JP7008297B2 - Power supply system and control method of power supply system - Google Patents

Power supply system and control method of power supply system Download PDF

Info

Publication number
JP7008297B2
JP7008297B2 JP2017246618A JP2017246618A JP7008297B2 JP 7008297 B2 JP7008297 B2 JP 7008297B2 JP 2017246618 A JP2017246618 A JP 2017246618A JP 2017246618 A JP2017246618 A JP 2017246618A JP 7008297 B2 JP7008297 B2 JP 7008297B2
Authority
JP
Japan
Prior art keywords
hydrogen storage
hydrogen
storage device
temperature
heat source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017246618A
Other languages
Japanese (ja)
Other versions
JP2019114404A (en
Inventor
英介 下田
剛 野津
哲彦 前田
成輝 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Shimizu Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Shimizu Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017246618A priority Critical patent/JP7008297B2/en
Publication of JP2019114404A publication Critical patent/JP2019114404A/en
Application granted granted Critical
Publication of JP7008297B2 publication Critical patent/JP7008297B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Description

本発明は、電力供給システムおよび電力供給システムの制御方法に関する。 The present invention relates to a power supply system and a control method for the power supply system.

2012年7月の再生可能エネルギーの固定価格買取制度(FIT;Feed-In Tariff)の導入は、非住宅用の太陽光発電市場(公共・産業分野)を大きく変えることとなった。JPEA PV OUTLOOK 2030によると、国内総出荷に占める非住宅用の割合は、2012年度で(国内総出荷量3.8GWに対し)50%、2013年度で(同8.4GWに対し)73%、2014年度上半期で(上期国内総出荷量4.3GWに対し)77%と大幅に伸張している。 The introduction of the feed-in tariff (FIT) for renewable energy in July 2012 has significantly changed the non-residential photovoltaic market (public and industrial sector). According to JPEA PV OUTLOOK 2030, the ratio of non-residential use to the total domestic shipment was 50% in 2012 (relative to 3.8 GW of domestic shipment) and 73% in 2013 (relative to 8.4 GW). In the first half of 2014 (compared to the total domestic shipment of 4.3 GW in the first half), it increased significantly to 77%.

太陽光発電の大量の設備認定に伴い、それらが全て稼動した場合、電力需要の小さい軽負荷期に太陽光発電の供給電力量が需要電力量を上回る懸念が出てきたため、指定電気事業者においては「無制限・無補償の出力抑制」を条件として系統接続を行うこととなった。
今後、更なる太陽光発電の系統接続量の増加に伴い、電力需給調整としての出力制御実施は現実のものとなる。出力制御が実施されると、その分の再生可能エネルギーは捨てられてしまうため、エネルギーの効率的な利用という観点から見ると、蓄電池等を用いて捨てる分のエネルギー(以下、余剰電力と呼ぶ)は貯蔵しておくことが望ましい。
With the certification of a large amount of photovoltaic power generation equipment, if all of them are in operation, there is a concern that the amount of power supplied by photovoltaic power generation will exceed the amount of power demand during the light load period when power demand is small. Will make a grid connection on the condition of "unlimited and uncompensated output suppression".
In the future, with the further increase in the amount of grid connection for photovoltaic power generation, the implementation of output control as power supply and demand adjustment will become a reality. When output control is implemented, that amount of renewable energy is wasted, so from the perspective of efficient use of energy, the amount of energy that is wasted using a storage battery or the like (hereinafter referred to as surplus power). Is desirable to store.

余剰電力の貯蔵手段として、近年注目されているのが水素である。蓄電池による貯蔵に比べると、電気から水素への変換、また水素から電気への変換に伴う効率低下が大きいというデメリットはあるが、大容量、長期的なエネルギー貯蔵に適している。
電力を使用して水素を製造・貯蔵・利用(発電)するシステムとしては、例えば特許文献1に記載の電力供給システムがある。特許文献1に記載の電力供給システムは、電力系統に連系された需要家に水素製造装置、水素貯蔵装置、燃料電池、負荷モニタ装置、監視制御装置を設け、需要予測、負荷変動に基づき水素を製造・貯蔵・利用するシステムである。
Hydrogen has been attracting attention in recent years as a means of storing surplus electricity. Compared to storage using a storage battery, it has the disadvantage of a large decrease in efficiency due to the conversion of electricity to hydrogen and the conversion of hydrogen to electricity, but it is suitable for large-capacity, long-term energy storage.
As a system for producing, storing, and utilizing (generating electricity) hydrogen using electric power, for example, there is a power supply system described in Patent Document 1. The power supply system described in Patent Document 1 is provided with a hydrogen production device, a hydrogen storage device, a fuel cell, a load monitor device, and a monitoring control device in a consumer connected to the power system, and hydrogen is based on a demand forecast and a load fluctuation. It is a system that manufactures, stores, and uses.

特開2003-061251号公報Japanese Patent Application Laid-Open No. 2003-061251

上記の課題を解決するために、本発明の電力供給システムは、再生可能エネルギーを需要家負荷に供給する再生可能エネルギー電源を有し、前記再生可能エネルギーのうちの余剰電力を出力する再生可能エネルギー発電装置と、前記再生可能エネルギー発電装置が出力する余剰電力を用いて水素を製造する水素製造装置と、前記水素製造装置によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、前記水素吸蔵合金に貯蔵された水素を放出する水素貯蔵装置と、前記水素貯蔵装置が放出する水素を利用して発電し、発電した電力を前記需要家負荷に供給する燃料電池と、前記水素貯蔵装置が水素を水素吸蔵合金に吸蔵させる所定の時刻に前記水素貯蔵装置に対して予冷温度を与え、前記水素貯蔵装置が水素を放出させる所定の時刻に前記水素貯蔵装置に対して予熱温度を与える冷温熱源と、前記水素貯蔵装置の所定の時刻における水素吸蔵量と水素放出量とを表す前記水素貯蔵装置の運転計画を作成し、前記水素貯蔵装置の運転計画に基づいて前記冷温熱源の前記予冷温度または前記予熱温度を決定し、決定された前記予冷温度または前記予熱温度を前記冷温熱源に与えさせる制御装置と、を備え、前記冷温熱源は、前記水素貯蔵装置に対して前記予冷温度を与える冷熱源と、前記水素貯蔵装置に対して前記予熱温度を与える温熱源と、に分かれて構成され、前記温熱源は、前記燃料電池と、前記燃料電池が停止しているときに前記水素貯蔵装置に対して前記予熱温度を与える温水蓄熱槽と、を有する、電力供給システムであるIn order to solve the above problems, the power supply system of the present invention has a renewable energy power source that supplies renewable energy to a consumer load, and outputs the surplus power of the renewable energy. The power generation device, the hydrogen production device that produces hydrogen using the surplus power output by the renewable energy power generation device, and the hydrogen produced by the hydrogen production device are stored by being stored in a hydrogen storage alloy, and described above. A hydrogen storage device that releases hydrogen stored in a hydrogen storage alloy, a fuel cell that generates power using the hydrogen released by the hydrogen storage device and supplies the generated power to the consumer load, and the hydrogen storage device. Gives a precooling temperature to the hydrogen storage device at a predetermined time for storing hydrogen in a hydrogen storage alloy, and gives a preheating temperature to the hydrogen storage device at a predetermined time when the hydrogen storage device releases hydrogen. An operation plan of the hydrogen storage device representing the heat source and the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device is created, and the precooling temperature of the cold / hot heat source is based on the operation plan of the hydrogen storage device. Alternatively, the cold / hot heat source comprises a control device for determining the preheating temperature and giving the determined preheating temperature or the preheating temperature to the cold / hot heat source, and the cold / hot heat source gives the precooling temperature to the hydrogen storage device. It is divided into a source and a heat source that gives the preheating temperature to the hydrogen storage device, and the heat source is divided into the fuel cell and the hydrogen storage device when the fuel cell is stopped. On the other hand, it is a power supply system having a hot water heat storage tank that gives the preheating temperature .

しかしながら、水素を吸収/放出させる合金のPCT(Pressure-Composition-Temperature)は、例えばLaNi5に代表されるようにプラトー(平坦)な領域が広く、また吸収/放出時におけるPCTのヒステリシスが小さいものが適している。これは限られた圧力範囲において吸収圧、放出圧の設定が容易で、かつ大量に水素を吸収/放出が可能なためである。しかし上記のような合金は、水素の吸放出を繰り返すと共に微粉化する性質を有しているため、可燃性が高いという課題がある。そのため、安全性の観点からは可燃性が低い合金が望ましいが、そのような合金のPCTはプラトー領域が狭く、またヒステリシスも大きいため、従来のような圧力管理による制御では、限られた圧力範囲で大量の水素を吸収/放出させることができない。 However, the PCT (Pressure-Composition-Temperature) of an alloy that absorbs / releases hydrogen has a wide plateau (flat) region as represented by LaNi5, and has a small PCT hysteresis during absorption / release. Are suitable. This is because the absorption pressure and the release pressure can be easily set in a limited pressure range, and a large amount of hydrogen can be absorbed / released. However, the above alloy has a problem of high flammability because it has a property of repeatedly absorbing and releasing hydrogen and becoming finely pulverized. Therefore, an alloy with low flammability is desirable from the viewpoint of safety, but the PCT of such an alloy has a narrow plateau region and a large hysteresis, so that the conventional control by pressure control has a limited pressure range. Cannot absorb / release a large amount of hydrogen.

