JP7009141B2 - Column-beam joint structure - Google Patents

Column-beam joint structure Download PDF

Info

Publication number
JP7009141B2
JP7009141B2 JP2017187463A JP2017187463A JP7009141B2 JP 7009141 B2 JP7009141 B2 JP 7009141B2 JP 2017187463 A JP2017187463 A JP 2017187463A JP 2017187463 A JP2017187463 A JP 2017187463A JP 7009141 B2 JP7009141 B2 JP 7009141B2
Authority
JP
Japan
Prior art keywords
steel
column
column core
core
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017187463A
Other languages
Japanese (ja)
Other versions
JP2019060192A (en
Inventor
文久 吉田
拓馬 西
頌子 永峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daiwa House Industry Co Ltd
Original Assignee
Daiwa House Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daiwa House Industry Co Ltd filed Critical Daiwa House Industry Co Ltd
Priority to JP2017187463A priority Critical patent/JP7009141B2/en
Publication of JP2019060192A publication Critical patent/JP2019060192A/en
Application granted granted Critical
Publication of JP7009141B2 publication Critical patent/JP7009141B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、角形鋼管柱と鉄骨梁の接合部に配設される鋼製コラムコアに角形鋼管柱と鉄骨梁が接合されている柱梁接合部構造に関する。 The present invention relates to a column-beam joint structure in which a square steel pipe column and a steel beam are joined to a steel column core arranged at a joint between a square steel pipe column and a steel beam.

鉄骨柱として角形鋼管を適用し、鉄骨梁としてH形鋼を適用してなる鉄骨造建築物における柱梁接合部には、通しダイアフラム形式や内ダイアフラム形式などが採用されている。通しダイアフラム形式の柱梁接合部構造は、角形鋼管からなるコラムコアにおいて、鉄骨梁の上下フランジに対応する位置に、コラムコアの外側に張り出すように通しダイアフラムを溶接固定した構造を有しており、外側に張り出した通しダイアフラムにH形鋼からなる鉄骨梁のフランジが溶接接合されるとともに、上下の通しダイアフラムに上下の角形鋼管柱が溶接接合される。また、左右の鉄骨梁の梁成が異なる場合には、上下の通しダイアフラムに加えて、コラムコア内に例えば梁成の低い鉄骨梁のフランジに対応する位置に内ダイアフラムが溶接接合されている。 A through-diaphragm type or an inner diaphragm type is adopted for a column-beam joint in a steel-framed building in which a square steel pipe is applied as a steel column and H-shaped steel is applied as a steel beam. The through-beam type column-beam joint structure has a structure in which a through-diaphragm is welded and fixed so as to project to the outside of the column core at a position corresponding to the upper and lower flanges of the steel beam in a column core made of a square steel pipe. A flange of a steel beam made of H-shaped steel is welded to the through diaphragm overhanging to the outside, and upper and lower square steel pipe columns are welded to the upper and lower through diaphragms. When the beam formation of the left and right steel beams is different, in addition to the upper and lower through diaphragms, the inner diaphragm is welded and joined in the column core at a position corresponding to the flange of the steel beam having a low beam formation, for example.

しかしながら、これら通しダイアフラム形式や内ダイアフラム形式による柱梁接合部では、柱梁接合部の製作に際して製作工数が多くなり易く、さらには溶接長さも長くなる傾向にあることから、一般に製作が複雑になり、製作に時間を要するとともに製作コストが高くなり易いといった課題がある。 However, in these beam-column joints of the through-diaphragm type and the inner diaphragm type, the man-hours for manufacturing the beam-column joints tend to increase, and the welding length tends to be long, so that the manufacturing is generally complicated. There is a problem that it takes time to manufacture and the manufacturing cost tends to be high.

そこで、ダイアフラムを省略した、所謂ノンダイアフラム形式の建物の柱と梁を接合する柱梁接合金物が提案されている。より具体的には、接合される角形断面管の柱の外径と略同一の外径を有し、柱の板厚以上の板厚を有する角形断面管の内部隅角部の四箇所全部に、接合される梁の梁成よりも長い範囲に亘って形成された厚肉部が一体的に鋳造成形された柱梁接合金物である(例えば、特許文献1参照)。 Therefore, a column-beam joining hardware for joining columns and beams of a so-called non-diaphragm type building, which omits the diaphragm, has been proposed. More specifically, at all four locations of the internal corners of the square cross-section pipe having substantially the same outer diameter as the outer diameter of the pillar of the square cross-section pipe to be joined and having a plate thickness equal to or larger than the plate thickness of the pillar. , A column-beam joint metal fitting in which a thick portion formed over a longer range than the beam formation of the beam to be joined is integrally cast and molded (see, for example, Patent Document 1).

特許第4337962号公報Japanese Patent No. 4337962

しかしながら、特許文献1に記載の柱梁接合金物は、鋳鋼やダクタイル鋳鉄等により一体的に鋳造成型して構成されることから、柱梁接合金物の厚みや高さ、全体の寸法や形状が異なるごとに、それらの形状寸法に応じた金型を用意する必要があり、多様な形状及び寸法の柱梁接合金物の製造に際して金型製作コストが嵩むことが避けられず、結果として柱梁接合金物の製造コストが高くなる。 However, since the beam-column joint metal fitting described in Patent Document 1 is integrally cast and molded from cast steel, ductile cast iron, etc., the thickness and height of the beam-column joint metal fitting, and the overall dimensions and shape are different. It is necessary to prepare a mold according to the shape and size of each, and it is inevitable that the mold manufacturing cost will increase when manufacturing the column-beam joint metal fittings of various shapes and dimensions, and as a result, the column-beam joint metal fittings. The manufacturing cost is high.

本発明は上記課題に鑑みてなされたものであり、製造コストが可及的に安価で、多様な形状及び寸法の要求に対応可能な鋼製コラムコアが適用され、構造が可及的にシンプルでかつ高剛性な柱梁接合部構造を提供することを目的としている。 The present invention has been made in view of the above problems, and a steel column core that can meet the requirements of various shapes and dimensions is applied as the manufacturing cost is as low as possible, and the structure is as simple as possible. It is an object of the present invention to provide a beam-column joint structure having high rigidity.

