JP7007768B1 - Method of reforming mud, method of reforming mud, method of manufacturing modified material of mud - Google Patents
Method of reforming mud, method of reforming mud, method of manufacturing modified material of mud Download PDFInfo
- Publication number
- JP7007768B1 JP7007768B1 JP2021079462A JP2021079462A JP7007768B1 JP 7007768 B1 JP7007768 B1 JP 7007768B1 JP 2021079462 A JP2021079462 A JP 2021079462A JP 2021079462 A JP2021079462 A JP 2021079462A JP 7007768 B1 JP7007768 B1 JP 7007768B1
- Authority
- JP
- Japan
- Prior art keywords
- water
- mud
- soluble polymers
- mass
- soluble polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 53
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000002407 reforming Methods 0.000 title abstract description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 158
- 229920003169 water-soluble polymer Polymers 0.000 claims abstract description 91
- 239000003607 modifier Substances 0.000 claims abstract description 40
- 239000000843 powder Substances 0.000 claims abstract description 38
- 239000004576 sand Substances 0.000 claims abstract description 37
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 37
- 239000005909 Kieselgur Substances 0.000 claims abstract description 34
- 239000002689 soil Substances 0.000 claims abstract description 33
- 125000000129 anionic group Chemical group 0.000 claims abstract description 23
- 238000002156 mixing Methods 0.000 claims abstract description 16
- 125000002091 cationic group Chemical group 0.000 claims abstract description 15
- 239000008187 granular material Substances 0.000 claims abstract description 5
- 239000002245 particle Substances 0.000 claims description 21
- 239000010802 sludge Substances 0.000 claims description 19
- 238000010276 construction Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 6
- 239000004927 clay Substances 0.000 claims 1
- 230000004048 modification Effects 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 42
- 229920000642 polymer Polymers 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 239000006004 Quartz sand Substances 0.000 description 10
- 239000004568 cement Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 7
- 235000011941 Tilia x europaea Nutrition 0.000 description 7
- 239000004571 lime Substances 0.000 description 7
- 238000007711 solidification Methods 0.000 description 6
- 230000008023 solidification Effects 0.000 description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 229910052749 magnesium Inorganic materials 0.000 description 5
- 239000011777 magnesium Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000002715 modification method Methods 0.000 description 4
- 238000007873 sieving Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 150000001450 anions Chemical group 0.000 description 3
- 239000002956 ash Substances 0.000 description 3
- 150000001768 cations Chemical group 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000018044 dehydration Effects 0.000 description 3
- 238000006297 dehydration reaction Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- JKNCOURZONDCGV-UHFFFAOYSA-N 2-(dimethylamino)ethyl 2-methylprop-2-enoate Chemical compound CN(C)CCOC(=O)C(C)=C JKNCOURZONDCGV-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000006703 hydration reaction Methods 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000000395 magnesium oxide Substances 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 238000004064 recycling Methods 0.000 description 2
- 239000011435 rock Substances 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- PUKLDDOGISCFCP-JSQCKWNTSA-N 21-Deoxycortisone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@@](C(=O)C)(O)[C@@]1(C)CC2=O PUKLDDOGISCFCP-JSQCKWNTSA-N 0.000 description 1
- QJZYHAIUNVAGQP-UHFFFAOYSA-N 3-nitrobicyclo[2.2.1]hept-5-ene-2,3-dicarboxylic acid Chemical compound C1C2C=CC1C(C(=O)O)C2(C(O)=O)[N+]([O-])=O QJZYHAIUNVAGQP-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- FCYKAQOGGFGCMD-UHFFFAOYSA-N Fulvic acid Natural products O1C2=CC(O)=C(O)C(C(O)=O)=C2C(=O)C2=C1CC(C)(O)OC2 FCYKAQOGGFGCMD-UHFFFAOYSA-N 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229920006318 anionic polymer Polymers 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 239000000292 calcium oxide Substances 0.000 description 1
- 235000012255 calcium oxide Nutrition 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229920006317 cationic polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000001079 digestive effect Effects 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000010494 dissociation reaction Methods 0.000 description 1
- 230000005593 dissociations Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 229910001653 ettringite Inorganic materials 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000002509 fulvic acid Substances 0.000 description 1
- 229940095100 fulvic acid Drugs 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000004021 humic acid Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000002440 industrial waste Substances 0.000 description 1
- HCWCAKKEBCNQJP-UHFFFAOYSA-N magnesium orthosilicate Chemical compound [Mg+2].[Mg+2].[O-][Si]([O-])([O-])[O-] HCWCAKKEBCNQJP-UHFFFAOYSA-N 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 229910052919 magnesium silicate Inorganic materials 0.000 description 1
- 235000019792 magnesium silicate Nutrition 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- LNOPIUAQISRISI-UHFFFAOYSA-N n'-hydroxy-2-propan-2-ylsulfonylethanimidamide Chemical compound CC(C)S(=O)(=O)CC(N)=NO LNOPIUAQISRISI-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
Images
Landscapes
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
Abstract
【課題】泥土を安定固化処理することが可能な新たな泥土の改質材や、泥土の改質方法を提供する。【解決手段】珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材。泥土100質量部に対して、珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材を1~10質量部と、を混合することで、前記泥土を造粒する泥土の改質方法。【選択図】図5PROBLEM TO BE SOLVED: To provide a new reforming material for mud and a reforming method for mud capable of stably solidifying mud. SOLUTION: A muddy soil modifier containing an inorganic powder containing diatomaceous earth and / or diatomaceous earth, and one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers. Modification of mud containing 100 parts by mass of mud, an inorganic powder containing silica sand and / or diatomaceous soil, and one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers. A method for modifying mud to granulate the mud by mixing 1 to 10 parts by mass of a pawn material. [Selection diagram] FIG. 5
Description
本発明は、泥土の改質材やその製造方法に関する。また、泥土の改質方法に関する。 The present invention relates to a modified material for mud and a method for producing the same. It also relates to a method for reforming mud.
建設現場における排出土のうち、コーン指数200kN/m2以下のものは「泥土(建設汚泥)」と呼ばれ、廃棄物処理法に基づき産業廃棄物の汚泥として取り扱われる。その大部分は、収集、運搬、中間処理費に要する割高なコストをかけて処理されているのが現状である。 Of the soil discharged from construction sites, soil with a cone index of 200 kN / m 2 or less is called "sludge (construction sludge)" and is treated as industrial waste sludge based on the Waste Management Law. At present, most of them are processed at a high cost required for collection, transportation, and intermediate processing costs.