本発明は上記の点に鑑みてなされたものであり、温度管理が必要となる組成の水素吸蔵合金を用いても、所定の時刻に所定の水素量を吸蔵/放出できることにより、予冷、予熱熱量/時間を最小限にとどめることができ、省エネルギーを図ることができる電力供給システムおよび電力供給システムの制御方法を提供することにある。 The present invention has been made in view of the above points, and even if a hydrogen storage alloy having a composition requiring temperature control is used, a predetermined amount of hydrogen can be stored / released at a predetermined time, so that the amount of precooling and preheating heat can be stored. / It is an object of the present invention to provide a power supply system and a control method of a power supply system that can minimize time and save energy.

上記の課題を解決するために、本発明の電力供給システムは、再生可能エネルギーを需要家負荷に供給する再生可能エネルギー電源を有し、前記再生可能エネルギーのうちの余剰電力を出力する再生可能エネルギー発電装置と、前記再生可能エネルギー発電装置が出力する余剰電力を用いて水素を製造する水素製造装置と、前記水素製造装置によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、前記水素吸蔵合金に貯蔵された水素を放出する水素貯蔵装置と、前記水素貯蔵装置が放出する水素を利用して発電し、発電した電力を前記需要家負荷に供給する燃料電池と、前記水素貯蔵装置が水素を水素吸蔵合金に吸蔵させる所定の時刻に前記水素貯蔵装置に対して予冷温度を与え、前記水素貯蔵装置が水素を放出させる所定の時刻に前記水素貯蔵装置に対して予熱温度を与える冷温熱源と、前記水素貯蔵装置の所定の時刻における水素吸蔵量と水素放出量とを表す前記水素貯蔵装置の運転計画を作成し、前記水素貯蔵装置の運転計画に基づいて前記冷温熱源の前記予冷温度または前記予熱温度を決定し、決定された前記予冷温度または前記予熱温度を前記冷温熱源に与えさせる制御装置と、を備える。 In order to solve the above problems, the power supply system of the present invention has a renewable energy power source that supplies renewable energy to a consumer load, and outputs the surplus power of the renewable energy. The power generation device, the hydrogen production device that produces hydrogen using the surplus power output by the renewable energy power generation device, and the hydrogen produced by the hydrogen production device are stored by being stored in a hydrogen storage alloy, and described above. A hydrogen storage device that releases hydrogen stored in a hydrogen storage alloy, a fuel cell that generates power using the hydrogen released by the hydrogen storage device and supplies the generated power to the consumer load, and the hydrogen storage device. Gives a precooling temperature to the hydrogen storage device at a predetermined time for storing hydrogen in a hydrogen storage alloy, and gives a preheating temperature to the hydrogen storage device at a predetermined time when the hydrogen storage device releases hydrogen. An operation plan of the hydrogen storage device representing the heat source and the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device is created, and the precooling temperature of the cold / hot heat source is based on the operation plan of the hydrogen storage device. Alternatively, the present invention includes a control device that determines the preheating temperature and causes the determined preheating temperature or the preheating temperature to be given to the cold / hot heat source.

また、本発明の電力供給システムにおいて、前記制御装置は、前記需要家負荷の電力予測値と、前記再生可能エネルギーの予測値とから、前記余剰電力を推定し、前記余剰電力の推定値から前記水素製造装置の運転計画を作成し、作成された前記水素製造装置の運転計画に基づいて、前記水素貯蔵装置の運転計画における水素吸蔵量を決定し、前記水素貯蔵装置の水素貯蔵量と、前記需要家負荷の電力予測値とから前記燃料電池の運転計画を作成し、作成された前記燃料電池の運転計画に基づいて、前記水素貯蔵装置の運転計画における水素放出量を決定する。 Further, in the power supply system of the present invention, the control device estimates the surplus power from the predicted value of the consumer load and the predicted value of the renewable energy, and from the estimated value of the surplus power. An operation plan for the hydrogen production device is created, and based on the created operation plan for the hydrogen production device, the hydrogen storage amount in the operation plan for the hydrogen storage device is determined, and the hydrogen storage amount of the hydrogen storage device and the hydrogen storage amount are determined. An operation plan for the fuel cell is created from the predicted electric power load of the consumer load, and the amount of hydrogen released in the operation plan for the hydrogen storage device is determined based on the created operation plan for the fuel cell.

また、本発明の電力供給システムにおいて、前記制御装置は、前記予冷温度および前記予熱温度を、前記水素吸蔵合金の水素貯蔵量と圧力、温度の関係性を示したPCT曲線に基づき決定する。 Further, in the power supply system of the present invention, the control device determines the precooling temperature and the preheating temperature based on a PCT curve showing the relationship between the hydrogen storage amount of the hydrogen storage alloy, pressure, and temperature.

また、本発明の電力供給システムにおいて、前記制御装置は、前記冷温熱源が前記予冷温度または前記予熱温度を前記冷温熱源に与える時間を、前記冷温熱源の過去の前記水素貯蔵装置に対する投入熱量、前記予冷温度または前記予熱温度を示す合金温度、前記水素吸蔵合金の比熱および外気温度により決定する。 Further, in the power supply system of the present invention, the control device sets the time for the cold / hot heat source to give the precooled temperature or the preheated temperature to the cold / hot heat source, the amount of heat input to the hydrogen storage device in the past of the cold / hot heat source, and the above. It is determined by the precooling temperature or the alloy temperature indicating the preheating temperature, the specific heat of the hydrogen storage alloy, and the outside air temperature.

また、本発明の電力供給システムの制御方法は、再生可能エネルギー発電装置が、再生可能エネルギーを需要家負荷に供給する再生可能エネルギー電源を有し、前記再生可能エネルギーのうちの余剰電力を出力する再生可能エネルギー発電工程と、水素製造装置が、前記再生可能エネルギー発電装置が出力する余剰電力を用いて水素を製造する水素製造工程と、水素貯蔵装置が、前記水素製造装置によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、前記水素吸蔵合金に貯蔵された水素を前記水素吸蔵合金に吸蔵された水素を放出する水素貯蔵工程と、燃料電池が、前記水素貯蔵装置が放出する水素を利用して発電し、発電した電力を前記需要家負荷に供給する電力供給工程と、冷温熱源が、前記水素貯蔵装置が水素を水素吸蔵合金に吸蔵させる所定の時刻に前記水素貯蔵装置に対して予冷温度を与え、前記水素貯蔵装置が水素を放出させる所定の時刻に前記水素貯蔵装置に対して予熱温度を与える加熱冷却工程と、制御装置が、前記水素貯蔵装置の所定の時刻における水素吸蔵量と水素放出量とを表す前記水素貯蔵装置の運転計画を作成し、前記水素貯蔵装置の運転計画に基づいて前記冷温熱源の前記予冷温度または前記予熱温度を決定し、決定された前記予冷温度または前記予熱温度を前記冷温熱源に与えさせる制御工程と、を備え、前記冷温熱源は、前記水素貯蔵装置に対して前記予冷温度を与える冷熱源と、前記水素貯蔵装置に対して前記予熱温度を与える温熱源と、に分かれて構成されており、前記温熱源は、前記燃料電池と、温水蓄熱槽とを備え、前記温水蓄熱槽は、前記燃料電池が停止しているときに前記水素貯蔵装置に対して前記予熱温度を与える電力供給システムの制御方法であるFurther, in the control method of the power supply system of the present invention, the renewable energy power generation device has a renewable energy power source that supplies the renewable energy to the consumer load, and outputs the surplus power of the renewable energy. The renewable energy power generation process, the hydrogen production process in which the hydrogen production apparatus produces hydrogen using the surplus power output by the renewable energy power generation apparatus, and the hydrogen storage apparatus produce the hydrogen produced by the hydrogen production apparatus. , The hydrogen storage step of storing by storing in a hydrogen storage alloy and releasing the hydrogen stored in the hydrogen storage alloy and releasing the hydrogen stored in the hydrogen storage alloy, and the fuel cell releases the hydrogen in the hydrogen storage device. The power supply process of generating power using hydrogen and supplying the generated power to the consumer load, and the cold / hot heat source to the hydrogen storage device at a predetermined time when the hydrogen storage device stores hydrogen in the hydrogen storage alloy. A heating / cooling step of giving a preheating temperature to the hydrogen storage device and giving a preheating temperature to the hydrogen storage device at a predetermined time when the hydrogen storage device releases hydrogen, and a control device for hydrogen at a predetermined time of the hydrogen storage device. An operation plan of the hydrogen storage device representing the storage amount and the hydrogen release amount is created, the precooling temperature or the preheating temperature of the cold / hot heat source is determined based on the operation plan of the hydrogen storage device, and the determined precooling is determined. The cold / hot heat source comprises a control step of giving a temperature or the preheating temperature to the cold / hot heat source, and the cold / hot heat source includes a cold heat source that gives the precooling temperature to the hydrogen storage device and the preheating temperature to the hydrogen storage device. The hot water source includes the fuel cell and the hot water heat storage tank, and the hot water heat storage tank stores the hydrogen when the fuel cell is stopped. It is a control method of a power supply system that gives the preheating temperature to an apparatus .