前記目的を達成すべく、本発明による鋼製コラムコアの一態様は、角形鋼管柱と鉄骨梁の接合部に配設される、ノンダイアフラム形式の鋼製コラムコアであって、
前記鋼製コラムコアは、四枚の鋼製プレートが溶接部を介して相互に接合され、延伸方向に直交する断面形状が矩形を呈し、
前記鋼製プレートの厚みが前記角形鋼管柱の厚みよりも厚いことを特徴とする。
In order to achieve the above object, one aspect of the steel column core according to the present invention is a non-diaphragm type steel column core disposed at a joint portion between a square steel pipe column and a steel beam.
In the steel column core, four steel plates are joined to each other via a welded portion, and the cross-sectional shape orthogonal to the stretching direction is rectangular.
It is characterized in that the thickness of the steel plate is thicker than the thickness of the square steel pipe column.

本態様によれば、四枚の鋼製プレートが溶接部を介して相互に接合されてパネルゾーンを成す鋼製コラムコアが形成されていることから、製造が容易であり、多様な形状及び寸法の要求に対して、当該要求に応じた鋼製プレートを溶接することにより、製造コストを増加させることなく多様な形状及び寸法バリエーションの鋼製コラムコアが得られる。また、鋼製プレートの厚みが角形鋼管柱の厚みよりも厚いことから、角形鋼管柱からの軸力や曲げを高剛性の鋼製コラムコアに有効に伝達することができる。 According to this aspect, since four steel plates are joined to each other through welds to form a steel column core forming a panel zone, it is easy to manufacture and has various shapes and dimensions. By welding a steel plate according to the requirement, a steel column core having various shapes and dimensional variations can be obtained without increasing the manufacturing cost. Further, since the thickness of the steel plate is thicker than the thickness of the square steel pipe column, the axial force and bending from the square steel pipe column can be effectively transmitted to the high-rigidity steel column core.

また、本発明による鋼製コラムコアの他の態様は、前記鋼製コラムコアの成が前記鉄骨梁の梁成よりも高いことを特徴とする。
本態様によれば、鋼製コラムコアの成が鉄骨梁の梁成よりも高いこと、言い換えれば、鋼製コラムコアの上下端と鉄骨梁の間に所定の余長部があることにより、鋼製コラムコアと鉄骨梁の接合部を剛接合とすることができる。また、鉄骨架構内に耐震補強ブレース(もしくは座屈拘束ブレース)が存在する場合に、この耐震補強ブレースを余長部に接続することができる。仮に余長部がない場合は、耐震補強ブレースを例えば角形鋼管柱に接合し、角形鋼管柱の当該接合箇所に補強対策を講じる必要が生じ得る。
Further, another aspect of the steel column core according to the present invention is characterized in that the formation of the steel column core is higher than that of the steel beam.
According to this aspect, the formation of the steel column core is higher than that of the steel beam, that is, there is a predetermined extra length between the upper and lower ends of the steel column core and the steel beam. The joint between the column core made of steel and the steel beam can be a rigid joint. Further, when a seismic retrofit brace (or a buckling restraint brace) is present in the steel frame frame, the seismic retrofit brace can be connected to the extra length portion. If there is no extra length, it may be necessary to join seismic retrofitting braces to, for example, square steel pipe columns, and take reinforcement measures at the joints of the square steel pipe columns.

また、本発明による鋼製コラムコアの他の態様は、前記溶接部がサブマージアーク溶接部であることを特徴とする。
本態様によれば、溶接部がアーク溶接の中でもサブマージアーク溶接にて形成されていることにより、溶接箇所に太径ワイヤを連続的に配して大電流を流して溶接部が形成されることから、製造効率が極めて高く、品質に優れた溶接部を形成できる。
Further, another aspect of the steel column core according to the present invention is characterized in that the welded portion is a submerged arc welded portion.
According to this aspect, since the welded portion is formed by submerged arc welding even in arc welding, a large diameter wire is continuously arranged at the welded portion and a large current is passed to form the welded portion. Therefore, it is possible to form a welded portion having extremely high manufacturing efficiency and excellent quality.

また、本発明による柱梁接合部構造の一態様は、ノンダイアフラム形式の鋼製コラムコアに対して角形鋼管柱と鉄骨梁が接合されている柱梁接合部構造であって、
前記鋼製コラムコアは、四枚の鋼製プレートが溶接部を介して相互に接合され、延伸方向に直交する断面形状が矩形を呈し、
前記鋼製プレートの厚みが前記角形鋼管柱の厚みよりも厚いことを特徴とする。
Further, one aspect of the column-beam joint structure according to the present invention is a column-beam joint structure in which a square steel pipe column and a steel beam are joined to a non-diaphragm type steel column core.
In the steel column core, four steel plates are joined to each other via a welded portion, and the cross-sectional shape orthogonal to the stretching direction is rectangular.
It is characterized in that the thickness of the steel plate is thicker than the thickness of the square steel pipe column.

本態様によれば、鋼製プレートの厚みが角形鋼管柱の厚みよりも厚いことから、ノンダイアフラム形式でありながら、高剛性の柱梁接合部構造を形成できる。 According to this aspect, since the thickness of the steel plate is thicker than the thickness of the square steel pipe column, it is possible to form a column-beam joint structure having high rigidity while being a non-diaphragm type.

また、本発明による柱梁接合部構造の他の態様は、前記鋼製コラムコアの成が前記鉄骨梁の梁成よりも高いことを特徴とする。
本態様によれば、鋼製コラムコアの成が鉄骨梁の梁成よりも高いことから、鋼製コラムコアと鉄骨梁の接合部を剛接合とすることができる。
Further, another aspect of the beam-column joint structure according to the present invention is characterized in that the formation of the steel column core is higher than that of the steel-framed beam.
According to this aspect, since the formation of the steel column core is higher than that of the steel beam, the joint portion between the steel column core and the steel beam can be rigidly joined.

また、本発明による柱梁接合部構造の他の態様は、前記角形鋼管柱は四隅が曲率を有しており、該四隅も前記鋼製コラムコアの厚み内に存在していることを特徴とする。
本態様によれば、四隅が曲率を有する角形鋼管柱を適用する場合でも角形鋼管柱の全断面を鋼製コラムコアの断面(厚み)内に存在させることにより、角形鋼管柱からの軸力や曲げを高剛性の鋼製コラムコアに有効に伝達することができる。
Further, another aspect of the beam-column joint structure according to the present invention is characterized in that the square steel pipe column has four corners having curvatures, and the four corners also exist within the thickness of the steel column core. do.
According to this aspect, even when a square steel pipe column having curved corners is applied, the axial force from the square steel pipe column can be obtained by allowing the entire cross section of the square steel pipe column to exist within the cross section (thickness) of the steel column core. Bending can be effectively transmitted to a highly rigid steel column core.