一方、資源の有効活用および処理コストの低減等を目的とする泥土のリサイクル技術が検討されている。現在、主流となっている泥土のリサイクル法はフィルタープレス等を用いる物理的脱水法や、高分子、古紙等の有機系処理材を用いた吸水・脱水固化処理技術である。しかし、これらの処理技術は、含水量の高い泥土、湖床堆積土、ヘドロ等には適用困難である。 On the other hand, mud recycling technology for the purpose of effective utilization of resources and reduction of treatment costs is being studied. Currently, the mainstream recycling method for mud is a physical dehydration method using a filter press or the like, or a water absorption / dehydration solidification treatment technology using an organic treatment material such as a polymer or used paper. However, these treatment techniques are difficult to apply to mud, lake sediment, hedro, etc. with high water content.
また、セメント、石灰等の固化材を添加することによる安定化処理技術が汎用されている。これらの固化材は、水和反応、ポゾラン反応、エトリンガイト反応等の複雑な化学反応を同時に起こし、強固な自硬性を発現することがよく知られているが、そのときに必要な水分は、最大値で約65%とされている。 Further, a stabilization treatment technique by adding a solidifying material such as cement or lime is widely used. It is well known that these solidifying materials simultaneously undergo complex chemical reactions such as hydration reaction, pozzolan reaction, and ettringite reaction to develop strong self-hardening property, but the maximum amount of water required at that time is required. The value is about 65%.
このうち、結晶水の取り込み量は、ポルトランドセメントの場合で、水和反応水の量は25%程度、土壌固化用セメント系の場合で35%程度とされている。このことは、土壌含水比35%まではフロー値110mm以下を保つことができるが、35%以上ではスラリー状になることを示している。フロー値110mm以下とは、ダンプトラックで運搬可能値の目安である。また、強度においても35%以上になると低下するので、補正するために水分調整および添加量の増大を行う必要がある。 Of these, the amount of water of crystallization taken up is about 25% in the case of Portland cement, and about 35% in the case of cement for soil solidification. This indicates that the flow value of 110 mm or less can be maintained up to a soil water content of 35%, but a slurry is formed at 35% or more. A flow value of 110 mm or less is a guideline for a value that can be transported by a dump truck. Further, since the strength also decreases when it becomes 35% or more, it is necessary to adjust the water content and increase the addition amount in order to correct it.
また、泥土の水分調整には安価で入手が容易な生石灰が広く用いられている。生石灰を用いる水分調整法では、泥土に含まれる水分と生石灰との反応熱を利用して過剰な水分を急激に蒸発させるため、短時間で処理が完了する利点を有しているが、その反面、激しい発熱に伴い、泥土の核がしばしば200~300℃の高温に達することが作業環境の悪化を招く一因となっている。しかし、現場レベルで施工可能な他の固化方法には、数時間の攪拌処理を要するため、作業性に問題がある。このように、セメント系および石灰系の安定化処理材を用いる従来の高含水泥土の処理には、作業性などの大きな問題がある。 In addition, quicklime, which is inexpensive and easily available, is widely used for adjusting the water content of mud. The water adjustment method using fresh lime has the advantage that the treatment can be completed in a short time because the excess water is rapidly evaporated by using the heat of reaction between the water contained in the mud and the fresh lime. With intense heat generation, the core of mud often reaches a high temperature of 200 to 300 ° C, which is one of the causes of deterioration of the working environment. However, other solidification methods that can be applied at the field level require several hours of stirring, which causes a problem in workability. As described above, the conventional treatment of highly hydrous mud using cement-based and lime-based stabilizing materials has a big problem such as workability.
また、フミン酸やフルボ酸等の有機質を多く含む湖沼底土や含油泥土については、セメントの表面にこれらの有機質が吸着され、セメントの水和反応を阻害するため、セメント系の安定処理材を固化処理に用いることが困難である。そのため、石灰系高炉セメント等との併用や、前処理した泥土と高分子との併用による固化性能の改善が試みられている。しかし、最適な組成比の決定には多くの試行錯誤を必要とするとともに、固化処理に要するコスト上昇を招く要因ともなっている。 In addition, for lake bottom soil and oil-impregnated mud that contain a large amount of organic substances such as humic acid and fulvic acid, these organic substances are adsorbed on the surface of the cement and inhibit the hydration reaction of the cement. Difficult to use for processing. Therefore, attempts have been made to improve the solidification performance by using it in combination with lime-based blast furnace cement or the like, or by using pretreated mud and a polymer in combination. However, determining the optimum composition ratio requires a lot of trial and error, and is also a factor that causes an increase in the cost required for the solidification process.
また、例えば特許文献1には、大量に廃棄物として発生するフライアッシュ灰やペーパースラッジ灰などの焼却灰を再利用し、含水量の多い軟弱土やヘドロ状汚泥を植物の植生に好ましい粒状化の土壌に改良するとともに、植物生態系に有害なセメントの使用量を極力抑制して、これまで以上に土壌強度を高めることができる高含水軟弱土壌改良用固化材が提案されている。 Further, for example, in Patent Document 1, incineration ash such as fly ash ash and paper sludge ash generated as a large amount of waste is reused, and soft soil and hedro-like sludge having a high water content are preferably granulated for plant vegetation. A solidifying material for improving soft soil with high water content has been proposed, which can improve the soil in the soil and suppress the amount of cement harmful to the plant ecosystem as much as possible to increase the soil strength more than ever.
しかしながら、特許文献1記載の高含水軟弱土壌改良用固化材は、泥土に対して5~10質量%の割合で添加する必要がある。すなわち、1トンの泥土に対して50~100kgの固化材を使用することになり、この量はセメント系の固化材程度となり、使用量が非常に多い。また、含水比が高い場合は水分調整ができずに、スラリー状になる。 However, the solidifying material for improving highly water-containing soft soil described in Patent Document 1 needs to be added at a ratio of 5 to 10% by mass with respect to the muddy soil. That is, 50 to 100 kg of solidifying material is used for 1 ton of mud, and this amount is about the same as that of cement-based solidifying material, and the amount used is very large. Further, when the water content ratio is high, the water content cannot be adjusted and the slurry becomes a slurry.
また、セメント系や石灰系の固化材を用いて固化した場合、アルカリ性になるため、植栽土として再利用できず、また、添加量の多さはコストパフォーマンスにおいても問題がある。 Further, when solidified using a cement-based or lime-based solidifying material, it becomes alkaline and cannot be reused as planting soil, and the large amount of addition causes a problem in cost performance.
そこで、本発明においては、泥土を安定固化処理することが可能な新たな泥土の改質材や泥土の改質方法等を提供することを目的とする。 Therefore, an object of the present invention is to provide a new mud reforming material capable of stabilizing and solidifying mud, a mud reforming method, and the like.