本発明では、制御装置が、水素貯蔵装置の所定の時刻における水素吸蔵量と水素放出量とを表す水素貯蔵装置の運転計画を作成する。また、制御装置は、水素貯蔵装置の運転計画に基づいて冷温熱源の予冷温度または予熱温度を決定し、決定された予冷温度または予熱温度を冷温熱源に与えさせる制御を行う。 In the present invention, the control device creates an operation plan of the hydrogen storage device representing the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device. Further, the control device determines the precooling temperature or the preheating temperature of the cold / hot heat source based on the operation plan of the hydrogen storage device, and controls to give the determined precooling temperature or the preheating temperature to the cold / hot heat source.

これにより、温度管理が必要となる組成の水素吸蔵合金を用いても、所定の時刻に所定の水素量を吸蔵/放出できることにより、予冷、予熱熱量/時間を最小限にとどめることができ、省エネルギーを図ることができる。 As a result, even if a hydrogen storage alloy with a composition that requires temperature control can be used, a predetermined amount of hydrogen can be stored / released at a predetermined time, so that precooling and preheating heat / time can be minimized, which saves energy. Can be planned.

本実施形態における電力供給システムの構成を示す図である。It is a figure which shows the structure of the power supply system in this embodiment. 電力供給システムの制御方法を示すフローチャートである。It is a flowchart which shows the control method of a power supply system. 水素吸蔵合金の水素貯蔵量と圧力、温度の関係性を示したPCT曲線である。It is a PCT curve which showed the relationship between the hydrogen storage amount of a hydrogen storage alloy, pressure, and temperature. 水素吸蔵合金のPCT曲線を説明するための図である。It is a figure for demonstrating the PCT curve of a hydrogen storage alloy. 水素吸蔵合金のPCT曲線を説明するための図である。It is a figure for demonstrating the PCT curve of a hydrogen storage alloy. 本電力供給システムにおける熱系統図である。It is a thermal system diagram in this power supply system. 本電力供給システムにおける各運転条件とバルブの開閉状態を説明するための図である。It is a figure for demonstrating each operation condition and the open / closed state of a valve in this power supply system.

(本発明の実施形態)
以下、図面を参照しながら本発明の実施形態について詳しく説明する。
図1は、本実施形態における電力供給システムの構成を示す図である。電力供給システム100は、再生可能エネルギー発電装置1、水素製造装置2、水素貯蔵装置3、燃料電池4、需要家負荷5、冷温熱源6、計測装置7、および制御装置8を含んで構成される。
制御装置8は、水素製造装置2、水素貯蔵装置3、燃料電池4、および冷温熱源6を制御するために必要な各種運転計画を作成し、作成した各種運転計画に基づいて、水素製造装置2、水素貯蔵装置3、燃料電池4、および冷温熱源6を制御する。
計測装置7は、制御装置8が水素製造装置2、水素貯蔵装置3、燃料電池4、および冷温熱源6を制御するために必要な各種計測(再生可能エネルギー発電装置1、水素製造装置2、水素貯蔵装置3、燃料電池4、需要家負荷5、冷温熱源6の出力結果の計測)を行う。
本実施形態における電力供給システム100およびその制御方法は、上術したような温度管理が必要な水素吸蔵合金を水素貯蔵装置3に用いて、再生可能エネルギー発電装置1の出力である再生可能エネルギーの余剰電力による水素製造・貯蔵・利用を行うシステム、およびその運転方法を規定するものである。特に、本実施形態における電力供給システム100は、再生可能エネルギー発電装置1による余剰電力の発生に備え、冷温熱源6で水素貯蔵装置3を効果的に予冷、予熱することを特徴としている。
(Embodiment of the present invention)
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a power supply system according to the present embodiment. The power supply system 100 includes a renewable energy power generation device 1, a hydrogen production device 2, a hydrogen storage device 3, a fuel cell 4, a consumer load 5, a cold / hot heat source 6, a measuring device 7, and a control device 8. ..
The control device 8 creates various operation plans necessary for controlling the hydrogen production device 2, the hydrogen storage device 3, the fuel cell 4, and the cold / hot heat source 6, and the hydrogen production device 2 is based on the created various operation plans. , Hydrogen storage device 3, fuel cell 4, and cold / hot heat source 6.
The measuring device 7 includes various measurements (renewable energy power generation device 1, hydrogen manufacturing device 2, hydrogen) necessary for the control device 8 to control the hydrogen producing device 2, the hydrogen storage device 3, the fuel cell 4, and the cold / hot heat source 6. Measurement of the output results of the storage device 3, the fuel cell 4, the consumer load 5, and the cold / hot heat source 6).
In the power supply system 100 and its control method in the present embodiment, a hydrogen storage alloy that requires temperature control as described above is used for the hydrogen storage device 3, and the renewable energy that is the output of the renewable energy power generation device 1 is used. It defines a system for producing, storing, and using hydrogen from surplus electricity, and its operating method. In particular, the power supply system 100 in the present embodiment is characterized in that the hydrogen storage device 3 is effectively precooled and preheated by the cold / hot heat source 6 in preparation for the generation of surplus power by the renewable energy power generation device 1.

再生可能エネルギー発電装置1は、再生可能エネルギーを需要家負荷5に供給する再生可能エネルギー電源(太陽光発電や風力発電等の再生可能エネルギー電源)を有し、再生可能エネルギーのうちの余剰電力を水素製造装置2に対して出力する。
需要家負荷5に供給する再生可能エネルギー、および水素製造装置2に供給する余剰電力は、計測装置7により計測される。
再生可能エネルギー発電装置1が需要家負荷5に供給する再生可能エネルギー電源の発電量は、計測装置7により計測され(図1においてM1で示す)、制御装置8に対して、計測結果として再生可能エネルギーの発電量(実測値)が送信される(図1においてKで示す)。
再生可能エネルギー発電装置1が水素製造装置2に供給する余剰電力は、計測装置7により計測され(図1においてM2で示す)、制御装置8に対して、計測結果として余剰電力(実測値)が送信される(図1においてKで示す)。
需要家負荷5における使用電力(需要家負荷電力)は、計測装置7により計測され(図1においてM8で示す)、制御装置8に対して、計測結果として需要家負荷電力(実績値)が送信される(図1においてKで示す)。
The renewable energy power generation device 1 has a renewable energy power source (renewable energy power source such as solar power generation and wind power generation) that supplies renewable energy to the consumer load 5, and surplus power of the renewable energy is used. Output to the hydrogen production device 2.
The renewable energy supplied to the consumer load 5 and the surplus power supplied to the hydrogen production device 2 are measured by the measuring device 7.
The amount of power generated by the renewable energy power source supplied by the renewable energy power generation device 1 to the consumer load 5 is measured by the measuring device 7 (indicated by M1 in FIG. 1), and can be reproduced as a measurement result for the control device 8. The amount of energy generated (measured value) is transmitted (indicated by K in FIG. 1).
The surplus power supplied by the renewable energy power generation device 1 to the hydrogen production device 2 is measured by the measuring device 7 (indicated by M2 in FIG. 1), and the surplus power (measured value) is measured as a measurement result for the control device 8. Sent (indicated by K in FIG. 1).
The power used in the consumer load 5 (consumer load power) is measured by the measuring device 7 (indicated by M8 in FIG. 1), and the consumer load power (actual value) is transmitted to the control device 8 as the measurement result. (Represented by K in FIG. 1).

制御装置8では、まず、あるタイミング(例えば夕方)で現在時刻以降の一定期間(例えば翌日1日分)の需要家負荷電力と再生可能エネルギーの発電量とを予測し、再生可能エネルギー発電量の予測値と需要家負荷の電力予測値との差分から余剰電力の発生時間帯と発生量を推定する。次に余剰電力の推定値から、水素製造装置2、水素貯蔵装置3、燃料電池4の運転計画のうち、水素製造装置2の運転計画を作成する。水素製造装置2では、余剰電力を用いて水素製造を行うため、水素製造装置2の運転時間と水素製造装置2の入力電力は余剰電力の推定値と一致する。
すなわち、制御装置8は、需要家負荷の電力予測値と、再生可能エネルギーの予測値とから、余剰電力を推定し、余剰電力の推定値から水素製造装置2の運転計画を作成する。
制御装置8は、作成した水素製造装置2の運転計画に基づいて、水素製造装置2を制御する(図1においてS1で示す)。
The control device 8 first predicts the consumer load power and the amount of renewable energy generated for a certain period after the current time (for example, for one day the next day) at a certain timing (for example, in the evening), and determines the amount of renewable energy power generation. The time zone and amount of surplus power generated are estimated from the difference between the predicted value and the predicted power value of the consumer load. Next, out of the operation plans of the hydrogen production device 2, the hydrogen storage device 3, and the fuel cell 4, the operation plan of the hydrogen production device 2 is created from the estimated value of the surplus power. Since hydrogen production is performed using the surplus electric power in the hydrogen production apparatus 2, the operating time of the hydrogen production apparatus 2 and the input electric power of the hydrogen production apparatus 2 match the estimated value of the surplus electric power.
That is, the control device 8 estimates the surplus power from the predicted value of the consumer load and the predicted value of the renewable energy, and creates an operation plan of the hydrogen production device 2 from the estimated value of the surplus power.
The control device 8 controls the hydrogen production device 2 based on the created operation plan of the hydrogen production device 2 (indicated by S1 in FIG. 1).