また、本発明による柱梁接合部構造の他の態様において、前記鋼製コラムコアに接合される複数の前記鉄骨梁が梁成の異なる段差梁であり、相対的に梁成の高い鉄骨梁よりも前記鋼製コラムコアの成が高いことを特徴とする。
本態様によれば、梁成の異なる複数の段差梁が鋼製コラムコアに接合されている場合において、最も梁成の高い鉄骨梁の梁成よりも鋼製コラムコアの成が高いことにより、鋼製コラムコアと梁成の異なる全ての鉄骨梁の接合部を剛接合とすることができる。
Further, in another aspect of the beam-column joint structure according to the present invention, the plurality of steel-framed beams joined to the steel column core are stepped beams having different beam formations, which is higher than that of steel-framed beams having relatively high beam formation. Is also characterized by high growth of the steel column core.
According to this aspect, when a plurality of stepped beams having different beam formations are joined to the steel column core, the formation of the steel column core is higher than that of the steel-framed beam having the highest beam formation. The joint between the steel column core and all steel beams with different beam formation can be rigidly joined.

また、本発明による柱梁接合部構造の他の態様において、前記鋼製プレートの厚みtpが、降伏線理論に基づいた以下3つの条件式(A),(B),(C)を全て満たす厚みであることを特徴とする。 Further, in another aspect of the beam-column joint structure according to the present invention, the thickness tp of the steel plate satisfies all of the following three conditional equations (A), (B), and (C) based on the yield line theory. It is characterized by being thick.

Figure 0007009141000001
本態様によれば、降伏線理論に基づいた条件式を満たすように鋼製コラムコアを形成する鋼製プレートの厚みが設定されていることにより、鋼製コラムコアがノンダイアフラム形式を適用しながらも、十分な構造耐力を有する柱梁接合部構造を提供することができる。
Figure 0007009141000001
According to this aspect, the thickness of the steel plate forming the steel column core is set so as to satisfy the conditional expression based on the yield line theory, so that the steel column core applies the non-diaphragm type. Also, it is possible to provide a beam-column joint structure having sufficient structural strength.

また、本発明による柱梁接合部構造の他の態様において、前記鋼製コラムコアの成は前記鉄骨梁の梁成よりも高く、該鋼製コラムコアの上端および/または下端と該鉄骨梁の上端および/または下端の間に余長部があり、該余長部の余長lpが以下の条件式(D)を満たす長さを有していることを特徴とする。 Further, in another aspect of the beam-column joint structure according to the present invention, the formation of the steel column core is higher than that of the steel column core, and the upper end and / or the lower end of the steel column core and the steel beam are formed. It is characterized in that there is a surplus portion between the upper end and / or the lower end, and the surplus length lp of the surplus portion has a length satisfying the following conditional expression (D).

Figure 0007009141000002
本態様によれば、降伏線理論に基づいた条件式を満たすように余長部の余長lpが設定されていることにより、鋼製コラムコアがノンダイアフラム形式を適用しながらも、鋼製コラムコアと鉄骨梁の接合部を剛接合とすることができる。
Figure 0007009141000002
According to this aspect, the extra length lp of the extra length portion is set so as to satisfy the conditional expression based on the yield line theory, so that the steel column core applies the non-diaphragm type, but the steel column. The joint between the core and the steel beam can be a rigid joint.

以上の説明から理解できるように、本発明の柱梁接合部構造によれば、可及的に安価な製造コストにて多様な形状及び寸法の要求に対応可能な鋼製コラムコアが適用され、構造が可及的にシンプルでかつ高剛性な柱梁接合部構造を提供することができる。
As can be understood from the above description, according to the beam -column joint structure of the present invention, a steel column core capable of meeting various shape and dimension requirements at the lowest possible manufacturing cost is applied . It is possible to provide a beam-column joint structure whose structure is as simple as possible and which is highly rigid.

実施形態に係る鋼製コラムコアの一例の斜視図である。It is a perspective view of an example of a steel column core which concerns on embodiment. 図1のII方向の矢視図である。It is an arrow view of FIG. 1 in the II direction. 実施形態に係る柱梁接合部構造の一例の斜視図である。It is a perspective view of an example of the column-beam joint structure which concerns on embodiment. 図3のIV方向の矢視図である。It is an arrow view of FIG. 3 in the IV direction. 図3のV-V断面図である。FIG. 3 is a sectional view taken along line VV of FIG. 面外曲げ降伏メカニズムを説明する図である。It is a figure explaining the out-of-plane bending yield mechanism.

以下、実施形態に係る鋼製コラムコアと柱梁接合部構造について添付の図面を参照しながら説明する。 Hereinafter, the steel column core and the beam-column joint structure according to the embodiment will be described with reference to the attached drawings.

[実施形態]
<鋼製コラムコア>
はじめに、図1及び図2を用いて、実施形態に係る鋼製コラムコアの一例を説明する。ここで、図1は、鋼製コラムコアの一例の斜視図であり、図2は、図1のII方向の矢視図である。鋼製コラムコア10は、幅の異なる二枚ずつの合計四枚の鋼製プレート1,2から形成されている。相対的に短幅の鋼製プレート2の両端部には、テーパー状で傾斜角度が30乃至50度程度の開先2aが鋼製プレート2の延伸方向に亘って形成されている。長幅の鋼製プレート1と短幅の鋼製プレート2を図1に示すように配設し、四隅内側には短幅の鋼製プレート2に沿うように裏当て金4が配設された状態で開先2aに溶接部3が形成され、中空で四角柱状の鋼製コラムコア10が形成される。
[Embodiment]
<Steel column core>
First, an example of the steel column core according to the embodiment will be described with reference to FIGS. 1 and 2. Here, FIG. 1 is a perspective view of an example of a steel column core, and FIG. 2 is an arrow view in the II direction of FIG. The steel column core 10 is formed of a total of four steel plates 1 and 2, two each having a different width. Grooves 2a, which are tapered and have an inclination angle of about 30 to 50 degrees, are formed at both ends of the steel plate 2 having a relatively short width in the extending direction of the steel plate 2. A long-width steel plate 1 and a short-width steel plate 2 are arranged as shown in FIG. 1, and a backing metal 4 is arranged inside the four corners along the short-width steel plate 2. In this state, the welded portion 3 is formed in the groove 2a, and the hollow and square columnar steel column core 10 is formed.