本発明者は、上記課題を解決すべく鋭意研究を重ねた結果、下記の発明が上記目的に合致することを見出し、本発明に至った。すなわち、本発明は、以下の発明に係るものである。 As a result of diligent research to solve the above problems, the present inventor has found that the following invention meets the above object, and has arrived at the present invention. That is, the present invention relates to the following invention.
<1> 珪砂および/または珪藻土を含む無機粉体と、
アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材。
<2> 前記無機粉体100質量部に対して、前記水溶性ポリマーを、3~50質量部含む、前記<1>に記載の改質材。
<3> 前記無機粉体が、前記珪砂および前記珪藻土をいずれも含み、前記無機粉体における前記珪砂の含有率(珪砂/無機粉体)が、20質量%以上である、前記<1>または<2>に記載の改質材。
<4> 前記珪砂が、7号以下(日本産業規格 JIS G5901:2016)の小ささの粒度区分のものである、前記<1>~<3>のいずれかに記載の改質材。
<5> さらに、固化材を含む、前記<1>~<4>のいずれかに記載の改質材。
<6> 泥土100質量部に対して、珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材を1~10質量部と、を混合することで、前記泥土を造粒する泥土の改質方法。
<7> 珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の粉体状の水溶性ポリマーと、を混合する泥土の改質材の製造方法。
<1> Inorganic powder containing silica sand and / or diatomaceous earth,
A mud modifier comprising one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers.
<2> The modifier according to <1>, which contains 3 to 50 parts by mass of the water-soluble polymer with respect to 100 parts by mass of the inorganic powder.
<3> The inorganic powder contains both the silica sand and the diatomaceous earth, and the content of the silica sand in the inorganic powder (quartz sand / inorganic powder) is 20% by mass or more. The modifier according to <2>.
<4> The modifier according to any one of <1> to <3>, wherein the silica sand is of size 7 or less (Japanese Industrial Standards JIS G5901: 2016) and has a small particle size.
<5> The modified material according to any one of <1> to <4>, which further contains a solidifying material.
<6> With respect to 100 parts by mass of mud, an inorganic powder containing silica sand and / or diatomaceous soil, and one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers are contained. A method for reforming mud to granulate the mud by mixing 1 to 10 parts by mass of a reforming material for mud.
<7> Modification of mud in which an inorganic powder containing diatomaceous earth and / or diatomaceous earth and one or more powdery water-soluble polymers selected from the group consisting of an anionic water-soluble polymer and a cationic water-soluble polymer are mixed. Manufacturing method of pawn material.
本発明の改質材や改質方法によれば、泥土を安定固化処理することができる。 According to the reforming material and the reforming method of the present invention, the mud can be stably solidified.
以下に本発明の実施の形態を詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を変更しない限り、以下の内容に限定されない。なお、本明細書において「~」という表現を用いる場合、その前後の数値を含む表現として用いる。 Hereinafter, embodiments of the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiments of the present invention, and the present invention is described below unless the gist thereof is changed. It is not limited to the contents of. In addition, when the expression "-" is used in this specification, it is used as an expression including numerical values before and after it.
[本発明の改質材]
本発明の改質材は、珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材である。
[Modifying material of the present invention]
The modifier of the present invention is a modification of mud containing an inorganic powder containing diatomaceous earth and / or diatomaceous earth, and one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers. It is a quality material.
[本発明の改質方法]
本発明の改質方法は、泥土100質量部に対して、珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材を1~10質量部と、を混合することで、前記泥土を造粒する泥土の改質方法である。
[Modification method of the present invention]
The modification method of the present invention is one or more water-soluble selected from the group consisting of an inorganic powder containing silica sand and / or diatomaceous soil, an anionic water-soluble polymer, and a cationic water-soluble polymer with respect to 100 parts by mass of mud. It is a method of modifying mud that granulates the mud by mixing 1 to 10 parts by mass of a reforming material of mud containing a polymer.
[本発明の製造方法]
本発明の製造方法は、珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の粉体状の水溶性ポリマーと、を混合する泥土の改質材の製造方法である。
[Manufacturing method of the present invention]
The production method of the present invention mixes an inorganic powder containing silica sand and / or diatomaceous earth with one or more powdery water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers. It is a method of manufacturing a modifier of mud.
本発明の改質材や、改質方法によれば、泥土を安定固化処理することができる。なお、本願において本発明の製造方法により本発明の改良材を製造でき、本発明の改良剤により本発明の改質方法を行うこともでき、本願においてそれぞれに対応する構成は相互に利用することができる。 According to the reforming material and the reforming method of the present invention, the mud can be stably solidified. In the present application, the improved material of the present invention can be manufactured by the manufacturing method of the present invention, and the modifying method of the present invention can be carried out by the improving agent of the present invention. Can be done.
本発明の改良剤等は、水溶性ポリマーを用いる。水溶性ポリマーは、水を吸水することで、泥土に含まれている水の流動性などを低減し、泥土を固化する安定化に寄与する。一方で、吸水しやすい状態の水溶性ポリマーは、未使用時にも空気中の水分を吸水して、吸水性ポリマー同士が吸着固化したりして、取り扱い性が下がる場合がある。 A water-soluble polymer is used as the improving agent or the like of the present invention. By absorbing water, the water-soluble polymer reduces the fluidity of water contained in the mud and contributes to the stabilization of solidifying the mud. On the other hand, the water-soluble polymer in a state of being easily absorbed may absorb moisture in the air even when not in use, and the water-absorbing polymers may be adsorbed and solidified to deteriorate the handleability.
このような水溶性ポリマー同士の吸着を防止するために、乾燥状態で数mm程度の粒径の球状の粒などに加工して利用される場合がある。しかし、このような水溶性ポリマーを大きな粒径のまま泥土と混合すると、水溶性ポリマー単独で過剰に大きくなり、泥土の土砂の粒間に分散されないことも懸念される。 In order to prevent such water-soluble polymers from adsorbing to each other, they may be processed into spherical particles having a particle size of about several mm in a dry state and used. However, when such a water-soluble polymer is mixed with mud with a large particle size, there is a concern that the water-soluble polymer alone becomes excessively large and is not dispersed between the grains of mud.