水素製造装置2は、再生可能エネルギー発電装置1が出力する余剰電力を用いて水素を製造する。
また、水素製造装置2の出力である水素製造量は水素製造装置2の入力電力と比例するため、水素製造装置2の運転計画が決定されると各時刻における水素吸蔵量も計画される。
なお、水素製造装置2の出力である水素製造量は、計測装置7により計測され(図1においてM3で示す)、制御装置8に対して、計測結果として水素吸蔵量が送信される(図1においてKで示す)。
すなわち、制御装置8は、作成された水素製造装置2の運転計画に基づいて、水素貯蔵装置3の運転計画における水素吸蔵量を決定する。
The hydrogen production device 2 produces hydrogen using the surplus electric power output by the renewable energy power generation device 1.
Further, since the hydrogen production amount, which is the output of the hydrogen production device 2, is proportional to the input power of the hydrogen production device 2, the hydrogen storage amount at each time is also planned when the operation plan of the hydrogen production device 2 is determined.
The hydrogen production amount, which is the output of the hydrogen production device 2, is measured by the measuring device 7 (indicated by M3 in FIG. 1), and the hydrogen storage amount is transmitted to the control device 8 as the measurement result (FIG. 1). Indicated by K).
That is, the control device 8 determines the hydrogen storage amount in the operation plan of the hydrogen storage device 3 based on the created operation plan of the hydrogen production device 2.

水素貯蔵装置3は、水素貯蔵媒体として水素吸蔵合金を用いており、水素製造装置2によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、水素吸蔵合金に貯蔵された水素を放出する。
なお、水素貯蔵装置3の水素貯蔵量は、計測装置7により計測され(図1においてM4で示す)、制御装置8に対して、計測結果として水素貯蔵量が送信される(図1においてKで示す)。また、水素貯蔵装置3の出力である水素放出量は、計測装置7により計測され(図1においてM6で示す)、制御装置8に対して、計測結果として水素放出量が送信される(図1においてKで示す)。
燃料電池4は、水素貯蔵装置3が放出する水素を利用して発電し、発電した電力を需要家負荷5に供給する。
なお、燃料電池4の出力である発電電力量は、計測装置7により計測され(図1においてM7で示す)、制御装置8に対して、計測結果として発電電力量が送信される(図1においてKで示す)。
The hydrogen storage device 3 uses a hydrogen storage alloy as a hydrogen storage medium, stores hydrogen produced by the hydrogen production device 2 by storing it in the hydrogen storage alloy, and releases the hydrogen stored in the hydrogen storage alloy. do.
The hydrogen storage amount of the hydrogen storage device 3 is measured by the measuring device 7 (indicated by M4 in FIG. 1), and the hydrogen storage amount is transmitted to the control device 8 as the measurement result (K in FIG. 1). show). Further, the hydrogen release amount, which is the output of the hydrogen storage device 3, is measured by the measuring device 7 (indicated by M6 in FIG. 1), and the hydrogen release amount is transmitted to the control device 8 as the measurement result (FIG. 1). Indicated by K).
The fuel cell 4 uses the hydrogen released by the hydrogen storage device 3 to generate electric power, and supplies the generated electric power to the consumer load 5.
The generated power amount, which is the output of the fuel cell 4, is measured by the measuring device 7 (indicated by M7 in FIG. 1), and the generated power amount is transmitted to the control device 8 as the measurement result (in FIG. 1). (Indicated by K).

制御装置8は、燃料電池4の運転計画を水素貯蔵量M4と需要家負荷5の電力実績値M8とにより作成する。例えば、需要家の契約電力を低減する目的であれば需要家負荷5のピーク電力が予測されている時間帯に運転を行うよう運転計画を作成する。水素貯蔵装置3における合金からの水素放出量M6と燃料電池4の発電量M7との間にも比例関係は成立するので、燃料電池4の運転計画が決定すると水素放出量M6も計画される。なお、これらの比例係数は計測装置7で取得された過去の実績値(水素貯蔵量M4と需要家負荷5の電力実績値との実績値M8)より最小二乗法で算出することができる。
すなわち、制御装置8は、水素貯蔵装置3の水素貯蔵量と、需要家負荷5の電力予測値とから燃料電池4の運転計画を作成し、作成された燃料電池4の運転計画に基づいて、水素貯蔵装置3の運転計画における水素放出量を決定する。
制御装置8は、作成した燃料電池4の運転計画に基づいて、燃料電池4を制御する(図1においてS3で示す)。
また、制御装置8は、作成した水素貯蔵装置3の運転計画に基づいて、水素貯蔵装置3を制御する(図1においてS2で示す)。
The control device 8 creates an operation plan of the fuel cell 4 based on the hydrogen storage amount M4 and the actual electric power value M8 of the consumer load 5. For example, for the purpose of reducing the contract power of the consumer, an operation plan is created so that the operation is performed in the time zone when the peak power of the consumer load 5 is predicted. Since a proportional relationship is also established between the hydrogen release amount M6 from the alloy in the hydrogen storage device 3 and the power generation amount M7 of the fuel cell 4, the hydrogen release amount M6 is also planned when the operation plan of the fuel cell 4 is decided. These proportional coefficients can be calculated by the least squares method from the past actual values (actual value M8 of the hydrogen storage amount M4 and the actual power value of the consumer load 5) acquired by the measuring device 7.
That is, the control device 8 creates an operation plan of the fuel cell 4 from the hydrogen storage amount of the hydrogen storage device 3 and the electric power predicted value of the consumer load 5, and based on the created operation plan of the fuel cell 4. The amount of hydrogen released in the operation plan of the hydrogen storage device 3 is determined.
The control device 8 controls the fuel cell 4 based on the created operation plan of the fuel cell 4 (indicated by S3 in FIG. 1).
Further, the control device 8 controls the hydrogen storage device 3 based on the created operation plan of the hydrogen storage device 3 (shown by S2 in FIG. 1).

冷温熱源6は、冷温水により水素貯蔵装置3が有する水素吸蔵合金を加熱、冷却する熱源であり、水素貯蔵装置3が水素を水素吸蔵合金に吸蔵させる所定の時刻に水素貯蔵装置3に対して予冷温度を与え、水素貯蔵装置3が水素を放出させる所定の時刻に水素貯蔵装置3に対して予熱温度を与える。
水素貯蔵装置3の運転計画の所定の時刻における水素放出量および水素吸蔵量が、上述のように水素製造装置2の運転計画、燃料電池4の運転計画により決定されたので、制御装置8は、水素貯蔵装置3の所定の時刻における水素吸蔵量と水素放出量とを表す水素貯蔵装置3の運転計画を作成し、水素貯蔵装置3の運転計画に基づいて冷温熱源6の予冷温度または予熱温度を決定し、決定された予冷温度または予熱温度を冷温熱源6に与えさせる(図1においてS4で示す)。
The cold / hot heat source 6 is a heat source that heats and cools the hydrogen storage alloy of the hydrogen storage device 3 with cold / hot water, and the hydrogen storage device 3 stores hydrogen in the hydrogen storage alloy at a predetermined time with respect to the hydrogen storage device 3. A precooling temperature is given, and a preheating temperature is given to the hydrogen storage device 3 at a predetermined time when the hydrogen storage device 3 releases hydrogen.
Since the amount of hydrogen released and the amount of hydrogen stored at a predetermined time in the operation plan of the hydrogen storage device 3 were determined by the operation plan of the hydrogen production device 2 and the operation plan of the fuel cell 4 as described above, the control device 8 has a control device 8. An operation plan of the hydrogen storage device 3 representing the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device 3 is created, and the precooling temperature or the preheating temperature of the cold / hot heat source 6 is set based on the operation plan of the hydrogen storage device 3. It is determined and the determined precooling temperature or preheating temperature is given to the cold / hot heat source 6 (indicated by S4 in FIG. 1).

ここで、冷温熱源6が水素貯蔵装置3に対して予冷温度/予熱温度を与える時間は、冷温熱源6の過去の水素貯蔵装置3に対する投入熱量、予冷温度または予熱温度を示す合金温度、水素吸蔵合金の比熱および外気温度により決定することができる。
すなわち、冷温熱源6の過去の水素貯蔵装置3に対する投入熱量は、計測装置7により計測され、制御装置8に対して、計測結果として投入熱量(実測値)が送信される(図1においてKで示す)。
また、冷温熱源6が水素貯蔵装置3に対して与える予冷温度/予熱温度は、計測装置7により計測され(図1においてM5で示す)、制御装置8に対して、計測結果として予冷温度/予熱温度(実測値)が送信される(図1においてKで示す)。
なお、水素吸蔵合金の比熱は、予め制御装置8が有するメモリに記憶させる構成にしてもよい。また、外気温度は、図1においては不図示である温度センサにより、計測装置7により計測され、制御装置8に対して、計測結果として外気温度が送信される構成にしてもよい。
Here, the time for the cold / hot heat source 6 to give the precooling temperature / preheating temperature to the hydrogen storage device 3 is the amount of heat input to the past hydrogen storage device 3 of the cold / hot heat source 6, the alloy temperature indicating the precooling temperature or the preheating temperature, and the hydrogen storage. It can be determined by the specific heat of the alloy and the outside air temperature.
That is, the amount of heat input to the hydrogen storage device 3 in the past of the cold / hot heat source 6 is measured by the measuring device 7, and the input heat amount (actual measurement value) is transmitted to the control device 8 as the measurement result (at K in FIG. 1). show).
Further, the precooling temperature / preheating temperature given to the hydrogen storage device 3 by the cold / hot heat source 6 is measured by the measuring device 7 (indicated by M5 in FIG. 1), and the precooling temperature / preheating is measured as a measurement result for the control device 8. The temperature (measured value) is transmitted (indicated by K in FIG. 1).
The specific heat of the hydrogen storage alloy may be stored in the memory of the control device 8 in advance. Further, the outside air temperature may be measured by the measuring device 7 by a temperature sensor (not shown in FIG. 1), and the outside air temperature may be transmitted to the control device 8 as the measurement result.