図2に示すように、鋼製コラムコア10の平面形状は、一辺の長さがDpの正方形である。ただし、鋼製コラムコア10に接合される上柱や下柱の断面形状に応じて、正方形以外の形状、例えば長方形の平面視形状の鋼製コラムコアであってもよい。そして、鋼製プレート1,2の厚みtpは、通常のダイアフラムを備えているコラムコアに比べて厚い。この厚みtpに関しては以下に詳説する。 As shown in FIG. 2, the planar shape of the steel column core 10 is a square having a side length of Dp. However, depending on the cross-sectional shape of the upper pillar and the lower pillar joined to the steel column core 10, a steel column core having a shape other than a square shape, for example, a rectangular plan view shape may be used. The thickness tp of the steel plates 1 and 2 is thicker than that of the column core provided with a normal diaphragm. This thickness tp will be described in detail below.

溶接部3は、アークスポット、アークスタッド、ガスシールドアーク、プラズマ溶接等の他のアーク溶接方法や、エレクトロスラグ溶接、電子ビーム溶接、レーザービーム溶接など、多様な溶接法にて形成できるが、中でも、製造効率性と品質性の双方に最も優れているサブマージアーク溶接にて形成されたサブマージアーク溶接部3である。サブマージアーク溶接法は、粒状のフラックスを溶接線に沿って散布しておき、その中にソリッドワイヤを連続的に供給し、フラックスに覆われた状態で母材とワイヤ間にアークを発生させて双方を溶融させて接続する方法である。サブマージアーク溶接法によれば、太径ワイヤに大電流を流すことから、通常の手溶接に比べて十数倍程度も効率がよい。また、一般に深くまで溶込み、溶接品質が安定し、ビード外観は均一で美しく、継手信頼性の高い溶接部を形成できる。例えば、図1に示す鋼製コラムコア10の十数倍程度の長さのものを製作し、切断加工して図1に示す鋼製コラムコア10を連続的に製造することもでき、この製造方法によればより一層製造効率よく鋼製コラムコア10を製造することが可能になる。 The welded portion 3 can be formed by other arc welding methods such as arc spot, arc stud, gas shield arc, plasma welding, electro slag welding, electron beam welding, laser beam welding, and various other welding methods. It is a submerged arc welded portion 3 formed by submerged arc welding, which is most excellent in both manufacturing efficiency and quality. In the submerged arc welding method, granular flux is sprayed along the welding line, solid wire is continuously supplied into it, and an arc is generated between the base metal and the wire while being covered with flux. It is a method of melting and connecting both. According to the submerged arc welding method, since a large current is passed through a large-diameter wire, the efficiency is about ten times higher than that of normal manual welding. In addition, it generally penetrates deeply, the welding quality is stable, the bead appearance is uniform and beautiful, and a welded portion with high joint reliability can be formed. For example, it is possible to manufacture a steel column core 10 having a length about ten times as long as that of the steel column core 10 shown in FIG. 1 and to continuously manufacture the steel column core 10 shown in FIG. According to the method, the steel column core 10 can be manufactured more efficiently.

板厚の厚い四枚の鋼製プレート1,2が相互にサブマージアーク溶接部3にて接合されてなる、平面視正方形の中空の四角柱体の鋼製コラムコア10は、ノンダイアフラム形式でありながら、剛性が極めて高く、かつ、製造効率の良好なコラムコアとなる。また、鋼製プレート1,2の幅や長さ、厚みを所望に調整することにより、多様な形状及び寸法のコラムコアが得られる。 The steel column core 10 of a hollow square prism having a square view in a plan view, in which four thick steel plates 1 and 2 are joined to each other at a submerged arc weld 3, is of a non-diaphragm type. However, it is a column core with extremely high rigidity and good manufacturing efficiency. Further, by adjusting the width, length and thickness of the steel plates 1 and 2 as desired, column cores having various shapes and dimensions can be obtained.

また、鋼製コラムコア10が内部にダイアフラムを備えていないことから、例えば鋼製コラムコア10内にコンクリートを充填して剛性をより一層高めるような措置を講じる場合にも、コンクリートの充填を容易に行うことができる。 Further, since the steel column core 10 does not have a diaphragm inside, for example, when concrete is filled in the steel column core 10 to further increase the rigidity, it is easy to fill the concrete. Can be done.

なお、図示を省略するが、一種類の鋼製プレートを四枚使用し、各鋼製プレートは一端にのみ開先を備えていて、開先を隣接する鋼製プレートの側面に当接して溶接部を介して接合することにより、図1に示す鋼製コラムコア10と同形状および同寸法の鋼製コラムコアを得ることができる。 Although not shown, four steel plates of one type are used, and each steel plate has a groove only at one end, and the groove is brought into contact with the side surface of the adjacent steel plate for welding. By joining through the portions, a steel column core having the same shape and dimensions as the steel column core 10 shown in FIG. 1 can be obtained.

<柱梁接合部構造>
次に、図3乃至図5を用いて、実施形態に係る柱梁接合部構造について説明する。ここで、図3は、柱梁接合部構造の一例の斜視図であり、図4,5はそれぞれ、図3のIV方向の矢視図であり、図3のV-V断面図である。柱梁接合部構造100は、パネルゾーンを形成する鋼製コラムコア10の各鋼製プレート1,2に対して、H型鋼からなる鉄骨梁30,40が接合され、鋼製コラムコア10の上下端にはそれぞれ、上柱と下柱となる同断面形状の角形鋼管柱20が接合されている。なお、図示を省略するが、鉄骨梁30,40の各ウエブおよびフランジは各鋼製プレート1,2に対して完全溶け込み溶接にて接続されている。また、角形鋼管柱20も各鋼製プレート1,2の端面に対して完全溶け込み溶接にて接続されている。柱梁接合部構造100はノンダイアフラム形式の構造であることから、ダイアフラムを有する場合に要していた、鉄骨梁のウエブの端部上下に開設されているスカラップを不要にできる。
<Beam joint structure>
Next, the column-beam joint structure according to the embodiment will be described with reference to FIGS. 3 to 5. Here, FIG. 3 is a perspective view of an example of the column-beam joint structure, FIGS. 4 and 5 are arrow views in the IV direction of FIG. 3, and are VV cross-sectional views of FIG. In the column-beam joint structure 100, steel beams 30 and 40 made of H-shaped steel are joined to the steel plates 1 and 2 of the steel column core 10 forming the panel zone, and the upper and lower parts of the steel column core 10 are joined. Square steel pipe columns 20 having the same cross-sectional shape, which are upper columns and lower columns, are joined to the ends, respectively. Although not shown, the webs and flanges of the steel beams 30 and 40 are connected to the steel plates 1 and 2 by complete penetration welding. Further, the square steel pipe column 20 is also connected to the end faces of the steel plates 1 and 2 by complete penetration welding. Since the column-beam joint structure 100 is a non-diaphragm type structure, it is possible to eliminate the scallops provided above and below the end of the web of the steel frame beam, which is required when the beam has a diaphragm.