水溶性ポリマーは粉体状のものとしても提供されている。粉体状の水溶性ポリマーは、粒状の水溶性ポリマーの製造工程などで規格外のものなどとしても得られたりし、おおきな粒状への成長などを行わないでよいため、製造コストが低い。また、粉体状の水溶性ポリマーは、粒径が小さくなり、相対的に比表面積が大きくなり、周囲の水とも接触しやすい。一方で、水溶性ポリマーは前述のようにそのままだと取り扱い性が低下する。 The water-soluble polymer is also provided as a powder. The powdery water-soluble polymer may be obtained as a non-standard one in the manufacturing process of the granular water-soluble polymer, and it is not necessary to grow into large particles, so that the manufacturing cost is low. In addition, the powdery water-soluble polymer has a small particle size, a relatively large specific surface area, and easily comes into contact with surrounding water. On the other hand, if the water-soluble polymer is left as it is as described above, the handleability is lowered.
本発明者らは、このような水溶性ポリマーの使用にあたって、水溶性ポリマーを、珪砂や珪藻土と混合した混合物は、これらが均一に分散し、静電気力で接着することを見出した。また、この混合物は、保管時も粉状を維持して水溶性ポリマーが湿気を吸って固化したりしにくい。また、この混合物は泥土にも混合しやすいものとなる。また特に珪砂は入手しやすく低廉な場合が多い。よって、これらの水溶性ポリマーや珪砂などを主成分とすることで、泥土の改質のために多量に必要とされる改質材を使用しやすい価格で提供することもできる。本発明はかかる知見に基づく。 The present inventors have found that in the use of such a water-soluble polymer, a mixture of the water-soluble polymer mixed with silica sand or diatomaceous earth disperses them uniformly and adheres by electrostatic force. In addition, this mixture remains powdery even during storage, and the water-soluble polymer does not easily absorb moisture and solidify. In addition, this mixture is easy to mix with mud. Quartz sand is particularly easy to obtain and often inexpensive. Therefore, by using these water-soluble polymers, silica sand, and the like as main components, it is possible to provide a reforming material required in a large amount for reforming mud at an easy-to-use price. The present invention is based on such findings.
[無機粉体]
本発明の改質材は、珪砂および/または珪藻土を含む無機粉体を含む。無機粉体は、改質材において、泥土の水を分散させて安定化や、水溶性ポリマーの担体様に機能する。
[Inorganic powder]
The modifier of the present invention contains an inorganic powder containing diatomaceous earth and / or diatomaceous earth. The inorganic powder disperses and stabilizes the water of the mud in the modifier, and functions like a carrier of a water-soluble polymer.
[珪砂]
本発明の改質材に用いる無機粉体は、珪砂を含む。珪砂は、石英とも呼ばれる二酸化ケイ素を主成分とした鉱物であり、鋳物用やモルタル用、人工芝の目砂などに用いられている。珪砂は、堆積砂を用いる天然砂や、岩石を破砕する人造珪砂などがあるが、本発明においては、天然砂も人造珪砂もいずれも用いることができる。珪砂は、単独では吸水性が低く吸湿等が起こりにくく、水溶性ポリマーと静電気力で接着する担体様のものとして寄与する。
[Quartz sand]
The inorganic powder used in the modifier of the present invention contains silica sand. Silica sand is a mineral containing silicon dioxide as a main component, which is also called quartz, and is used for casting, mortar, artificial turf, and the like. As the silica sand, there are natural sand using sedimentary sand, artificial silica sand for crushing rocks, and the like, but in the present invention, both natural sand and artificial silica sand can be used. Quartz sand alone has low water absorption and is less likely to absorb moisture, and contributes as a carrier-like substance that adheres to a water-soluble polymer by electrostatic force.
[粒度区分]
本発明に用いる珪砂は、粒度区分が、7号以下の小ささのものであることが好ましい。珪砂の粒度が小さいものは、珪砂7号や、珪砂7.5号、珪砂8号などとして販売されている。この珪砂の粒度区分は、日本産業規格 JIS G5901:2016に基づいて分類することができる。粒度が小さい珪砂を用いることで、比表面積が多くなり、混合する水溶性ポリマーの粉体と均一に分散されやすくなる。また、泥土にも広く分散して、混合しやすくなる。また、このような粒度区分の珪砂は、篩下などとも呼ばれて、他の用途が限られ、比較的低コストで入手しやすい。
[Particle size classification]
The silica sand used in the present invention preferably has a particle size classification of No. 7 or less. Quartz sand with a small particle size is sold as quartz sand No. 7, silica sand No. 7.5, quartz sand No. 8, and the like. The particle size classification of this silica sand can be classified based on Japanese Industrial Standard JIS G5901: 2016. By using silica sand having a small particle size, the specific surface area is increased, and it becomes easy to be uniformly dispersed with the powder of the water-soluble polymer to be mixed. In addition, it is widely dispersed in mud and easily mixed. In addition, silica sand having such a particle size classification is also called under-sieving, has limited other uses, and is easily available at a relatively low cost.
[珪藻土]
本発明の改質材に用いる無機粉体は、珪藻土を含む。珪藻土(ダイアトマイト)は、藻類の一種である珪藻の殻の化石よりなる堆積岩で、二酸化ケイ素を主成分とする鉱物である。この珪藻土は、珪砂と同様に、水溶性ポリマーと静電気力で接着し、水溶性ポリマーの担体様のものとなる。また、珪藻土は多孔質であることから、保管時に吸湿して水溶性ポリマーが吸水しすぎることを防止したり、泥土の水分の吸水にも寄与する。珪藻土は、焼成した珪藻土を用いることがより好ましい。
[Diatomaceous earth]
The inorganic powder used in the modifier of the present invention contains diatomaceous earth. Diatomaceous earth (diatomaceous earth) is a sedimentary rock composed of fossil shells of diatom, which is a kind of algae, and is a mineral whose main component is silicon dioxide. Like diatomaceous earth, this diatomaceous earth adheres to the water-soluble polymer by electrostatic force to become a carrier-like substance of the water-soluble polymer. In addition, since diatomaceous earth is porous, it absorbs moisture during storage to prevent the water-soluble polymer from absorbing too much water, and also contributes to water absorption of mud. As the diatomaceous earth, it is more preferable to use calcined diatomaceous earth.
本発明に用いる珪藻土は、水溶性ポリマーや、珪砂と混合したときの分散性を考慮して、粒径が小さいものを用いることが好ましい。例えば、珪藻土は、レーザー法による算術平均径が、150μm以下が好ましく、120μm以下がより好ましく、100μm以下がさらに好ましい。100μm以下の粒径のものが主たるものとなるような粒度分布のものを用いることが好ましい。 As the diatomaceous earth used in the present invention, it is preferable to use a water-soluble polymer or one having a small particle size in consideration of dispersibility when mixed with silica sand. For example, the arithmetic mean diameter of diatomaceous earth by the laser method is preferably 150 μm or less, more preferably 120 μm or less, still more preferably 100 μm or less. It is preferable to use a particle size distribution such that the particle size of 100 μm or less is the main one.
