4に設けた例を述べる。 In FIG. 1, the system main body 2 is provided between the outer wall 5 and the inner wall 6 in, for example, an individual house or an apartment house, and in the system main body 2, the valve main body 100 is located from the drain pipe 3 to a position lower than the ceiling 7. It is attached to the extended extension ventilation pipe 4 or the lower part of the overflow edge of the drainage device. As a result, the negative pressure generated in the drain pipe 3 via the system main body 2 can be eliminated. In this embodiment, an example in which the valve main body 100 is provided in the extension ventilation pipe 4 of the system main body 2 will be described.

伸頂通気管4は、排水管3の排水立て管3aの上方に延設されるように設けられ、この伸頂通気管4の先端側にバルブ本体100が接続される。排水立て管3aの伸頂通気管4よりも低い位置には排水横枝管3bが分岐して設けられ、この排水横枝管3bの一次側には、排水機器8が設けられる。内壁6の適宜位置には点検口6aが設けられ、この点検口6aには、クロスハッチングで示した着脱自在で且つ外壁5と内壁6との間の空間に外気を取り入れ可能な遮蔽部材9が取付けられている。遮蔽部材9を点検口6aから取り外すことで、この点検口6aからバルブ本体100の点検や交換が可能になっている。また、バルブ本体100は、伸頂通気管4と略同径であるため、既設の排水管3や通気管4に追加工すれば設置でき、現有住宅の外壁5と内壁6との間に取り付けることができる。 The extension ventilation pipe 4 is provided so as to extend above the drainage stand pipe 3a of the drainage pipe 3, and the valve body 100 is connected to the tip end side of the extension ventilation pipe 4. A drainage lateral branch pipe 3b is branched and provided at a position lower than the extension ventilation pipe 4 of the drainage vertical pipe 3a, and a drainage device 8 is provided on the primary side of the drainage lateral branch pipe 3b. An inspection port 6a is provided at an appropriate position on the inner wall 6, and the inspection port 6a is provided with a shield member 9 that is detachable and can take in outside air into the space between the outer wall 5 and the inner wall 6 as shown by cross-hatching. It is installed. By removing the shielding member 9 from the inspection port 6a, the valve main body 100 can be inspected or replaced from the inspection port 6a. Further, since the valve body 100 has substantially the same diameter as the extension ventilation pipe 4, it can be installed by adding work to the existing drainage pipe 3 or ventilation pipe 4, and is attached between the outer wall 5 and the inner wall 6 of the existing house. be able to.

上述したように、本発明の回転弁機構は、例えば、通気弁(バルブ本体100)に適用され、エアからなる流体により動作する。図2~図5において、バルブ本体100は、弁ユニット110、ボデー111、キャップ112、カバー113を有し、例えば、サイズ40A、50Aの伸頂通気管4に対して共用可能に設けられる。 As described above, the rotary valve mechanism of the present invention is applied to, for example, a vent valve (valve body 100) and is operated by a fluid composed of air. In FIGS. 2 to 5, the valve body 100 has a valve unit 110, a body 111, a cap 112, and a cover 113, and is provided so as to be shared with, for example, an extension vent pipe 4 having sizes 40A and 50A.

バルブ本体100のうち、弁ユニット110は、筒本体120、環状の弁座であるシート21、円板状弁体である回転弁体121、偏心軸(ヒンジ)122、錘部123を備え、これらが一体に組込まれて回転弁体121が偏心軸122を中心として回転可能に設けられる。この一体化されたユニット構造により、バルブ本体100は、排水管3内の負圧を解消する通気弁機能を有する。 Of the valve body 100, the valve unit 110 includes a cylinder body 120, a seat 21 which is an annular valve seat, a rotary valve body 121 which is a disc-shaped valve body, an eccentric shaft (hinge) 122, and a weight portion 123. Is integrally incorporated, and the rotary valve body 121 is rotatably provided about the eccentric shaft 122. Due to this integrated unit structure, the valve body 100 has a vent valve function of eliminating the negative pressure in the drain pipe 3.

この場合、バルブ本体100は、回転弁体121が揺動し、この回転弁体121により圧力差で流路を開閉する回転弁機構となる。回転弁体121は、その弁閉力のピーク、すなわち弁閉方向に働く力のピークが、弁開度全閉(全閉を除く)から全開の間に設定されるように設けられる。これにより、回転弁体121と弁座とのチャタリング現象が抑制される回転弁機構となる。 In this case, the valve body 100 becomes a rotary valve mechanism in which the rotary valve body 121 swings and the flow path is opened and closed by the pressure difference due to the rotary valve body 121. The rotary valve body 121 is provided so that the peak of the valve closing force, that is, the peak of the force acting in the valve closing direction is set between the valve opening fully closed (excluding fully closed) and the valve fully opened. This provides a rotary valve mechanism that suppresses the chattering phenomenon between the rotary valve body 121 and the valve seat.

さらに、好ましくは、回転弁体121の弁閉力のピークが、弁開度5%から50%の間に設定されているとよい。ここで、回転弁体121の弁開度θとは、シート21との全閉シール状態を0%、全開状態を100%としたとき、この全閉シール状態に対して後述のジスク本体140が成す開度比率をいう。
本実施形態では、全開状態の弁体角度を後述する80°に設定し、回転弁体121の弁閉力のピークを、弁体角度20°すなわち弁開度25%(20°/80°×100=25%)となるように設定している。
Further, it is preferable that the peak of the valve closing force of the rotary valve body 121 is set between the valve opening degree of 5% and 50%. Here, the valve opening degree θ of the rotary valve body 121 means that when the fully closed seal state with the seat 21 is 0% and the fully open state is 100%, the disc main body 140 described later refers to this fully closed seal state. The opening ratio to be formed.
In the present embodiment, the valve body angle in the fully open state is set to 80 °, which will be described later, and the peak of the valve closing force of the rotary valve body 121 is set to the valve body angle of 20 °, that is, the valve opening degree of 25% (20 ° / 80 ° ×). 100 = 25%) is set.

弁ユニット110の筒本体120は、例えばABS樹脂などの樹脂材料により設けられ、ボデー111の被装着位置に内挿可能な通気流路30がストレート形状の略円筒状カートリッジ体からなっている。図2において、筒本体120の上面には、環状のシート21が載置可能に設けられる。 The cylinder body 120 of the valve unit 110 is provided with a resin material such as ABS resin, and the ventilation flow path 30 that can be inserted into the mounted position of the body 111 is made of a straight-shaped substantially cylindrical cartridge body. In FIG. 2, an annular sheet 21 is provided on the upper surface of the cylinder body 120 so that it can be placed.

この弁ユニット110を有する前記バルブ本体100は、後述するように、通気弁用の回転弁体(円板状弁体)121が、弁開方向に回転する回転モーメントMoと、弁閉方向に回転する回転モーメントMcとを有する。 In the valve body 100 having the valve unit 110, as will be described later, the rotary valve body (disk-shaped valve body) 121 for the vent valve rotates in the valve closing direction with the rotational moment Mo in which the rotary valve body (disk-shaped valve body) 121 rotates in the valve opening direction. It has a rotational moment Mc.

筒本体120の外筒部位には、図4及び図5に示すように、偏心軸122取付用の2つの取付穴130、130が貫通形成される。取付穴130は、筒本体120の口径の中心P1からずれた位置(偏心した位置)であり、かつ、回転弁体121の後述する弁体球面143(のシール中心)からずれた位置(偏心した位置)にある弁体支持部141の中心P3に基づいて設定される。 As shown in FIGS. 4 and 5, two mounting holes 130 and 130 for mounting the eccentric shaft 122 are formed through the outer cylinder portion of the cylinder body 120. The mounting hole 130 is located at a position deviated from the center P1 of the diameter of the cylinder body 120 (eccentric position) and deviated from the valve body spherical surface 143 (seal center) described later of the rotary valve body 121 (eccentric). Position) is set based on the center P3 of the valve body support portion 141.

取付穴130の内周側の周囲には、所定の大きさで内径側に突出する突起片131が突出形成され、この突起片131には弁開規制部132が設けられる。一方、筒本体120の外周には、キャップ112を係合固定するための凸部133がその周方向において断続的に形成される。 A protrusion 131 having a predetermined size and projecting to the inner diameter side is formed around the inner peripheral side of the mounting hole 130, and the protrusion restricting portion 132 is provided on the protrusion 131. On the other hand, on the outer periphery of the cylinder body 120, a convex portion 133 for engaging and fixing the cap 112 is intermittently formed in the circumferential direction thereof.

弁開規制部132は、テーパ面状に形成され、弁開時の回転弁体121が当接されることにより、その回転量を規制可能になっている。この弁開規制部132は、通気抵抗を減らすため、図4に示すように流路の外側となる位置に設けられ、全開状態の回転弁体121の両側の外周縁部近傍が当接されてこれらを支持可能に設けられる。 The valve opening restricting portion 132 is formed in a tapered surface shape, and the amount of rotation thereof can be regulated by abutting the rotary valve body 121 at the time of valve opening. The valve opening restricting portion 132 is provided at a position outside the flow path as shown in FIG. 4 in order to reduce the ventilation resistance, and the vicinity of the outer peripheral edges on both sides of the rotary valve body 121 in the fully open state is brought into contact with the valve opening restricting portion 132. These are provided so as to be supportable.

図2において、弁開規制部132の弁座水平面からの角度δは、回転弁体121が弁閉方向に回転するときの回転モーメントMcを確保できる最大の大きさに設けられ、本実施形態では、この角度δは、略80°に設けられる。弁開規制部132の長さXは、回転弁体121の局所的な変形を防止可能な大きさに設けられ、さらに、回転弁体121の外周縁部近傍を支持可能としつつ内径方向への突出長さを抑えた大きさとすることで、弁開時の通気抵抗を減らして大きな通気量が確保している。 In FIG. 2, the angle δ of the valve opening restricting portion 132 from the horizontal plane of the valve seat is set to the maximum size that can secure the rotational moment Mc when the rotary valve body 121 rotates in the valve closing direction, and in the present embodiment, it is provided. , This angle δ is provided at approximately 80 °. The length X of the valve opening restricting portion 132 is provided to a size capable of preventing local deformation of the rotary valve body 121, and further, the vicinity of the outer peripheral edge portion of the rotary valve body 121 can be supported in the inner diameter direction. By making the size of the protrusion suppressed, the ventilation resistance at the time of valve opening is reduced and a large amount of ventilation is secured.

このような構成により、弁開規制部132は、弁開時の回転弁体121を最大角度δ(略80°)により規制可能になっている。さらに、弁開規制部132は、負圧が解消した際に、回転弁体121が錘部123との均衡によって弁閉状態に復帰できる位置に設けられている。なお、本実施形態においては、角度δを略80°としたが、これは回転モーメントMoと回転モーメントMcとのバランスと、弁体支持部141の回転摩擦力に基づき設定され、錘部123の重量を変えるなどして、略90°とすることも可能である。 With such a configuration, the valve opening restricting unit 132 can regulate the rotary valve body 121 at the time of valve opening by a maximum angle δ (approximately 80 °). Further, the valve opening restricting portion 132 is provided at a position where the rotary valve body 121 can return to the valve closed state by balancing with the weight portion 123 when the negative pressure is released. In the present embodiment, the angle δ is set to about 80 °, but this is set based on the balance between the rotational moment Mo and the rotational moment Mc and the rotational frictional force of the valve body support portion 141, and is set based on the rotational friction force of the weight portion 123. It is also possible to make it approximately 90 ° by changing the weight.

シート21は、例えばEPDMなどのゴム材料により形成され、筒本体120の外径と略同径の大きさに設けられて筒本体120の上面に載置可能になっており、筒本体120とキャップ112との間に挟着可能な厚さに設けられる。シート21には、回転弁体121とのシール面である円錐テーパ面134が、所定のテーパ角度により形成される。円錐テーパ面134がなす図示しない円錐の頂点は、筒本体120の口径の軸芯上に位置するように設けられる。シート21のシール面としては、円錐テーパ面134以外にも、円錐状のアール面であってもよい。 The sheet 21 is made of a rubber material such as EPDM, is provided with a size substantially the same as the outer diameter of the cylinder body 120, and can be placed on the upper surface of the cylinder body 120, and the cylinder body 120 and the cap. It is provided to a thickness that can be sandwiched between 112 and 112. A conical tapered surface 134, which is a sealing surface with the rotary valve body 121, is formed on the sheet 21 at a predetermined taper angle. The apex of the cone (not shown) formed by the conical tapered surface 134 is provided so as to be located on the axis of the diameter of the cylinder body 120. The sealing surface of the sheet 21 may be a conical rounded surface in addition to the conical tapered surface 134.

回転弁体121は、例えばABS樹脂などの樹脂材料により設けられ、薄い円板状に設けられたジスク本体140を有している。ジスク本体140には、弁体支持部141と軸着部142とが一体に形成される。
図4に示すように、回転弁体121は、偏心軸122を介して筒本体120内に取付けられ、この回転弁体121により通気流路30が開閉自在に設けられる。
The rotary valve body 121 is provided with a resin material such as ABS resin, and has a disc main body 140 provided in a thin disk shape. A valve body support portion 141 and a shaft attachment portion 142 are integrally formed on the disc body 140.
As shown in FIG. 4, the rotary valve body 121 is mounted in the cylinder body 120 via an eccentric shaft 122, and the rotary valve body 121 is provided with a ventilation flow path 30 so as to be openable and closable.

ジスク本体140には、球面の一部をなす弁体球面143が形成され、この弁体球面143が、シート21の円錐テーパ面134に対するシール面として当接可能に設けられる。弁閉時には、弁体球面143が、円錐テーパ面134に対して接線接触状態(線当たり状態ともいう)でシール可能になっている。弁体球面143は、その中心が筒本体120の口径中心軸上に位置するように設けられる。
ここで接線接触(線当たり)とは、面当りに比して、弁閉時のシート21と円板状弁体23との環状シールの幅が狭いシール状態をいう。
A valve body spherical surface 143 forming a part of the spherical surface is formed on the disc main body 140, and the valve body spherical surface 143 is provided so as to be able to abut as a sealing surface with respect to the conical tapered surface 134 of the seat 21. When the valve is closed, the valve body spherical surface 143 can be sealed with respect to the conical tapered surface 134 in a tangential contact state (also referred to as a line contact state). The valve body spherical surface 143 is provided so that its center is located on the diameter center axis of the cylinder body 120.
Here, the tangential contact (line contact) refers to a sealing state in which the width of the annular seal between the seat 21 and the disc-shaped valve body 23 when the valve is closed is narrower than that of the surface contact.

図示しないが、弁体球面143は、弁閉時における円錐テーパ面134への固着防止のため、そのシール部位がプラトー面に形成されている。さらには、このプラトー面におけるディンプル部に油分が蓄えられていたり、或は、弁閉時のシート21への固着防止用として、弁体球面143、或は円錐テーパ面134の何れか一方側に梨地加工が施されていてもよい。 Although not shown, the valve body spherical surface 143 has a sealing portion formed on the plateau surface in order to prevent sticking to the conical tapered surface 134 when the valve is closed. Further, oil is stored in the dimple portion on the plateau surface, or the valve body spherical surface 143 or the conical tapered surface 134 is used to prevent sticking to the seat 21 when the valve is closed. It may be satin finished.

弁体球面143は、プラトー面に限られず、適度にその表面を荒らすようにして加工を施すようにしてもよい。弁体球面143にオイル等の油分を塗付することにより、この弁体球面143と円錐テーパ面134との固着を防止しつつシール性が確保される。 The valve body spherical surface 143 is not limited to the plateau surface, and may be processed by appropriately roughening the surface thereof. By applying an oil component such as oil to the valve body spherical surface 143, the sealing property is ensured while preventing the valve body spherical surface 143 from sticking to the conical tapered surface 134.

弁体支持部141は、細径状の円柱形状に設けられ、ジスク本体140の弁体球面143から偏心した位置、すなわち筒本体120の口径の中心P1から偏心した位置に、ジスク本体140から垂下するように一体形成される。この弁体支持部141に続けて、軸着部142が略俵型の形状により形成される。軸着部142は、ジスク本体140の中心に対して偏心し、かつ、ジスク本体140の弁体球面143に対して球芯側の流路方向に偏心した二重偏心位置に設けられる。軸着部142には、後述する偏心軸122が嵌挿可能な貫通孔144が形成される。 The valve body support portion 141 is provided in a cylindrical shape having a small diameter, and hangs down from the disc body 140 at a position eccentric from the valve body spherical surface 143 of the disc body 140, that is, a position eccentric from the center P1 of the diameter of the cylinder body 120. It is integrally formed so as to do. Following the valve body support portion 141, the shaft attachment portion 142 is formed in a substantially bale-shaped shape. The shaft attachment portion 142 is provided at a double eccentric position eccentric with respect to the center of the disc body 140 and eccentric with respect to the valve body spherical surface 143 of the disc body 140 in the flow path direction on the spherical core side. A through hole 144 into which an eccentric shaft 122, which will be described later, can be inserted is formed in the shaft attachment portion 142.

さらに、軸着部142には、図2においてこの軸着部142の中心から水平方向に対して所定の傾きを有する取付部145が延設されるように形成され、この取付部145に錘部123挿着用の挿着孔146が設けられている。図示しないが、挿着孔146には、等間隔に離間した3つの係合突起が孔方向に沿って中心部に設けられている。 Further, the shaft-attached portion 142 is formed so as to extend a mounting portion 145 having a predetermined inclination with respect to the horizontal direction from the center of the shaft-attached portion 142 in FIG. 2, and a weight portion is formed on the mounting portion 145. An insertion hole 146 for wearing 123 is provided. Although not shown, the insertion hole 146 is provided with three engaging protrusions at equal intervals in the center along the hole direction.

図5において、偏心軸122は、例えば、ステンレス等の金属材料により細径状に形成され、その外周に軸着部142の長さと略同じ間隔で2つの止め輪147装着用の係止溝148が形成されている。偏心軸122は、回転弁体121の回転時の支点となり、この偏心軸122を介して、回転弁体121には筒本体120内で弁閉方向の回転モーメントMcが与えられるようになっている。 In FIG. 5, the eccentric shaft 122 is formed in a small diameter shape by, for example, a metal material such as stainless steel, and a locking groove 148 for mounting two retaining rings 147 is formed on the outer periphery thereof at substantially the same interval as the length of the shaft attachment portion 142. Is formed. The eccentric shaft 122 serves as a fulcrum during rotation of the rotary valve body 121, and the rotary valve body 121 is provided with a rotary moment Mc in the valve closing direction in the cylinder body 120 via the eccentric shaft 122. ..

前記のジスク本体140に対する軸着部142の位置関係により、偏心軸(支点)122は、筒本体120の口径の中心P1から偏心した位置であり、かつ、回転弁体121の弁体球面143(のシール中心面)から偏心した位置にある弁体支持部141の中心P3となる。このように、回転弁体121の回転中心である偏心軸122が、弁体球面143に対して二重に偏心された二重偏心構造になっている。 Due to the positional relationship of the shaft attachment portion 142 with respect to the disc body 140, the eccentric axis (fulcrum) 122 is at a position eccentric from the center P1 of the diameter of the cylinder body 120, and the valve body spherical surface 143 of the rotary valve body 121 ( It becomes the center P3 of the valve body support portion 141 located at a position eccentric from the seal center surface). As described above, the eccentric shaft 122, which is the center of rotation of the rotary valve body 121, has a double eccentric structure that is doubly eccentric with respect to the valve body spherical surface 143.

この場合、回転弁体121を支持する弁体支持部141の回転弁体121に対する偏心率、すなわち、図2における筒本体120の口径の中心P1からの弁体支持部141の中心P3までの偏心距離(偏心量)D1/回転弁体121の半径r)を、略40%程度となるようにする。 In this case, the eccentricity of the valve body support portion 141 that supports the rotary valve body 121 with respect to the rotary valve body 121, that is, the eccentricity from the center P1 of the diameter of the cylinder body 120 in FIG. 2 to the center P3 of the valve body support portion 141. The distance (eccentricity) D1 / radius r of the rotary valve body 121) is set to about 40%.

この理由を以下に述べる。例えば、流路内を非圧縮性流体である水が流れる一般的な蝶形弁体においては、偏心率を30%程度に設定したとしても、オリフィス側に生じる圧力低下によって弁開方向への動作中における、弁体のオリフィス側とノズル側との流体差圧によって生ずる、アンバランスなトルクによる閉方向のモーメント、すなわち、流体の流れに起因する弁閉方向への回転モーメントが働くことが知られている。 The reason for this is described below. For example, in a general butterfly valve body in which water, which is an incompressible fluid, flows in the flow path, even if the eccentricity is set to about 30%, the operation in the valve opening direction is caused by the pressure drop generated on the orifice side. It is known that the moment in the closing direction due to the unbalanced torque generated by the fluid differential pressure between the orifice side and the nozzle side of the valve body, that is, the rotational moment in the valve closing direction due to the fluid flow works. ing.

一方、本実施形態のバルブ本体100を流れる流体は、圧縮性流体である気体であり、その圧力は、排水管3内の負圧を解消して排水器具のトラップ封水を保護する程度の30~50Paである。このように、バルブ本体100内を流れる気体は圧縮性であり、かつ圧力が低い大気圧と負圧との差によって生ずる微圧であることから、弁体支持部141を境に大受圧面側及び小受圧面側に加わる微圧による弁閉モーメントが変動しやすく、回転弁体121の弁閉動作に与える影響も大きくなる。
このことから、バルブ本体100に対する回転弁体121の組み立て誤差や弁体支持部141の形状による影響なども考慮し、余裕をみて約40%の偏心率とし、流体の流れに起因する第3のアンバランストルクを低減して、後述する第1、第2のアンバランストルクにより、回転弁体121が開閉方向に確実に作動できるようにした。
On the other hand, the fluid flowing through the valve body 100 of the present embodiment is a gas that is a compressible fluid, and the pressure thereof is such that the negative pressure in the drain pipe 3 is eliminated and the trap water of the drainage device is protected. It is ~ 50Pa. As described above, since the gas flowing in the valve body 100 is compressible and is a slight pressure generated by the difference between the low atmospheric pressure and the negative pressure, the large pressure receiving surface side with the valve body support portion 141 as a boundary. The valve closing moment due to the slight pressure applied to the small pressure receiving surface side is likely to fluctuate, and the influence on the valve closing operation of the rotary valve body 121 is also large.
From this, considering the assembly error of the rotary valve body 121 with respect to the valve body 100 and the influence of the shape of the valve body support portion 141, the eccentricity is set to about 40% with a margin, and the third is caused by the fluid flow. The unbalanced torque is reduced so that the rotary valve body 121 can be reliably operated in the opening / closing direction by the first and second unbalanced torques described later.

偏心軸122を金属材料で形成した場合、強度を保ちつつ細径に形成可能になり、弁開時の通気抵抗を減らして通気量を増すことが可能となる。この偏心軸122に樹脂材料からなる回転弁体121を装着することで、この回転弁体121の回転動作時における摺動抵抗が低減する。 When the eccentric shaft 122 is made of a metal material, it can be formed into a small diameter while maintaining strength, and it is possible to reduce the ventilation resistance at the time of valve opening and increase the ventilation amount. By mounting the rotary valve body 121 made of a resin material on the eccentric shaft 122, the sliding resistance of the rotary valve body 121 during the rotational operation is reduced.

錘部123は、挿着孔146に挿着可能な略円柱形状により所定の重さに設けられ、その中央付近には係合突起が係止可能な環状溝149が形成されている。このように、錘部123を円柱状に形成した場合、加工が容易になってコストも抑えられる。錘部123は円柱状以外であってもよく、例えば、球体形状に形成してもよい。これ以外にも、例えば、ジスク本体140の錘部位の装着を必要とする側の肉厚を、偏心軸122を挟んだ他方側よりも厚くし、その弁体重量が他方側よりも重くなるように形成することにより、錘部123を省略することもできる。 The weight portion 123 is provided with a predetermined weight due to a substantially cylindrical shape that can be inserted into the insertion hole 146, and an annular groove 149 in which an engaging protrusion can be locked is formed near the center thereof. When the weight portion 123 is formed in a columnar shape as described above, the processing becomes easy and the cost can be suppressed. The weight portion 123 may be other than a columnar shape, and may be formed in a spherical shape, for example. In addition to this, for example, the wall thickness of the side of the disc body 140 that requires the weight portion to be attached is made thicker than the other side sandwiching the eccentric shaft 122 so that the valve body weight is heavier than the other side. It is also possible to omit the weight portion 123 by forming the weight portion 123.

前述の偏心軸122を介して、回転弁体121が筒本体120に回転自在に筒本体120に内蔵されることにより、回転弁体121がジスク本体140の自重により弁開となる位置に配置され、このジスク本体140に設けられた錘部123とのバランスにより弁閉状態となる。このとき、回転弁体121は、筒本体120内の負圧時に偏心軸122を介して弁開方向に回転する第1のアンバランストルク(弁開>弁閉となる受圧面積比によるトルク差)を発生して外部より大気を吸気可能になっている。 The rotary valve body 121 is rotatably incorporated in the cylinder body 120 via the eccentric shaft 122 described above, so that the rotary valve body 121 is arranged at a position where the valve is opened by the weight of the disc body 140. The valve is closed due to the balance with the weight portion 123 provided on the disc main body 140. At this time, the rotary valve body 121 has a first unbalanced torque that rotates in the valve opening direction via the eccentric shaft 122 at the time of negative pressure in the cylinder body 120 (torque difference due to the pressure receiving area ratio at which valve opening> valve closing). Is generated and the atmosphere can be taken in from the outside.

一方、筒本体120が大気圧時又は正圧時において、偏心軸122を介して弁閉方向に回転する弁開<弁閉となる質量と重心位置によるトルク差である第2のアンバランストルクを発生して、弁閉状態とするように構成されている。ここで、大気圧時とは、筒本体120内に予め設定した値(例えば30Pa)以上の負圧が生じておらず、回転弁体121の一次側と二次側との間の差圧がほとんど無いか、或は通気する必要がほとんど無い圧力差の状態をいい、正圧時、負圧時とは、それぞれ筒本体120に正圧が加わった状態、予め設定した値以上の負圧が加わった状態をいう。従って、大気圧とは、微小な負圧、例えば予め設定した値(30Pa)を下回る負圧を含む状態である。 On the other hand, when the cylinder body 120 is at atmospheric pressure or positive pressure, the second unbalanced torque, which is the torque difference between the mass at which the valve is closed and the position of the center of gravity, which rotates in the valve closing direction via the eccentric shaft 122, is obtained. It is configured to occur and close the valve. Here, at atmospheric pressure, no negative pressure exceeding a preset value (for example, 30 Pa) is generated in the cylinder body 120, and the differential pressure between the primary side and the secondary side of the rotary valve body 121 is high. A state of pressure difference with almost no or almost no need for ventilation. Positive pressure and negative pressure are states in which positive pressure is applied to the cylinder body 120, respectively, and negative pressure above a preset value is applied. The state of being joined. Therefore, the atmospheric pressure is a state including a minute negative pressure, for example, a negative pressure lower than a preset value (30 Pa).

偏心軸122の筒本体120の口径の中心P1から弁体支持部141の中心P3までの偏心距離D1と、弁体球面143と円錐テーパ面134とのシールの中心(弁体シール面の中心)P2から弁体支持部141の中心P3までの偏心距離D2とをそれぞれ変えることにより、回転弁体121のシール位置(弁体球面143と円錐テーパ面134との当接位置)から二重に偏心された偏心量を任意に設定可能になり、予めこれら二重の偏心量を設定することで、弁開方向、弁閉方向のアンバランストルクによる開閉動作・封止機能を調整できる。 The eccentric distance D1 from the center P1 of the diameter of the cylinder body 120 of the eccentric shaft 122 to the center P3 of the valve body support portion 141, and the center of the seal between the valve body spherical surface 143 and the conical tapered surface 134 (center of the valve body seal surface). By changing the eccentric distance D2 from P2 to the center P3 of the valve body support portion 141, the eccentricity is doubled from the seal position of the rotary valve body 121 (the contact position between the valve body spherical surface 143 and the conical tapered surface 134). The eccentricity can be set arbitrarily, and by setting these double eccentricities in advance, the opening / closing operation / sealing function due to the unbalanced torque in the valve opening direction and the valve closing direction can be adjusted.

ボデー111は、ABS樹脂などの樹脂材料、より詳しくは、透明或は半透明の樹脂材料により略筒状に形成され、弁ユニット110が上方から内挿可能に設けられる。このボデー111下部に形成された排水管差込口63が筒本体120と一体化される。これにより、伸頂通気管4の差込み状態を排水管差込口63の外部から容易に視認可能になっている。 The body 111 is formed in a substantially tubular shape by a resin material such as ABS resin, more specifically, a transparent or translucent resin material, and a valve unit 110 is provided so as to be interpolated from above. The drainage pipe insertion port 63 formed in the lower part of the body 111 is integrated with the cylinder body 120. As a result, the insertion state of the extension ventilation pipe 4 can be easily visually recognized from the outside of the drainage pipe insertion port 63.

ボデー111上部には、拡径状の環状段部60が形成され、この環状段部60の上方には、キャップ112を固定するためのバヨネット式の接続用凹部61が形成される。ボデー111の高さ方向の略中間位置の内周には、環状縁部62が形成され、この環状縁部62には、ボデー111上方より挿入された弁ユニット110の下端が当接可能に設けられ、このボデー111を高さ方向に位置決めするようになっている。 An enlarged diameter annular step portion 60 is formed on the upper portion of the body 111, and a bayonet type connection recess 61 for fixing the cap 112 is formed above the annular step portion 60. An annular edge portion 62 is formed on the inner circumference of the body 111 at a substantially intermediate position in the height direction, and the lower end of the valve unit 110 inserted from above the body 111 is provided so as to be in contact with the annular edge portion 62. The body 111 is positioned in the height direction.

ボデー111の下部には、伸頂通気管4や外部排水管接続用の前記排水管差込口63が設けられ、この排水管差込口63は、環状縁部62によりボデー111上部の弁ユニット110挿入側から分けられている。伸頂通気管4や外部排水管は、ボデー111下部から差し込まれ、このとき、これら管の先端が環状縁部62に当接することで、管に対してボデー111が位置決め固定され、この状態で接着される。 The drainage pipe insertion port 63 for connecting the extension ventilation pipe 4 and the external drainage pipe is provided in the lower part of the body 111, and the drainage pipe insertion port 63 is a valve unit on the upper part of the body 111 by the annular edge portion 62. It is separated from the 110 insertion side. The extension ventilation pipe 4 and the external drainage pipe are inserted from the lower part of the body 111, and at this time, the tip of these pipes abuts on the annular edge portion 62, so that the body 111 is positioned and fixed to the pipe in this state. Be glued.

このように筒本体120をボデー111に装着することで、このボデー111と一体に排水管差込口63が設けられる。前述のとおり、排水管差込口63が透明又は半透明に形成されているため、伸頂通気管4や外部排水管との接着状態が外部より視認可能になる。 By attaching the cylinder body 120 to the body 111 in this way, the drainage pipe insertion port 63 is provided integrally with the body 111. As described above, since the drainage pipe insertion port 63 is formed to be transparent or translucent, the state of adhesion to the extension ventilation pipe 4 and the external drainage pipe can be visually recognized from the outside.

キャップ112は、ABS樹脂などの樹脂材料により形成され、上部に環状部150、下部にボデー111との接続部151を有し、これら環状部150と接続部151との間には、柱状部152が4箇所に等間隔に架け渡され、これら柱状部152の間に通気路153が形成されている。このように、4箇所の柱状部152の間に通気路153を設けることで通気路153の通気面積が大きくなって通気量が大きく確保される。 The cap 112 is formed of a resin material such as ABS resin, has an annular portion 150 at the upper portion and a connecting portion 151 with the body 111 at the lower portion, and a columnar portion 152 is provided between the annular portion 150 and the connecting portion 151. Are spread over four places at equal intervals, and a ventilation path 153 is formed between these columnar portions 152. In this way, by providing the ventilation passage 153 between the four columnar portions 152, the ventilation area of the ventilation passage 153 becomes large and a large amount of ventilation is secured.

接続部151は、ボデー111の上部から内挿可能な外径に形成され、この接続部151の外周には、ボデー111に形成された接続用凹部61にバヨネット接続可能な外周凸片72が形成される。接続部151の内径は、筒本体120が嵌入可能であってボデー111の被筒挿入部位と略同径に設けられる。 The connection portion 151 is formed to have an outer diameter that can be inserted from the upper part of the body 111, and an outer peripheral convex piece 72 that can be connected to a bayonet is formed on the outer periphery of the connection portion 151 in the connection recess 61 formed in the body 111. Will be done. The inner diameter of the connecting portion 151 is provided so that the cylinder body 120 can be fitted and has substantially the same diameter as the cylinder inserted portion of the body 111.

柱状部152の上部外周面には切欠き溝154が形成され、この切欠き溝154を介して環状部150の底面外周側が環状の形状になり、この環状部位がカバー113との係合部155となる。一方、接続部151の内径側には、シート21の上面保持用の内周鍔部156が内径側に突出して形成され、さらに、この内周鍔部156のシート当接側の内径部には、環状凹部157を形成してもよい。 A notch groove 154 is formed on the upper outer peripheral surface of the columnar portion 152, and the outer peripheral side of the bottom surface of the annular portion 150 becomes an annular shape through the notch groove 154, and this annular portion is the engaging portion 155 with the cover 113. Will be. On the other hand, on the inner diameter side of the connecting portion 151, an inner peripheral flange portion 156 for holding the upper surface of the sheet 21 is formed so as to project toward the inner diameter side, and further, on the inner diameter portion of the inner peripheral flange portion 156 on the sheet contact side. , An annular recess 157 may be formed.

キャップ112の中間位置には、筒本体120の外周中央付近に形成された凸部133に係合可能な凹部158が、凸部133に対応する位置に断続的に形成されている。 At the intermediate position of the cap 112, a concave portion 158 that can be engaged with the convex portion 133 formed near the center of the outer periphery of the cylinder body 120 is intermittently formed at a position corresponding to the convex portion 133.

カバー113は、略円形の蓋状に設けられ、このカバー113底面には、キャップ112の係合部155に係合可能な爪部160が3箇所に形成されている。カバー113は、爪部160を介してキャップ112上部に着脱可能に設けられ、取付け後には、キャップ112に対して回動自在になっている。 The cover 113 is provided in a substantially circular lid shape, and claws 160 that can be engaged with the engaging portion 155 of the cap 112 are formed at three positions on the bottom surface of the cover 113. The cover 113 is detachably provided on the upper part of the cap 112 via the claw portion 160, and is rotatable with respect to the cap 112 after attachment.

弁ユニット110を組立てる場合には、先ず、回転弁体121の取付部145の挿着孔146に錘部123を挿入する。このとき、係合突起が環状溝149に係止するまで錘部123を挿入することで、この錘部123を挿着孔146の所定位置に装着して脱落を防止できる。 When assembling the valve unit 110, first, the weight portion 123 is inserted into the insertion hole 146 of the mounting portion 145 of the rotary valve body 121. At this time, by inserting the weight portion 123 until the engaging protrusion is locked in the annular groove 149, the weight portion 123 can be attached to the predetermined position of the insertion hole 146 to prevent the weight portion 123 from falling off.

続いて、筒本体120の上面にジスク本体140を沿わせるように回転弁体121を配置し、この回転弁体121の一方の取付穴130の外側から偏心軸122の先端を筒本体120に挿入し、この先端を回転弁体121の貫通孔144に挿入した後に、他方の取付穴130に筒本体120の内側から挿入する。これにより、回転弁体121が軸着部142を介して偏心軸122により筒本体120に装着され、この筒本体120内で回動可能な状態となる。この状態で、2つの係止溝148、148の間に軸着部142を位置合わせし、各係止溝148に止め輪147を係止することで、軸着部142を偏心軸122の中央に位置決めする。 Subsequently, the rotary valve body 121 is arranged along the upper surface of the cylinder body 120 so as to be along the disk body 140, and the tip of the eccentric shaft 122 is inserted into the cylinder body 120 from the outside of one mounting hole 130 of the rotary valve body 121. Then, after inserting the tip into the through hole 144 of the rotary valve body 121, the tip is inserted into the other mounting hole 130 from the inside of the cylinder body 120. As a result, the rotary valve body 121 is attached to the cylinder body 120 by the eccentric shaft 122 via the shaft attachment portion 142, and is in a state of being rotatable in the cylinder body 120. In this state, the axle attachment portion 142 is positioned between the two locking grooves 148 and 148, and the retaining ring 147 is locked in each locking groove 148, whereby the axle attachment portion 142 is centered on the eccentric shaft 122. Position to.

回転弁体121の筒本体120への組付け時において、この回転弁体121(軸着部142)と偏心軸122との間には、回転弁体121が回転するための隙間(ガタ)が必要になる。このため、回転弁体121が弁閉方向に回転するときに、この隙間により取付け位置がずれて弁体球面143が円錐テーパ面134に適切に密着できなくなる可能性がある。これに対して、弁体球面143を円錐テーパ面134に近づけた状態で回転弁体121を保持して、弁体球面143を円錐テーパ面134に調心させつつ組み込むようにすれば、確実に回転弁体121を円錐テーパ面134に密着シールさせることが可能になる。 When the rotary valve body 121 is assembled to the cylinder body 120, there is a gap (play) between the rotary valve body 121 (shaft attachment portion 142) and the eccentric shaft 122 for the rotary valve body 121 to rotate. You will need it. Therefore, when the rotary valve body 121 rotates in the valve closing direction, the mounting position may shift due to this gap, and the valve body spherical surface 143 may not be able to properly adhere to the conical tapered surface 134. On the other hand, if the rotary valve body 121 is held in a state where the valve body spherical surface 143 is brought close to the conical tapered surface 134 and the valve body spherical surface 143 is incorporated while being aligned with the conical tapered surface 134, the valve body spherical surface 143 is surely incorporated. The rotary valve body 121 can be closely sealed to the conical tapered surface 134.

次いで、キャップ112の筒本体120収納方向からシート21を載置し、筒本体120を挿入装着する。このとき、凸部133が凹部158に係合することで筒本体120をキャップ112の所定位置に組み込み可能になり、これら筒本体120とキャップ112との間にシート21を装着しつつ弁ユニット110として一体化できる。カバー113は、キャップ112の取付け後に筒本体120に取付けるか、或は、予めキャップ112に取付けていてもよい。 Next, the sheet 21 is placed from the cylinder body 120 storage direction of the cap 112, and the cylinder body 120 is inserted and mounted. At this time, the convex portion 133 engages with the concave portion 158 so that the cylinder main body 120 can be incorporated in a predetermined position of the cap 112, and the valve unit 110 while mounting the sheet 21 between the cylinder main body 120 and the cap 112. Can be integrated as. The cover 113 may be attached to the cylinder body 120 after the cap 112 is attached, or may be attached to the cap 112 in advance.

シート21は、その外周がキャップ112内周に当接して径方向に位置決めされつつ、キャップ112と筒本体120との間に挟着される。シート21装着後には、環状凹部157とシート21内径側との間にスペースTが設けられ、このスペースTにより円錐テーパ面134の可撓性が確保されるようにしてもよい。 The sheet 21 is sandwiched between the cap 112 and the cylinder body 120 while its outer circumference abuts on the inner circumference of the cap 112 and is positioned in the radial direction. After mounting the seat 21, a space T may be provided between the annular recess 157 and the inner diameter side of the seat 21, and the space T may ensure the flexibility of the conical tapered surface 134.

最後に、弁ユニット110をボデー111に装着する。この場合、弁ユニット110の接続部151をボデー開口側から装入し、キャップ112に形成した外周凸片72と、ボデー111の接続用凹部61とをバヨネット接続により取付ける。これらの一体化後には、ボデー111からのキャップ112(弁ユニット110)の自然の脱落を防止し、キャップ112の下部外周に設けたOリング161でシールすることによりキャップ112とボデー111との間をシールしてこれらの間からの漏れを防止する。キャップ112は、ボデー111に着脱自在であるため、このボデー111から自在に取外してメンテナンス等を実施可能となる。 Finally, the valve unit 110 is attached to the body 111. In this case, the connecting portion 151 of the valve unit 110 is charged from the body opening side, and the outer peripheral convex piece 72 formed on the cap 112 and the connecting concave portion 61 of the body 111 are attached by bayonet connection. After these integrations, the cap 112 (valve unit 110) is prevented from naturally falling off from the body 111, and the cap 112 and the body 111 are sealed by an O-ring 161 provided on the lower outer periphery of the cap 112. Seal to prevent leakage from between these. Since the cap 112 is removable from the body 111, it can be freely removed from the body 111 for maintenance and the like.

図1~図3において、バルブ本体1をシステム本体2に取り付ける場合には、ボデー111下部の排水管差込口63に、接着剤を塗布した伸頂通気管4を差し込むようにしながら接続するようにする。このとき、ボデー111を透明又は半透明に形成していることにより、排水管差込口63を介して伸頂通気管4の差込み状態や、接着剤の塗付状態を外部から視認できる。 In FIGS. 1 to 3, when the valve main body 1 is attached to the system main body 2, the extension vent pipe 4 coated with the adhesive is connected to the drainage pipe insertion port 63 at the lower part of the body 111 so as to be inserted. To. At this time, since the body 111 is formed to be transparent or translucent, the inserted state of the extension ventilation pipe 4 and the applied state of the adhesive can be visually recognized from the outside through the drain pipe insertion port 63.

なお、上記実施形態では、偏心軸122が排水管3(伸頂通気管4)側となる向きに回転弁体121が取付けられているが、偏心軸122が大気側となる向きに取付けられていてもよい。偏心軸122を排水管3側に設けた場合、上方側からの美観を向上でき、一方、偏心軸122を大気側に設けた場合、この偏心軸122の排水の蒸気や異物等への接触を回避して耐久性を向上できる。 In the above embodiment, the rotary valve body 121 is attached so that the eccentric shaft 122 is on the drain pipe 3 (extended ventilation pipe 4) side, but the eccentric shaft 122 is attached so as to be on the atmosphere side. You may. When the eccentric shaft 122 is provided on the drain pipe 3 side, the aesthetic appearance from the upper side can be improved, while when the eccentric shaft 122 is provided on the atmospheric side, the drainage of the eccentric shaft 122 comes into contact with steam or foreign matter. It can be avoided and the durability can be improved.

また、バルブ本体を横向きに配置できる構造に設けてもよい。この場合、バルブ本体の一、二次側に配管を接続することで、いわゆるインライン型として使用可能になる。 Further, the valve body may be provided in a structure that can be arranged sideways. In this case, by connecting the piping to the primary and secondary sides of the valve body, it can be used as a so-called in-line type.

次に、本発明における回転弁機構とこれを用いた通気弁並びに排水管システムの上記実施形態における作用を説明する。
本発明における回転弁機構は、上述したように、例えばバルブ本体100の内部機構として用いることができる。このとき、回転弁体121が支点である偏心軸122を介して揺動可能であり、筒本体120内の圧力変動に応じて、弁開方向に回転する回転モーメントMo、弁閉方向に回転する回転モーメントMcが働き、これらによりバルブ本体100が通気弁機能を発揮する。
Next, the operation of the rotary valve mechanism in the present invention, the ventilation valve using the rotary valve mechanism, and the drainage pipe system in the above embodiment will be described.
As described above, the rotary valve mechanism in the present invention can be used, for example, as an internal mechanism of the valve body 100. At this time, the rotary valve body 121 can swing via the eccentric shaft 122 as a fulcrum, and the rotary moment Mo that rotates in the valve opening direction and the valve closing direction rotate in response to the pressure fluctuation in the cylinder body 120. The rotation moment Mc works, and the valve body 100 exerts the vent valve function by these.

この場合、図2において、偏心軸122を中心に回転弁体121全体に働く回転モーメントが、反時計回りの方向(負の回転方向とする)であるときには、回転弁体121が弁開方向に回転し、時計回りの方向(正の回転方向とする)であるときには、回転弁体121が弁閉方向に回転するようになる。 In this case, in FIG. 2, when the rotational moment acting on the entire rotary valve body 121 about the eccentric axis 122 is in the counterclockwise direction (in the negative rotation direction), the rotary valve body 121 is in the valve opening direction. When it rotates and is in the clockwise direction (the positive rotation direction), the rotary valve body 121 rotates in the valve closing direction.

これにより、筒本体120内の負圧時には、回転弁体121の配管内側と大気側の圧力差により生じる差圧に基づいて、回転弁体121が負の回転方向に回転する回転モーメントが働き、この回転モーメントによって弁開方向に回転するアンバランストルクを発生する。一方、筒本体120内の大気圧時又は正圧時には、回転弁体121が錘部123との均衡により正の回転方向に回転する回転モーメントが働き、この回転モーメントによって弁閉方向に回転するアンバランストルクを発生する。 As a result, at the time of negative pressure in the cylinder body 120, a rotational moment in which the rotary valve body 121 rotates in the negative rotation direction acts based on the differential pressure generated by the pressure difference between the inside of the pipe of the rotary valve body 121 and the atmosphere side. This rotational moment generates an unbalanced torque that rotates in the valve opening direction. On the other hand, at atmospheric pressure or positive pressure in the cylinder body 120, a rotational moment is exerted in which the rotary valve body 121 rotates in the positive rotational direction due to the equilibrium with the weight portion 123, and this rotational moment causes the rotary valve body to rotate in the valve closing direction. Generates balance torque.

このように、バルブ本体100のアンバランストルクは、回転弁体121に働く正負の回転方向の回転モーメントにより発生する回転力である。このことから、回転弁体121の配管内側と大気側における差圧解消時、すなわち、回転弁体121の内外の圧力差が0である場合(大気圧時)及び、正圧時を含めた回転弁体121に正の回転方向の回転モーメントが加わるときに、回転弁体121が弁閉方向に回転する。 As described above, the unbalanced torque of the valve body 100 is a rotational force generated by a rotational moment in the positive and negative rotational directions acting on the rotary valve body 121. From this, when the differential pressure between the inside of the pipe of the rotary valve body 121 and the atmosphere side is eliminated, that is, when the pressure difference between the inside and outside of the rotary valve body 121 is 0 (atmospheric pressure), and the rotation including the positive pressure. When a rotational moment in the positive rotational direction is applied to the valve body 121, the rotary valve body 121 rotates in the valve closing direction.

弁体支持部141を偏心位置に形成していることで、この弁体支持部141を境とした重量差により、回転弁体121が自重で弁開方向に回転しようとする。しかし、弁閉方向に回転力を加える錘部123を設けていることで、この錘部123との均衡により、通常時には、自重で弁開しようとする回転弁体121を弁閉状態に維持する。 Since the valve body support portion 141 is formed at the eccentric position, the rotary valve body 121 tends to rotate in the valve opening direction by its own weight due to the weight difference with the valve body support portion 141 as a boundary. However, by providing the weight portion 123 that applies a rotational force in the valve closing direction, the rotary valve body 121 that normally tries to open the valve by its own weight is maintained in the valve closed state due to the balance with the weight portion 123. ..

本実施形態では、回転弁体121の弁閉力のピークを、弁開度25%となるように設定していることにより、回転弁体121が全閉位置近傍の微開度位置、例えば、弁開度が5%であるとき、この弁開度での弁閉力は、弁開度25%における弁閉力よりも小さくなる。管内圧力の変動に伴って、弁開力すなわち弁開方向に回転する回転モーメントMoも変化し、回転弁体121は揺動するものの弁閉方向回転モーメントと弁開方向回転モーメントがバランスしながら動作し、微開度域ではシート21に衝撃的に着座することを防ぎ、チャタリング現象を防止できる。 In the present embodiment, the peak of the valve closing force of the rotary valve body 121 is set to be 25% of the valve opening position, so that the rotary valve body 121 has a slightly opening position near the fully closed position, for example. When the valve opening is 5%, the valve closing force at this valve opening is smaller than the valve closing force at the valve opening of 25%. The valve opening force, that is, the rotational moment Mo that rotates in the valve opening direction also changes with the fluctuation of the pressure inside the pipe, and the rotary valve body 121 operates while the valve closing direction rotational moment and the valve opening direction rotational moment are balanced, although the rotary valve body 121 swings. However, in the slight opening range, it is possible to prevent the seat 21 from being shockedly seated and to prevent the chattering phenomenon.

一方、回転弁体121の弁閉力のピークを、弁開度50%となるように設定した場合にも、前記の弁開度25%の場合と同様に、回転弁体121が弁開度50%よりも小さい開度位置であるときには、弁閉力が弁開度50%における弁閉力よりも小さくなり、同様の機能を発揮する。 On the other hand, even when the peak of the valve closing force of the rotary valve body 121 is set to be the valve opening degree of 50%, the rotary valve body 121 has the valve opening degree as in the case of the valve opening degree of 25%. When the opening position is smaller than 50%, the valve closing force becomes smaller than the valve closing force at the valve opening of 50%, and the same function is exhibited.

仮に、回転弁体121の弁閉力のピークが弁開度5%を下回るように設定した場合、弁閉状態との弁閉力の差が小さくなり、この状態から負圧を緩和するときに、その緩和に応じて回転弁体121が弁閉状態に至りやすくなり、シート21に即着座して微小な負圧を緩和できなくなるおそれがある。 If the peak of the valve closing force of the rotary valve body 121 is set to be less than the valve opening degree of 5%, the difference in the valve closing force from the valve closed state becomes small, and when the negative pressure is relaxed from this state. In response to the relaxation, the rotary valve body 121 tends to reach a valve closed state, and there is a possibility that the rotary valve body 121 cannot immediately sit on the seat 21 and relax a minute negative pressure.

一方、仮に、回転弁体121の弁閉力のピークが弁開度50%を上回るように設定した場合、負圧発生時において、半分以上の状態が弁開度が大きい開度域に保たれているため、弁閉状態に至るまでに時間を要し、伸頂通気管4や排水管3からの臭気漏れのリスクが高くなる。 On the other hand, if the peak of the valve closing force of the rotary valve body 121 is set to exceed 50% of the valve opening, more than half of the state is maintained in the opening range where the valve opening is large when negative pressure is generated. Therefore, it takes time to reach the valve closed state, and the risk of odor leakage from the extension ventilation pipe 4 and the drainage pipe 3 increases.

ここで、図6においては、本発明に係る2重偏心式のバルブ本体100の模式図を示している。図7には、バルブ本体100と比較するために、従来技術である各種構造の通気装置の模式図を示しており、これら通気装置の通気流路30の内径φdは、図6のバルブ本体100の内径φdと略同じ寸法であり略同じ流過面積になっている。 Here, FIG. 6 shows a schematic diagram of the double eccentric valve main body 100 according to the present invention. FIG. 7 shows a schematic diagram of a ventilation device having various structures according to the prior art for comparison with the valve body 100, and the inner diameter φd of the ventilation flow path 30 of these ventilation devices is the valve body 100 of FIG. It has substantially the same dimensions as the inner diameter φd of, and has substantially the same flow area.

図7(a)に示す通気装置170は、環状の弁体171がハウジング172内に昇降動可能に設けられ、通常時には、弁体171が自重により弁座173に着座して弁閉状態となる。負圧発生時には、弁体171が弁座173から持ち上がって弁開状態となることで負圧が軽減される。弁体171の上方には、ハウジング172と一体にキャップ174が設けられる。 In the ventilation device 170 shown in FIG. 7A, an annular valve body 171 is provided in the housing 172 so as to be able to move up and down, and normally, the valve body 171 is seated on the valve seat 173 by its own weight and is in a valve closed state. .. When a negative pressure is generated, the valve body 171 is lifted from the valve seat 173 to be in a valve open state, so that the negative pressure is reduced. A cap 174 is provided above the valve body 171 integrally with the housing 172.

図7(b)に示す通気装置180は、図7(a)の自重式の通気装置に対して、弁体171とキャップ174との間に圧縮ばね181が加えられたものであり、弁閉方向には、弁体171の自重に加えて圧縮ばね181の弾発力も働くようになっている。 The ventilation device 180 shown in FIG. 7 (b) is a self-weight type ventilation device of FIG. 7 (a) in which a compression spring 181 is added between the valve body 171 and the cap 174, and the valve is closed. In the direction, in addition to the weight of the valve body 171, the elastic force of the compression spring 181 also acts.

図7(c)に示す通気装置190は、弁体191が軸着部192を介して片持ち支持された構造であり、いわゆるスイングチャッキ式により弁体191がハウジング193内に回転可能に取付けられている。 The ventilation device 190 shown in FIG. 7C has a structure in which the valve body 191 is cantilevered and supported via the shaft attachment portion 192, and the valve body 191 is rotatably mounted in the housing 193 by a so-called swing check type. ing.

図8においては、図6のバルブ本体100、図7の各通気装置170、180、190について、弁体自身の弁閉力-弁開度特性をそれぞれグラフに示したものである。左側縦軸には弁閉力を示している。 In FIG. 8, the valve closing force-valve opening characteristic of the valve body itself is shown in a graph for the valve body 100 of FIG. 6 and the ventilation devices 170, 180, 190 of FIG. 7, respectively. The left vertical axis shows the valve closing force.

グラフの横軸である「弁開度」とは、図7(a)、図7(b)の自重式弁体171による通気装置170、180については、弁体171のリフト量(全開リフト量に対する割合[%])を示している。一方、図6の回転弁体121が偏心軸122を中心に揺動するバルブ本体100、及び図7(c)のスイングチャッキ式の通気装置190については、回転弁体121、弁体191のそれぞれの回転角度量(全開開度に対する割合[%])を示している。 The “valve opening” on the horizontal axis of the graph is the lift amount (fully open lift amount) of the valve body 171 for the ventilation devices 170 and 180 by the self-weight type valve body 171 of FIGS. 7 (a) and 7 (b). The ratio to [%]) is shown. On the other hand, for the valve body 100 in which the rotary valve body 121 in FIG. 6 swings around the eccentric shaft 122 and the swing check type ventilation device 190 in FIG. 7 (c), the rotary valve body 121 and the valve body 191 are respectively. The amount of rotation angle (ratio to fully open opening [%]) is shown.

グラフの縦軸である「弁閉力」とは、図7(a)、図7(b)の通気装置170、180については、弁体171の弁閉方向に働く力(弁体171の自重や圧縮ばね181の弾発力の総和)を示している。一方、図6のバルブ本体100、及び図7(c)の通気装置190については、回転弁体121、弁体191がそれぞれ閉方向に回転するときの回転モーメントの大きさを示している。 The “valve closing force” on the vertical axis of the graph is the force acting in the valve closing direction of the valve body 171 (self-weight of the valve body 171) for the ventilation devices 170 and 180 in FIGS. 7 (a) and 7 (b). And the total elastic force of the compression spring 181). On the other hand, with respect to the valve body 100 of FIG. 6 and the ventilation device 190 of FIG. 7C, the magnitudes of the rotational moments when the rotary valve body 121 and the valve body 191 rotate in the closed direction are shown.

図8においては、本発明に係る図6のバルブ本体100について、回転弁体121の弁閉力のピークを、弁開度θ=30°に設定した特性をグラフaで示し、弁開度θ=20°に設定した特性をグラフbで示す。
また、本発明のバルブ本体100と、図7に示す各通気装置170、180、190の全閉状態における弁閉力は、負圧が解消された通気管に対し、大気圧で弁開とならず、弁座シール性を確保できる値に設定している。
なお、各特性の比較のため、グラフb~eの全閉状態における弁閉力の値は、同一値であるPsに設定している。
In FIG. 8, with respect to the valve body 100 of FIG. 6 according to the present invention, the characteristic that the peak of the valve closing force of the rotary valve body 121 is set to the valve opening degree θ = 30 ° is shown in the graph a, and the valve opening degree θ is shown. The characteristic set to = 20 ° is shown in graph b.
Further, the valve closing force of the valve body 100 of the present invention and the ventilation devices 170, 180, 190 shown in FIG. 7 in the fully closed state is such that the valve is opened at atmospheric pressure with respect to the ventilation pipe in which the negative pressure is eliminated. However, it is set to a value that can ensure the valve seat sealability.
For comparison of each characteristic, the value of the valve closing force in the fully closed state of the graphs b to e is set to Ps which is the same value.

グラフに示されるように、本発明のバルブ本体100の場合、回転弁体121の弁閉力のピーク(Pbp)をaの弁開度θ=20°、bの弁開度θ=30°にそれぞれ設定することで、何れの場合にも、これらの中間開度における弁閉力のピーク(Pbp)が弁閉状態における弁閉力(回転モーメント)よりも大きくなる。このように、全閉状態の弁閉力Psを基準として、各グラフにおいて、「弁閉力の変化量」/「弁開度の変化量」の式で示される傾きを0よりも大きい正の値とすることで、弁閉力のピークが確実に中間開度の位置になり、しかも、この弁開度全閉から全開の任意の角度に弁閉力のピークを設定することができる。この作用は、例えば後述するように、錘部123が取付部145を介して、シート(弁座)21と平行となる水平方向に対して、通気管4側に傾斜することで得ることができる。 As shown in the graph, in the case of the valve body 100 of the present invention, the peak (Pbp) of the valve closing force of the rotary valve body 121 is set to the valve opening degree θ = 20 ° of a and the valve opening degree θ = 30 ° of b. By setting each, in any case, the peak of the valve closing force (Pbp) at these intermediate openings becomes larger than the valve closing force (rotational moment) in the valve closed state. In this way, with the valve closing force Ps in the fully closed state as a reference, the slope represented by the equation of "change amount of valve closing force" / "change amount of valve opening" is positive larger than 0 in each graph. By setting the value, the peak of the valve closing force is surely set at the position of the intermediate opening degree, and the peak of the valve closing force can be set at an arbitrary angle from the fully closed valve opening to the fully opened valve opening. This effect can be obtained, for example, by inclining the weight portion 123 toward the ventilation pipe 4 in the horizontal direction parallel to the seat (valve seat) 21 via the mounting portion 145, as will be described later. ..

この場合、グラフaにおける全閉状態の弁閉力Pasが、グラフbにおける全閉状態の弁閉力Psよりも低く設定される。これにより、グラフaのほうが、弁閉状態におけるシート21と回転弁体121との押圧力を低減し、弁座シール性を長期にわたり維持することができるほか、負圧発生時の弁開動作の反応を良くすることができる。 In this case, the valve closing force Pas in the fully closed state in the graph a is set lower than the valve closing force Ps in the fully closed state in the graph b. As a result, in the graph a, the pressing force between the seat 21 and the rotary valve body 121 in the valve closed state can be reduced, the valve seat sealing property can be maintained for a long period of time, and the valve opening operation when a negative pressure is generated can be maintained. The reaction can be improved.

弁座シール性は、シート21の材質やシール面背面への隙間形成など、シート21の可撓性や密着性を変えることで、必要に応じて高めることができる。弁座シール性を低く設定した場合、圧力応答性が向上して負圧が微小圧力のときでも弁開動作しやすくなり、負圧による通気管内の排水音による騒音を減少させる効果も発揮する。 The valve seat sealing property can be improved as necessary by changing the flexibility and adhesion of the seat 21 such as the material of the seat 21 and the formation of a gap on the back surface of the sealing surface. When the valve seat sealing property is set low, the pressure response is improved and the valve opening operation becomes easier even when the negative pressure is a minute pressure, and the effect of reducing the noise due to the drainage noise in the ventilation pipe due to the negative pressure is also exhibited.

グラフbにおいて、負圧による弁開動作を述べる。
グラフbに示したバルブ本体100において、配管内に負圧が生じ、Psより大きな弁開方向に働く力、すなわち弁開力が生じると、回転弁体121は、閉止状態から弁開するが、この回転弁体121が弁閉状態(0°)から弁開角度が増加するにつれその弁閉力が略余弦曲線状に増加する特性を有しているため、弁閉力のピーク(Pbp)までの間で、「管内負圧による弁開力」と「弁体の弁閉力」がバランスする開度で位置するようになる。
In graph b, the valve opening operation due to negative pressure is described.
In the valve body 100 shown in the graph b, when a negative pressure is generated in the pipe and a force acting in the valve opening direction larger than Ps, that is, a valve opening force is generated, the rotary valve body 121 opens the valve from the closed state. Since the rotary valve body 121 has a characteristic that the valve closing force increases in a substantially cosine curve as the valve opening angle increases from the valve closed state (0 °), it reaches the peak of the valve closing force (Pbp). Between them, the "valve opening force due to the negative pressure in the pipe" and the "valve closing force of the valve body" are positioned at an opening degree that is balanced.

これを換言すれば、想定される配管内の通常の負圧による「回転弁体121の弁開方向の回転モーメント」が、この回転弁体121を「全閉~弁閉力のピーク(Pbp)」開度の範囲でバランスするような開度となるように、図2の錘部123による回転弁体121の閉止方向の回転モーメントを設定するようにしている。回転弁体121は、この領域α(Ps<P<Pbp)では、配管内で微少な圧力変動が発生しても、弁開方向の回転モーメントと弁閉方向の回転モーメントとがバランスする位置近傍の弁開度で揺動するので、弁座(シート)21に着座することなくチャタリング現象を生じることはない。 In other words, the "rotational moment in the valve opening direction of the rotary valve body 121" due to the assumed normal negative pressure in the pipe causes the rotary valve body 121 to "fully close to the peak of the valve closing force (Pbp)". The rotational moment in the closing direction of the rotary valve body 121 by the weight portion 123 of FIG. 2 is set so that the opening degree is balanced within the range of the opening degree. In this region α (Ps <P <Pbp), the rotary valve body 121 is located near a position where the rotational moment in the valve opening direction and the rotational moment in the valve closing direction are balanced even if a slight pressure fluctuation occurs in the pipe. Since it swings according to the valve opening degree of the above, the chattering phenomenon does not occur without being seated on the valve seat (seat) 21.

大きな負圧が配管内で生じ、通常の負圧を超え弁閉力のピーク(Pbp)を超えるようになる領域では、回転弁体121の弁閉力は、逆に略余弦曲線状にPboまで低減しているので、配管内負圧との差が大きくなり、弁開度はすばやく且つ大きくなり、弁開度に伴う開口部(通気流路30)のトータル面積の増大により最大の通気が行われ、管内負圧をすばやく緩和することになる。 In the region where a large negative pressure is generated in the pipe and exceeds the normal negative pressure and exceeds the peak of the valve closing force (Pbp), the valve closing force of the rotary valve body 121 conversely reaches Pbo in a substantially cosine curve. Since it is reduced, the difference from the negative pressure in the pipe becomes large, the valve opening becomes quick and large, and the maximum ventilation is performed by increasing the total area of the opening (ventilation flow path 30) with the valve opening. We will quickly relieve the negative pressure in the pipe.

次に、上記各通気弁内の負圧減少に伴う弁閉動作について説明する。
バルブ本体100(グラフb)において、配管内の大きな負圧によって回転弁体121は、最大角度に弁開している状態(本実施例では80°)で最大の通気量を確保することになり、弁開度の増加に伴って回転弁体121の閉止方向の回転モーメント、すなわち最小の弁閉力(Pbo)になるが、負圧緩和によって弁開方向の力も極めて小さくなっているので、回転弁体121の閉止方向の回転モーメントが、通気によって緩和されて小さくなった弁開方向の回転モーメントを上回った時点で弁閉動作が始まる。この弁閉動作の開始時は、回転弁体121の閉止方向の回転モーメントが小さいことから、ゆっくりと動作し始め、そして弁閉力のピークに達するまで加速度的に弁閉方向に動作する。
Next, the valve closing operation accompanying the decrease in negative pressure in each of the above vent valves will be described.
In the valve body 100 (graph b), the rotary valve body 121 secures the maximum air flow rate in the state where the valve is opened at the maximum angle (80 ° in this embodiment) due to the large negative pressure in the pipe. As the valve opening increases, the rotational moment of the rotary valve body 121 in the closing direction, that is, the minimum valve closing force (Pbo) becomes, but the force in the valve opening direction becomes extremely small due to the relaxation of the negative pressure, so that the rotary valve body 121 rotates. The valve closing operation starts when the rotational moment in the closing direction of the valve body 121 exceeds the rotational moment in the valve opening direction that is relaxed and reduced by ventilation. At the start of this valve closing operation, since the rotational moment of the rotary valve body 121 in the closing direction is small, the rotary valve body 121 starts to operate slowly and operates in the valve closing direction at an accelerated rate until the peak of the valve closing force is reached.

ここで、回転弁体121は、弁閉力Pが、Pbp>P>Pboの値となる領域、すなわち大きい弁開度の領域では、「弁閉力の変化量」/「弁開度の変化量」の式で示される傾きを負の値とすることで、配管内で生じる圧力変動に対して弁閉方向の回転モーメントが弁開方向の回転モーメントにバランスする位置の弁開角度を維持する。 Here, in the rotary valve body 121, in the region where the valve closing force P is a value of Pbp> P> Pbo, that is, in the region of a large valve opening degree, the “change amount of the valve closing force” / “change in the valve opening degree”. By setting the inclination expressed by the equation of "quantity" to a negative value, the valve opening angle is maintained at the position where the rotational moment in the valve closing direction is balanced with the rotational moment in the valve opening direction with respect to the pressure fluctuation generated in the pipe. ..

そして、負圧が継続的に緩和する状態、すなわち、負圧の減少傾向が継続すると、回転弁体121は、減少する弁開方向の回転モーメントとバランスすべく閉止方向に増加する回転モーメントと相まって、弁閉力のピークに向けて弁閉方向に大きく動作する。 Then, when the negative pressure is continuously relaxed, that is, when the negative pressure continues to decrease, the rotary valve body 121 is coupled with a rotational moment that increases in the closing direction in order to balance with the decreasing rotational moment in the valve opening direction. , It moves greatly in the valve closing direction toward the peak of the valve closing force.

その後、弁閉方向に動作した回転弁体121が弁閉力のピーク(Pbp)に到達した後、弁閉方向の回転モーメントと弁開方向の回転モーメントとがバランスする位置まで、さらに全閉方向に動作し続け(弁座21に接近する)、回転弁体121の弁閉方向の回転モーメントが回転弁体121の弁閉動作を低減する方向(弁閉動作を妨げる方向)に作用して閉止動作が減速する状態になってバランスする。このため、回転弁体121と弁座21が当接せずにチャタリング現象を防止または緩和することができる。 After that, after the rotary valve body 121 operating in the valve closing direction reaches the peak of the valve closing force (Pbp), the rotational moment in the valve closing direction and the rotational moment in the valve opening direction are balanced, and then in the fully closed direction. Continues to operate (approaches the valve seat 21), and the rotational moment in the valve closing direction of the rotary valve body 121 acts in the direction of reducing the valve closing operation of the rotary valve body 121 (direction that hinders the valve closing operation) and closes. The operation slows down and balances. Therefore, the chattering phenomenon can be prevented or alleviated without the rotary valve body 121 and the valve seat 21 coming into contact with each other.

このように、バルブ本体100では、全閉~全開までの中間開度に弁閉力のピークを持つような略余弦曲線状の弁閉力特性を有しているため、弁開した以降、配管内の負圧変動が生じても、0~弁閉力のピーク(Pbp)までの範囲内(中間開度:5°~50°)で回転弁体121が揺動し、負圧変動に伴うチャタリング現象を防止又は緩和することができる。 As described above, since the valve body 100 has a valve closing force characteristic having a substantially cosine curve shape such that the valve closing force peaks at the intermediate opening degree from fully closed to fully opened, the pipe is piped after the valve is opened. Even if the negative pressure fluctuation occurs, the rotary valve body 121 swings within the range from 0 to the peak of the valve closing force (Pbp) (intermediate opening: 5 ° to 50 °), and accompanies the negative pressure fluctuation. The chattering phenomenon can be prevented or mitigated.

また、配管内で生じる大きな突発的な負圧に対応して回転弁体121の全開状態になった場合において、通気量の確保によって負圧が緩和され閉弁を開始した以降、圧力変動で過敏に反応して弁閉することなく、また負圧が継続的に生じてα領域まで弁閉動作が続いた場合には、中間開度(5°~50°)で弁閉動作が減速して弁閉力と弁開力がバランスするのでチャタリングを抑制することが可能となる。
本実施例では、弁閉力特性を略余弦曲線状としたが、例えば錘部123の個数、形状や配置を自由に変えてPbpの前後の角度の特性を変えても良い。
In addition, when the rotary valve body 121 is fully opened in response to a large sudden negative pressure generated in the pipe, the negative pressure is alleviated by securing the air volume and the valve is closed, and then the pressure fluctuations cause hypersensitivity. If the valve is not closed in response to, and if negative pressure is continuously generated and the valve closing operation continues to the α region, the valve closing operation is decelerated at the intermediate opening (5 ° to 50 °). Since the valve closing force and the valve opening force are balanced, chattering can be suppressed.
In this embodiment, the valve closing force characteristic is substantially a cosine curve, but for example, the number, shape, and arrangement of the weight portions 123 may be freely changed to change the characteristics of the angle before and after Pbp.

一方、図7(a)の自重式の通気装置170の場合には、グラフcに示すように、弁開力が全閉時から全開時まで一定となる。このため、配管内に弁閉力を超える負圧が生ずると、弁開力は常に弁体171の有する弁閉力Psより大きくなる。従って、弁開度合いによる通気量の大小に伴ってバランスを取ろうとして圧力変動に伴い不安定な挙動を示す。住宅下水配管などで排水されると突発的な負圧となり、弁体171は開方向に動作し、その後に負圧解消による大きな揺れ戻しが生じると相対的に弁閉力が大きくなることから、弁体171は全閉状態となり、弁開度を保つことができず、負圧の変動に応じてチャタリングが生じやすい。 On the other hand, in the case of the self-weight type ventilation device 170 of FIG. 7A, the valve opening force is constant from the fully closed state to the fully opened state as shown in the graph c. Therefore, when a negative pressure exceeding the valve closing force is generated in the pipe, the valve opening force is always larger than the valve closing force Ps of the valve body 171. Therefore, it exhibits unstable behavior due to pressure fluctuation in an attempt to balance with the amount of airflow depending on the degree of valve opening. When drained from a residential sewage pipe, a sudden negative pressure is generated, the valve body 171 operates in the opening direction, and then when a large swing back occurs due to the elimination of the negative pressure, the valve closing force becomes relatively large. The valve body 171 is in a fully closed state, the valve opening cannot be maintained, and chattering is likely to occur in response to fluctuations in negative pressure.

また、図7(b)の通気装置180の場合には、弁体171の自重に加えて圧縮ばね181の弾発力も弁閉方向に働くため、グラフdに示すように、弁開度の増加に伴って弁閉力が比例的に増加する。このため、中間開度や全開状態、すなわち、配管内の負圧が領域α(Ps<P<Pbp)と領域β(Pbp<P<Pdo)において、負圧が緩和した際、圧縮ばね181の弾性力が開放され、弁体170は勢いよく弁閉動作を行うこととなる。したがって、弁体171は負圧の変動に追随しにくく、微開度領域で弁開度を保つことができないことから、負圧の変動に応じてチャタリングが生じやすい。 Further, in the case of the ventilation device 180 of FIG. 7B, in addition to the own weight of the valve body 171, the elastic force of the compression spring 181 also acts in the valve closing direction, so that the valve opening degree increases as shown in graph d. The valve closing force increases proportionally with this. Therefore, when the negative pressure in the intermediate opening or the fully open state, that is, the negative pressure in the pipe is relaxed in the region α (Ps <P <Pbp) and the region β (Pbp <P <Pdo), the compression spring 181 The elastic force is released, and the valve body 170 vigorously closes the valve. Therefore, the valve body 171 is difficult to follow the fluctuation of the negative pressure, and the valve opening cannot be maintained in the slight opening region, so that chattering is likely to occur in response to the fluctuation of the negative pressure.

図7(c)のスイングチャッキ式(片持ち式)の通気装置190の場合には、グラフeに示すように、弁開度の増加に伴って弁閉力(弁体191の回転モーメント)が小さくなり、「弁閉力の変化量」/「弁開度の変化量」の式で示される傾きが0よりも小さい負の値となる。従って、中間開度や全開状態において、負圧が緩和した場合でも、弁体191は全閉状態に復帰しにくい構造である。 In the case of the swing check type (cantilever type) ventilation device 190 of FIG. 7 (c), as shown in graph e, the valve closing force (rotational moment of the valve body 191) increases as the valve opening increases. It becomes smaller, and the slope represented by the equation of "change amount of valve closing force" / "change amount of valve opening degree" becomes a negative value smaller than 0. Therefore, the valve body 191 has a structure in which it is difficult to return to the fully closed state even when the negative pressure is relaxed in the intermediate opening or the fully open state.

一方、通気装置190の弁閉力は、弁閉位置において最も大きくなることから、総じて通気装置190の弁体191は負圧の変動に追随しにくく、微開度領域で弁開度を保つことができないことから、負圧の変動に応じてチャタリングが生じやすい。
この通気装置190では、構造的に90度近辺で弁閉力は略0になるので、弁体191が弁閉状態まで戻ることが難しくなる。よって、予め全開となる弁開度を規制する必要があり、これは、弁開時の通気量の減少にもつながる。
On the other hand, since the valve closing force of the ventilation device 190 is the largest at the valve closing position, it is difficult for the valve body 191 of the ventilation device 190 to follow the fluctuation of the negative pressure as a whole, and the valve opening is maintained in the slight opening region. Therefore, chattering is likely to occur in response to fluctuations in negative pressure.
In this ventilation device 190, the valve closing force becomes substantially 0 at around 90 degrees structurally, so that it becomes difficult for the valve body 191 to return to the valve closed state. Therefore, it is necessary to regulate the valve opening that is fully opened in advance, which also leads to a decrease in the amount of airflow when the valve is opened.

ここで、図6のバルブ本体100は、通気流路30がストレート状であり、この通気流路30の内径φdよりも拡径側に吸気用流路を必要とすることがないため、例えば、図1の伸頂通気管4などの外部配管(通気管)と同等或はそれ以下の管径寸法に抑えつつ負圧を解消可能になる。さらには、通気時に、回転弁体121が通気流路30の流れ方向と略平行の向きになるまで回転することで、通気抵抗を最小限に抑えて十分な通気量を確保可能となる。 Here, in the valve body 100 of FIG. 6, since the ventilation flow path 30 has a straight shape and does not require an intake flow path on the enlarged diameter side of the inner diameter φd of the ventilation flow path 30, for example. Negative pressure can be eliminated while keeping the diameter of the external pipe (vent pipe) equal to or smaller than that of the external pipe (vent pipe) such as the extension ventilation pipe 4 of FIG. Further, at the time of ventilation, the rotary valve body 121 rotates until the direction is substantially parallel to the flow direction of the ventilation flow path 30, so that the ventilation resistance can be minimized and a sufficient ventilation amount can be secured.

一方、図7(a)、図7(b)の通気装置170、180の場合、図6のバルブ本体100と同じ通気流路30の内径φdを確保するときに、外部配管(通気管)よりも拡径(外径)側に吸気用流路175が必要となり、この吸気用流路175の外径φDの大きさまで全体が拡径することになる。このことから、通気管の配管スペース以上に通気装置170、180を設置するための空間が必要になる。 On the other hand, in the case of the ventilation devices 170 and 180 of FIGS. 7 (a) and 7 (b), when the inner diameter φd of the same ventilation flow path 30 as the valve body 100 of FIG. 6 is secured, the external pipe (vent pipe) is used. Also, the intake flow path 175 is required on the diameter expansion (outer diameter) side, and the entire diameter is expanded to the size of the outer diameter φD of the intake flow path 175. For this reason, a space for installing the ventilation devices 170 and 180 is required more than the piping space of the ventilation pipe.

図7(c)の通気装置190の場合にも、通気流路30の内径φdよりも外径側の吸気用流路195の外径φDの外側に片持ち式の軸受部192が位置するため、図7(a)、図7(b)の場合と同様に、全体が外径方向に大型化してコンパクト化が難しくなり、広い設置空間が必要となる。 Also in the case of the ventilation device 190 of FIG. 7C, the cantilever bearing portion 192 is located outside the outer diameter φD of the intake flow path 195 on the outer diameter side of the inner diameter φd of the ventilation flow path 30. As in the case of FIGS. 7 (a) and 7 (b), the whole is enlarged in the outer diameter direction, making it difficult to make it compact, and a large installation space is required.

図9(a)は、弁開度と弁閉力との関係を示す他のグラフを表している。同図において、回転弁体121の弁閉力のピークを、弁開度θ=40°(弁開度50%)に設定した特性をグラフaで示し、弁開度θ=5°(弁開度5%)に設定した特性をグラフgで示す。これら以外のグラフb~グラフeに示した各状態の特性については、前述の図8で説明したとおりである。 FIG. 9A shows another graph showing the relationship between the valve opening degree and the valve closing force. In the figure, the characteristic that the peak of the valve closing force of the rotary valve body 121 is set to the valve opening θ = 40 ° (valve opening 50%) is shown in the graph a, and the valve opening θ = 5 ° (valve opening). The characteristics set to 5%) are shown in graph g. The characteristics of each state shown in graphs b to e other than these are as described in FIG. 8 above.

グラフaに示すように、回転弁体121の弁閉力のピークを、弁開度50%とした場合、このピーク時を境に、全閉時から弁開度50%までの割合と、弁開度50%から全開時までの割合が同じになる。この状態から、仮に、回転弁体121の弁閉力のピークが弁開度50%を上回るように設定すると、負圧発生時における弁開状態に保たれる割合が大きくなり、弁開状態が必要以上に長くなる。このため、バルブ本体100に接続された排水管3や伸頂通気管4から臭気漏れが生じるリスクが高くなる。 As shown in Graph a, when the peak of the valve closing force of the rotary valve body 121 is set to the valve opening of 50%, the ratio from the fully closed to the valve opening of 50% and the valve at the peak time are set. The ratio from the opening of 50% to the time of full opening is the same. From this state, if the peak of the valve closing force of the rotary valve body 121 is set to exceed the valve opening of 50%, the ratio of the valve being maintained in the valve open state when a negative pressure is generated increases, and the valve open state is changed. It will be longer than necessary. Therefore, there is a high risk of odor leakage from the drainage pipe 3 and the extension ventilation pipe 4 connected to the valve body 100.

グラフgに示すように、回転弁体121の弁閉力のピークを、弁開度5%を下回るように設定すると、ピーク時における弁体開度から弁閉状態までの回転弁体121の動作範囲が狭くなる。これに加えて、弁閉時のピーク時における弁閉力の大きさと、全閉時における弁閉力の大きさとの差が少なくなる。これらにより、負圧を緩和する際に、その緩和に応じて回転弁体121が弁閉状態に至りやすくなり、微小な負圧を緩和できなくなるおそれがある。 As shown in graph g, when the peak of the valve closing force of the rotary valve body 121 is set to be less than the valve opening degree of 5%, the operation of the rotary valve body 121 from the valve body opening at the peak to the valve closed state is performed. The range becomes narrower. In addition to this, the difference between the magnitude of the valve closing force at the peak when the valve is closed and the magnitude of the valve closing force at the time of fully closing is reduced. As a result, when the negative pressure is relaxed, the rotary valve body 121 tends to reach a valve closed state according to the relaxation, and there is a possibility that the minute negative pressure cannot be relaxed.

続いて、図9(a)のグラフに示した弁閉力―弁開度特性を、負圧変動との関係に基づいて説明する。図9(b)においては、上記実施形態におけるバルブ本体100の負圧発生から負圧解消時までの負圧の大きさの変動を示し、バルブ本体100により負圧を解消するときに生じる負圧の変化の一例を表している。図9(b)における一点鎖線は、負圧の大きさに対する全閉状態の弁閉力の大きさを表し、図9(a)のPs(Pas)に対応している。 Subsequently, the valve closing force-valve opening characteristic shown in the graph of FIG. 9A will be described based on the relationship with the negative pressure fluctuation. FIG. 9B shows the change in the magnitude of the negative pressure from the generation of the negative pressure of the valve body 100 to the time when the negative pressure is eliminated in the above embodiment, and the negative pressure generated when the negative pressure is eliminated by the valve body 100. It represents an example of the change in. The alternate long and short dash line in FIG. 9 (b) represents the magnitude of the valve closing force in the fully closed state with respect to the magnitude of the negative pressure, and corresponds to Ps (Pas) in FIG. 9 (a).

図9(b)において、排水管3内が大気圧(1)の状態から負圧となり、所定の負圧(2)、すなわち全閉状態の弁閉力を超えると、回転弁体121が弁開方向への作動を開始する。このとき、回転弁体121は、弁閉力がピーク値(図9(a)におけるPbp)を呈する弁開度以上に開くことによって、排水管3内に発生する最大の負圧(3)に対しても、充分な通気をおこなうようになっている。 In FIG. 9B, when the pressure inside the drain pipe 3 changes from the atmospheric pressure (1) to a negative pressure and exceeds a predetermined negative pressure (2), that is, the valve closing force in the fully closed state, the rotary valve body 121 valves. The operation in the opening direction is started. At this time, the rotary valve body 121 reaches the maximum negative pressure (3) generated in the drain pipe 3 by opening the valve closing force to be equal to or larger than the valve opening degree showing the peak value (Pbp in FIG. 9A). On the other hand, it is designed to provide sufficient ventilation.

この通気により負圧が緩和して(4)の状態まで負圧が下がると、回転弁体121はこの負圧の減少により閉方向に動作する。このとき、排水管3内の負圧を緩和しきれない場合(5)、弁閉力がピーク値を呈する弁開度まで回転弁体121が閉作動することがなく、全閉状態まで作動に至ることはない。回転弁体121がやや閉まると通気量が減るため、負圧は(5)の状態まで上昇する。これに伴って、回転弁体121が再び開動作する。 When the negative pressure is relaxed by this ventilation and the negative pressure drops to the state of (4), the rotary valve body 121 operates in the closing direction due to the decrease of the negative pressure. At this time, if the negative pressure in the drain pipe 3 cannot be alleviated (5), the rotary valve body 121 does not close until the valve opening at which the valve closing force reaches the peak value, and the rotary valve body 121 operates until it is fully closed. It never reaches. When the rotary valve body 121 is slightly closed, the amount of airflow is reduced, so that the negative pressure rises to the state of (5). Along with this, the rotary valve body 121 opens again.

このように、負圧に対して回転弁体121が弁開作動し、負圧が下がると回転弁体121が弁閉方向に作動し、再度負圧に対して開動作することを繰り返すことにより、負圧を緩和するようになっている。これにより、負圧の大きさが、(5)の状態から、(6)、(7)、(8)の状態に変動したとしても、回転弁体121が上記ピーク値を呈する開度を下回らなければ、弁閉状態まで至ることなく揺動(開閉動作)を繰り返すことで、負圧の発生から負圧の緩和状態までにおいて、チャタリングを生じることがない。 In this way, the rotary valve body 121 operates in the valve opening operation in response to the negative pressure, and when the negative pressure decreases, the rotary valve body 121 operates in the valve closing direction, and the rotary valve body 121 repeatedly operates in the valve closing direction in response to the negative pressure. , It is designed to relieve negative pressure. As a result, even if the magnitude of the negative pressure changes from the state of (5) to the states of (6), (7), and (8), the opening degree at which the rotary valve body 121 exhibits the above peak value is kept below. Otherwise, by repeating swinging (opening / closing operation) without reaching the valve closed state, chattering does not occur from the generation of the negative pressure to the relaxation state of the negative pressure.

回転弁体121が、いわゆるブレーキ機能を発揮しつつ負圧を(9)、(10)の状態に緩和し、負圧が緩和したときには、回転弁体121が上記ピーク値を呈する開度を下回り、負圧の大きさが所定の負圧の状態Ps、(12)を下回ることで、回転弁体121が全閉状態となる。
これにより、排水管3内が大気圧(1)の状態に戻り、この大気圧の状態では全閉状態が維持される。
The rotary valve body 121 relaxes the negative pressure to the states (9) and (10) while exerting the so-called braking function, and when the negative pressure is relaxed, the rotary valve body 121 falls below the opening degree at which the above peak value is exhibited. When the magnitude of the negative pressure falls below the predetermined negative pressure state Ps, (12), the rotary valve body 121 is fully closed.
As a result, the inside of the drain pipe 3 returns to the state of atmospheric pressure (1), and the fully closed state is maintained in this state of atmospheric pressure.

本実施形態のバルブ本体100との比較として、図7(a)の自重式弁体171を有する通気装置170の場合にも、図9(b)に示したグラフにおいて、管内が大気圧(1)の状態から負圧となり、所定の負圧(2)を超えたときに、弁体171が開方向に作動する。
この場合、図9(a)のグラフcに示すように、弁体171の中間開度における弁閉力のピークが設定されておらず、弁閉力が一定になっている。このため、図9(b)の負圧(2)、(3)、(5)、(6)、(7)、(8)、(10)、(11)に示すような負圧の緩和状態では、弁体171が弁閉状態まで戻りやすくなる。このとき、管内の負圧が所定の負圧(2)よりも大きいと、再度弁体171が開動作することになる。その結果、これらの緩和状態の度に、弁開閉動作を繰り返してチャタリングを発生しやすくなる。
As a comparison with the valve body 100 of the present embodiment, even in the case of the ventilation device 170 having the self-weight type valve body 171 of FIG. 7 (a), in the graph shown in FIG. 9 (b), the inside of the pipe has an atmospheric pressure (1). ), And when the predetermined negative pressure (2) is exceeded, the valve body 171 operates in the opening direction.
In this case, as shown in the graph c of FIG. 9A, the peak of the valve closing force at the intermediate opening degree of the valve body 171 is not set, and the valve closing force is constant. Therefore, the negative pressure shown in FIGS. 9 (b) (2), (3), (5), (6), (7), (8), (10), and (11) is alleviated. In the state, the valve body 171 easily returns to the valve closed state. At this time, if the negative pressure in the pipe is larger than the predetermined negative pressure (2), the valve body 171 will open again. As a result, chattering is likely to occur by repeating the valve opening / closing operation in each of these relaxation states.

図7(b)の通気装置180の場合、図7(a)の通気装置170に対して圧縮ばね181を加えたものであり、この圧縮ばね181によって弁体171が弁閉方向に付勢されている。そのため、図9(a)のグラフdに示すように、弁体171の中間開度における弁閉力のピークが設定されておらず、図9(b)の(3)、(5)、(6)、(7)、(11)のような負圧の緩和状態の段階では、弁体171が圧縮ばね181の反力で勢いよく全閉状態に至りやすい。これによって、図7(a)の通気装置170の場合と同様に、負圧の緩和状態になる度に、弁開閉動作を繰り返してチャタリングを生じやすい。 In the case of the ventilation device 180 of FIG. 7B, the compression spring 181 is added to the ventilation device 170 of FIG. 7A, and the valve body 171 is urged in the valve closing direction by the compression spring 181. ing. Therefore, as shown in the graph d of FIG. 9 (a), the peak of the valve closing force at the intermediate opening degree of the valve body 171 is not set, and (3), (5), (5) of FIG. 9 (b). At the stage of the relaxation state of the negative pressure as in 6), (7) and (11), the valve body 171 tends to vigorously reach the fully closed state by the reaction force of the compression spring 181. As a result, as in the case of the ventilation device 170 of FIG. 7A, chattering is likely to occur by repeating the valve opening / closing operation every time the negative pressure is relaxed.

図7(c)のスイングチャッキ式の通気装置190の場合、図9(a)のグラフeに示すように、弁閉力のピークが全閉位置に設定されており、弁閉力は、全開状態から全閉状態に向けて次第に強くなっている。
このため、図9(b)における負圧の発生により、弁体191が開きやすくなり、管内が所定の負圧(2)を超えたときには、直ちに弁開動作を開始する。
弁体191の開状態において、全開位置であれば、例えば負圧が(3)から(4)のように変動し、全開状態から全閉状態まで動作する可能性があり、チャタリングを発生しやすくなる。
In the case of the swing check type ventilation device 190 of FIG. 7 (c), as shown in the graph e of FIG. 9 (a), the peak of the valve closing force is set to the fully closed position, and the valve closing force is fully opened. It is getting stronger from the state to the fully closed state.
Therefore, the generation of the negative pressure in FIG. 9B makes it easier for the valve body 191 to open, and when the inside of the pipe exceeds the predetermined negative pressure (2), the valve opening operation is immediately started.
In the open state of the valve body 191 if it is in the fully open position, for example, the negative pressure fluctuates from (3) to (4) and may operate from the fully open state to the fully closed state, and chattering is likely to occur. Become.

本実施形態のバルブ本体100は、前述した利点に加えて、回転弁体121が開閉方向の回転モーメントを有し、この回転モーメントを利用して回転弁体121が流体圧力差で開閉動作する構造であるため、錘部123の質量などの設定により負圧に対する応答性を調整できる。負圧の発生時には、回転弁体121が偏心軸122を中心に回転動作する構造であるため、回転弁体121が微少な圧力変動の影響を受けて弁開動作を行う応答性に優れている。 In the valve body 100 of the present embodiment, in addition to the above-mentioned advantages, the rotary valve body 121 has a rotational moment in the opening / closing direction, and the rotary valve body 121 operates by opening / closing with a fluid pressure difference using this rotational moment. Therefore, the responsiveness to negative pressure can be adjusted by setting the mass of the weight portion 123 and the like. When a negative pressure is generated, the rotary valve body 121 has a structure that rotates around the eccentric shaft 122, so that the rotary valve body 121 is affected by a slight pressure fluctuation and has excellent responsiveness to perform a valve opening operation. ..

前述したように、弁開時には、負圧が完全に解消されるまで弁開方向の回転モーメントMoが働くことで回転弁体121の開状態を維持し、この回転弁体121が流体圧力差で弁閉方向に回転することを防止する。そのため、弁体球面143が円錐テーパ面134に繰り返し離接することがなくチャタリング現象を防止できる。このチャタリング防止機能により、排水時の騒音の発生を防止し、静音性を維持しつつ開閉動作可能となる。 As described above, at the time of valve opening, the rotary moment Mo in the valve opening direction acts until the negative pressure is completely eliminated to maintain the open state of the rotary valve body 121, and the rotary valve body 121 has a fluid pressure difference. Prevents rotation in the valve closing direction. Therefore, the chattering phenomenon can be prevented without the valve body spherical surface 143 repeatedly coming into contact with the conical tapered surface 134. This chattering prevention function prevents the generation of noise during drainage and enables opening and closing operations while maintaining quietness.

さらに、支点を二重偏心構造の偏心軸122により設けていることで、円錐テーパ面134と弁体球面143との摺動範囲を最小限に抑えつつ弁閉時のシール性を発揮でき、回転弁体121の開閉動作もスムーズになる。 Further, by providing the fulcrum by the eccentric shaft 122 having a double eccentric structure, the sealing property when the valve is closed can be exhibited while minimizing the sliding range between the conical tapered surface 134 and the valve body spherical surface 143, and the rotation can be achieved. The opening and closing operation of the valve body 121 also becomes smooth.

図示しないが、ジスク本体140から偏心軸122までの距離や、偏心軸122から錘部123(取付部145)までの距離、取付部145の傾きの角度、錘部123の重量などを予め設定することで、弁開、弁閉時において所定の大きさの回転モーメントを得ることができ、微小な負圧も確実に解消可能なバルブ本体100を設けることが可能になる。 Although not shown, the distance from the disc body 140 to the eccentric shaft 122, the distance from the eccentric shaft 122 to the weight portion 123 (mounting portion 145), the tilt angle of the mounting portion 145, the weight of the weight portion 123, etc. are preset. This makes it possible to provide a valve body 100 that can obtain a rotational moment of a predetermined magnitude when the valve is opened and closed, and can reliably eliminate even a minute negative pressure.

特に、本実施形態では、錘部123が偏心軸122に対して水平位置の状態にあるときに、偏心軸122に垂直方向(偏心軸122の外周に対する接線方向)の力が働くことから、錘部123による回転モーメントが最大になって弁閉力がピークになる。このように、取付部145の傾きの角度を予め調整することで、回転弁体の弁閉力のピークを弁開度全閉から全開の間の任意の開度に設定可能となっている。 In particular, in the present embodiment, when the weight portion 123 is in the horizontal position with respect to the eccentric axis 122, a force in the direction perpendicular to the eccentric axis 122 (the tangential direction with respect to the outer periphery of the eccentric axis 122) acts on the weight. The rotational moment by the portion 123 becomes maximum and the valve closing force peaks. In this way, by adjusting the angle of inclination of the mounting portion 145 in advance, the peak of the valve closing force of the rotary valve body can be set to an arbitrary opening degree between the valve opening degree fully closed and the valve opening degree fully opened.

本実施形態のように、回転弁体121の弁閉力のピークを弁開度25%となるように設定する場合、図2に示すように取付部145の角度を水平方向に対して略30°の傾きで設けるようにすればよい。一方、回転弁体121の弁閉力のピークを弁開度50%となるように設定する場合、取付部145の角度を水平方向に対して略50°の傾きで設けるようにすればよい。 When the peak of the valve closing force of the rotary valve body 121 is set to be 25% of the valve opening degree as in the present embodiment, the angle of the mounting portion 145 is approximately 30 with respect to the horizontal direction as shown in FIG. It may be provided with an inclination of °. On the other hand, when the peak of the valve closing force of the rotary valve body 121 is set to be 50% of the valve opening degree, the angle of the mounting portion 145 may be provided with an inclination of approximately 50 ° with respect to the horizontal direction.

これにより、弁閉時には、弁体球面143が円錐テーパ面134に対して接線接触状態でシールすることで高いシール性を発揮し、さらに、この接線接触と、弁体球面143及び円錐テーパ面134が流路側に向けて傾斜した形状であることとにより弁閉時の結露を防止できる。 As a result, when the valve is closed, the valve body spherical surface 143 seals with the conical tapered surface 134 in a tangential contact state, thereby exhibiting high sealing performance, and further, this tangential contact with the valve body spherical surface 143 and the conical tapered surface 134. Is inclined toward the flow path side, so that dew condensation can be prevented when the valve is closed.

図1において、バルブ本体100を伸頂通気管4の先端に装着してシステム本体2を設けていることにより、このシステム本体2において、排水器具8に接続される排水横枝管3bや排水立て管3aの内部に負圧が発生したときには、この負圧をバルブ本体100から大気中(室外)に開放して解消できる。 In FIG. 1, the valve main body 100 is attached to the tip of the extension ventilation pipe 4 to provide the system main body 2, so that the drainage horizontal branch pipe 3b and the drainage stand connected to the drainage device 8 in the system main body 2 are provided. When a negative pressure is generated inside the pipe 3a, this negative pressure can be released from the valve body 100 to the atmosphere (outdoor) to be eliminated.

この場合、前述したように、通気量を確保しつつバルブ本体100をコンパクト化できるため、外壁5と内壁6と間の奥行寸法Wが狭小の配管スペースSに設置が可能になる。これにより、個別住宅や集合住宅等の建造物における居住スペースを広く確保しつつ、配管スペースS内の排水管3内にバルブ本体100を接続し、チャタリング現象を防止しつつ排水管3内に生じる負圧を解消できる。
さらに、バルブ本体100のコンパクト化により点検口6aのサイズも小さくでき、この点検口6aを介してバルブ本体100の維持管理や点検を容易に実施可能になる。
In this case, as described above, since the valve body 100 can be made compact while ensuring the air flow amount, it can be installed in the piping space S where the depth dimension W between the outer wall 5 and the inner wall 6 is narrow. As a result, the valve body 100 is connected to the drain pipe 3 in the piping space S while ensuring a wide living space in a building such as an individual house or an apartment house, and the valve main body 100 is connected in the drain pipe 3 while preventing the chattering phenomenon. Negative pressure can be eliminated.
Further, the size of the inspection port 6a can be reduced by making the valve body 100 compact, and maintenance and inspection of the valve body 100 can be easily performed through the inspection port 6a.

その際、経年劣化等によりバルブ本体100の通気性が低下している場合には、このバルブ本体100を伸頂通気管4に接続した状態、或はバルブ本体100を取外した状態で、このバルブ本体100のボデー111からキャップ112を取外し、続いて、ボデー111に内挿されている弁ユニット110を、カートリッジとして一体に取出すようにする。これにより、容易にバルブ本体100のメンテナンスを実施可能になり、弁機構部分や伸頂通気管4の内部を清掃したり、弁ユニット110全体、或は内部の部品を個別に清掃や交換することにより、通気弁機能を回復してチャタリング現象も抑えることができる。 At that time, if the air permeability of the valve body 100 is deteriorated due to aged deterioration or the like, this valve is in a state where the valve body 100 is connected to the extension ventilation pipe 4 or in a state where the valve body 100 is removed. The cap 112 is removed from the body 111 of the main body 100, and then the valve unit 110 inserted in the body 111 is integrally taken out as a cartridge. This makes it possible to easily perform maintenance on the valve body 100, clean the valve mechanism portion and the inside of the extension vent pipe 4, and clean or replace the entire valve unit 110 or the internal parts individually. As a result, the vent valve function can be restored and the chattering phenomenon can be suppressed.

図10、図11においては、本発明の回転弁機構を通気弁に用いた第2実施形態を示している。なお、この実施形態以降において、前記実施形態と同一部分は同一符号によって表し、その説明を省略する。
この通気弁(バルブ本体200)は、一次側と二次側とに外部配管201が接続され、横向きの流路にインラインチャッキ弁として使用されるものである。図中、回転弁体121の左側が一次側、右側が二次側を示し、図10は、弁閉状態を示しており、図11は、一次側から流体(例えばエア)が流れて弁開(全開)状態になった状態を示している。
10 and 11 show a second embodiment in which the rotary valve mechanism of the present invention is used as a vent valve. In addition, after this embodiment, the same part as the said embodiment is represented by the same reference numeral, and the description thereof will be omitted.
This vent valve (valve body 200) is used as an in-line check valve in which an external pipe 201 is connected to the primary side and the secondary side and is connected to a lateral flow path. In the figure, the left side of the rotary valve body 121 shows the primary side, the right side shows the secondary side, FIG. 10 shows the valve closed state, and FIG. 11 shows a fluid (for example, air) flowing from the primary side to open the valve. It shows the state of being in the (fully open) state.

この実施形態では、回転弁体202の錘部123取付用の取付部203の装着孔204が、ジスク本体140に対してほぼ垂直方向に偏心軸122から延長するように形成される。弁開規制部132は、図11のバルブ全開時に挿着孔204に取付けられた錘部123により回転弁体202が弁閉状態に復帰可能な位置、すなわち、全開時に錘部123が偏心軸122に対してやや弁閉方向に傾いた位置となるように設けられる。
ボデー111には、円筒状の接続体205がOリング161を介して接続され、この接続体205を介して外部配管201が接続される。
In this embodiment, the mounting hole 204 of the mounting portion 203 for mounting the weight portion 123 of the rotary valve body 202 is formed so as to extend from the eccentric shaft 122 in a direction substantially perpendicular to the disc body 140. The valve opening restricting portion 132 is at a position where the rotary valve body 202 can be returned to the valve closed state by the weight portion 123 attached to the insertion hole 204 when the valve is fully opened in FIG. 11, that is, the weight portion 123 is eccentric shaft 122 when the valve is fully opened. It is provided so that the position is slightly tilted in the valve closing direction.
A cylindrical connecting body 205 is connected to the body 111 via an O-ring 161 and an external pipe 201 is connected via the connecting body 205.

このような構成により、通常時には、図10に示すように錘部123の重量により、回転弁体202に偏心軸122を中心に時計回りの力が加わることで、回転弁体202の弁体球面143がシート21の円錐テーパ面134に密着シールして弁閉状態を維持し、二次側からの逆流を防止する。 With such a configuration, normally, as shown in FIG. 10, the weight of the weight portion 123 exerts a clockwise force on the rotary valve body 202 about the eccentric axis 122, whereby the valve body spherical surface of the rotary valve body 202 is applied. The 143 closely seals the conical tapered surface 134 of the seat 21 to maintain the valve closed state and prevent backflow from the secondary side.

一方、一次側から流体圧が加わったときには、この流体圧によって回転弁体202が錘部123の重量に抗して反時計回りに回転して図11の弁開状態になって流体が流れる。このとき、錘部123の重量が弁閉方向に加わる状態を維持しているため、一次側の流体圧がなくなったときには、錘部123によって回転弁体202が時計回りに回転し、図10の弁閉状態までスムーズに動作して確実にシール状態まで復帰する。 On the other hand, when the fluid pressure is applied from the primary side, the rotary valve body 202 rotates counterclockwise against the weight of the weight portion 123 due to this fluid pressure, and the valve is opened in FIG. 11 and the fluid flows. At this time, since the weight of the weight portion 123 is maintained in the valve closing direction, when the fluid pressure on the primary side disappears, the rotary valve body 202 is rotated clockwise by the weight portion 123, and FIG. It operates smoothly until the valve is closed and returns to the sealed state.

前述の実施形態と同様に、回転弁体202の弁閉力のピークをこの回転弁体202の中間開度、すなわち、弁開度全閉から全開の間に設定しているため、一次側に微小な圧力が生じた場合には、中間開度の弁開開度を維持した状態で流体を流すことができ、その際、圧力変化が生じたとしても回転弁体202が安定状態で動作し、微小な開閉動作を防止して確実にチャタリング現象の発生を防ぐことができる。 Similar to the above-described embodiment, since the peak of the valve closing force of the rotary valve body 202 is set to the intermediate opening degree of the rotary valve body 202, that is, between the valve opening degree fully closed and the valve opening fully opened, it is set to the primary side. When a minute pressure is generated, the fluid can flow while maintaining the valve opening opening of the intermediate opening, and at that time, the rotary valve body 202 operates in a stable state even if a pressure change occurs. , It is possible to prevent the occurrence of chattering phenomenon by preventing minute opening and closing operations.

図12並びに図13においては、本発明の回転弁機構を通気弁に用いた第3実施形態を示している。
この実施形態のバルブ本体80は、筒本体81が弁ユニットとして一体に設けられ、この筒本体81内に、シート82、回転弁体である円板状弁体83、回転軸84、錘部85が備えられる。筒本体81の内周近傍位置には、回転軸84取付け用の長方形状の貫通部86が形成され、この貫通部86よりも外径側には、回転軸84に設けられた後述の取付け部87、及び錘部85が収容される収容部88が設けられる。
12 and 13 show a third embodiment in which the rotary valve mechanism of the present invention is used as a vent valve.
In the valve body 80 of this embodiment, the cylinder body 81 is integrally provided as a valve unit, and in the cylinder body 81, a seat 82, a disc-shaped valve body 83 which is a rotary valve body, a rotary shaft 84, and a weight portion 85 are provided. Is provided. A rectangular penetrating portion 86 for mounting the rotating shaft 84 is formed at a position near the inner circumference of the cylinder body 81, and a mounting portion described later provided on the rotating shaft 84 is formed on the outer diameter side of the penetrating portion 86. An accommodating portion 88 in which the 87 and the weight portion 85 are accommodated is provided.

シート82は、図において、下部に環状の突状シール部90が突設して形成され、この突状シール部90に、円板状弁体83の弁座当接面91が当接シール可能に設けられる。シート82は、筒本体81の上部内周に形成された段部面92に載置された状態で、筒本体81とキャップ12との間に挟まれるようにして取付けられ、円板状弁体83を弁閉位置で停止させて弁閉可能なストッパーシールリングからなっている。 In the figure, the sheet 82 is formed by projecting an annular protruding seal portion 90 at the lower portion, and the valve seat contact surface 91 of the disc-shaped valve body 83 can be contact-sealed to the protruding seal portion 90. It is provided in. The seat 82 is mounted on the stepped surface 92 formed on the upper inner circumference of the cylinder body 81 so as to be sandwiched between the cylinder body 81 and the cap 12, and is a disk-shaped valve body. It consists of a stopper seal ring that can be closed by stopping the 83 at the valve closing position.

円板状弁体83は、シート82の突状シール部90の径よりも大径の断面略円弧状に形成され、このとき、シート82への当接側である弁座当接面91が、シート82の突条シール部90に対して線当たりにより接触可能な状態になっている。円板状弁体83の底面中央部には、角形状の角形凹部93が形成される。 The disk-shaped valve body 83 is formed in a substantially arcuate cross section having a diameter larger than the diameter of the protruding seal portion 90 of the seat 82, and at this time, the valve seat contact surface 91 on the contact side with the seat 82 is formed. , The ridge seal portion 90 of the sheet 82 is in a state where it can be contacted by a line contact. A square concave portion 93 having a square shape is formed in the central portion of the bottom surface of the disc-shaped valve body 83.

回転軸84は、筒本体81への取付け側に、貫通部86に遊嵌可能な径により形成され、この回転軸84の両側には、突出係止部94が形成される。回転軸84よりも後端部側(筒本体81の外径側)には、錘部85用の取付け部87が延長して形成され、この取付け部87に適宜のウェイト量(質量)の錘部85が固着される。 The rotating shaft 84 is formed on the side to be attached to the cylinder body 81 with a diameter that allows play in the penetrating portion 86, and protruding locking portions 94 are formed on both sides of the rotating shaft 84. A mounting portion 87 for the weight portion 85 is formed on the rear end portion side (outer diameter side of the cylinder body 81) with respect to the rotating shaft 84, and a weight having an appropriate weight amount (mass) is formed on the mounting portion 87. The portion 85 is fixed.

回転軸84よりも先端側(筒本体81の内径側)には、略L字形のアーム部材95が弁体支持部として一体に設けられ、このアーム部材95の先端部には、角形凹部93に遊嵌可能な径の球形部96が形成される。 A substantially L-shaped arm member 95 is integrally provided as a valve body support portion on the tip side (inner diameter side of the cylinder body 81) with respect to the rotating shaft 84, and the tip portion of the arm member 95 has a square recess 93. A spherical portion 96 having a playable diameter is formed.

回転軸84は貫通部86に遊嵌され、突出係止部94により抜け止め状態で筒本体81に装着され、これにより、この回転軸84を中心にアーム部材95が弁の開閉方向に回動可能となる。アーム部材95先端の球形部96は、円板状弁体83の角形凹部93に装着され、この上から保持部材97が取付けられることでユニバーサルジョイント構造により装着される。 The rotary shaft 84 is loosely fitted to the penetrating portion 86 and is mounted on the cylinder body 81 in a retaining state by the protruding locking portion 94, whereby the arm member 95 rotates around the rotary shaft 84 in the opening / closing direction of the valve. It will be possible. The spherical portion 96 at the tip of the arm member 95 is attached to the square recess 93 of the disc-shaped valve body 83, and the holding member 97 is attached from above to be attached by the universal joint structure.

このような構成により、伸頂通気管(配管)4の口径と略同形の弁口径を有し、回転軸84が筒本体81の内周近傍位置に設けられ、この回転軸84に設けられたアーム部材95を介して円板状弁体83がストッパーシールリング82に対して開閉自在に設けられるこの場合、前述の実施形態と同様に、円板状弁体83が、筒本体81内の負圧時に回転軸84を介して弁開方向に回転するアンバランストルクを発生して外部より大気を吸気可能とし、筒本体81内が大気圧時又は正圧時において、錘部85の重さにより回転軸84を介して弁閉方向に回転するアンバランストルクを発生して弁閉状態となる。 With such a configuration, the valve diameter is substantially the same as the diameter of the extension ventilation pipe (pipe) 4, and the rotation shaft 84 is provided at a position near the inner circumference of the cylinder body 81, and is provided on the rotation shaft 84. In this case, the disc-shaped valve body 83 is provided so as to be openable and closable with respect to the stopper seal ring 82 via the arm member 95. An unbalanced torque that rotates in the valve opening direction via the rotation shaft 84 is generated during pressure to enable air to be taken in from the outside, and the weight of the weight portion 85 causes the inside of the cylinder body 81 to be under atmospheric pressure or positive pressure. An unbalanced torque that rotates in the valve closing direction is generated via the rotation shaft 84, and the valve is closed.

その際、回転軸の中心P4から球形部96の中心P5までの距離D3による弁開方向のモーメントと、円板状弁体83の反対側に配置された錘部85によりこの円板状弁体83の自重による弁閉方向のモーメントが相殺可能であるため、負圧による弁開の際に円板状弁体83に働く回転モーメントが微少であっても、例えば30~50Pa程度の負圧で容易に弁開状態にできるため、応答性に優れたバルブ本体80を提供可能になる。 At that time, the disc-shaped valve body is formed by the moment in the valve opening direction due to the distance D3 from the center P4 of the rotating shaft to the center P5 of the spherical portion 96 and the weight portion 85 arranged on the opposite side of the disc-shaped valve body 83. Since the moment in the valve closing direction due to the weight of the 83 can be offset, even if the rotational moment acting on the disc-shaped valve body 83 when the valve is opened due to the negative pressure is very small, for example, at a negative pressure of about 30 to 50 Pa. Since the valve can be easily opened, it is possible to provide the valve body 80 having excellent responsiveness.

このバルブ本体80の場合にも、前述の場合と同様に、円板状弁体83の弁閉力のピークを弁開度全閉から全開の間に設定していることにより、円板状弁体83の微小な開閉動作の繰り返しによるチャタリング現象を抑制しつつ、負圧を確実に解消可能となる。 In the case of the valve body 80 as well, as in the case described above, the peak of the valve closing force of the disc-shaped valve body 83 is set between the valve opening fully closed and the valve opening fully opened, so that the disc-shaped valve is formed. Negative pressure can be reliably eliminated while suppressing the chattering phenomenon caused by repeated minute opening and closing operations of the body 83.

また、バルブ本体80内には、円板状弁体83の回動範囲のみの広さの弁室があれば良いため、通気管の外側に設ける必要のある弁室を有する構造の通気弁に比較して遅延が生じにくく、配管内に負圧が生じた際には直ちに弁開動作してこの負圧を解消する。 Further, since it is sufficient that the valve body 80 has a valve chamber having a width only within the rotation range of the disc-shaped valve body 83, the ventilation valve having a structure having a valve chamber that needs to be provided on the outside of the ventilation pipe. In comparison, delay is less likely to occur, and when a negative pressure is generated in the pipe, the valve opens immediately to eliminate this negative pressure.

この実施形態では、大気圧時又は正圧時に弁閉状態を保持するために錘部85を設けているが、これに限ることなく、円板状弁体83の一部を厚くしたり、或は材質を変えるなどにより、錘部の重量を低減しつつこの錘による機能を発揮させるようにしてもよい。 In this embodiment, the weight portion 85 is provided to maintain the valve closed state at the time of atmospheric pressure or positive pressure, but the weight portion 85 is not limited to this, and a part of the disc-shaped valve body 83 may be thickened or may be used. By changing the material or the like, the weight of the weight portion may be reduced and the function of the weight portion may be exhibited.

以上、本発明の実施の形態について詳述したが、本発明は、前記実施の形態記載に限定されるものではなく、本発明の特許請求の範囲に記載されている発明の精神を逸脱しない範囲で、種々の変更ができるものである。 Although the embodiments of the present invention have been described in detail above, the present invention is not limited to the description of the embodiments, and is within the scope of the invention described in the claims of the present invention. Therefore, various changes can be made.

例えば、本発明の回転弁機構を通気弁に適用した例を説明したが、これ以外の各種管路に本発明の回転弁機構を設けることができる。 For example, an example in which the rotary valve mechanism of the present invention is applied to a vent valve has been described, but the rotary valve mechanism of the present invention can be provided in various other pipelines.

本発明の回転弁機構を通気弁に適用する場合には、前述した伸頂通気管やあふれ縁以外にも、排水管システムの点検口に内挿するようにしたり、或は、通気管や排水管の負圧を解消するための通気弁や空気弁及び吸気弁としての利用以外にも、配管内の真空を解消するバキュームブレーカとして適用することもできる。 When the rotary valve mechanism of the present invention is applied to a vent valve, it may be inserted into the inspection port of the drain pipe system, or the vent pipe or drainage, in addition to the above-mentioned extension vent pipe and overflow edge. In addition to being used as a ventilation valve, an air valve, and an intake valve for relieving the negative pressure of the pipe, it can also be applied as a vacuum breaker for relieving the vacuum in the pipe.

通気弁として設ける場合、通気管の配管スペースである、集合住宅等の壁内に直接配置する他、樹脂製のボックスに内蔵して壁内に配置してもよい。このように、通気弁を間仕切壁内に配置する場合には、回転軸が壁面やボックスの長手方向と並行になるよう配置するのがよい。このような配置によれば、回転軸に直交して設けられた錘は、長手方向に向かって回転する位置となり、通気弁の傾きが小さい状態で回転することができるので、弁閉状態を適切に保つことができる。 When it is provided as a ventilation valve, it may be placed directly in the wall of an apartment house or the like, which is the piping space of the ventilation pipe, or it may be built in a resin box and placed in the wall. In this way, when the vent valve is arranged in the partition wall, it is preferable to arrange it so that the rotation axis is parallel to the wall surface or the longitudinal direction of the box. According to such an arrangement, the weight provided orthogonal to the rotation axis is in a position where it rotates in the longitudinal direction, and can rotate in a state where the inclination of the vent valve is small, so that the valve closed state is appropriate. Can be kept in.

また、通気弁として設ける場合に、弁ユニット構造を用いて説明したが、これに限定するものではなく、弁体の回転軸をボデーで回動自在に支持するなど、ユニット構造以外の弁機構を有する通気弁にも本発明の回転弁機構を適用することができる。 Further, when the valve is provided as a vent valve, the valve unit structure has been described, but the present invention is not limited to this, and a valve mechanism other than the unit structure such as rotatably supporting the rotation axis of the valve body with a body is provided. The rotary valve mechanism of the present invention can also be applied to the vent valve having.

2 システム本体
4 伸頂通気管
21 シート(弁座)
30 通気流路
80、100 バルブ本体
83、121、202 回転弁体
84、122 偏心軸(回転軸)
85、123 錘部
95、141 弁体支持部
140 ジスク本体
2 System body 4 Extension ventilation pipe 21 Seat (valve seat)
30 Ventilation flow path 80, 100 Valve body 83, 121, 202 Rotary valve body 84, 122 Eccentric shaft (rotary shaft)
85, 123 Weight part 95, 141 Valve body support part 140 Disc body

Claims (7)

回転弁体により流路を開閉する回転弁機構であって、前記回転弁体の弁閉力のピークを、弁開度全閉から弁開度全開の間に設定することにより、前記回転弁体と弁座とのチャタリング現象を抑制したことを特徴とする回転弁機構。 It is a rotary valve mechanism that opens and closes the flow path by a rotary valve body, and by setting the peak of the valve closing force of the rotary valve body between the valve opening fully closed and the valve opening fully open, the rotary valve body A rotary valve mechanism characterized by suppressing the chattering phenomenon between the valve seat and the valve seat. 前記回転弁体の弁閉力のピークを、弁開度5%から50%の間に設定した請求項1に記載の回転弁機構。 The rotary valve mechanism according to claim 1, wherein the peak of the valve closing force of the rotary valve body is set between 5% and 50% of the valve opening degree. 前記回転弁体の回転中心が二重に偏心された二重偏心構造である請求項1又は2に記載の回転弁機構。 The rotary valve mechanism according to claim 1 or 2, which has a double eccentric structure in which the rotation center of the rotary valve body is doubly eccentric. 前記回転弁体を支持する弁体支持部の前記回転弁体に対する偏心率40%以上とした請求項3に記載の回転弁機構。 The rotary valve mechanism according to claim 3, wherein the valve body support portion that supports the rotary valve body has an eccentricity of 40% or more with respect to the rotary valve body. 前記回転弁体は、ジスク本体の自重により弁開となる位置に配置され、前記ジスク本体に設けられた錘部とのバランスにより弁閉状態となる請求項1乃至4の何れか1項に記載の回転弁機構。 The one according to any one of claims 1 to 4, wherein the rotary valve body is arranged at a position where the valve is opened by the weight of the disc body, and the valve is closed due to the balance with the weight portion provided on the disc body. Rotary valve mechanism. 請求項1乃至5の何れか1項に記載の回転弁機構が用いられたことを特徴とする通気弁。 A vent valve according to any one of claims 1 to 5, wherein the rotary valve mechanism is used. 請求項6の通気弁が、伸頂通気管又はあふれ縁下部に装着されていることを特徴とする排水管システム。 A drainage pipe system according to claim 6, wherein the vent valve is mounted on an extension vent pipe or a lower overflow edge.
JP2017253055A 2017-03-17 2017-12-28 Rotary valve mechanism and ventilation valve and drainage pipe system using this Active JP7009206B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/010590 WO2018169075A1 (en) 2017-03-17 2018-03-16 Aeration valve and waste water pipe system
CN201880018895.8A CN110392800B (en) 2017-03-17 2018-03-16 Breather valve and drain system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017148721 2017-07-31
JP2017148721 2017-07-31

Publications (2)

Publication Number Publication Date
JP2019027584A JP2019027584A (en) 2019-02-21
JP7009206B2 true JP7009206B2 (en) 2022-01-25

Family

ID=65478058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017253055A Active JP7009206B2 (en) 2017-03-17 2017-12-28 Rotary valve mechanism and ventilation valve and drainage pipe system using this

Country Status (1)

Country Link
JP (1) JP7009206B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102681273B1 (en) * 2022-12-04 2024-07-02 이채원 Backflow prevention damper device for ventilation fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152880A (en) 1999-11-30 2001-06-05 Jidosha Buhin Kogyo Co Ltd Exhaust gas shutter
JP2001343075A (en) 2000-06-01 2001-12-14 Tomoe Tech Res Co Butterfly valve
JP2004257521A (en) 2003-02-27 2004-09-16 Miura Co Ltd Valve
JP2005214007A (en) 2005-04-04 2005-08-11 Kitz Corp Drainage facility in building
JP2008308824A (en) 2007-06-12 2008-12-25 Maeda Corp Pipe joint for drainage and ventilation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3941151A (en) * 1974-10-07 1976-03-02 Biddle Joseph R Vent pipe check valve
JPS56134675A (en) * 1980-03-26 1981-10-21 Toshiba Corp Check valve and vacuum breakdown valve
JPS603386U (en) * 1983-06-20 1985-01-11 株式会社 テイエルブイ Valve tube mounting structure
JPH0242283A (en) * 1988-08-01 1990-02-13 Yoneki Eng Kk Swing type check valve
JPH0725062U (en) * 1993-10-21 1995-05-12 有限会社田中水道店 Lid with intake valve for drainage facilities such as buildings and structures
JP3108353B2 (en) * 1995-12-19 2000-11-13 宮入 一弘 Butterfly valve

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001152880A (en) 1999-11-30 2001-06-05 Jidosha Buhin Kogyo Co Ltd Exhaust gas shutter
JP2001343075A (en) 2000-06-01 2001-12-14 Tomoe Tech Res Co Butterfly valve
JP2004257521A (en) 2003-02-27 2004-09-16 Miura Co Ltd Valve
JP2005214007A (en) 2005-04-04 2005-08-11 Kitz Corp Drainage facility in building
JP2008308824A (en) 2007-06-12 2008-12-25 Maeda Corp Pipe joint for drainage and ventilation

Also Published As

Publication number Publication date
JP2019027584A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US5881759A (en) Air-ventilating valve
WO2018169075A1 (en) Aeration valve and waste water pipe system
JP7009206B2 (en) Rotary valve mechanism and ventilation valve and drainage pipe system using this
US6234198B1 (en) Air vent valve
KR101364676B1 (en) Anti-cavitation Butterfly Balve
JP7446700B2 (en) Vent valve and drain system
TWI751117B (en) Valve device and piping system
KR920000451B1 (en) Flush valve attachment system
JP3799469B2 (en) Differential pressure holding damper
JP5060150B2 (en) Ventilation valve
JP3202358U (en) Adjust type wafer check valve
US20030062086A1 (en) Air vent valve
JP4245187B2 (en) Control valve
JPH09103515A (en) Automatic alarm valve for sprinkler
US1014766A (en) Bottom blow-valve.
RU42607U1 (en) ROTARY DISK SHUTTER
JPH0237336Y2 (en)
JPH05507999A (en) valve damper device
JP2021162075A (en) Vent valve
KR200374392Y1 (en) Pressure reducing valve with noise reduction function
US1341544A (en) Grange s
KR100994901B1 (en) Double disk control valve
JP2019082182A (en) Vent valve
JP6771067B2 (en) Drain trap
JP2009268663A (en) Flowing water detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009206

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350