図4に示すように、鋼製コラムコア10と角形鋼管柱20の双方の平面寸法の関係において、鋼製コラムコア10の断面内に角形鋼管柱20の断面が完全に収容されるように、双方の全体寸法や、鋼製プレート1,2の板厚tp及び角形鋼管柱20の厚みtcが設定される。より詳細には、鋼製プレート1,2の板厚tpは、角形鋼管柱20の断面が完全に収容される厚みであると同時に、以下で詳説するように、鋼製コラムコア10が降伏線理論を用いた終局耐力を満たすような厚みとなる。 As shown in FIG. 4, in relation to the plane dimensions of both the steel column core 10 and the square steel pipe column 20, the cross section of the square steel pipe column 20 is completely accommodated within the cross section of the steel column core 10. The overall dimensions of both, the plate thickness tp of the steel plates 1 and 2, and the thickness ct of the square steel pipe column 20 are set. More specifically, the plate thickness tp of the steel plates 1 and 2 is a thickness that completely accommodates the cross section of the square steel pipe column 20, and at the same time, as described in detail below, the steel column core 10 has a yield line. The thickness is sufficient to satisfy the ultimate strength using the theory.

図4に示すように、角形鋼管柱20は四隅に曲率半径rの曲率部(R部)を備え、一辺の辺長がDpの平面視正方形の鋼管柱である。鋼製プレート1,2の板厚tpが角形鋼管柱20の厚みtcよりも大きいことは前提となるが、角形鋼管柱20の断面全体が鋼製コラムコア10の断面内に完全に収容されるには、四隅の曲率部が鋼製コラムコア10の断面内に完全に収容される条件を規定する必要がある。 As shown in FIG. 4, the square steel pipe column 20 is a steel pipe column having a radius of curvature r at four corners and having a side length of Dp in a square view in a plan view. It is assumed that the plate thickness tp of the steel plates 1 and 2 is larger than the thickness ct of the square steel pipe column 20, but the entire cross section of the square steel pipe column 20 is completely accommodated in the cross section of the steel column core 10. It is necessary to specify the condition that the curved portions at the four corners are completely accommodated in the cross section of the steel column core 10.

角形鋼管柱20としては、建築構造用冷間成形角形鋼管である、BCR(Box Column Roll 建築構造用冷間ロール成形角形鋼管、登録商標)やBCP(Box Column Press建築構造用冷間プレス成形角形鋼管、登録商標)が使用される。これらはSN材(建築構造用鋼材)をベースとした一般社団法人日本鉄鋼連盟製の角形鋼管である。 The square steel pipe column 20 includes BCR (Box Column Roll cold roll formed square steel pipe for building structure, registered trademark) and BCP (Box Column Press cold pressed square steel pipe for building structure), which are cold-formed square steel pipes for building structures. Steel pipe, registered trademark) is used. These are square steel pipes manufactured by the Japan Iron and Steel Federation, which are based on SN materials (steel materials for building structures).

図4において、四隅の角部にて角形鋼管柱20のR部が鋼製コラムコア10の断面内に収容されるには、以下の式(1)を満たす必要があることより、tpは、変数r、tcを用いた以下の式(2)を満たす必要がある。 In FIG. 4, in order for the R portion of the square steel pipe column 20 to be accommodated in the cross section of the steel column core 10 at the corners of the four corners, the following equation (1) must be satisfied. It is necessary to satisfy the following equation (2) using the variables r and tc.

Figure 0007009141000003

従って、BCRを適用する場合は以下の式(3)を満たすように、また、BCPを適用する場合は以下の式(4)を満たすように鋼製プレート1,2の板厚tp及び角形鋼管柱20の厚みtcが設定される。
Figure 0007009141000003

Therefore, when BCR is applied, the following formula (3) is satisfied, and when BCP is applied, the following formula (4) is satisfied. The thickness tc of the pillar 20 is set.

Figure 0007009141000004

このように、BCRとBCPでtpの数値範囲は相違する。
Figure 0007009141000004

In this way, the numerical range of tp differs between BCR and BCP.

なお、鋼製コラムコア10の一辺の長さをDp、鉄骨梁20,30の幅をBとした際に、以下の式(5)を満たす必要があることより、角形鋼管柱20の厚みtcの上限値は以下の式(6)にて規定できる。 When the length of one side of the steel column core 10 is Dp and the widths of the steel beams 20 and 30 are B, the following formula (5) must be satisfied, so that the thickness ct of the square steel pipe column 20 The upper limit of is specified by the following equation (6).

Figure 0007009141000005

このように、角形鋼管柱20の厚みtcの上限値は、鋼製コラムコア10の平面寸法と鉄骨梁20,30の幅寸法で変化する。
Figure 0007009141000005

As described above, the upper limit of the thickness tc of the square steel pipe column 20 changes depending on the plane dimension of the steel column core 10 and the width dimension of the steel frame beams 20 and 30.

一方、角形鋼管柱20として、JIS G 3466(一般構造用角形鋼管)に基づくJIS製品である、STKR400やSTKR490を使用する場合は、BCRと同様にrは3.0tc以下となることより、上式(3)にて鋼製プレート1,2の板厚tp及び角形鋼管柱20の厚みtcが設定される。 On the other hand, when STKR400 or STKR490, which are JIS products based on JIS G 3466 (square steel pipe for general structure), are used as the square steel pipe column 20, r is 3.0 ct or less as in the case of BCR. The plate thickness tp of the steel plates 1 and 2 and the thickness ct of the square steel pipe column 20 are set by the formula (3).

四隅にR部を備えた一般的な形態の角形鋼管柱20の断面全体が、鋼製コラムコア10の断面内に完全に収容されていることにより、角形鋼管柱20からの軸力や曲げ等を鋼製コラムコア10に有効に伝達することができる。 Since the entire cross section of the square steel pipe column 20 having R portions at the four corners is completely housed in the cross section of the steel column core 10, axial force, bending, etc. from the square steel pipe column 20 can be achieved. Can be effectively transmitted to the steel column core 10.