[無機粉体の混合比]
無機粉体は、珪砂および珪藻土をいずれも含み、無機粉体における珪砂の含有率(珪砂/無機粉体)が、20質量%以上であることが好ましい。珪砂と、珪藻土を含むことで、双方の効果を奏することができる。珪砂の含有率が、20質量%以上含まれることで、分散性に優れ、保管時の吸湿などを防止することができる。珪砂の含有率は30質量%以上や、40質量%以上とすることが好ましい。珪砂の含有率は80質量%以下や、70質量%以下が好ましい。相対的に珪藻土の含有率が低くなりすぎると、珪藻土の多孔質を活かした効果が得られにくくなる場合がある。
[Mixing ratio of inorganic powder]
The inorganic powder contains both silica sand and diatomaceous earth, and the content of silica sand in the inorganic powder (quartz sand / inorganic powder) is preferably 20% by mass or more. By containing diatomaceous earth and diatomaceous earth, both effects can be achieved. When the content of silica sand is 20% by mass or more, it is excellent in dispersibility and can prevent moisture absorption during storage. The content of silica sand is preferably 30% by mass or more, or 40% by mass or more. The content of silica sand is preferably 80% by mass or less, preferably 70% by mass or less. If the content of diatomaceous earth is relatively low, it may be difficult to obtain the effect of utilizing the porosity of diatomaceous earth.
[水溶性ポリマー]
本発明の改質材に用いる水溶性ポリマーは、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーを用いる。水溶性ポリマーは、粉体状のものを用いる。粉状とすることで、泥土との分散性に優れたものとなる。また、比表面積が大きくなることで、泥土の含まれる水分との接触しやすくなり吸水しやすくなる。
[Water-soluble polymer]
As the water-soluble polymer used in the modifier of the present invention, one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers are used. As the water-soluble polymer, a powdery one is used. By making it powdery, it has excellent dispersibility with mud. In addition, as the specific surface area becomes large, it becomes easy to come into contact with the water contained in the mud and it becomes easy to absorb water.
水溶性ポリマーが、泥土に含まれる水に溶解したときに、カチオン部とアニオン部が反応しないようpHが3以下(アニオン基の解離が抑えられる)になるように粉末酸を添加してもよい。分子内に相反するイオン性を持つため、汚泥との反応は複雑なものと考えられる。無機凝集剤が添加された汚泥に対しては、ノニオン部が、無機物あるいは金属水酸化物に反応すると考えられる。また、カチオン部は、汚泥の負荷電あるいは他の凝集剤のアニオン部に、アニオン部は、金属イオンあるいは他の凝集剤のカチオン部に反応すると考えられる。この様な反応により、凝集力が高くなり、脱水効果を向上することができる。 When the water-soluble polymer is dissolved in water contained in mud, powdered acid may be added so that the pH is 3 or less (dissociation of anionic groups is suppressed) so that the cation part and the anion part do not react. .. The reaction with sludge is considered to be complicated due to the contradictory ionicity in the molecule. It is considered that the nonionic part reacts with the inorganic substance or the metal hydroxide with respect to the sludge to which the inorganic flocculant is added. Further, it is considered that the cation portion reacts with the load electricity of sludge or the anion portion of another flocculant, and the anion portion reacts with the metal ion or the cation portion of another flocculant. By such a reaction, the cohesive force is increased and the dehydration effect can be improved.
これらは、アニオン性の高い汚泥(余剰汚泥、混合生汚泥、消化汚泥)に対しても有効であり、まず汚泥を無機凝集剤で荷電中和してから、両性高分子凝集剤を添加し脱水機に供給する。アニオン性の低いオキシデーションディッチ汚泥等では、無機凝集剤を併用せず両性高分子凝集剤単独で効果を示す場合もある。 These are also effective for sludge with high anionic properties (excess sludge, mixed raw sludge, digestive sludge). First, the sludge is charged and neutralized with an inorganic flocculant, and then an amphoteric polymer flocculant is added to dehydrate the sludge. Supply to the machine. For oxidation ditch sludge with low anionic properties, the amphoteric polymer flocculant alone may be effective without the use of an inorganic flocculant.
[アニオン水溶性ポリマー]
アニオン水溶性ポリマーは、アクリル酸およびアクリルアミドのコポリマーを用いることができる。例えば、株式会社エス・エヌ・エフ アニオン性水溶性ポリマー「Flopam(商標)」の、「AN934SH」などを用いることができる。これらは、水に分散させたとき、pH:6~8(5g/L)程度となる。
[Anionic water-soluble polymer]
As the anionic water-soluble polymer, a copolymer of acrylic acid and acrylamide can be used. For example, "AN934SH" of "Flopam ™", an anionic water-soluble polymer of SNF Co., Ltd., can be used. When dispersed in water, these have a pH of about 6 to 8 (5 g / L).
[カチオン水溶性ポリマー]
カチオン水溶性ポリマーは、ジメチルアミノエチル・メタクリレート酸およびアクリルアミドのコポリマーや、スルファミン酸系ポリマーなどを用いることができる。例えば、株式会社エス・エヌ・エフ「Flopam(商標)」の「FO8000」などを用いることができる。これらは、水に分散させたとき、pH:3.5±1.0(5g/L)程度となる。
[Cationic water-soluble polymer]
As the cationic water-soluble polymer, a copolymer of dimethylaminoethyl methacrylate and acrylamide, a sulfamic acid-based polymer, or the like can be used. For example, "FO8000" of SNF Co., Ltd. "Flopam (trademark)" can be used. When dispersed in water, these have a pH of about 3.5 ± 1.0 (5 g / L).
水溶性ポリマーは、粉体状のものを用いることが好ましい。粉体状の水溶性ポリマーは、平均粒径が150μm以下のものが好ましく、120μm以下や、100μm以下、80μm以下がより好ましい。また水溶性ポリマーは、ふるい分けにより粒径が小さいものとすることができる。例えば、100メッシュよりも大きいメッシュで、ふるい分けすることができる。100メッシュの目開きは約154μmであり、このふるいにより、154μm以下の水溶性ポリマーを選択的に使用することができる。メッシュは、120メッシュ(目開き132μm)、150メッシュ(目開き109μm)、180メッシュ(目開き91μm)、200メッシュ(目開き77μm)などを用いてもよい。 As the water-soluble polymer, it is preferable to use a powdery polymer. The powdery water-soluble polymer preferably has an average particle size of 150 μm or less, more preferably 120 μm or less, 100 μm or less, and 80 μm or less. Further, the water-soluble polymer can be made to have a small particle size by sieving. For example, meshes larger than 100 mesh can be screened. The mesh size of 100 mesh is about 154 μm, and this sieve allows selective use of water-soluble polymers of 154 μm or less. As the mesh, 120 mesh (opening 132 μm), 150 mesh (opening 109 μm), 180 mesh (opening 91 μm), 200 mesh (opening 77 μm) and the like may be used.