以下、制御装置8が行う各装置の運転方法の決定方法について、図2を参照して説明する。図2は、電力供給システムの制御方法を示すフローチャートである。
まず、制御装置8は、需要家負荷予測を行う(ステップST1)。すなわち、制御装置8は、あるタイミングで現在時刻以降の一定期間の需要家負荷電力を予測する。
次に、制御装置8は、再生可能エネルギー発電量予測を行う(ステップST2)。すなわち、制御装置8は、現在時刻以降の一定期間の再生可能エネルギーの発電量を予測する。
次に、制御装置8は、余剰電力推定を行う(ステップST3)。すなわち、制御装置8は、再生可能エネルギー発電量の予測値と需要家負荷の電力予測値との差分から余剰電力の発生時間帯と発生量を推定する。
Hereinafter, a method of determining an operation method of each device performed by the control device 8 will be described with reference to FIG. 2. FIG. 2 is a flowchart showing a control method of the power supply system.
First, the control device 8 predicts the consumer load (step ST1). That is, the control device 8 predicts the consumer load power for a certain period after the current time at a certain timing.
Next, the control device 8 predicts the amount of renewable energy power generation (step ST2). That is, the control device 8 predicts the amount of power generation of renewable energy for a certain period after the current time.
Next, the control device 8 estimates the surplus power (step ST3). That is, the control device 8 estimates the generation time zone and the generation amount of surplus power from the difference between the predicted value of the renewable energy power generation amount and the power prediction value of the consumer load.

次に、制御装置8は、水素製造装置・水素貯蔵装置・燃料電池運転計画作成を行う(ステップST4)。すなわち、制御装置8は、余剰電力の推定値と需要家負荷5の電力予測値とから、水素製造装置2、水素貯蔵装置3、燃料電池4の運転計画のうち、水素製造装置2の運転計画を作成する。水素製造装置2では、余剰電力を用いて水素製造を行うため、水素製造装置2の運転時間と水素製造装置2の入力電力は余剰電力の推定値と一致する。
すなわち、制御装置8は、需要家負荷5の電力予測値と、再生可能エネルギーの予測値とから、余剰電力を推定し、余剰電力の推定値と需要家負荷5の電力予測値とから水素製造装置2の運転計画を作成する。
次に、制御装置8は、作成された水素製造装置2の運転計画に基づいて、水素貯蔵装置3の運転計画における水素吸蔵量を決定する。
次に、制御装置8は、燃料電池4の運転計画を水素貯蔵量と需要家負荷5の電力実績値とにより作成する。また、制御装置8は、作成された燃料電池4の運転計画に基づいて、水素貯蔵装置3の運転計画における水素放出量を決定する。これにより、制御装置8は、水素貯蔵装置3の運転計画を作成する。
Next, the control device 8 creates a hydrogen production device, a hydrogen storage device, and a fuel cell operation plan (step ST4). That is, the control device 8 has an operation plan of the hydrogen production device 2 among the operation plans of the hydrogen production device 2, the hydrogen storage device 3, and the fuel cell 4 from the estimated value of the surplus power and the power prediction value of the consumer load 5. To create. Since hydrogen production is performed using the surplus electric power in the hydrogen production apparatus 2, the operating time of the hydrogen production apparatus 2 and the input electric power of the hydrogen production apparatus 2 match the estimated value of the surplus electric power.
That is, the control device 8 estimates the surplus power from the predicted power value of the consumer load 5 and the predicted value of the renewable energy, and produces hydrogen from the estimated value of the surplus power and the predicted power value of the consumer load 5. Create an operation plan for the device 2.
Next, the control device 8 determines the hydrogen storage amount in the operation plan of the hydrogen storage device 3 based on the created operation plan of the hydrogen production device 2.
Next, the control device 8 creates an operation plan of the fuel cell 4 based on the hydrogen storage amount and the actual electric power value of the consumer load 5. Further, the control device 8 determines the amount of hydrogen released in the operation plan of the hydrogen storage device 3 based on the created operation plan of the fuel cell 4. As a result, the control device 8 creates an operation plan for the hydrogen storage device 3.

次に、制御装置8は、予冷/予熱温度・時間設定を行う(ステップST5)。すなわち、制御装置8は、運転計画作成により各時刻の水素吸蔵量と水素放出量が求まるので、所定時刻に所定の水素吸蔵、放出が可能となるように冷温熱源6の予冷/予熱温度、時間を決定する。
図3は、水素吸蔵合金の水素貯蔵量と圧力、温度の関係性を示したPCT曲線である。
例えば、6時間後に燃料電池4を3時間運転することが計画されており、水素貯蔵量は図3に示すように、50%から20%まで使用されるものとする。
図3に示すように、この場合、合金温度は30℃以上ないと50%での、40℃以上でないと20%までの放出ができない。そのため、予熱温度は燃料電池4の運転開始時までに30℃、運転終了時までに40℃と設定される。予熱に必要な時間は、上述の通り、冷温熱源6の過去の水素貯蔵装置3に対する投入熱量、予熱温度を示す合金温度、水素吸蔵合金の比熱および外気温度により決定することができる。
Next, the control device 8 sets the precooling / preheating temperature / time (step ST5). That is, since the control device 8 can obtain the hydrogen storage amount and the hydrogen release amount at each time by creating the operation plan, the precool / preheat temperature and time of the cold / hot heat source 6 so that the predetermined hydrogen storage and release can be performed at the predetermined time. To determine.
FIG. 3 is a PCT curve showing the relationship between the hydrogen storage amount of the hydrogen storage alloy, pressure, and temperature.
For example, it is planned to operate the fuel cell 4 for 3 hours after 6 hours, and the hydrogen storage amount is assumed to be used from 50% to 20% as shown in FIG.
As shown in FIG. 3, in this case, the alloy temperature is 50% unless the temperature is 30 ° C. or higher, and up to 20% cannot be released unless the alloy temperature is 40 ° C. or higher. Therefore, the preheating temperature is set to 30 ° C. by the start of operation of the fuel cell 4 and 40 ° C. by the end of operation. As described above, the time required for preheating can be determined by the amount of heat input to the past hydrogen storage device 3 of the cold / hot heat source 6, the alloy temperature indicating the preheating temperature, the specific heat of the hydrogen storage alloy, and the outside air temperature.

以上説明したように、本実施形態の電力供給システム100は、再生可能エネルギー発電装置1と、水素製造装置2と、水素貯蔵装置3と、燃料電池4と、冷温熱源6と、制御装置8と、を備える。
再生可能エネルギー発電装置1は、再生可能エネルギーを需要家負荷5に供給する再生可能エネルギー電源を有し、再生可能エネルギーのうちの余剰電力を出力する。
水素製造装置2は、再生可能エネルギー発電装置1が出力する余剰電力を用いて水素を製造する。
水素貯蔵装置3は、水素製造装置2によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、水素吸蔵合金に貯蔵された水素を放出する。
燃料電池4は、水素貯蔵装置3が放出する水素を利用して発電し、発電した電力を需要家負荷5に供給する。
冷温熱源6は、水素貯蔵装置3が水素を水素吸蔵合金に吸蔵させる所定の時刻に水素貯蔵装置3に対して予冷温度を与え、水素貯蔵装置3が水素を放出させる所定の時刻に水素貯蔵装置3に対して予熱温度を与える。
制御装置8は、水素貯蔵装置3の所定の時刻における水素吸蔵量と水素放出量とを表す水素貯蔵装置3の運転計画を作成し、水素貯蔵装置3の運転計画に基づいて冷温熱源6の予冷温度または予熱温度を決定し、決定された予冷温度または予熱温度を冷温熱源6に与えさせる。
As described above, the power supply system 100 of the present embodiment includes a renewable energy power generation device 1, a hydrogen production device 2, a hydrogen storage device 3, a fuel cell 4, a cold / hot heat source 6, and a control device 8. , Equipped with.
The renewable energy power generation device 1 has a renewable energy power source that supplies renewable energy to the consumer load 5, and outputs surplus power among the renewable energies.
The hydrogen production device 2 produces hydrogen using the surplus electric power output by the renewable energy power generation device 1.
The hydrogen storage device 3 stores the hydrogen produced by the hydrogen production device 2 by storing it in a hydrogen storage alloy, and releases the hydrogen stored in the hydrogen storage alloy.
The fuel cell 4 uses the hydrogen released by the hydrogen storage device 3 to generate electric power, and supplies the generated electric power to the consumer load 5.
The cold / hot heat source 6 gives a precooling temperature to the hydrogen storage device 3 at a predetermined time when the hydrogen storage device 3 stores hydrogen in the hydrogen storage alloy, and the hydrogen storage device 3 releases hydrogen at a predetermined time. A preheating temperature is given to 3.
The control device 8 creates an operation plan of the hydrogen storage device 3 representing the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device 3, and precools the cold / hot heat source 6 based on the operation plan of the hydrogen storage device 3. The temperature or preheating temperature is determined, and the determined precooling temperature or preheating temperature is given to the cold / hot heat source 6.