図5に示すように、柱梁接合部構造100は、梁成の異なる二種類の段差梁、鉄骨梁30,40を有している。図示例では、鋼製コラムコア10の左側に相対的に高い梁成H3の鉄骨梁40が配設され、右側に相対的に低い梁成H2の鉄骨梁30が配設されている。鋼製コラムコア10の高さH1は、梁成H2,H3よりも高く設定されている。鉄骨梁40は鋼製コラムコア10の高さ中央位置に取付けられており、図示例は上下に同じ余長lpの余長部50を備えている。一方、鉄骨梁30は、上方に余長lpの余長部50を備え、下方には余長部50も長い余長lp'の余長部60を備えている。なお、鉄骨梁40が鋼製コラムコア10の高さ中央位置ではない位置に取付けられ、従って上下の余長部の余長が異なる形態であってもよい。 As shown in FIG. 5, the column-beam joint structure 100 has two types of stepped beams and steel-framed beams 30 and 40 having different beam formations. In the illustrated example, the steel beam 40 of the relatively high beam H3 is arranged on the left side of the steel column core 10, and the steel beam 30 of the relatively low beam H2 is arranged on the right side. The height H1 of the steel column core 10 is set higher than that of the beams H2 and H3. The steel beam 40 is attached to the center of the height of the steel column core 10, and the illustrated example has an extra length portion 50 having the same extra length lp at the top and bottom. On the other hand, the steel frame beam 30 is provided with an extra length portion 50 having an extra length lp above, and an extra length portion 60 having a long extra length lp'below the steel frame beam 30. The steel beam 40 may be attached to a position other than the height center position of the steel column core 10, and therefore the upper and lower extra lengths may have different extra lengths.

このように、鋼製コラムコア10と鉄骨梁30、40の間に余長lp、lp'がある場合に、これらlp、lp'が以下で詳説する、降伏線理論に基づいた降伏曲げ耐力式を満たすことにより、鋼製コラムコア10と各鉄骨梁30,40の接合部を剛接合とすることができる。さらに、余長lp、lp'があることにより、余長が無い場合と比べて鋼製コラムコア10の厚みを相対的に薄くすることも可能になる。 As described above, when there are extra lengths lp and lp'between the steel column core 10 and the steel beam 30 and 40, these lp and lp'are described in detail below. By satisfying the above conditions, the joint portion between the steel column core 10 and the steel frame beams 30 and 40 can be rigidly joined. Further, the presence of the extra lengths lp and lp'makes it possible to make the thickness of the steel column core 10 relatively thinner than in the case where there is no extra length.

また、図示を省略するが、鉄骨架構内に耐震補強ブレース(座屈拘束ブレース)が存在する場合に、この耐震補強ブレースを余長部50,60に接続することができるため、余長部50,60が存在しない場合に耐震補強ブレースを角形鋼管柱20に接続しつつ、角形鋼管柱20に補強対策を講じるといった措置を不要にできる。 Further, although not shown, when a seismic retrofitting brace (buckling restraint brace) is present in the steel frame, the seismic retrofitting brace can be connected to the extra length portions 50 and 60, so that the extra length portion 50 can be connected. If 60 is not present, it is possible to eliminate the need for measures such as taking reinforcement measures for the square steel column 20 while connecting the seismic retrofit brace to the square steel column 20.

なお、鋼製コラムコア10をパネルゾーンとする柱梁接合部構造は、全ての梁成が同じ段差梁の無い複数の鉄骨梁を有する構造であってもよいし、上柱と下柱の角形鋼管柱が共に全断面が鋼製コラムコア10の内部に収容されることを前提として、相互に寸法の異なる鋼管柱であってもよい。 The column-beam joint structure having the steel column core 10 as the panel zone may be a structure having a plurality of steel-framed beams having the same step beam and no step beam, or a square shape of the upper column and the lower column. Assuming that both the steel pipe columns are housed inside the steel column core 10 in the entire cross section, the steel pipe columns may have different dimensions from each other.

<降伏線理論に基づいた鋼製コラムコアの板厚の設定方法>
鋼製コラムコア10の板厚の設定方法については、第一の方法は上記する式(3)、(4)による方法にて設定することができる。しかしながら、実際には、ノンダイアフラム形式を適用していることより、鋼製コラムコアと鉄骨梁の接合部との間で降伏耐力等により、鋼製コラムコアの板厚を設定することが肝要である。より具体的には、条件1として降伏耐力の条件を満たすこと、条件2として全塑性耐力の条件を満たすこと、条件3として最大耐力の条件を満たすこと、の三つの条件を全て満たす板厚を求め、算定された板厚以上の厚みの板厚にすることとする。これら三つの条件を求めるに当たり、降伏線理論に基づく計算を実行する。ここで、図6は、面外曲げ降伏メカニズムを説明する図であり、図6(a)は鉄骨梁側から鋼製コラムコアを見た正面図であり、図6(b)は、鋼製コラムコアを上方から見た平面図であり、図6(c)は、鋼製コラムコアを側方から見た側面図である。以下の表1に、図6中の記号や以下で示す式中の記号の説明を記す。
<How to set the plate thickness of the steel column core based on the yield line theory>
Regarding the method of setting the plate thickness of the steel column core 10, the first method can be set by the above-mentioned methods (3) and (4). However, in reality, since the non-diaphragm type is applied, it is important to set the plate thickness of the steel column core by the yield strength between the steel column core and the joint of the steel beam. be. More specifically, a plate thickness that satisfies all three conditions: the condition 1 is to satisfy the yield strength condition, the condition 2 is to satisfy the total plastic strength condition, and the condition 3 is to satisfy the maximum strength condition. The plate thickness shall be larger than the calculated plate thickness. In determining these three conditions, a calculation based on the yield line theory is performed. Here, FIG. 6 is a view for explaining the out-of-plane bending yield mechanism, FIG. 6 (a) is a front view of the steel column core seen from the steel beam side, and FIG. 6 (b) is made of steel. It is a top view of the column core seen from above, and FIG. 6 (c) is a side view of the steel column core seen from the side. Table 1 below describes the symbols in FIG. 6 and the symbols in the formulas shown below.

Figure 0007009141000006

図6と表1を参照しながら、上記する各条件を満たす鋼製コラムコアの板厚を検証する。
Figure 0007009141000006

With reference to FIGS. 6 and 1, the plate thickness of the steel column core satisfying each of the above conditions is verified.

(条件1:降伏耐力の条件)
降伏耐力の条件は、以下の式(7)を満たす必要があることより、式(7)の右辺および左辺を具体的に表すことにより、式(8)の条件式が得られる。
(Condition 1: Yield strength condition)
Since the yield strength condition needs to satisfy the following equation (7), the conditional equation of the equation (8) can be obtained by specifically expressing the right side and the left side of the equation (7).