[改質材]
本発明の改質材は、これらの成分を含む泥土の改質材である。本発明の改質材は、泥土と混合して、泥土の流動性を低下させて団粒状にすることができる。また、pHも中性付近とすることができ、過剰に硬化することもなく、取り扱いやすい。
[Modifier]
The modifier of the present invention is a modifier of mud containing these components. The modifier of the present invention can be mixed with mud to reduce the fluidity of the mud and form aggregates. In addition, the pH can be set to near neutral, and it is easy to handle without excessive curing.
[改質材の混合比]
本発明の改質材は、無機粉体100質量部に対して、水溶性ポリマーを、3~50質量部含むものであることが好ましい。水溶性ポリマーが少なすぎる場合、水溶性ポリマーによる吸水力が不足し、泥土の改質効果が不足する場合がある。また、水溶性ポリマーが過剰な場合、吸湿等しやすくなり取り扱いにくい場合がある。
[Mixing ratio of modifier]
The modifier of the present invention preferably contains 3 to 50 parts by mass of a water-soluble polymer with respect to 100 parts by mass of the inorganic powder. If the amount of the water-soluble polymer is too small, the water absorption capacity of the water-soluble polymer may be insufficient, and the effect of modifying the mud may be insufficient. In addition, if the water-soluble polymer is excessive, it may easily absorb moisture and may be difficult to handle.
本発明の製造方法は、このような本発明の改質材をなす成分を混合するものである。無機粉体や、粉体状の水溶性ポリマーを、それぞれが吸湿しないように乾燥した状態で混合することで改質材を得ることができる。この混合にあたっては、珪砂は7号以下相当のものを用いて、珪藻土や水溶性ポリマーは、それぞれ140メッシュ程度の篩によりふるい分けされた、いわゆる篩下と呼ばれる篩を通過した粒径が小さいものを用いることができる。 The production method of the present invention is to mix the components forming the modifier of the present invention. A modifier can be obtained by mixing an inorganic powder or a powdery water-soluble polymer in a dry state so as not to absorb moisture. For this mixing, diatomaceous earth equivalent to No. 7 or less was used, and diatomaceous earth and water-soluble polymers were sieved by a sieve of about 140 mesh each, so-called under-sieve, which has a small particle size. Can be used.
[固化材]
本発明の改質材は、さらに、固化材を用いることができる。固化材は、土壌や泥土の改質材や安定固化材などとして用いられている各種のものを用いることができる。セメント、石灰、マグネシウム成分、およびカルシウム成分からなる群から選択される1以上の固化材を含むものとすることができる。これらの固化材は、主材となる無機粉体と水溶性ポリマーを分散させて、泥土に広く分散させやすくするための体積の調整などに用いたり、副次的に吸水したり、反応を活性化したり、pHの調整などに寄与する。マグネシウム成分は、酸化マグネシウムや酸化マグネシウムが反応したものである。例えば、軽焼マグネシウム、ケイ酸マグネシウム、などを用いることができる。
[Solidifying material]
As the modifier of the present invention, a solidifying material can be further used. As the solidifying material, various materials used as a modifier for soil and mud, a stable solidifying material, and the like can be used. It may contain one or more solidifying materials selected from the group consisting of cement, lime, magnesium components, and calcium components. These solidifying materials are used to adjust the volume of the main material, inorganic powder and water-soluble polymer, to facilitate wide dispersion in mud, and to absorb water secondarily, to activate the reaction. It also contributes to pH adjustment. The magnesium component is a reaction of magnesium oxide or magnesium oxide. For example, lightly baked magnesium, magnesium silicate, and the like can be used.
これらの固化材を用いる場合、無機粉体および水溶性ポリマーの合計量(主材X)との質量比として、主材X:固化材が、1:0.5~1:20とすることができる。さらに、1:1~1:10程度としてもよい。 When these solidifying materials are used, the mass ratio of the main material X: the solidifying material to the total amount of the inorganic powder and the water-soluble polymer (main material X) may be 1: 0.5 to 1:20. can. Further, it may be about 1: 1 to 1:10.
[改質方法]
本発明の改質方法は、泥土と、改質材を混合することで、泥土を造粒する泥土の改質方法である。本発明の改質方法は、泥土100質量部に対して、珪砂および/または珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含む泥土の改質材を1~10質量部と、を混合する。また、混合したものを養生等することで、泥土を団粒状に造粒する。このようにして、取り扱いしやすい改質された処理土とすることができる。
[Modification method]
The reforming method of the present invention is a reforming method of mud that granulates mud by mixing mud and a reforming material . The modification method of the present invention is one or more water-soluble selected from the group consisting of an inorganic powder containing diatomaceous earth and / or diatomaceous earth, an anionic water-soluble polymer, and a cationic water-soluble polymer with respect to 100 parts by mass of mud. 1 to 10 parts by mass of the polymer and the modifier of the mud containing the polymer are mixed. In addition, the mud is granulated into aggregates by curing the mixture. In this way, the modified treated soil can be easily handled.
以下、実施例により本発明を更に詳細に説明するが、本発明は、その要旨を変更しない限り以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples unless the gist thereof is changed.
[試料]
・珪砂:熊本珪砂鉱業製の珪砂7号以下(篩下微粉を含む)
・珪藻土:ラヂオライト(登録商標)100番
・アニオンポリマー(A):株式会社エス・エヌ・エフ アニオン性水溶性ポリマー「Flopam(商標)AN934SH」 アクリル酸およびアクリルアミドのコポリマー
・カチオンポリマー(B):株式会社エス・エヌ・エフ「Flopam(商標)FO8000」 ジメチルアミノエチル・メタクリレート酸およびアクリルアミドのコポリマー
[sample]
・ Quartz sand: Quartz sand No. 7 or less manufactured by Kumamoto Quartz Mining Co., Ltd. (including fine powder under sieving)
-Silica soil: Radiolite (registered trademark) No. 100-Anionic polymer (A): SNF Co., Ltd. Anionic water-soluble polymer "Flopam (trademark) AN934SH" Acrylic acid and acrylamide copolymer-cationic polymer (B): SNF Co., Ltd. "Flopam ™ FO8000" Copolymer of dimethylaminoethyl methacrylate and acrylamide
[試験例1]
前述の試料を、下記表1に示す質量比率で、混合し、改質材を調製した。
[Test Example 1]
The above-mentioned samples were mixed at the mass ratios shown in Table 1 below to prepare a modifier.