本発明では、制御装置8が、水素貯蔵装置3の所定の時刻における水素吸蔵量と水素放出量とを表す水素貯蔵装置3の運転計画を作成する。また、制御装置8は、水素貯蔵装置3の運転計画に基づいて冷温熱源6の予冷温度または予熱温度を決定し、決定された予冷温度または予熱温度を冷温熱源6に与えさせる制御を行う。
これにより、本発明によれば、温度管理が必要となる組成の水素吸蔵合金を用いても、所定の時刻に所定の水素量を吸蔵/放出できることにより、予冷、予熱熱量/時間を最小限にとどめることができ、省エネルギーを図ることができる。
In the present invention, the control device 8 creates an operation plan of the hydrogen storage device 3 representing the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device 3. Further, the control device 8 determines the precooling temperature or the preheating temperature of the cold / hot heat source 6 based on the operation plan of the hydrogen storage device 3, and controls the cold / hot heat source 6 to give the determined precooling temperature or the preheating temperature.
Thereby, according to the present invention, even if a hydrogen storage alloy having a composition requiring temperature control is used, a predetermined amount of hydrogen can be stored / released at a predetermined time, thereby minimizing precooling and preheating heat / time. It can be kept and energy can be saved.

以下、図1に示した本実施形態の電力供給システム100の他の実施形態について、図6および図7を参照して説明する。
上述した電力供給システム100の実施形態の説明では、予冷、予熱用に冷温熱源6をもって予冷、予熱をすることとしていたが、本実施形態では、電力供給システム100を省エネルギーな電力供給システムとするため、燃料電池4より発生する排温水(温水)や建物との交換熱を使って予冷、予熱が行える電力供給システムとしている。
図6は、本電力供給システムにおける熱系統図である。図6において、図1と同じ部分には同じ符号を付し、その説明については適宜省略する。
本電力供給システムは、図6に示すように、水素貯蔵装置3と、水素貯蔵装置3を冷却する冷熱源6aと、燃料電池4の排温水を回収する熱交換器11と、燃料電池4と、建物の冷温水系統と熱交換を行う熱交換器12と、温水蓄熱槽6bと、温水蓄熱槽6bと熱交換を行う熱交換器13と、ポンプ21~23と、熱媒流路を変換するバルブ31~38と、を含んで構成される。
ここで、図6に示すように、図1に示した電力供給システム100では冷温熱源6を用いて加熱冷却をしていたが、本電力供給システムでは、冷熱源として冷熱源6aを、温熱源として燃料電池4と温水蓄熱槽6bとを有している。すなわち、本電力供給システムは、温熱源に燃料電池4の排温水を使用しており、燃料電池4停止時の温水供給用に温水蓄熱槽6bを有している。
Hereinafter, other embodiments of the power supply system 100 of the present embodiment shown in FIG. 1 will be described with reference to FIGS. 6 and 7.
In the description of the embodiment of the power supply system 100 described above, precooling and preheating are performed using the cold / hot heat source 6 for precooling and preheating, but in the present embodiment, the power supply system 100 is to be an energy-saving power supply system. It is a power supply system that can precool and preheat by using the exhaust hot water (hot water) generated from the fuel cell 4 and the heat exchanged with the building.
FIG. 6 is a thermal system diagram in this power supply system. In FIG. 6, the same parts as those in FIG. 1 are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
As shown in FIG. 6, this power supply system includes a hydrogen storage device 3, a cold heat source 6a for cooling the hydrogen storage device 3, a heat exchanger 11 for recovering hot water from the fuel cell 4, and a fuel cell 4. , A heat exchanger 12 that exchanges heat with the cold / hot water system of the building, a hot water heat storage tank 6b, a heat exchanger 13 that exchanges heat with the hot water heat storage tank 6b, pumps 21 to 23, and a heat medium flow path are converted. It is configured to include valves 31 to 38.
Here, as shown in FIG. 6, in the power supply system 100 shown in FIG. 1, the cold / hot heat source 6 is used for heating and cooling, but in this power supply system, the cold heat source 6a is used as the cold heat source. It has a fuel cell 4 and a hot water heat storage tank 6b. That is, this power supply system uses the exhaust hot water of the fuel cell 4 as a hot water source, and has a hot water heat storage tank 6b for supplying hot water when the fuel cell 4 is stopped.

以下、図7を参照して、本電力供給システムにおける各運転に対する運転方法について詳述する。図7は、本電力供給システムにおける各運転条件とバルブの開閉状態を説明するための図である。図7は、建物連結の有無と、水素貯蔵装置3の冷却・加熱と、燃料電池4運転のON・OFFと、温水蓄熱槽6bの残蓄熱状態と、の各条件A~Hにおけるバルブ31~38のON(開状態)およびOFF(閉状態)を示している。ここで、建物連結の有無とは、建物との熱交換が行われる(有)か、或いは行われない(無)かの条件を表わす。また、水素貯蔵装置3の冷却・加熱とは、水素貯蔵装置3が冷却される(冷却)か、或いは加熱される(加熱)かの条件を表わす。また、燃料電池4運転のON・OFFとは、燃料電池4が運転される(ON)か、或いは、運転されない(OFF)かの条件を表わす。また、温水蓄熱槽6bの残蓄熱状態とは、残蓄熱がある状態(-)か、或いは残蓄熱が無く満畜の状態(満)にあるかの条件を表わす。 Hereinafter, the operation method for each operation in this power supply system will be described in detail with reference to FIG. 7. FIG. 7 is a diagram for explaining each operating condition and the open / closed state of the valve in this power supply system. FIG. 7 shows valves 31 to H under each condition A to H regarding the presence / absence of building connection, cooling / heating of the hydrogen storage device 3, ON / OFF of fuel cell 4 operation, and residual heat storage state of the hot water heat storage tank 6b. It shows ON (open state) and OFF (closed state) of 38. Here, the presence / absence of building connection indicates a condition in which heat exchange with the building is performed (yes) or not (no). Further, the cooling / heating of the hydrogen storage device 3 represents a condition of whether the hydrogen storage device 3 is cooled (cooled) or heated (heated). Further, ON / OFF of the operation of the fuel cell 4 represents a condition of whether the fuel cell 4 is operated (ON) or not operated (OFF). Further, the residual heat storage state of the hot water heat storage tank 6b represents a condition of whether there is residual heat storage (−) or a state where there is no residual heat and the livestock is full (full).

まず、水素貯蔵装置3を冷却する場合、冷熱源6aを運転し、冷熱源6aからの冷水が水素貯蔵装置3へ供給される。これは、図7の運転条件Aに示す条件で実行される。すなわち、燃料電池4がOFFの状態で、ONしているバルブ35、バルブ37を介して、冷熱源6aからの冷水が水素貯蔵装置3へ供給される。 First, when cooling the hydrogen storage device 3, the cold heat source 6a is operated, and cold water from the cold heat source 6a is supplied to the hydrogen storage device 3. This is executed under the conditions shown in the operating condition A of FIG. 7. That is, with the fuel cell 4 turned off, cold water from the cold heat source 6a is supplied to the hydrogen storage device 3 via the valves 35 and 37 that are turned on.

次に、水素貯蔵装置3を加熱する場合、温水蓄熱槽6bから優先的に温水が水素貯蔵装置3へ供給される。これは、図7の運転条件Bに示す条件で実行される。すなわち、燃料電池4がOFFの状態で、バルブ37をOFFし、バルブ38をONすることにより、温水蓄熱槽6bから温水が水素貯蔵装置3へ供給される。 Next, when the hydrogen storage device 3 is heated, hot water is preferentially supplied from the hot water storage tank 6b to the hydrogen storage device 3. This is executed under the conditions shown in the operating condition B of FIG. 7. That is, with the fuel cell 4 turned off, the valve 37 is turned off and the valve 38 is turned on, so that hot water is supplied from the hot water heat storage tank 6b to the hydrogen storage device 3.

続いて、水素貯蔵装置3が加温され、水素放出が開始し、燃料電池4が運転した後は、燃料電池4により温水が水素貯蔵装置3へ供給される。この際には熱交換器11を介して温水蓄熱槽6bにも蓄熱が同時に行われる。これは、図7の運転条件Cに示す条件で実行される。すなわち、燃料電池4が運転条件Bに示す条件のOFFの状態からONの状態に変わった状態で、バルブ35をOFFし、バルブ36をONすることにより、燃料電池4からの温水がONしているバルブ38を介して水素貯蔵装置3へ供給されるとともに、熱交換器11を介して温水蓄熱槽6bにも蓄熱が同時に行われる。 Subsequently, the hydrogen storage device 3 is heated, hydrogen release starts, and after the fuel cell 4 is operated, hot water is supplied to the hydrogen storage device 3 by the fuel cell 4. At this time, heat is simultaneously stored in the hot water heat storage tank 6b via the heat exchanger 11. This is executed under the conditions shown in the operating condition C of FIG. 7. That is, the hot water from the fuel cell 4 is turned on by turning off the valve 35 and turning on the valve 36 in a state where the fuel cell 4 has changed from the OFF state of the condition shown in the operating condition B to the ON state. The hydrogen is supplied to the hydrogen storage device 3 via the valve 38, and heat is simultaneously stored in the hot water heat storage tank 6b via the heat exchanger 11.

次に、温水蓄熱槽6bが満蓄になり燃料電池4の熱交換器入口温度が一定値を上回る際には冷熱源6aによる冷却も行われる。これは、図7の運転条件Dに示す条件で実行される。すなわち、燃料電池4がONの状態で、バルブ37をONし、バルブ38をOFFすることにより、冷熱源6aからの冷水が、ONしているバルブ37を介して水素貯蔵装置3へ供給される。
なお上記は建物との熱交換が行われない場合の電力供給システムの運転であり、建物との熱交換が可能な場合には、図7の運転条件E~Hに示すように、建物との熱交換器12を介して熱交換が行われ、水素吸蔵合金の冷却、加熱および温水蓄熱槽6bへの蓄熱が行われる。
Next, when the hot water heat storage tank 6b becomes full and the heat exchanger inlet temperature of the fuel cell 4 exceeds a certain value, cooling by the cold heat source 6a is also performed. This is executed under the conditions shown in the operating condition D of FIG. 7. That is, when the fuel cell 4 is ON, the valve 37 is turned ON and the valve 38 is turned OFF, so that cold water from the cold heat source 6a is supplied to the hydrogen storage device 3 via the ON valve 37. ..
The above is the operation of the power supply system when the heat exchange with the building is not performed, and when the heat exchange with the building is possible, as shown in the operating conditions E to H in FIG. 7, with the building. Heat exchange is performed via the heat exchanger 12, and the hydrogen storage alloy is cooled, heated, and heat is stored in the hot water heat storage tank 6b.

以上、説明したように、本電力供給システムは、冷温熱源6は、水素貯蔵装置3に対して予冷温度を与える冷熱源6aと、水素貯蔵装置3に対して予熱温度を与える温熱源と、に分かれて構成され、温熱源は、燃料電池4と、燃料電池4が停止しているときに水素貯蔵装置3に対して予熱温度を与える温水蓄熱槽6bと、を有する。
これにより、本発明によれば、燃料電池4および温水蓄熱槽6bにより発生する排温水(温水)や建物との交換熱を使って予熱、予冷が行えるため、より省エネルギーを図ることができる。
As described above, in this power supply system, the cold / hot heat source 6 includes a cold heat source 6a that gives a precooling temperature to the hydrogen storage device 3 and a hot source that gives a preheating temperature to the hydrogen storage device 3. The heat source is divided into a fuel cell 4 and a hot water heat storage tank 6b that gives a preheating temperature to the hydrogen storage device 3 when the fuel cell 4 is stopped.
Thereby, according to the present invention, preheating and precooling can be performed by using the exhaust hot water (hot water) generated by the fuel cell 4 and the hot water storage tank 6b and the heat exchanged with the building, so that further energy saving can be achieved.

上述した実施形態における制御装置8をコンピュータで実現するようにしてもよい。その場合、この機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現してもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD-ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間の間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでもよい。また上記プログラムは、前述した機能の一部を実現するためのものであってもよく、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであってもよく、FPGA(Field Programmable Gate Array)等のプログラマブルロジックデバイスを用いて実現されるものであってもよい。 The control device 8 in the above-described embodiment may be realized by a computer. In that case, the program for realizing this function may be recorded on a computer-readable recording medium, and the program recorded on the recording medium may be read by a computer system and executed. The term "computer system" as used herein includes hardware such as an OS and peripheral devices. Further, the "computer-readable recording medium" refers to a portable medium such as a flexible disk, a magneto-optical disk, a ROM, or a CD-ROM, and a storage device such as a hard disk built in a computer system. Further, a "computer-readable recording medium" is a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line, and dynamically holds the program for a short period of time. It may also include a program that holds a program for a certain period of time, such as a volatile memory inside a computer system that is a server or a client in that case. Further, the above program may be for realizing a part of the above-mentioned functions, and may be further realized for realizing the above-mentioned functions in combination with a program already recorded in the computer system. It may be realized by using a programmable logic device such as FPGA (Field Programmable Gate Array).

以上、図面を参照してこの発明の一実施形態について詳しく説明してきたが、具体的な構成は上述のものに限られることはなく、この発明の要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。 Although one embodiment of the present invention has been described in detail with reference to the drawings, the specific configuration is not limited to the above, and various design changes and the like are made without departing from the gist of the present invention. It is possible to do.

1…再生可能エネルギー発電装置、2…水素製造装置、3…水素貯蔵装置、4…燃料電池、5…需要家負荷、6…冷温熱源、6a…冷熱源、6b…温水蓄熱槽、7…計測装置、8…制御装置、100…電力供給システム 1 ... Renewable energy power generation device, 2 ... Hydrogen production device, 3 ... Hydrogen storage device, 4 ... Fuel cell, 5 ... Consumer load, 6 ... Cold / hot heat source, 6a ... Cold heat source, 6b ... Hot water storage tank, 7 ... Measurement Device, 8 ... Control device, 100 ... Power supply system

Claims (5)