Figure 0007009141000007

式(8)を満たすtpの範囲が、降伏耐力の条件から規定されるtpの範囲となる。
Figure 0007009141000007

The range of tp satisfying the equation (8) is the range of tp defined by the condition of yield strength.

(条件2:全塑性耐力の条件)
全塑性耐力の条件は、以下の式(9)を満たす必要があることより、式(9)の右辺および左辺を具体的に表すことにより、式(10)の条件式が得られる。
(Condition 2: Condition of total plastic strength)
Since the condition of total plastic proof stress needs to satisfy the following equation (9), the conditional equation of equation (10) can be obtained by specifically expressing the right side and the left side of equation (9).

Figure 0007009141000008

式(10)を満たすtpの範囲が、全塑性耐力の条件から規定されるtpの範囲となる。
Figure 0007009141000008

The range of tp satisfying the formula (10) is the range of tp defined from the condition of total plastic strength.

(条件3:最大耐力の条件)
最大耐力の条件は、以下の式(11)を満たす必要があることより、式(11)の右辺および左辺を具体的に表すことにより、式(12)の条件式が得られる。
(Condition 3: Maximum proof stress condition)
Since the condition of the maximum proof stress needs to satisfy the following equation (11), the conditional equation of the equation (12) can be obtained by specifically expressing the right side and the left side of the equation (11).

Figure 0007009141000009

式(12)を満たすtpの範囲が、最大耐力の条件から規定されるtpの範囲となる。
Figure 0007009141000009

The range of tp satisfying the formula (12) is the range of tp defined from the condition of maximum proof stress.

上記式(8)、(10)、(12)の左辺に、鋼製コラムコア10の板厚(厚み)tpがあり、これら3式を全て満たす板厚tpを求め、鋼製コラムコア10の厚みを設定する。 On the left side of the above equations (8), (10), and (12), there is a plate thickness (thickness) tp of the steel column core 10, and a plate thickness tp that satisfies all of these three equations is obtained, and the steel column core 10 is used. Set the thickness.

より詳細には、上式(3)もしくは(4)を満たし、かつ、式(8)、(10)、(12)の全てを満たす鋼製コラムコア10の厚みの下限値を算定し、鋼製コラムコア10の厚みをこの算定された下限値以上に設定することにより、接合される角形鋼管柱20の断面を完全に鋼製コラムコア10の厚み内に収容でき、かつ、ノンダイアフラム形式において必要十分な耐力を有する鋼製コラムコア10を提供することができる。 More specifically, the lower limit of the thickness of the steel column core 10 that satisfies the above equation (3) or (4) and satisfies all of the equations (8), (10), and (12) is calculated, and the steel is steel. By setting the thickness of the column core 10 made of steel to the calculated lower limit or more, the cross section of the square steel pipe column 20 to be joined can be completely accommodated within the thickness of the steel column core 10, and in the non-diaphragm type. It is possible to provide a steel column core 10 having a necessary and sufficient yield strength.

<鋼製コラムコアの余長部の余長の設定方法>
次に、余長部の余長の設定に当たり、図6において、降伏線PPが鋼製コラムコア10と角形鋼管柱20の境界の角形鋼管柱20側に生じる場合を考える。降伏線の単位長さ当たりの鋼製コラムコア10における降伏曲げモーメントを以下の式(13)として示し、角形鋼管柱20における降伏曲げモーメントを以下の式(14)として示す。
<How to set the extra length of the extra length of the steel column core>
Next, in setting the extra length of the extra length portion, consider the case where the yield line PP is generated on the square steel pipe column 20 side at the boundary between the steel column core 10 and the square steel pipe column 20 in FIG. The yield bending moment in the steel column core 10 per unit length of the yield line is shown by the following formula (13), and the yield bending moment in the square steel pipe column 20 is shown by the following formula (14).

Figure 0007009141000010

鋼製コラムコア10における余長部では、以下の式(15)を満たすことを必要とし、従って、余長部の余長lp(もしくはlp')は以下の式(16)のうち、大きな方の値以上を満たすことを要する。
Figure 0007009141000010

The extra length portion of the steel column core 10 needs to satisfy the following equation (15). Therefore, the extra length portion lp (or lp') of the extra length portion is the larger of the following equations (16). It is necessary to satisfy the value of.

Figure 0007009141000011

上式(16)を満たす余長lp(もしくはlp')を確保するようにして、鋼製コラムコア10に対して鉄骨梁30,40を接合することにより、鋼製コラムコア10と各鉄骨梁30,40の接合部を剛接合とすることができ、さらには、余長lp(もしくはlp')があることにより、余長が無い場合と比べて鋼製コラムコア10の厚みを相対的に薄くすることも可能になる。
Figure 0007009141000011

By joining the steel frame beams 30 and 40 to the steel column core 10 so as to secure an extra length lp (or lp') satisfying the above equation (16), the steel column core 10 and each steel frame beam are joined. The joints of 30 and 40 can be rigidly joined, and further, due to the extra length lp (or lp'), the thickness of the steel column core 10 is relatively smaller than that in the case where there is no extra length. It is also possible to make it thinner.

なお、上記実施形態に挙げた構成等に対し、その他の構成要素が組み合わされるなどした他の実施形態であってもよく、ここで示した構成に本発明が何等限定されるものではない。この点に関しては、本発明の趣旨を逸脱しない範囲で変更することが可能であり、その応用形態に応じて適切に定めることができる。 It should be noted that the configuration or the like described in the above embodiment may be another embodiment in which other components are combined, and the present invention is not limited to the configuration shown here. This point can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form thereof.

1,2:鋼製プレート、2a:開先、3:溶接部(サブマージアーク溶接部)、4:裏当て金、10:鋼製コラムコア、20:角形鋼管柱、30,40:鉄骨梁(H型鋼)、50,60:余長部、100:柱梁接合部構造 1,2: Steel plate, 2a: Groove, 3: Welded part (submerged arc welded part), 4: Backing metal, 10: Steel column core, 20: Square steel pipe column, 30, 40: Steel beam ( H-shaped steel), 50, 60: Extra length, 100: Beam-beam joint structure

Claims (5)