・試験用の泥土(1)の調製
試験土(含水比33.6%、土質分類シルト)300gと、水道水100gとを混合し、含水比:約77.8%の試験用の泥土(1)400gを製作した。調整を図1、2に示した。
(含水比の算出:ms=300g ÷(1+33.6/100)=225g(土の乾燥質量)、mw=300g-225g=75g(水の質量)、w=(75g+100g:水)/225g:土*100=77.8%)
-Preparation of mud for test (1) 300 g of test soil (water content ratio 33.6%, soil classification silt) and 100 g of tap water were mixed, and the water content ratio: about 77.8% for test mud (1). ) 400g was manufactured. The adjustments are shown in Figures 1 and 2.
(Calculation of water content ratio: ms = 300 g ÷ (1 + 33.6 / 100) = 225 g (dry mass of soil), mw = 300 g-225 g = 75 g (mass of water), w = (75 g + 100 g: water) / 225 g: soil * 100 = 77.8%)
[混合試験]
泥土の改質時の使用量の目安として、3kg/m3程度が想定される。この想定使用量に準じて、泥土400gに対して、改質材1.2gを混合して、実験を行うものとした。
試験用の泥土(1)400gに、改質材(A1)または改質材(A2)を、1.2g添加し、約3分間、混合した。
改質材(A1)を混合後の状態を、図3に示す。混合直後は図3左に示すように粘土状だが、静置したり混合することで、図3右に示すように、団粒構造を形成するものに改質することができた。なお、改質材(A2)も改質材(A1)と同様の団粒構造を形成するものに改質することができた。
[Mixed test]
As a guideline for the amount used when reforming mud, about 3 kg / m 3 is assumed. According to this estimated usage amount, 1.2 g of the modifier was mixed with 400 g of mud to carry out the experiment.
To 400 g of the test mud (1), 1.2 g of the modifier (A1) or the modifier (A2) was added and mixed for about 3 minutes.
The state after mixing the modifier (A1) is shown in FIG. Immediately after mixing, it is clay-like as shown on the left of FIG. 3, but by allowing it to stand or mixing, it could be modified to form an aggregate structure as shown on the right of FIG. The modified material (A2) could also be modified to form an aggregate structure similar to that of the modified material (A1).
[試験例2]
・改質材主材:珪砂40%、焼成珪藻土40%・ポリマー20%(比重0.48)(120メッシュ(目開き132μm)でふるい分け相当の粒径)
・軽焼マグネシウム(平均粒径:44μm)
改質材主材10重量部+軽焼マグネシウム90質量部を混合して、改質材(B)とした。
[Test Example 2]
-Modified material Main material: 40% silica sand, 40% calcined diatomaceous earth-20% polymer (specific gravity 0.48) (particle size equivalent to sieving with 120 mesh (opening 132 μm))
・ Lightly baked magnesium (average particle size: 44 μm)
10 parts by weight of the main material of the modified material + 90 parts by mass of lightly baked magnesium were mixed to obtain the modified material (B).
試験土は、採取時の含水比33.6%であった。水の揮発を考慮して含水比を33%として試算し、調整含水比60%の試料土を得た。改質材(B)で改良し7日間養生後のpHを測定した。
・試験土(含水比約33%):100g
・加水:20g
Ms=100g÷(1+(33/100))=75g(75.187)(土の量)
Mw=100g-75g=25g(水の量)
W=(25g+20g)/75g=調整含水比60%
添加材)
・改質材:1.6g/120gwt(添加率1.33%:13.3kg/m3)
The test soil had a water content of 33.6% at the time of collection. Taking into consideration the volatilization of water, a trial calculation was made with the water content ratio set to 33%, and sample soil with an adjusted water content ratio of 60% was obtained. After improvement with the modifier (B) and curing for 7 days, the pH was measured.
-Test soil (water content ratio approx. 33%): 100 g
・ Water: 20g
Ms = 100g ÷ (1+ (33/100)) = 75g (75.187) (amount of soil)
Mw = 100g-75g = 25g (amount of water)
W = (25g + 20g) / 75g = Adjusted water content ratio 60%
Additives)
-Modified material: 1.6 g / 120 gwt (addition rate 1.33%: 13.3 kg / m 3 )
図4、図5に、試験例2にかかる試験状態の像を示す。図4左は、調整した泥土である。図4右は、混合する改質材(B)である。図5左は、混合後の状態であり、図5右は、混合して養生した後の団粒化した状態である 4 and 5 show images of the test state according to Test Example 2. The left side of FIG. 4 shows the adjusted mud. The right side of FIG. 4 is the modifier (B) to be mixed. The left side of FIG. 5 shows the state after mixing, and the right side of FIG. 5 shows the aggregated state after mixing and curing.
図6は、本願の実施例にかかる各成分や、改質材の例を示す像である。(a)は、珪砂である。(b)は、焼成珪藻土である。(c)は、水溶性ポリマーである。(d)は、これらを混合した改質材である。いずれも、原料単独でも粉体である。これらの粉体は、ピーク粒径が100μm以下程度となるようなものを適宜篩下などとして用いている。また、水溶性ポリマーは、単独では開封した湿度でも吸湿してダマになる場合があるため、単独では防湿して用いる必要がある。一方、改質材として混合した状態では、ダマなどにはならず、保管や取り扱いしやすいものとなる。 FIG. 6 is an image showing an example of each component and a modifier according to the embodiment of the present application. (A) is silica sand. (B) is calcined diatomaceous earth. (C) is a water-soluble polymer. (D) is a modified material in which these are mixed. In each case, the raw material alone is a powder. As these powders, those having a peak particle size of about 100 μm or less are appropriately used under a sieve or the like. In addition, the water-soluble polymer alone may absorb moisture even at the humidity of opening and become lumpy, so that it is necessary to use it alone to prevent moisture. On the other hand, when mixed as a modifier, it does not become lumpy and is easy to store and handle.
本発明の固化材は、建設汚泥や浚渫土等の泥土の安定固化処理に有用である。 The solidifying material of the present invention is useful for stable solidification treatment of mud such as construction sludge and dredged soil.
Claims (6)
アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含み、
前記無機粉体における前記珪砂の含有率が20質量%以上であり、
前記水溶性ポリマーが、少なくともアニオン水溶性ポリマーを含む、建設汚泥および/または浚渫土の泥土の改質材。 Inorganic powder containing silica sand and diatomaceous earth,
Containing one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers.