再生可能エネルギーを需要家負荷に供給する再生可能エネルギー電源を有し、前記再生可能エネルギーのうちの余剰電力を出力する再生可能エネルギー発電装置と、
前記再生可能エネルギー発電装置が出力する余剰電力を用いて水素を製造する水素製造装置と、
前記水素製造装置によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、前記水素吸蔵合金に貯蔵された水素を放出する水素貯蔵装置と、
前記水素貯蔵装置が放出する水素を利用して発電し、発電した電力を前記需要家負荷に供給する燃料電池と、
前記水素貯蔵装置が水素を水素吸蔵合金に吸蔵させる所定の時刻に前記水素貯蔵装置に対して予冷温度を与え、前記水素貯蔵装置が水素を放出させる所定の時刻に前記水素貯蔵装置に対して予熱温度を与える冷温熱源と、
前記水素貯蔵装置の所定の時刻における水素吸蔵量と水素放出量とを表す前記水素貯蔵装置の運転計画を作成し、前記水素貯蔵装置の運転計画に基づいて前記冷温熱源の前記予冷温度または前記予熱温度を決定し、決定された前記予冷温度または前記予熱温度を前記冷温熱源に与えさせる制御装置と、
を備え
前記冷温熱源は、
前記水素貯蔵装置に対して前記予冷温度を与える冷熱源と、前記水素貯蔵装置に対して前記予熱温度を与える温熱源と、に分かれて構成され、
前記温熱源は、前記燃料電池と、前記燃料電池が停止しているときに前記水素貯蔵装置に対して前記予熱温度を与える温水蓄熱槽と、を有する、
力供給システム。
A renewable energy power generation device that has a renewable energy power source that supplies renewable energy to a consumer load and outputs surplus power among the renewable energies.
A hydrogen production device that produces hydrogen using the surplus power output by the renewable energy power generation device, and a hydrogen production device.
A hydrogen storage device that stores hydrogen produced by the hydrogen storage device by storing it in a hydrogen storage alloy and releases the hydrogen stored in the hydrogen storage alloy.
A fuel cell that uses the hydrogen released by the hydrogen storage device to generate electricity and supplies the generated power to the consumer load.
The hydrogen storage device gives a precooling temperature to the hydrogen storage device at a predetermined time for storing hydrogen in the hydrogen storage alloy, and preheats the hydrogen storage device at a predetermined time when the hydrogen storage device releases hydrogen. A cold and hot heat source that gives temperature,
An operation plan of the hydrogen storage device representing the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device is created, and the precooling temperature or the preheating of the cold / hot heat source is based on the operation plan of the hydrogen storage device. A control device that determines the temperature and causes the determined precooling temperature or the preheating temperature to be given to the cold / hot heat source.
Equipped with
The cold / hot heat source is
It is divided into a cold heat source that gives the preheating temperature to the hydrogen storage device and a hot heat source that gives the preheating temperature to the hydrogen storage device.
The heat source includes the fuel cell and a hot water heat storage tank that gives the preheat temperature to the hydrogen storage device when the fuel cell is stopped.
Power supply system.
前記制御装置は、
前記需要家負荷の電力予測値と、前記再生可能エネルギーの予測値とから、前記余剰電力を推定し、前記余剰電力の推定値から前記水素製造装置の運転計画を作成し、作成された前記水素製造装置の運転計画に基づいて、前記水素貯蔵装置の運転計画における水素吸蔵量を決定し、
前記水素貯蔵装置の水素貯蔵量と、前記需要家負荷の電力予測値とから前記燃料電池の運転計画を作成し、作成された前記燃料電池の運転計画に基づいて、前記水素貯蔵装置の運転計画における水素放出量を決定する、
請求項1に記載の電力供給システム。
The control device is
The surplus power is estimated from the predicted value of the consumer load and the predicted value of the renewable energy, and the operation plan of the hydrogen production apparatus is created from the estimated value of the surplus power. Based on the operation plan of the hydrogen production device, the hydrogen storage amount in the operation plan of the hydrogen storage device is determined.
An operation plan for the fuel cell is created from the hydrogen storage amount of the hydrogen storage device and the predicted power value of the consumer load, and the operation plan for the hydrogen storage device is based on the created operation plan for the fuel cell. Determines the amount of hydrogen released in
The power supply system according to claim 1.
前記制御装置は、
前記予冷温度および前記予熱温度を、前記水素吸蔵合金の水素貯蔵量と圧力、温度の関係性を示したPCT曲線に基づき決定する、
請求項1または請求項2に記載の電力供給システム。
The control device is
The precooling temperature and the preheating temperature are determined based on a PCT curve showing the relationship between the hydrogen storage amount of the hydrogen storage alloy, pressure, and temperature.
The power supply system according to claim 1 or 2.
前記制御装置は、前記冷温熱源が前記予冷温度または前記予熱温度を前記冷温熱源に与える時間を、前記冷温熱源の過去の前記水素貯蔵装置に対する投入熱量、前記予冷温度または前記予熱温度を示す合金温度、前記水素吸蔵合金の比熱および外気温度により決定する、
請求項1から請求項3いずれか一項に記載の電力供給システム。
In the control device, the time for which the cold / hot heat source gives the precooling temperature or the preheating temperature to the cold / hot heat source is the amount of heat input to the hydrogen storage device in the past of the cold / hot heat source, the precooling temperature or the alloy temperature indicating the preheating temperature. , Determined by the specific heat and outside air temperature of the hydrogen storage alloy,
The power supply system according to any one of claims 1 to 3.
再生可能エネルギー発電装置が、再生可能エネルギーを需要家負荷に供給する再生可能エネルギー電源を有し、前記再生可能エネルギーのうちの余剰電力を出力する再生可能エネルギー発電工程と、
水素製造装置が、前記再生可能エネルギー発電装置が出力する余剰電力を用いて水素を製造する水素製造工程と、
水素貯蔵装置が、前記水素製造装置によって製造された水素を、水素吸蔵合金に吸蔵させることで貯蔵し、前記水素吸蔵合金に貯蔵された水素を前記水素吸蔵合金に吸蔵された水素を放出する水素貯蔵工程と、
燃料電池が、前記水素貯蔵装置が放出する水素を利用して発電し、発電した電力を前記需要家負荷に供給する電力供給工程と、
冷温熱源が、前記水素貯蔵装置が水素を水素吸蔵合金に吸蔵させる所定の時刻に前記水素貯蔵装置に対して予冷温度を与え、前記水素貯蔵装置が水素を放出させる所定の時刻に前記水素貯蔵装置に対して予熱温度を与える加熱冷却工程と、
制御装置が、前記水素貯蔵装置の所定の時刻における水素吸蔵量と水素放出量とを表す前記水素貯蔵装置の運転計画を作成し、前記水素貯蔵装置の運転計画に基づいて前記冷温熱源の前記予冷温度または前記予熱温度を決定し、決定された前記予冷温度または前記予熱温度を前記冷温熱源に与えさせる制御工程と、
を備え
前記冷温熱源は、
前記水素貯蔵装置に対して前記予冷温度を与える冷熱源と、前記水素貯蔵装置に対して前記予熱温度を与える温熱源と、に分かれて構成されており、
前記温熱源は、前記燃料電池と、温水蓄熱槽とを備え、
前記温水蓄熱槽は、前記燃料電池が停止しているときに前記水素貯蔵装置に対して前記予熱温度を与える
電力供給システムの制御方法。
A renewable energy power generation process in which a renewable energy power generation device has a renewable energy power source that supplies renewable energy to a consumer load and outputs surplus power of the renewable energy, and a renewable energy power generation process.
A hydrogen production process in which a hydrogen production apparatus produces hydrogen using surplus electric power output by the renewable energy power generation apparatus.
The hydrogen storage device stores the hydrogen produced by the hydrogen production device by storing it in the hydrogen storage alloy, and releases the hydrogen stored in the hydrogen storage alloy to release the hydrogen stored in the hydrogen storage alloy. Storage process and
A power supply process in which the fuel cell uses the hydrogen released by the hydrogen storage device to generate electricity and supplies the generated power to the consumer load.
The cold / hot heat source gives a precooling temperature to the hydrogen storage device at a predetermined time when the hydrogen storage device stores hydrogen in the hydrogen storage alloy, and the hydrogen storage device releases hydrogen at a predetermined time. The heating and cooling process that gives the preheating temperature to the hydrogen storage alloy
The control device creates an operation plan of the hydrogen storage device representing the hydrogen storage amount and the hydrogen release amount at a predetermined time of the hydrogen storage device, and precools the cold / hot heat source based on the operation plan of the hydrogen storage device. A control step of determining the temperature or the preheating temperature and causing the determined precooling temperature or the preheating temperature to be given to the cold / hot heat source.
Equipped with
The cold / hot heat source is
It is divided into a cold heat source that gives the preheating temperature to the hydrogen storage device and a hot heat source that gives the preheating temperature to the hydrogen storage device.
The heat source includes the fuel cell and a hot water heat storage tank.
The hot water heat storage tank gives the preheating temperature to the hydrogen storage device when the fuel cell is stopped.
How to control the power supply system.
JP2017246618A 2017-12-22 2017-12-22 Power supply system and control method of power supply system Active JP7008297B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017246618A JP7008297B2 (en) 2017-12-22 2017-12-22 Power supply system and control method of power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017246618A JP7008297B2 (en) 2017-12-22 2017-12-22 Power supply system and control method of power supply system

Publications (2)

Publication Number Publication Date
JP2019114404A JP2019114404A (en) 2019-07-11
JP7008297B2 true JP7008297B2 (en) 2022-01-25

Family

ID=67223748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017246618A Active JP7008297B2 (en) 2017-12-22 2017-12-22 Power supply system and control method of power supply system

Country Status (1)

Country Link
JP (1) JP7008297B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112103994B (en) * 2020-08-25 2022-04-01 同济大学 Layered coordination control method and device for wind-hydrogen coupling system based on MPC
CN114597895B (en) * 2022-03-17 2023-05-26 西安交通大学 Hydrogen-water energy system and long-term and short-term optimal control method and device thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269633A (en) 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Hydrogen automatic vending device
JP2003061251A (en) 2001-08-08 2003-02-28 Hitachi Ltd Power supply system
JP2003257458A (en) 2002-02-28 2003-09-12 Ebara Corp Power generation system having natural energy power generation device and fuel cell, operation method for power generation system, and operation plan preparation device for power generation system
JP2005197102A (en) 2004-01-08 2005-07-21 Tatsuno Corp Supply device and supply system
WO2017013751A1 (en) 2015-07-21 2017-01-26 株式会社 東芝 Power supply system, control device, and power supply method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002269633A (en) 2001-03-12 2002-09-20 Matsushita Electric Ind Co Ltd Hydrogen automatic vending device
JP2003061251A (en) 2001-08-08 2003-02-28 Hitachi Ltd Power supply system
JP2003257458A (en) 2002-02-28 2003-09-12 Ebara Corp Power generation system having natural energy power generation device and fuel cell, operation method for power generation system, and operation plan preparation device for power generation system
JP2005197102A (en) 2004-01-08 2005-07-21 Tatsuno Corp Supply device and supply system
WO2017013751A1 (en) 2015-07-21 2017-01-26 株式会社 東芝 Power supply system, control device, and power supply method

Also Published As

Publication number Publication date
JP2019114404A (en) 2019-07-11

Similar Documents

Publication Publication Date Title
WO2016127698A1 (en) Energy storage type combined cooling, heating and power device suitable for active power distribution network and operation method thereof
CN109409595B (en) Garden multi-energy complementary system day-ahead scheduling method
WO2017017734A1 (en) Power supply system and method for controlling same
JP7008297B2 (en) Power supply system and control method of power supply system
JP4883654B2 (en) Power generation system and control method thereof
Güido et al. Performance of absorption chillers in field tests
JP2016208834A (en) Solar in-house power generation system and solar in-house power generation method
JP7076730B2 (en) Power supply system
JP2021023028A (en) Power supply system and hydrogen utilization system
JP2020173972A (en) Hydrogen-using power supply system and hydrogen using power supply method
JP2017027936A (en) Power supply system and control method of the same
JP4525978B2 (en) Power generation system
JP2010190455A (en) Water heater using solar light and heat combined power generation system
JP6812252B2 (en) Hydrogen production equipment, power generation system and hydrogen production method
JP2015017713A (en) Heat medium supplying method, heat medium production method, cogeneration device introduction method and cogeneration system
WO2020063224A1 (en) Solid heat-storing electric boiler heating and refrigerating system coupled with dynamic energy storage
JP4128054B2 (en) Fuel cell system and operating method thereof
JP6392086B2 (en) Hydrogen storage type power storage system
JP6315431B2 (en) Combined heat and power supply for adjustment
JP7201176B2 (en) Hydrogen utilization system and hydrogen utilization method
JP7083126B2 (en) Hydrogen supply system and hydrogen supply method
CN109638859B (en) Optimization control method for real-time safety correction of electric power of gateway of multi-energy system
JP5430465B2 (en) Thermoelectric converter
US10844846B2 (en) Renewable energy utilizing closed cycle thermodynamic based engine and method of operation
Wang et al. Optimal Design and Sizing of Solar-assisted CHP System Based on Thermodynamic and Economic Analysis.

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7008297

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150