ノンダイアフラム形式の鋼製コラムコアに対して角形鋼管柱と鉄骨梁が接合されている柱梁接合部構造であって、
前記鋼製コラムコアは、四枚の鋼製プレートが溶接部を介して相互に接合され、延伸方向に直交する断面形状が矩形を呈し、
前記鋼製プレートの厚みが前記角形鋼管柱の厚みよりも厚く、
前記鋼製コラムコアの成は前記鉄骨梁の梁成よりも高く、該鋼製コラムコアの上端および/または下端と該鉄骨梁の上端および/または下端の間に余長部があり、該余長部の余長lpが、降伏線理論に基づいた以下の条件式(D)を満たす長さを有していることを特徴とする、柱梁接合部構造。
Figure 0007009141000012
It is a column-beam joint structure in which a square steel pipe column and a steel beam are joined to a non-diaphragm type steel column core.
In the steel column core, four steel plates are joined to each other via a welded portion, and the cross-sectional shape orthogonal to the stretching direction is rectangular.
The thickness of the steel plate is thicker than the thickness of the square steel pipe column.
The formation of the steel column core is higher than the formation of the steel beam, and there is an extra length portion between the upper end and / or the lower end of the steel column core and the upper end and / or the lower end of the steel beam. A beam-column joint structure characterized in that the extra length lp of the long portion has a length satisfying the following conditional equation (D) based on the breakdown line theory .
Figure 0007009141000012
前記鋼製コラムコアの成が前記鉄骨梁の梁成よりも高いことを特徴とする、請求項に記載の柱梁接合部構造。 The column-beam joint structure according to claim 1 , wherein the steel column core is formed higher than the steel column core. 前記角形鋼管柱は四隅が曲率を有しており、該四隅も前記鋼製コラムコアの厚み内に存在していることを特徴とする、請求項1又は2に記載の柱梁接合部構造。 The column-beam joint structure according to claim 1 or 2 , wherein the square steel pipe column has four corners having curvatures, and the four corners also exist within the thickness of the steel column core. 前記鋼製コラムコアに接合される複数の前記鉄骨梁が梁成の異なる段差梁であり、相対的に梁成の高い前記鉄骨梁よりも前記鋼製コラムコアの成が高いことを特徴とする、請求項1乃至3のいずれか一項に記載の柱梁接合部構造。 The plurality of steel-framed beams joined to the steel column core are step beams having different beam formations, and the steel column cores are made higher than the steel-framed beams having a relatively high beam formation. , The beam-column joint structure according to any one of claims 1 to 3 . 前記鋼製プレートの厚みtpが、降伏線理論に基づいた以下3つの条件式(A),(B),(C)を全て満たす厚みであることを特徴とする、請求項1乃至4のいずれか一項に記載の柱梁接合部構造。
Figure 0007009141000013
Any of claims 1 to 4 , wherein the thickness tp of the steel plate is a thickness that satisfies all of the following three conditional expressions (A), (B), and (C) based on the yield line theory. The column-beam joint structure described in item 1.
Figure 0007009141000013
JP2017187463A 2017-09-28 2017-09-28 Column-beam joint structure Active JP7009141B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187463A JP7009141B2 (en) 2017-09-28 2017-09-28 Column-beam joint structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187463A JP7009141B2 (en) 2017-09-28 2017-09-28 Column-beam joint structure

Publications (2)

Publication Number Publication Date
JP2019060192A JP2019060192A (en) 2019-04-18
JP7009141B2 true JP7009141B2 (en) 2022-01-25

Family

ID=66178076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187463A Active JP7009141B2 (en) 2017-09-28 2017-09-28 Column-beam joint structure

Country Status (1)

Country Link
JP (1) JP7009141B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038586A (en) 2000-07-26 2002-02-06 Yokogawa Bridge Corp Increased thickness reinforcement type column-beam joint portion and square type column having the same
US20030041549A1 (en) 2001-08-30 2003-03-06 Simmons Robert J. Moment-resistant building frame structure componentry and method
JP2004162340A (en) 2002-11-12 2004-06-10 Nippon Steel Corp Column beam joint structure of welding built-in box sectional column and h-shaped section beam

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05148894A (en) * 1991-11-28 1993-06-15 Hitachi Kizai Kk Structure of joining section of column and beam structure
JPH08302899A (en) * 1995-05-01 1996-11-19 Kawasaki Steel Corp Column-to-beam joint of rectangular steel-pipe column and its manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002038586A (en) 2000-07-26 2002-02-06 Yokogawa Bridge Corp Increased thickness reinforcement type column-beam joint portion and square type column having the same
US20030041549A1 (en) 2001-08-30 2003-03-06 Simmons Robert J. Moment-resistant building frame structure componentry and method
JP2004162340A (en) 2002-11-12 2004-06-10 Nippon Steel Corp Column beam joint structure of welding built-in box sectional column and h-shaped section beam

Also Published As

Publication number Publication date
JP2019060192A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5749087B2 (en) Concrete filled steel pipe column
KR101437859B1 (en) Concrete filled octagonal steel column
JP2005097914A (en) Square steel box column
JP7110000B2 (en) Column-beam joint structure
KR20180007355A (en) Prefabricated formwork of reinforced concretestructure
JP2018178466A (en) Damper and method for manufacturing damper
JP7009141B2 (en) Column-beam joint structure
JP2006144535A (en) Joint structure of column and beam
JP5579582B2 (en) Method of joining buckling stiffening braces and buckling stiffening braces
JP6027590B2 (en) Pile head joint structure using pile head reinforcement with bearing resistance bracket and pile head reinforcement with bearing resistance bracket
KR20170066192A (en) Concrete composite column and joint structure of composite column an beam and manufacturing method of concrete composite column
JP2001271451A (en) Thickness increased steel beam and its manufacture
JP2010090595A (en) Joint structure of pillar and beam and beam member
JP5391941B2 (en) Steel pipe concrete composite pile and joint structure of the steel pipe concrete composite pile
KR101579269B1 (en) Attachable Reinforcing Member and Reinforcing Structure Using the Same
JP4127225B2 (en) Beam-column joint
JP7047856B2 (en) Assembling method of four-sided welded box-shaped cross-section columns, skin plate members, four-sided welded box-shaped cross-section columns, and concrete-filled steel pipe columns
JP6179757B2 (en) Column-to-column connection structure for different diameter column connections in buildings
JP5527945B2 (en) Beam-column joint structure
JP4966673B2 (en) Column and beam joint structure
CN106760476B (en) Internal connection type scaffold fastener and connection structure thereof
JP7252249B2 (en) Square steel pipe and welding method for square steel pipe
JP3065186B2 (en) Steel frame with inner diaphragm plate
JP2010216075A (en) Joint structure of reinforced concrete column and steel frame beam
JP2018040225A (en) Junction structure between reinforced concrete column and beam, and construction method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210721

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220112

R150 Certificate of patent or registration of utility model

Ref document number: 7009141

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150