The content of the silica sand in the inorganic powder is 20% by mass or more, and the content is 20% by mass or more.
A modifier of construction sludge and / or dredged mud, wherein the water-soluble polymer comprises at least an anionic water-soluble polymer.
珪砂および珪藻土を含む無機粉体と、アニオン水溶性ポリマー、およびカチオン水溶性ポリマーからなる群から選択される1以上の水溶性ポリマーと、を含み、前記無機粉体における前記珪砂の含有率が20質量%以上であり、前記水溶性ポリマーが、少なくともアニオン水溶性ポリマーを含む泥土の改質材を1~10質量部、を混合することで、前記泥土を造粒する泥土の改質方法。 For 100 parts by mass of construction sludge and / or dredged soil
It contains an inorganic powder containing silica sand and diatomaceous clay, and one or more water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers, and the content of the silica sand in the inorganic powder is 20. A method for modifying mud that granulates the mud by mixing 1 to 10 parts by mass of a mud modifier containing at least an anionic water-soluble polymer in the water-soluble polymer in an amount of% by mass or more.
前記無機粉体における前記珪砂の含有率が20質量%以上であり、前記水溶性ポリマーが、少なくともアニオン水溶性ポリマーを含む、建設汚泥および/または浚渫土の泥土の改質材の製造方法。 It is a mixture of an inorganic powder containing diatomaceous earth and diatomaceous earth, and one or more powdery water-soluble polymers selected from the group consisting of anionic water-soluble polymers and cationic water-soluble polymers.
A method for producing a modified material for construction sludge and / or dredged soil, wherein the content of the silica sand in the inorganic powder is 20% by mass or more and the water-soluble polymer contains at least an anionic water-soluble polymer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021079462A JP7007768B1 (en) | 2021-05-10 | 2021-05-10 | Method of reforming mud, method of reforming mud, method of manufacturing modified material of mud |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021079462A JP7007768B1 (en) | 2021-05-10 | 2021-05-10 | Method of reforming mud, method of reforming mud, method of manufacturing modified material of mud |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7007768B1 true JP7007768B1 (en) | 2022-01-25 |
JP2022173638A JP2022173638A (en) | 2022-11-22 |
Family
ID=80629608
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021079462A Active JP7007768B1 (en) | 2021-05-10 | 2021-05-10 | Method of reforming mud, method of reforming mud, method of manufacturing modified material of mud |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7007768B1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034482A (en) | 1998-07-16 | 2000-02-02 | Sekisui Plastics Co Ltd | Soil conditioner |
JP2001104998A (en) | 1999-10-05 | 2001-04-17 | Kankyo Biken:Kk | Fluid mud immediate effect solidifying agent |
JP2017190436A (en) | 2016-04-15 | 2017-10-19 | ミヨシ油脂株式会社 | Water repellent inhibitor and culture soil using the same |
JP2019081876A (en) | 2017-10-31 | 2019-05-30 | 東亞合成株式会社 | Ground improver composition and use thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51124570A (en) * | 1975-04-22 | 1976-10-30 | Nitto Chemical Industry Co Ltd | Process for producing soil conditioner |
JPH07188659A (en) * | 1993-12-27 | 1995-07-25 | Kowa Chem Ind Co Ltd | Soil improvement composition |
JPH083554A (en) * | 1994-06-23 | 1996-01-09 | Dainichi Kasei Kk | Liquid-type soil moisture-treating agent |
-
2021
- 2021-05-10 JP JP2021079462A patent/JP7007768B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000034482A (en) | 1998-07-16 | 2000-02-02 | Sekisui Plastics Co Ltd | Soil conditioner |
JP2001104998A (en) | 1999-10-05 | 2001-04-17 | Kankyo Biken:Kk | Fluid mud immediate effect solidifying agent |
JP2017190436A (en) | 2016-04-15 | 2017-10-19 | ミヨシ油脂株式会社 | Water repellent inhibitor and culture soil using the same |
JP2019081876A (en) | 2017-10-31 | 2019-05-30 | 東亞合成株式会社 | Ground improver composition and use thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2022173638A (en) | 2022-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100812828B1 (en) | Solidifying agent for sewage or wastewater sludge and covering material for waste reclamation land prepared using this | |
JP4729120B1 (en) | Iron ion supply material, manufacturing method thereof, and iron ion supply method | |
JP5042589B2 (en) | Powder solidifying material for soft mud soil and method for producing the same | |
JP2005146275A (en) | Agent for improving, solidifying, and stabilizing soil and its quality | |
JP6363281B1 (en) | One-pack type neutral solidifying agent | |
JP4744796B2 (en) | Aggregate solidified material for soil stabilization containing inorganic polymer flocculant and organic polymer flocculant | |
JP7422071B2 (en) | Heavy metal insolubilization solidification material and method for improving contaminated soil | |
JP2000176493A (en) | Sludge solidifying material and solidifying treatment | |
JP2013056980A (en) | Sludge improver, method of producing the sludge improver, and method of stably solidifying sludge | |
JP7007768B1 (en) | Method of reforming mud, method of reforming mud, method of manufacturing modified material of mud | |
JP2018030958A (en) | Modifier for soft soil or the like and solidification treatment method of remaining soil | |
JP4663999B2 (en) | Soil neutral solidification material and soil neutral solidification improvement method | |
JP2006290713A (en) | Method of reforming slag particle group as artificial sand, and artificial sand | |
JP7059039B2 (en) | Method for solidifying modified materials such as soft soil and residual soil | |
JP5180328B2 (en) | Iron ion supply material, manufacturing method thereof, and iron ion supply method | |
CN108298854A (en) | Sludge solidification/stabilisation curing agent and its preparation method and application | |
CN101374596A (en) | Method for producing an oil-binding agent and oil-binding agent produced according to said method | |
CN114133121A (en) | Dredged sediment solidification treatment material with high water content and preparation method thereof | |
JP4418244B2 (en) | Method for producing powdered solidified material | |
JP4979186B2 (en) | Method for producing granulated material | |
JP3628661B2 (en) | Method for producing porous granular material using inorganic waste as raw material | |
JP2012102473A (en) | Base course material and method of manufacturing the same | |
CN111423080A (en) | Foundation excavation slurry stabilizing and curing agent and preparation and use method thereof | |
JP2005060508A (en) | Soil stabilizing and hardening material using bagasse as the main material | |
Robert et al. | Characterization of fly and bottom ashes mixtures treated using sodium lauryl sulphate and polyvinyl alcohol |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210517 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20210517 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210803 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210917 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211012 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211208 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211221 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211227 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7007768 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |