JP7004856B2 - Flow board manufacturing equipment and flow board manufacturing method - Google Patents

Flow board manufacturing equipment and flow board manufacturing method Download PDF

Info

Publication number
JP7004856B2
JP7004856B2 JP2020571250A JP2020571250A JP7004856B2 JP 7004856 B2 JP7004856 B2 JP 7004856B2 JP 2020571250 A JP2020571250 A JP 2020571250A JP 2020571250 A JP2020571250 A JP 2020571250A JP 7004856 B2 JP7004856 B2 JP 7004856B2
Authority
JP
Japan
Prior art keywords
flow path
substrate
plate
pair
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020571250A
Other languages
Japanese (ja)
Other versions
JPWO2020162525A1 (en
Inventor
慎也 守川
義浩 細川
彰則 清水
一 外川
隆裕 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of JPWO2020162525A1 publication Critical patent/JPWO2020162525A1/en
Application granted granted Critical
Publication of JP7004856B2 publication Critical patent/JP7004856B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D43/00Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
    • B21D43/28Associations of cutting devices therewith
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D53/00Making other particular articles
    • B21D53/02Making other particular articles heat exchangers or parts thereof, e.g. radiators, condensers fins, headers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/06Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being attachable to the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本開示は、熱交換素子に使用される流路板を製造する流路板製造装置及び流路板製造方法に関する。
The present disclosure relates to a flow path plate manufacturing apparatus and a flow path board manufacturing method for manufacturing a flow path plate used for a heat exchange element.

流路板に給気流と排気流を流し熱交換をする熱交換素子として、対向流型熱交換素子がある。対向流型熱交換素子は、例えば、特許文献1に示すように、波形状の断面形状の流路を有する流路板を、交互に積層して形成される。 There is a countercurrent type heat exchange element as a heat exchange element in which a supply air flow and an exhaust flow flow through a flow path plate to exchange heat. As shown in Patent Document 1, for example, the countercurrent type heat exchange element is formed by alternately stacking flow path plates having a flow path having a wave-shaped cross-sectional shape.

流路を流れる給気流又は排気流は、ファンにより送られるが、流路の圧力損失が大きいと、ファンに負荷がかかる。特許文献1に開示された熱交換素子の流路板において、流路の圧力損失を小さくする手段として、例えば、流路板の波形状の山部又は谷部の頂部の一部をなくし、流路の断面積を大きくすることが考えられる。 The supply air flow or the exhaust flow flowing through the flow path is sent by the fan, but if the pressure loss in the flow path is large, the fan is loaded. In the flow path plate of the heat exchange element disclosed in Patent Document 1, as a means for reducing the pressure loss of the flow path, for example, a part of the top of the wavy peak or valley of the flow path plate is eliminated and the flow is performed. It is conceivable to increase the cross-sectional area of the road.

国際公開第2016/147359号International Publication No. 2016/147359

流路の断面積を大きくすることは、完成した流路板の山部又は谷部の頂部の一部を切除する、又は予め孔のあいた流路板を波形に成形することにより実現できるが、これらを実現するための作業は難しく、熟練を要する。 Increasing the cross-sectional area of the flow path can be realized by cutting off a part of the top of the peak or valley of the completed flow path plate, or by forming the flow path plate with holes in advance into a corrugated shape. The work to achieve these is difficult and requires skill.

本開示は、上述のような課題を解決するためになされたもので、流路の圧力損失の小さい流路板を、簡易に製造できる流路板製造装置を提供することを目的とする。 The present disclosure has been made in order to solve the above-mentioned problems, and an object of the present invention is to provide a flow path plate manufacturing apparatus capable of easily manufacturing a flow path plate having a small flow path pressure loss.

上記問題点を解決し、目的を達成するために、本開示に係る流路板製造装置は、帯状の第1の基板を第1の方向に伸びる搬送経路に沿って搬送しながら、熱交換素子に使用される流路板を製造する流路板製造装置であって、互いの回転軸が搬送経路を挟んで平行に且つ搬送経路に垂直に配置され、逆方向に回転する一対のローラと、一対のローラの何れか一方のローラに取付けられ、一方のローラの周面から半径と平行に突出し半径方向から見て矩形状の外形をもつ切断刃と、を備え、一対のローラ間に第1の基板を通過させることにより、切断刃が第1の基板を打ち抜き矩形状の孔を形成する孔形成部と、互いの回転軸が搬送経路を挟んで平行に且つ一対のローラと平行に配置され、互いに噛み合う一対の第1のギアを備え、一対の第1のギア間に孔形成部により孔が形成された第1の基板を通過させて、第1の基板を波形に成形する第1の波形成形部と、一方のローラの回転軸と、一対の第1のギアの何れか一方のギアの回転軸と、を同期して回転させる第1の同期回転部と、第1の波形成形部により波形に成形された第1の基板に、第1の基板とは別に供給される第2の基板を接着して流路板を取得する接着部と、を備える。 In order to solve the above problems and achieve the object, the flow path plate manufacturing apparatus according to the present disclosure is a heat exchange element while transporting a strip-shaped first substrate along a transport path extending in the first direction. A pair of rollers that rotate in the opposite direction, with their rotation axes arranged parallel to each other and perpendicular to the transport path, in a flow path board manufacturing device that manufactures the flow board used in the above. It is equipped with a cutting blade that is attached to one of a pair of rollers, projects parallel to the peripheral surface of one roller in parallel with the radius, and has a rectangular outer shape when viewed from the radial direction, and is provided with a first roller between the pair of rollers. By passing through the substrate, the cutting blade punches out the first substrate to form a rectangular hole, and the rotation axes of each other are arranged parallel to each other and parallel to the pair of rollers. A first substrate comprising a pair of first gears that mesh with each other and passing through a first substrate in which a hole is formed by a hole forming portion between the pair of first gears to form the first substrate into a corrugated shape. A first synchronous rotating portion that synchronously rotates the corrugated forming portion, the rotating shaft of one roller, and the rotating shaft of one of the pair of first gears, and the first corrugated forming portion. The first substrate formed into a corrugated shape is provided with an adhesive portion for adhering a second substrate separately supplied from the first substrate to obtain a flow path plate.

本開示によれば、孔をあける工程と波形に成形する工程を同期させて流路板を製造するので、流路の圧力損失の小さい流路板を、簡易に製造できる流路板製造装置を提供することができる。 According to the present disclosure, since the flow path plate is manufactured by synchronizing the process of making a hole and the process of forming into a corrugated shape, a flow path plate manufacturing apparatus capable of easily manufacturing a flow path plate having a small pressure loss in the flow path is provided. Can be provided.

本開示の実施の形態1に係る流路板を製造する流路板製造装置を示す図であり、全体構成を示す図It is a figure which shows the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 1 of this disclosure, and is the figure which shows the whole structure. 本開示の実施の形態1に係る流路板を製造する流路板製造装置を示す図であり、流路形成板を搬送経路に沿って上方から見た図It is a figure which shows the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 1 of this disclosure, and is the figure which looked at the flow path formation plate from above along the transport path. 本開示の実施の形態1に係る流路板を製造する流路板製造装置の一部を示す図であり、全体構成を示す図It is a figure which shows a part of the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 1 of this disclosure, and is the figure which shows the whole structure. 本開示の実施の形態1に係る流路板を製造する流路板製造装置の一部を示す図であり、流路形成板を搬送経路に沿って上方から見た図It is a figure which shows a part of the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 1 of this disclosure, and is the figure which looked at the flow path forming board from above along the transport path. 本開示の実施の形態1に係る流路板を製造する流路板製造装置の一部を示す図であり、図2Bの流路形成板をA-A’線の切断線で切断した断面図It is a figure which shows a part of the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 1 of this disclosure, and is the cross-sectional view which cut the flow path formation plate of FIG. 2B by the cutting line of AA'line. 実施の形態1に係る流路板製造装置の孔形成部の斜視図Perspective view of the hole forming portion of the flow path plate manufacturing apparatus according to the first embodiment. 実施の形態1に係る流路板製造装置の孔形成部の側面図Side view of the hole forming portion of the flow path board manufacturing apparatus according to the first embodiment. 本開示の実施の形態2に係る流路板を製造する流路板製造装置を示す図であり、全体構成を示す図It is a figure which shows the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 2 of this disclosure, and is the figure which shows the whole structure. 本開示の実施の形態2に係る流路板を製造する流路板製造装置を示す図であり、流路形成板を搬送経路に沿って上方から見た図It is a figure which shows the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 2 of this disclosure, and is the figure which looked at the flow path formation board from above along the transport path. 実施の形態1、2の流路板製造装置により製造された流路板を示す図The figure which shows the flow path board manufactured by the flow path board manufacturing apparatus of Embodiments 1 and 2. 実施の形態1、2の流路板製造装置により製造された流路板を組み立てる様子を示す図The figure which shows the state of assembling the flow path board manufactured by the flow path board manufacturing apparatus of Embodiments 1 and 2. 実施の形態1、2の流路板製造装置により製造された流路板を使用して製造した熱交換素子の一部分解斜視図Partially disassembled perspective view of the heat exchange element manufactured by using the flow path plate manufactured by the flow path plate manufacturing apparatus of the first and second embodiments. 本開示の実施の形態3に係る流路板を製造する流路板製造装置を示す図であり、全体構成を示す図It is a figure which shows the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 3 of this disclosure, and is the figure which shows the whole structure. 本開示の実施の形態3に係る流路板を製造する流路板製造装置を示す図であり、実施の形態3の流路製造装置により製造された流路板を組み立てる様子を示す図It is a figure which shows the flow path board manufacturing apparatus which manufactures the flow path board which concerns on Embodiment 3 of this disclosure, and is the figure which shows the state of assembling the flow path board manufactured by the flow path manufacturing apparatus of Embodiment 3. 実施の形態1に係る流路板製造装置の変形例を示す図であり、孔形成部の切断刃の変形例を示す図It is a figure which shows the modification of the flow path board manufacturing apparatus which concerns on Embodiment 1, and is the figure which shows the modification of the cutting blade of a hole forming portion. 実施の形態1に係る流路板製造装置の変形例を示す図であり、孔形成部の切断刃の他の変形例を示す図It is a figure which shows the modification of the flow path board manufacturing apparatus which concerns on Embodiment 1, and is the figure which shows the other modification of the cutting blade of the hole forming portion. 従来の流路板を組み立てた熱交換素子の断面図Cross-sectional view of the heat exchange element assembled from the conventional flow path plate 流路板の圧力損失を小さくするための構造を備える熱交換素子の断面図Cross-sectional view of a heat exchange element provided with a structure for reducing the pressure loss of the flow path plate.

(実施の形態1)
まず、本開示の実施の形態1に係る流路板製造装置の特徴について、他の流路板との対比において説明する。
(Embodiment 1)
First, the features of the flow path plate manufacturing apparatus according to the first embodiment of the present disclosure will be described in comparison with other flow path plates.

流路板を使用した熱交換素子の一例として、図11に示す熱交換素子8がある。熱交換素子8は、複数の流路板800を上下方向に積層して形成される。各流路板800は、流路を形成する流路形成板801と、流路を仕切る仕切板802とを備える。流路形成板801により区切られた流路、例えば、流路801aには、紙面の背後から前方に向けて流体が流れ、流路801bには、紙面の前方から背後に向けて流体が流れる。流路801aと流路801bに温度の相違する流体が流れることにより、両流体の間で流路形成板801を介して熱交換される。 As an example of the heat exchange element using the flow path plate, there is the heat exchange element 8 shown in FIG. The heat exchange element 8 is formed by stacking a plurality of flow path plates 800 in the vertical direction. Each flow path plate 800 includes a flow path forming plate 801 for forming a flow path and a partition plate 802 for partitioning the flow path. A fluid flows from the back to the front of the paper surface in the flow path separated by the flow path forming plate 801, for example, the flow path 801a, and the fluid flows from the front to the back of the paper surface in the flow path 801b. When fluids having different temperatures flow through the flow path 801a and the flow path 801b, heat is exchanged between the two fluids via the flow path forming plate 801.

ここで、流路形成板801の表面積が大きければ熱交換に寄与する面積が大きくなり、熱交換効率が高まる。このため、熱交換効率の観点からは、流路形成板801の単位体積当たりの山部又は谷部の数が多い方が望ましい。しかし、山部と谷部の数が多くなると、流路の圧力損失が大きくなってしまう。 Here, if the surface area of the flow path forming plate 801 is large, the area contributing to heat exchange becomes large, and the heat exchange efficiency is improved. Therefore, from the viewpoint of heat exchange efficiency, it is desirable that the number of peaks or valleys per unit volume of the flow path forming plate 801 is large. However, as the number of peaks and valleys increases, the pressure loss in the flow path increases.

流路の圧力損失が大きいと、流体を送るファンの負荷が増加する。ファンの負荷が増加することにより、ファンの耐久期間も短くなってしまう。 If the pressure loss in the flow path is large, the load on the fan that sends the fluid increases. As the load on the fan increases, the durability of the fan also shortens.

このような観点から、流路の圧力損失を抑えつつ、熱交換効率が維持した流路板として、図11に示した流路板の山部を一つ置きに配置して圧力損失を小さくした構造の、図12に示す流路板800が考えられる。本実施の形態に係る流路板製造装置は、図12に示す流路板800を製造する装置である。 From this point of view, as a flow path plate in which the heat exchange efficiency is maintained while suppressing the pressure loss of the flow path, every other mountain portion of the flow path plate shown in FIG. 11 is arranged to reduce the pressure loss. The flow path plate 800 of the structure shown in FIG. 12 can be considered. The flow path plate manufacturing apparatus according to the present embodiment is an apparatus for manufacturing the flow path plate 800 shown in FIG.

以下、本実施の形態にかかる流路板製造装置1について、図1~4を参照して説明する。図中、流路形成板11が搬送される方向を左右方向、左右方向に垂直な方向を上下方向と規定する。 Hereinafter, the flow path plate manufacturing apparatus 1 according to the present embodiment will be described with reference to FIGS. 1 to 4. In the figure, the direction in which the flow path forming plate 11 is conveyed is defined as the left-right direction, and the direction perpendicular to the left-right direction is defined as the vertical direction.

図1Aに示すように、流路板製造装置1は、第1の基板である帯状の流路形成板11を供給する流路形成板供給部10と、流路形成板11に孔をあける孔形成部20と、孔があいた流路形成板11を波形に成形する波形成形部30と、波形に成形された流路形成板11に接着剤を塗布する接着剤塗布部40と、孔形成部20のローラの回転軸と波形成形部30のギアの回転軸を同期して回転させる第1の同期回転部50と、波形成形部30の第1のギアの回転軸と接着剤塗布部40のギアの回転軸を同期して回転させる第2の同期回転部60と、帯状の第2の基板である仕切板71を供給する仕切板供給部70と、流路形成板11と仕切板71を接着して流路板本体81を取得する接着ローラ80と、流路板本体81の両側部を切除する切除部90と、を備える。接着剤塗布部40と、仕切板供給部70と、接着ローラ80と、切除部90とが、接着部に相当する。また、接着ローラ80は、流路板本体形成部の一例である。 As shown in FIG. 1A, the flow path plate manufacturing apparatus 1 has a flow path forming plate supply unit 10 for supplying a strip-shaped flow path forming plate 11 which is a first substrate, and a hole for making a hole in the flow path forming plate 11. The forming portion 20, the corrugated forming portion 30 that forms the flow path forming plate 11 having holes into a corrugated shape, the adhesive applying portion 40 that applies an adhesive to the flow path forming plate 11 formed into a corrugated shape, and the hole forming portion. The rotation axis of the roller of 20 and the rotation axis of the gear of the waveform forming unit 30 are rotated in synchronization with each other, and the rotation axis of the first gear of the waveform forming unit 30 and the adhesive application unit 40. A second synchronous rotating portion 60 that synchronously rotates the rotation axis of the gear, a partition plate supply portion 70 that supplies a partition plate 71 that is a strip-shaped second substrate, and a flow path forming plate 11 and a partition plate 71 are provided. It is provided with an adhesive roller 80 for adhering to acquire the flow path plate main body 81, and a cutting portion 90 for cutting both side portions of the flow path plate main body 81. The adhesive application portion 40, the partition plate supply portion 70, the adhesive roller 80, and the cutting portion 90 correspond to the adhesive portion. Further, the adhesive roller 80 is an example of a flow path plate main body forming portion.

流路形成板供給部10、孔形成部20、波形成形部30、接着剤塗布部40、第1の同期回転部50、第2の同期回転部60を、図2A~2Cを用いて説明する。 The flow path forming plate supply section 10, the hole forming section 20, the corrugated forming section 30, the adhesive coating section 40, the first synchronous rotating section 50, and the second synchronous rotating section 60 will be described with reference to FIGS. 2A to 2C. ..

流路形成板供給部10と、孔形成部20と、波形成形部30と、接着剤塗布部40とは、第1の方向Xに伸びる搬送経路に沿ってこの順番に配置され、流路形成板11は、搬送経路に沿って搬送されながら成形されて、仕切板に接着されて流路板となる。 The flow path forming plate supply section 10, the hole forming section 20, the corrugated forming section 30, and the adhesive coating section 40 are arranged in this order along a transport path extending in the first direction X to form a flow path. The plate 11 is formed while being transported along the transport path, and is adhered to the partition plate to form a flow path plate.

流路形成板供給部10は、搬送経路に配置された孔形成部20に流路形成板11を供給する。流路形成板供給部10は、搬送経路と垂直に回転軸が配置されたローラを備え、このローラに巻回された流路形成板11を引き出して、孔形成部20に供給する。流路形成板11は、流路板の素材となるシート状の部材であり、例えば、パルプ素材が使用される。 The flow path forming plate supply unit 10 supplies the flow path forming plate 11 to the hole forming unit 20 arranged in the transport path. The flow path forming plate supply unit 10 includes a roller whose rotation axis is arranged perpendicular to the transport path, and the flow path forming plate 11 wound around the roller is pulled out and supplied to the hole forming unit 20. The flow path forming plate 11 is a sheet-like member that is a material for the flow path plate, and for example, a pulp material is used.

孔形成部20は、流路形成板供給部10により供給された流路形成板11に孔をあける。孔形成部20は、各々の回転軸が搬送経路を挟んで上下に平行に配置される一対のローラ20a、20bを備える。一対のローラ20a、20bの回転軸は、搬送経路と垂直に配置され、互いに逆方向に回転する。 The hole forming portion 20 makes a hole in the flow path forming plate 11 supplied by the flow path forming plate supply portion 10. The hole forming portion 20 includes a pair of rollers 20a and 20b in which each rotation axis is arranged vertically in parallel with the transport path interposed therebetween. The rotation axes of the pair of rollers 20a and 20b are arranged perpendicular to the transport path and rotate in opposite directions.

一対のローラ20a、20bの一方のローラ20bには、外周に切断刃21が取り付けられる。本実施の形態では、下方のローラ20bの外周に沿って、等間隔に8個の切断刃21が取り付けられる。切断刃21の数は8個に限定されない。 A cutting blade 21 is attached to the outer periphery of one of the pair of rollers 20a and 20b. In this embodiment, eight cutting blades 21 are attached at equal intervals along the outer circumference of the lower roller 20b. The number of cutting blades 21 is not limited to eight.

各切断刃21は、図2A、図3及び図4に示すように、ローラ20bの周面から半径方向に突出する。また、各切断刃21は、半径方向から見て、矩形状の外形を備える。矩形形状は、4枚の板状の刃を組み合わせて形成される。他方のローラ20aには、切断刃は取り付けられない。他方のローラ20aの外周面と一方のローラ20bに取り付けられた切断刃21の刃先とは接触して配置される。一対のローラ20a、20bの間を流路形成板11が通過することにより、切断刃21が流路形成板11を打ち抜き、図2A~Cに示すように流路形成板11に矩形状の孔11aが形成される。 As shown in FIGS. 2A, 3 and 4, each cutting blade 21 projects radially from the peripheral surface of the roller 20b. Further, each cutting blade 21 has a rectangular outer shape when viewed from the radial direction. The rectangular shape is formed by combining four plate-shaped blades. A cutting blade cannot be attached to the other roller 20a. The outer peripheral surface of the other roller 20a and the cutting edge of the cutting blade 21 attached to the one roller 20b are arranged in contact with each other. When the flow path forming plate 11 passes between the pair of rollers 20a and 20b, the cutting blade 21 punches out the flow path forming plate 11, and as shown in FIGS. 2A to 2C, the flow path forming plate 11 has a rectangular hole. 11a is formed.

切断刃21を形成する4枚の刃は、図3に示すように、ローラ20bの回転軸方向に伸びて対向し矩形形状の長辺である2辺を形成する刃21a、21bと、ローラ20bの回転軸方向と垂直に伸びて対向し矩形形状の短辺を形成する刃21c、21dと、から形成される。この4つの刃21a~21dにより形成される切断刃21とローラ20aとの間で、流路形成板11を押し切って、流路形成板11に矩形形状の孔11aを形成する。 As shown in FIG. 3, the four blades forming the cutting blade 21 are the blades 21a and 21b extending in the rotation axis direction of the roller 20b and facing each other to form two long sides of a rectangular shape, and the roller 20b. It is formed of blades 21c and 21d that extend perpendicularly to the direction of rotation axis and face each other to form a short side of a rectangular shape. The flow path forming plate 11 is pushed through between the cutting blade 21 formed by the four blades 21a to 21d and the roller 20a to form a rectangular hole 11a in the flow path forming plate 11.

第1の波形成形部である波形成形部30は、孔形成部20により孔があけられた流路形成板11を波形に成形する。図2Aに示すように、波形成形部30は、互いに噛み合う一対の第1のギア30a、30bを備える。一対の第1のギア30a、30bの回転軸は、搬送経路を挟んで上下に平行に配置され、一対のローラ20a、20bの回転軸と平行に配置される。一対の第1のギア30a、30bの歯は、回転軸方向に伸びる。回転する一対の第1のギア30a、30b間を、孔11aが形成された流路形成板11が通過することにより、図2Cに示すように、流路形成板11は、下向きの山部を備える流路形成板11となる。波形成形部30により形成される下向きの山部は、以降の説明において、「下向きの山部」又は単に「山部」と記載する。 The corrugated forming portion 30, which is the first corrugated forming portion, forms the flow path forming plate 11 having holes formed by the hole forming portion 20 into a corrugated shape. As shown in FIG. 2A, the corrugated forming unit 30 includes a pair of first gears 30a and 30b that mesh with each other. The rotation axes of the pair of first gears 30a and 30b are arranged vertically parallel to each other with the transport path interposed therebetween, and are arranged parallel to the rotation axes of the pair of rollers 20a and 20b. The teeth of the pair of first gears 30a and 30b extend in the direction of the axis of rotation. As the flow path forming plate 11 in which the hole 11a is formed passes between the pair of rotating first gears 30a and 30b, the flow path forming plate 11 has a downward mountain portion as shown in FIG. 2C. The flow path forming plate 11 is provided. The downward mountain portion formed by the corrugated forming portion 30 will be referred to as "downward mountain portion" or simply "mountain portion" in the following description.

第1のギア30a、30bの歯数は各々16個であり、切断刃21の数の2倍である。第1のギア30a、30bの歯は等間隔に配置され、切断刃21の刃も等間隔に配置されている。切断刃21と第1のギア30a、30bを使用すると、流路形成板11には、孔11aの部分には上向きの山部が形成されず、孔11aがない部分には下向きの山部が形成される。 The number of teeth of the first gears 30a and 30b is 16 each, which is twice the number of cutting blades 21. The teeth of the first gears 30a and 30b are arranged at equal intervals, and the blades of the cutting blade 21 are also arranged at equal intervals. When the cutting blade 21 and the first gears 30a and 30b are used, the flow path forming plate 11 does not have an upward ridge in the hole 11a, and a downward ridge is formed in the portion without the hole 11a. It is formed.

図2Aにおいて一点破線で示す、ローラ20bの切断刃21の刃先とローラ20bの回転軸を結んだ線を半径とする円の刃先直径と、第1のギア30bのピッチ円直径とは同一である。また、切断刃21の回転軸方向に伸びて対向する刃21a、21bを、回転軸方向から見たときに、ローラ20bの回転軸と、刃21a及び刃21bとで形成される第1の角度θ1は、第1のギア30bの回転軸方向から見て第1のギア30bの隣り合う2つの歯の頂点と当該ギアの回転軸とを結んで形成される第2の角度θ2と同一である。 The diameter of the cutting edge of the circle whose radius is the line connecting the cutting edge 21 of the cutting blade 21 of the roller 20b and the rotation axis of the roller 20b, which is shown by a broken broken line in FIG. 2A, is the same as the pitch circle diameter of the first gear 30b. .. Further, when the blades 21a and 21b extending in the rotation axis direction of the cutting blade 21 and facing each other are viewed from the rotation axis direction, the first angle formed by the rotation axis of the roller 20b and the blades 21a and 21b. θ1 is the same as the second angle θ2 formed by connecting the apexes of two adjacent teeth of the first gear 30b and the rotation axis of the gear 30b when viewed from the rotation axis direction of the first gear 30b. ..

ローラ20bと第1のギア30bの間の距離mは、波形成形部30により形成される1つの山部又は谷部の成形前の搬送方向の長さの整数倍である。例えば、図2Bにおいて、距離mは、1つの下向きの山部に対応する成形前の搬送方向の長さaの整数倍となる。整数倍とすることにより、孔11aが一対の第1のギア30a、30bの歯の位置に位置決めされる。 The distance m between the roller 20b and the first gear 30b is an integral multiple of the length of one peak or valley formed by the corrugated forming portion 30 in the transport direction before forming. For example, in FIG. 2B, the distance m is an integral multiple of the length a in the transport direction before molding corresponding to one downward mountain portion. By making it an integral multiple, the holes 11a are positioned at the positions of the teeth of the pair of first gears 30a and 30b.

第1の同期回転部50は、ローラ20bの回転軸と第1のギア30a、30bの回転軸を同期して回転させる。具体的には、図2Aに示すように、第1の同期回転部50は、ローラ20bの回転軸に取り付けた第1プーリ24と、第1のギア30bの回転軸に取り付けた第2プーリ34と、第1プーリ24と第2プーリ34の間に掛け渡される第1ベルト51と、を備える。 The first synchronous rotation unit 50 rotates the rotation shaft of the roller 20b and the rotation shafts of the first gears 30a and 30b in synchronization with each other. Specifically, as shown in FIG. 2A, the first synchronous rotating portion 50 includes a first pulley 24 attached to the rotating shaft of the roller 20b and a second pulley 34 attached to the rotating shaft of the first gear 30b. And a first belt 51 spanned between the first pulley 24 and the second pulley 34.

第1プーリ24と第2プーリ34とは同一直径であり、第2プーリ34が駆動部であるモータに接続されており、第2プーリ34が駆動されることにより、第1ベルト51により第1プーリ24に駆動力が伝達され、第1プーリ24と第2プーリ34とは、同期して回転する。第1プーリ24と第2プーリ34が同期して回転するので、ローラ20bと第1のギア30bとは同期して回転する。 The first pulley 24 and the second pulley 34 have the same diameter, the second pulley 34 is connected to a motor which is a driving unit, and the second pulley 34 is driven so that the first belt 51 can be used for the first. The driving force is transmitted to the pulley 24, and the first pulley 24 and the second pulley 34 rotate in synchronization with each other. Since the first pulley 24 and the second pulley 34 rotate in synchronization with each other, the roller 20b and the first gear 30b rotate in synchronization with each other.

接着剤塗布部40は、波形成形部30により波形に成形された流路形成板11の下向きの山部の頂部に接着剤を塗布する。接着剤塗布部40は、波形成形部30を通過した流路形成板11の搬送経路に配置され、第2のギア40aと、第2のギア40aに接着剤を供給する接着剤供給部40bと、を備える。第2のギア40aの回転軸は、ローラ20bの回転軸と平行に配置される。第2のギア40aは、第1のギア30a、30bと同様に、回転軸方向に伸びる歯を備える。接着剤供給部40bは、第2のギア40aの下方に設置され、接着剤を貯留する貯留容器40bbを備える。第2のギア40aの下部が貯留容器40bbの接着液に浸かり、第2のギア40aが回転することにより第2のギア40aの歯に接着液が付着する。第2のギア40aが回転して第2のギア40aの歯先と流路形成板11の下向きの山部の頂部とが接触することにより、流路形成板11の下向きの山部の頂部に、第2のギア40aに付着した接着液が塗布される。接着剤は、液体状、ゲル状、固形状のいずれの形態であってもよい。 The adhesive coating unit 40 applies the adhesive to the top of the downward mountain portion of the flow path forming plate 11 formed into a corrugated shape by the corrugated forming unit 30. The adhesive coating unit 40 is arranged in the transport path of the flow path forming plate 11 that has passed through the corrugated forming unit 30, and includes the second gear 40a and the adhesive supply unit 40b that supplies the adhesive to the second gear 40a. , Equipped with. The rotation axis of the second gear 40a is arranged parallel to the rotation axis of the roller 20b. The second gear 40a, like the first gears 30a and 30b, includes teeth extending in the direction of the rotation axis. The adhesive supply unit 40b is installed below the second gear 40a and includes a storage container 40bb for storing the adhesive. The lower portion of the second gear 40a is immersed in the adhesive liquid of the storage container 40bb, and the rotation of the second gear 40a causes the adhesive liquid to adhere to the teeth of the second gear 40a. The second gear 40a rotates and the tooth tips of the second gear 40a come into contact with the top of the downward ridge of the flow path forming plate 11, so that the top of the downward ridge of the flow path forming plate 11 is reached. , The adhesive liquid adhering to the second gear 40a is applied. The adhesive may be in the form of a liquid, a gel, or a solid.

図2Aに一点破線で示すように、第2のギア40aの歯の先端を結んで形成される歯先円の歯先円直径は、ローラ20bの刃先円直径及び第1のギア30bのピッチ円直径と同一である。また、第2のギア40aの回転軸方向から見て、第2のギア40aの隣り合う2つの歯の頂点と当該ギアの回転軸とを結んで形成される第3の角度θ3は、第1の角度θ1と第2の角度θ2と同一である。また、第1のギア30bと第2のギア40aの間の距離nは、図2Bに示すように、波形成形部30により形成された1つの山部の搬送方向の長さbの整数倍である。整数倍とすることで、波形成形部30により成形された1つの山部の頂部と、第2のギア40aの頂部とが接触する。 As shown by a broken line in FIG. 2A, the diameter of the tip circle of the tip circle formed by connecting the tips of the teeth of the second gear 40a is the diameter of the tip circle of the roller 20b and the pitch circle of the first gear 30b. Same as diameter. Further, the third angle θ3 formed by connecting the apex of two adjacent teeth of the second gear 40a and the rotation axis of the gear when viewed from the rotation axis direction of the second gear 40a is the first. The angle θ1 and the second angle θ2 are the same. Further, as shown in FIG. 2B, the distance n between the first gear 30b and the second gear 40a is an integral multiple of the length b in the transport direction of one mountain portion formed by the corrugated forming portion 30. be. By making it an integral multiple, the top of one peak formed by the corrugated molding portion 30 and the top of the second gear 40a come into contact with each other.

第2の同期回転部60は、第1のギア30bの回転軸と第2のギア40aの回転軸を同期して回転させる。具体的には、図2Aに示すように、第2の同期回転部60は、第1のギア30bの回転軸に取り付けた第2プーリ34と、第2のギア40aの回転軸に取り付けた第3プーリ44と、第2プーリ34と第3プーリ44の間に掛け渡される第2ベルト61と、を備える。 The second synchronous rotation unit 60 rotates the rotation shaft of the first gear 30b and the rotation shaft of the second gear 40a in synchronization with each other. Specifically, as shown in FIG. 2A, the second synchronous rotating portion 60 is attached to the second pulley 34 attached to the rotating shaft of the first gear 30b and the second pulley 34 attached to the rotating shaft of the second gear 40a. It includes 3 pulleys 44 and a second belt 61 spanned between the second pulley 34 and the third pulley 44.

第2プーリ34と第3プーリ44とは同一直径であり、第2プーリ34が駆動部であるモータに接続されており、第2プーリ34が駆動されることにより、第2ベルト61により第3プーリ44に駆動力が伝達され、第2プーリ34と第3プーリ44とは、同期して回転し、第1のギア30bと第2のギア40aは同期して回転する。また第2プーリ34と第1プーリ24とは、第1の同期回転部50により同期して回転されるので、第1プーリ24と第3プーリ44は同期して回転される。このように、第1プーリ24、第2プーリ34、第3プーリ44は、互いに同期して回転するので、ローラ20b、第1のギア30b、第2のギア40aは、同期して回転する。 The second pulley 34 and the third pulley 44 have the same diameter, the second pulley 34 is connected to a motor which is a driving unit, and the second pulley 34 is driven to drive the third pulley 34 by the second belt 61. The driving force is transmitted to the pulley 44, the second pulley 34 and the third pulley 44 rotate in synchronization with each other, and the first gear 30b and the second gear 40a rotate in synchronization with each other. Further, since the second pulley 34 and the first pulley 24 are rotated synchronously by the first synchronous rotating portion 50, the first pulley 24 and the third pulley 44 are rotated synchronously. In this way, the first pulley 24, the second pulley 34, and the third pulley 44 rotate in synchronization with each other, so that the roller 20b, the first gear 30b, and the second gear 40a rotate in synchronization with each other.

仕切板供給部70は、仕切板71を搬送経路に供給する装置であり、図1Aに示すように、搬送経路と垂直に回転軸が配置されたローラを備え、このローラに巻回された仕切板71を引き出して、搬送路に供給する。仕切板71は、他の流路板との間を仕切る板として機能するシート状の部材であり、例えば、パルプ素材が使用される。 The partition plate supply unit 70 is a device that supplies the partition plate 71 to the transport path, and as shown in FIG. 1A, includes a roller whose rotation axis is arranged perpendicular to the transport path, and the partition wound around the roller. The plate 71 is pulled out and supplied to the transport path. The partition plate 71 is a sheet-like member that functions as a plate that partitions the partition plate 71 from another flow path plate, and for example, a pulp material is used.

接着ローラ80は、図1Bに示すように、山部に接着剤が塗布された流路形成板11を仕切板71の上面に接着する。接着ローラ80は、接着剤が塗布された流路形成板11と仕切板71を引き込み、互いを接着させる一対のローラ80a、80bを備える。一対のローラ80a、80bは、搬送経路を挟んで上下に配置され、互いの回転軸がローラ20bの回転軸と平行に配置されて、互いに逆方向に回転する。接着ローラ80により流路形成板11と仕切板71とは接着され、流路板本体81が形成される。 As shown in FIG. 1B, the adhesive roller 80 adheres the flow path forming plate 11 to which the adhesive is applied to the mountain portion to the upper surface of the partition plate 71. The adhesive roller 80 includes a pair of rollers 80a and 80b that draw in the flow path forming plate 11 and the partition plate 71 coated with the adhesive and adhere them to each other. The pair of rollers 80a and 80b are arranged vertically with the transport path interposed therebetween, and their rotation axes are arranged parallel to the rotation axis of the rollers 20b and rotate in opposite directions. The flow path forming plate 11 and the partition plate 71 are adhered to each other by the adhesive roller 80 to form the flow path plate main body 81.

切除部90は、流路板本体81を上方から見たときに、図1Bに示すように、流路板本体81の幅方向の、孔11aの両側部11bを切除する装置である。両側部11bは、流路形成板11を搬送経路に沿って搬送する際に、ローラ20a、20b、第1のギア30a、30b、ローラ80a、80bにより保持される部分である。両側部11bを切除部90により切除すると、仕切板71の上面に周期的にU字状の山部が配列された流路板82が形成される。切除部90として、例えば、搬送経路に沿って孔11aの短辺に接触しながら両側部11bを切断するカッターが使用される。 The cutting portion 90 is a device for cutting both side portions 11b of the hole 11a in the width direction of the flow path plate main body 81 as shown in FIG. 1B when the flow path plate main body 81 is viewed from above. The both side portions 11b are portions held by the rollers 20a and 20b, the first gears 30a and 30b, and the rollers 80a and 80b when the flow path forming plate 11 is conveyed along the transfer path. When both side portions 11b are excised by the excision portion 90, a flow path plate 82 in which U-shaped mountain portions are periodically arranged is formed on the upper surface of the partition plate 71. As the cutting portion 90, for example, a cutter that cuts both side portions 11b while contacting the short side of the hole 11a along the transport path is used.

次に、上記構成を有する流路板製造装置1を用いた流路板の製造方法について、図1、2を用いて説明する。 Next, a method of manufacturing a flow path plate using the flow path plate manufacturing apparatus 1 having the above configuration will be described with reference to FIGS. 1 and 2.

まず、図1A、図2Bに示すように、流路形成板供給部10が、帯状の第1の基板である流路形成板11を巻回したローラから、流路形成板11を矢印Xの方向に引き出す。引き出された流路形成板11は、孔形成部20まで搬送経路に沿って搬送される。 First, as shown in FIGS. 1A and 2B, the flow path forming plate supply unit 10 draws the flow path forming plate 11 from the roller wound around the flow path forming plate 11 which is the first strip-shaped substrate by the arrow X. Pull out in the direction. The drawn flow path forming plate 11 is conveyed to the hole forming portion 20 along the conveying path.

孔形成部20まで搬送された流路形成板11は、一対のローラ20a、20bの間を通過することにより、ローラ20aの切断刃21により矩形状に打ち抜かれ、図1B、図2Bに示すように、矩形状の孔11aが形成される。 The flow path forming plate 11 conveyed to the hole forming portion 20 passes between the pair of rollers 20a and 20b and is punched out in a rectangular shape by the cutting blade 21 of the rollers 20a, as shown in FIGS. 1B and 2B. A rectangular hole 11a is formed in the hole 11a.

帯状の流路形成板11が、一対のローラ20a、20b間を連続して通過することにより、切断刃21が設けられた間隔に応じて、流路形成板11には、連続して矩形状の孔11aが形成される。 The strip-shaped flow path forming plate 11 continuously passes between the pair of rollers 20a and 20b, so that the flow path forming plate 11 has a continuous rectangular shape according to the interval in which the cutting blade 21 is provided. Hole 11a is formed.

次に、流路形成板11は、波形成形部30に送られる。流路形成板11は、波形成形部30の一対の第1のギア30a、30bの間を通過するときに、噛み合う第1のギア30a、30bの歯によって折曲げられて、波形に成形される。流路形成板11の山部の頂部は、流路形成板11の幅方向と平行に伸びて形成される。 Next, the flow path forming plate 11 is sent to the corrugated forming unit 30. The flow path forming plate 11 is bent by the teeth of the first gears 30a and 30b that mesh with each other when passing between the pair of first gears 30a and 30b of the corrugated forming portion 30, and is formed into a corrugated shape. .. The top of the mountain portion of the flow path forming plate 11 is formed so as to extend in parallel with the width direction of the flow path forming plate 11.

このとき、ローラ20bと第1のギア30bは、第1の同期回転部50により同期して回転される。また、ローラ20bの刃先円直径と第1のギア30bのピッチ円直径が同一であり、ローラ20bの第1の角度θ1と第1のギア30bの第2の角度θ2が同一であり、距離mが、形成される1つの山部の成形前の搬送方向の長さに対応する長さaの整数倍である。この条件により、流路形成板11の孔11aの刃21a又は刃21bにより切断された位置と、一対の第1のギア30a、30bの噛み合い開始の位置とが正しく位置決めされ、山部がずれて形成されることはない。 At this time, the roller 20b and the first gear 30b are rotated synchronously by the first synchronous rotation unit 50. Further, the diameter of the cutting edge circle of the roller 20b and the diameter of the pitch circle of the first gear 30b are the same, the first angle θ1 of the roller 20b and the second angle θ2 of the first gear 30b are the same, and the distance m. Is an integral multiple of the length a corresponding to the length of one formed mountain portion in the transport direction before molding. Under this condition, the position cut by the blade 21a or the blade 21b of the hole 11a of the flow path forming plate 11 and the position where the pair of first gears 30a and 30b start meshing are correctly positioned, and the mountain portion is displaced. It is never formed.

波形に折曲げられた流路形成板11は、接着剤塗布部40に送られる。接着剤塗布部40において、流路形成板11の山部の頂部と、接着剤塗布部40の第2のギア40aの歯先が接触することで、流路形成板11の山部の頂部に接着剤が塗布される。 The flow path forming plate 11 bent into a corrugated shape is sent to the adhesive coating unit 40. In the adhesive coating portion 40, the top of the mountain portion of the flow path forming plate 11 and the tooth tip of the second gear 40a of the adhesive coating portion 40 come into contact with each other to reach the top of the mountain portion of the flow path forming plate 11. Adhesive is applied.

このとき、第1のギア30bと第2のギア40aとは、第2の同期回転部60により同期して回転される。また、第1のギア30bのピッチ円直径と第2のギア40aの歯先円直径が同一であり、第1のギア30bの第2の角度θ2と第2のギア40aの第3の角度θ3が同一であり、距離nが、形成された1つの山部の搬送方向の長さbの整数倍である。この条件により、一対の第1のギア30a、30bにより形成された流路形成板11の山部の頂部の位置と、第2のギア40aの歯先とが正しく位置決めされて、山部の頂部に確実に接着剤が塗布される。 At this time, the first gear 30b and the second gear 40a are rotated synchronously by the second synchronous rotation unit 60. Further, the pitch circle diameter of the first gear 30b and the tooth tip circle diameter of the second gear 40a are the same, and the second angle θ2 of the first gear 30b and the third angle θ3 of the second gear 40a are the same. Are the same, and the distance n is an integral multiple of the length b of the formed mountain portion in the transport direction. Under this condition, the position of the top of the mountain portion of the flow path forming plate 11 formed by the pair of first gears 30a and 30b and the tooth tip of the second gear 40a are correctly positioned, and the top of the mountain portion is positioned. The adhesive is surely applied to the teeth.

次に、図1Aに示すように、第2の基板である仕切板71が仕切板供給部70により引き出され、流路形成板11の搬送経路に供給される。接着剤が塗布された流路形成板11と仕切板71は、接着ローラ80の一対のローラ80a、80bの間に引き込まれ、ローラ80a、80bの間を通過することにより、接着されて流路板本体81が形成される。図1Bにおいて、仕切板71を斜線で示した。流路板本体81の両側部11bは、切除部90のカッターにより切除される。流路板82は巻回されて、図6に示すコルゲートロールとして保管される。 Next, as shown in FIG. 1A, the partition plate 71, which is the second substrate, is pulled out by the partition plate supply unit 70 and supplied to the transport path of the flow path forming plate 11. The flow path forming plate 11 and the partition plate 71 coated with the adhesive are drawn between the pair of rollers 80a and 80b of the adhesive roller 80 and passed between the rollers 80a and 80b to be adhered to each other. The plate body 81 is formed. In FIG. 1B, the partition plate 71 is shown by diagonal lines. Both side portions 11b of the flow path plate main body 81 are cut by the cutter of the cutting portion 90. The flow path plate 82 is wound and stored as a corrugated roll shown in FIG.

本実施の形態によれば、孔形成部20の刃先円直径と波形成形部30のピッチ円直径を同一とし、孔形成部20と波形成形部30を一定の距離に配置して同期して回転させるとともに、第1の角度θ1と第2の角度θ2を同一としたので、孔形成部20により形成される孔と波形成形部30により形成される山部とは、正確に位置決めされる。 According to the present embodiment, the diameter of the cutting edge circle of the hole forming portion 20 and the pitch circle diameter of the corrugated forming portion 30 are made the same, and the hole forming portion 20 and the corrugated forming portion 30 are arranged at a constant distance and rotated in synchronization with each other. Since the first angle θ1 and the second angle θ2 are the same, the hole formed by the hole forming portion 20 and the mountain portion formed by the corrugated forming portion 30 are accurately positioned.

本実施の形態によれば、接着剤塗布部40の歯先円直径と孔形成部20の刃先円直径を同一とし、波形成形部30と接着剤塗布部40を一定の距離に配置して同期して回転させるとともに、第3の角度θ3と第1の角度θ1を同一としたので、流路形成板11の山部の頂部に第2のギア40aの歯先が確実に接触して接着剤が塗布される。 According to the present embodiment, the tooth tip circle diameter of the adhesive coating portion 40 and the cutting edge circle diameter of the hole forming portion 20 are the same, and the corrugated forming portion 30 and the adhesive coating portion 40 are arranged at a constant distance for synchronization. Since the third angle θ3 and the first angle θ1 are made the same, the tooth tips of the second gear 40a are surely in contact with the top of the mountain portion of the flow path forming plate 11 and the adhesive is applied. Is applied.

本実施の形態によれば、切除部90により流路形成板11の両側部11bが切除されるので、取得される流路板82には、孔11aに対応する中央部分のみが残り、両側部11bに残る余分な山部又は谷部がなくなり、圧力損失が小さい流路板82となる。 According to the present embodiment, since both side portions 11b of the flow path forming plate 11 are cut by the cut portion 90, only the central portion corresponding to the hole 11a remains in the acquired flow path plate 82, and both side portions. The extra peaks or valleys remaining in 11b are eliminated, and the flow path plate 82 has a small pressure loss.

(実施の形態2)
実施の形態1では、孔形成部20、波形成形部30、接着剤塗布部40、接着ローラ80、切除部90という流路板製造装置1を構成する要素を、搬送経路に沿って、この順番に並べた流路板製造装置1を説明した。本実施の形態に係る流路板製造装置は、流路板製造装置の各要素間に、流路形成板又は仕切板のたわみを抑制するたわみ抑制部を更に設けたものである。
(Embodiment 2)
In the first embodiment, the elements constituting the flow path plate manufacturing apparatus 1 such as the hole forming portion 20, the corrugated forming portion 30, the adhesive coating portion 40, the adhesive roller 80, and the cutting portion 90 are arranged in this order along the transport path. The flow board manufacturing apparatus 1 arranged in the above was described. In the flow path plate manufacturing apparatus according to the present embodiment, a deflection suppressing portion for suppressing the deflection of the flow path forming plate or the partition plate is further provided between each element of the flow path plate manufacturing apparatus.

流路板製造装置の各要素間の間隔が大きくなると、搬送される流路形成板又は仕切板にたわみが生じる。本実施の形態に係る開示は、たわみを抑制するために、図5Aに示すように、たわみ抑制部12を設けたことを特徴とする。図中、流路形成板11が搬送される方向を左右方向、左右方向に垂直な方向を上下方向と規定する。 When the distance between each element of the flow path plate manufacturing apparatus becomes large, the flow path forming plate or the partition plate to be conveyed is bent. The disclosure according to the present embodiment is characterized in that a deflection suppressing unit 12 is provided as shown in FIG. 5A in order to suppress the deflection. In the figure, the direction in which the flow path forming plate 11 is conveyed is defined as the left-right direction, and the direction perpendicular to the left-right direction is defined as the vertical direction.

たわみ抑制部12は、図5Aに示すように、孔形成部20と波形成形部30の間、波形成形部30と接着剤塗布部40との間に、配置される。 As shown in FIG. 5A, the deflection suppressing portion 12 is arranged between the hole forming portion 20 and the corrugated forming portion 30, and between the corrugated forming portion 30 and the adhesive application portion 40.

たわみ抑制部12は、搬送される流路形成板11を挟んで上下に配置される一対のたわみ抑制ローラ12a、12bを備え、一対のたわみ抑制ローラ12a、12bの回転軸は、搬送経路に沿ってローラ20bの回転軸と平行に配置される。一対のたわみ抑制ローラ12a、12bの各々は、流路板製造装置1を構成する要素を省略して上方から見たとき、図5Bに示すように、孔11aの外側に配置される。また、たわみ抑制ローラ12aの各々は、上方から見たとき、孔11aを挟んで一対のローラ12aa、12abを備える。たわみ抑制ローラ12bの各々も、図示はしないが、同様に一対のローラを備える。 The deflection suppressing portion 12 includes a pair of deflection suppressing rollers 12a and 12b arranged vertically with the flow path forming plate 11 to be conveyed interposed therebetween, and the rotation axes of the pair of deflection suppressing rollers 12a and 12b are along the conveying path. Is arranged parallel to the rotation axis of the roller 20b. Each of the pair of deflection suppressing rollers 12a and 12b is arranged outside the hole 11a as shown in FIG. 5B when viewed from above with the elements constituting the flow path plate manufacturing apparatus 1 omitted. Further, each of the deflection suppressing rollers 12a includes a pair of rollers 12aa and 12ab with the hole 11a interposed therebetween when viewed from above. Although not shown, each of the deflection suppressing rollers 12b also includes a pair of rollers.

一対のたわみ抑制ローラ12a、12bは、孔形成部20と波形成形部30の間、波形成形部30と接着剤塗布部40との間の間隔の大きさに応じて、1つ又は複数配置される。 One or more of the pair of deflection suppressing rollers 12a and 12b are arranged depending on the size of the distance between the hole forming portion 20 and the corrugated forming portion 30 and between the corrugated forming portion 30 and the adhesive coating portion 40. To.

たわみ抑制部12を備える流路板製造装置1を稼働させると、流路形成板11は、孔形成部20と波形成形部30の間、及び波形成形部30と接着剤塗布部40との間を、たわみ抑制部12により支持され、たわみが抑制されながら搬送される。 When the flow path plate manufacturing apparatus 1 provided with the deflection suppressing portion 12 is operated, the flow path forming plate 11 is formed between the hole forming portion 20 and the corrugated forming portion 30, and between the corrugated forming portion 30 and the adhesive coating portion 40. Is supported by the deflection suppressing unit 12, and is conveyed while the deflection is suppressed.

接着剤塗布部40により接着剤が塗布された流路形成板11は、実施の形態1と同様に、接着ローラにより仕切板71と接着され、流路板82となる。 The flow path forming plate 11 to which the adhesive is applied by the adhesive application portion 40 is adhered to the partition plate 71 by the adhesive roller as in the first embodiment, and becomes the flow path plate 82.

本実施の形態によれば、たわみ抑制部12を備えることにより、流路形成板11のたわみを抑制することができるので、流路形成板11は、孔形成部20と波形成形部30の間、及び波形成形部30と接着剤塗布部40との間の間隔を大きく取ることが可能となり、工場のレイアウト設計の幅が広がる。 According to the present embodiment, the deflection of the flow path forming plate 11 can be suppressed by providing the deflection suppressing portion 12, so that the flow path forming plate 11 is located between the hole forming portion 20 and the corrugated forming portion 30. , And the distance between the corrugated forming portion 30 and the adhesive coating portion 40 can be increased, and the range of layout design of the factory is widened.

(熱交換素子の製造)
次に、実施の形態1、2において、流路板製造装置1により製造された流路板82を用いて熱交換素子を製造する方法を説明する。
(Manufacturing of heat exchange elements)
Next, in the first and second embodiments, a method of manufacturing a heat exchange element using the flow path plate 82 manufactured by the flow path plate manufacturing apparatus 1 will be described.

まず、図6に示すコルゲートロールから流路板82を引出して必要な長さを切り取り、切り取った流路板82を図7に示すように上下に積層することで熱交換素子100を製造する。 First, the heat exchange element 100 is manufactured by pulling out the flow path plate 82 from the corrugated roll shown in FIG. 6 to cut out a required length, and stacking the cut out flow path plates 82 vertically as shown in FIG. 7.

図7に示すように、熱交換素子100には、山部が形成された部分の流路形成板11と仕切板71との間で形成される流路13と、流路形成板11の山部のない部分と仕切板71との間で形成される流路14と、が交互に形成される。 As shown in FIG. 7, in the heat exchange element 100, the flow path 13 formed between the flow path forming plate 11 and the partition plate 71 in the portion where the mountain portion is formed, and the mountain of the flow path forming plate 11 The flow path 14 formed between the portion without the portion and the partition plate 71 is alternately formed.

流路板82を使用して製造された熱交換素子の一例である対向流型熱交換素子を、図8を参照して説明する。熱交換素子100の幅方向をX軸とし、奥行き方向をY軸とし、高さ方向をZ軸とするXYZ座標を設定し、適宜当該座標を参照して説明する。 A countercurrent heat exchange element, which is an example of a heat exchange element manufactured by using the flow path plate 82, will be described with reference to FIG. XYZ coordinates with the width direction of the heat exchange element 100 as the X axis, the depth direction as the Y axis, and the height direction as the Z axis are set, and the description will be described with reference to the coordinates as appropriate.

図8は、熱交換素子100の一部をZ軸方向に分解した分解斜視図である。熱交換素子100は、第1の流路板ユニット101と第2の流路板ユニット102をZ軸方向に重ねて形成される。 FIG. 8 is an exploded perspective view of a part of the heat exchange element 100 disassembled in the Z-axis direction. The heat exchange element 100 is formed by superimposing the first flow path plate unit 101 and the second flow path plate unit 102 in the Z-axis direction.

第1の流路板ユニット101は、第1の流路板210、第2の流路板310、及び第3の流路板410を、それぞれ接着テープ500で接着して形成される。第1の流路板210は、図6に示す流路板82を流路の伸びる方向と平行に切断して取得する。第2の流路板310は、第1の流路板210とは別の流路板を流路の伸びる方向に交差する方向で切断して取得する。第3の流路板410は、第1の流路板210とは別の流路板を流路の伸びる方向に、第2の流路板310とは逆方向に交差する方向で切断して取得する。 The first flow path plate unit 101 is formed by adhering a first flow path plate 210, a second flow path plate 310, and a third flow path plate 410 with an adhesive tape 500, respectively. The first flow path plate 210 is obtained by cutting the flow path plate 82 shown in FIG. 6 in parallel with the extending direction of the flow path. The second flow path plate 310 is obtained by cutting a flow path plate different from the first flow path plate 210 in a direction intersecting the extending direction of the flow path. The third flow path plate 410 cuts a flow path plate different from the first flow path plate 210 in the direction in which the flow path extends and in the direction opposite to the second flow path plate 310. get.

第2の流路板ユニット102は、第4の流路板220、第5の流路板320、及び第6の流路板420を、それぞれ接着テープ600で接着して形成される。第4の流路板220は、第1の流路板210と同様な方法により取得され、第5の流路板320は、第3の流路板410と同様な方法により取得され、第6の流路板420は、第2の流路板310と同様な方法により取得される。 The second flow path plate unit 102 is formed by adhering a fourth flow path plate 220, a fifth flow path plate 320, and a sixth flow path plate 420 with an adhesive tape 600, respectively. The fourth flow path plate 220 is acquired by the same method as the first flow path plate 210, and the fifth flow path plate 320 is acquired by the same method as the third flow path plate 410. The flow path plate 420 of the above is acquired by the same method as that of the second flow path plate 310.

第1の流路板ユニット101と第2の流路板ユニット102を積層することにより、第1の流路板210と第4の流路板220が積層され、対向流路部200が形成され、第2の流路板310と第5の流路板320が積層され、第1の交差流路部300が形成され、第3の流路板410と第6の流路板420が積層され、第2の交差流路部400が形成される。熱交換素子100は、対向流路部200と、対向流路部200の一端部に第1の交差流路部300を接合し、対向流路部200の一端部と対向する他端部に第2の交差流路部400とを接合して取得される。 By stacking the first flow path plate unit 101 and the second flow path plate unit 102, the first flow path plate 210 and the fourth flow path plate 220 are laminated, and the countercurrent flow path portion 200 is formed. , The second flow path plate 310 and the fifth flow path plate 320 are laminated to form the first cross-current exchange channel portion 300, and the third flow path plate 410 and the sixth flow path plate 420 are laminated. , A second countercurrent channel 400 is formed. In the heat exchange element 100, the first crossed flow path portion 300 is joined to the countercurrent flow path portion 200 and one end of the countercurrent flow path portion 200, and the other end portion facing the one end portion of the countercurrent flow path portion 200 is the second. Obtained by joining the cross-current exchange section 400 of 2.

第1の交差流路部300と対向流路部200のZ軸方向の接合される部分には、補強テープ700が貼付され、第2の交差流路部400と対向流路部200のZ軸方向の接合される部分にも、補強テープ700が貼付され、排気流及び給気流が熱交換素子100から外へ漏れることを防止する。 A reinforcing tape 700 is attached to the portion where the first crossed flow path portion 300 and the countercurrent flow path portion 200 are joined in the Z-axis direction, and the Z-axis of the second cross flow path portion 400 and the countercurrent flow path portion 200 is attached. A reinforcing tape 700 is also attached to the portion to be joined in the direction to prevent the exhaust flow and the supply air flow from leaking to the outside from the heat exchange element 100.

第1の流路板ユニット101と第2の流路板ユニット102は、積層されることにより、それぞれ、山部のある流路形成板11の部分に形成された流路13と、山部のない流路形成板11の部分に形成された流路14が形成される。 The first flow path plate unit 101 and the second flow path plate unit 102 are laminated to form a flow path 13 formed in a portion of the flow path forming plate 11 having a mountain portion and a mountain portion, respectively. The flow path 14 formed in the portion of the flow path forming plate 11 is formed.

対向流路部200は、基板を挟んで温度の相違する空気流が平行に、かつ対向して流れる部材であり、基板を介して熱交換をする。第1の交差流路部300と第2の交差流路部400は、基板を挟んで温度の相違する空気流が交差して流れ、基板を介して熱交換をする部材である。 The countercurrent flow path portion 200 is a member in which air flows having different temperatures flow in parallel and face each other across the substrate, and heat is exchanged via the substrate. The first crossed flow path portion 300 and the second crossed flow path portion 400 are members in which air flows having different temperatures cross each other across the substrate and exchange heat via the substrate.

実施の形態1又は2により製造された流路板82を用いて、熱交換素子100を製造することにより、熱交換効率が高いとともに、圧力損失の小さい熱交換素子100を提供することができる。 By manufacturing the heat exchange element 100 using the flow path plate 82 manufactured according to the first or second embodiment, it is possible to provide the heat exchange element 100 having high heat exchange efficiency and small pressure loss.

(実施の形態3)
実施の形態1においては、板状の仕切板71と波形に成形された流路形成板11とを接着して流路板82を製造した。このような流路板82ではなく、仕切板71を波形に成形して仕切板71の表面積を大きくし、流路板82より熱交換効率が高く、圧力損失を小さくした流路板としてもよい。本実施の形態に係る流路板製造装置2は、仕切板71を波形に成形した流路板を製造する装置である。
(Embodiment 3)
In the first embodiment, the plate-shaped partition plate 71 and the corrugated flow path forming plate 11 are bonded to each other to manufacture the flow path plate 82. Instead of such a flow path plate 82, the partition plate 71 may be formed into a corrugated shape to increase the surface area of the partition plate 71, resulting in a flow path plate having higher heat exchange efficiency and smaller pressure loss than the flow path plate 82. .. The flow path plate manufacturing apparatus 2 according to the present embodiment is an apparatus for manufacturing a flow path plate in which the partition plate 71 is formed into a corrugated shape.

図9Aに示すように、本実施の形態に係る流路板製造装置2は、実施の形態1と同様に、流路形成板供給部10と、孔形成部20と、波形成形部30と、接着剤塗布部40と、第1の同期回転部50と、第2の同期回転部60と、仕切板供給部70と、接着ローラ80と、を備える。本実施の形態に係る流路板製造装置2は、更に、第2の基板である仕切板71を波形に成形する仕切板波形成形部45と、孔形成部20のローラ20bと仕切板波形成形部45の第3のギア45aを同期して回転させる第3の同期回転部46と、を備える。 As shown in FIG. 9A, the flow path plate manufacturing apparatus 2 according to the present embodiment includes a flow path forming plate supply unit 10, a hole forming unit 20, a corrugated forming unit 30, and a corrugated forming unit 30, as in the first embodiment. It includes an adhesive coating unit 40, a first synchronous rotation unit 50, a second synchronous rotation unit 60, a partition plate supply unit 70, and an adhesive roller 80. Further, the flow path plate manufacturing apparatus 2 according to the present embodiment further includes a partition plate corrugated plate forming portion 45 for forming the partition plate 71, which is a second substrate, into a corrugated shape, a roller 20b of the hole forming portion 20, and a partition plate corrugated forming portion. A third synchronous rotating portion 46 for synchronously rotating the third gear 45a of the portion 45 is provided.

仕切板波形成形部45は、第2の基板を波形に成形する第2の波形成形部であり、互いに噛み合う一対の第3のギア45a、45bを備える。一対の第3のギア45a、45bの回転軸は、孔形成部20のローラ20bの回転軸と平行に配置される。一対の第3のギア45a、45b間を仕切板71が通過することにより、仕切板71は、山部と谷部を備える波形の仕切板71となる。 The partition plate corrugated portion 45 is a second corrugated forming portion that forms a second substrate into a corrugated shape, and includes a pair of third gears 45a and 45b that mesh with each other. The rotation axes of the pair of third gears 45a and 45b are arranged in parallel with the rotation axes of the rollers 20b of the hole forming portion 20. By passing the partition plate 71 between the pair of third gears 45a and 45b, the partition plate 71 becomes a corrugated partition plate 71 having a peak portion and a valley portion.

ローラ20bの刃先円直径と、図9Aに一点破線で示す第3のギア45a、45bのピッチ円の直径とは同一である。第3のギア45a、45bの回転軸方向から見て、第3のギア45a、45bの隣り合う2つの歯の頂点と当該ギアの回転軸とを結んで形成される第4の角度θ4は、ローラ20bの第1の角度θ1と同一である。 The diameter of the cutting edge circle of the roller 20b is the same as the diameter of the pitch circle of the third gears 45a and 45b shown by the alternate long and short dash line in FIG. 9A. The fourth angle θ4 formed by connecting the apexes of two adjacent teeth of the third gears 45a and 45b and the rotation axis of the gears when viewed from the rotation axis direction of the third gears 45a and 45b is It is the same as the first angle θ1 of the roller 20b.

また、仕切板波形成形部45は、仕切板71を流路形成板11の搬送経路に供給する。仕切板71は、後述する第3の同期回転部46によりローラ20bの回転と第3のギア45a、45bの回転が同期されながら、搬送経路における、流路形成板11の山部の頂部の位置と、仕切板71の山部の頂部の位置が一致する位置に供給される。なお、波形に成形された仕切板71は、仕切板波形成形部45とは別の要素により、搬送経路に供給されてもよい。 Further, the partition plate corrugated forming unit 45 supplies the partition plate 71 to the transport path of the flow path forming plate 11. In the partition plate 71, the position of the top of the mountain portion of the flow path forming plate 11 in the transport path while the rotation of the roller 20b and the rotation of the third gears 45a and 45b are synchronized by the third synchronous rotation unit 46 described later. And, it is supplied to a position where the positions of the tops of the mountain portions of the partition plate 71 coincide with each other. The corrugated partition plate 71 may be supplied to the transport path by an element different from that of the partition plate corrugated portion 45.

第3の同期回転部46は、ローラ20bの回転軸と第3のギア45aの回転軸を同期して回転させる。具体的には、図9Aに示すように、第3の同期回転部46は、ローラ20bの回転軸に取り付けた第1プーリ24と、第3のギア45aの回転軸に取り付けた第4プーリ47と、第1プーリ24と第4プーリ47の間に掛け渡される第3ベルト48と、を備える。 The third synchronous rotation unit 46 rotates the rotation axis of the roller 20b and the rotation axis of the third gear 45a in synchronization with each other. Specifically, as shown in FIG. 9A, the third synchronous rotating portion 46 includes a first pulley 24 attached to the rotating shaft of the roller 20b and a fourth pulley 47 attached to the rotating shaft of the third gear 45a. And a third belt 48 spanned between the first pulley 24 and the fourth pulley 47.

第1プーリ24と第4プーリ47とは同一直径であり、第4プーリ47が図示しない駆動部であるモータに接続されており、第4プーリ47が駆動されることにより、第3ベルト48により第1プーリ24に駆動力が伝達され、第1プーリ24と第4プーリ47とは、同期して回転する。本実施の形態では、第1の同期回転部50及び第2の同期回転部60も備えるので、ローラ20b、第1のギア30b、第2のギア40a、第3のギア45aは、同期して回転する。 The first pulley 24 and the fourth pulley 47 have the same diameter, the fourth pulley 47 is connected to a motor which is a drive unit (not shown), and the fourth pulley 47 is driven by the third belt 48. The driving force is transmitted to the first pulley 24, and the first pulley 24 and the fourth pulley 47 rotate in synchronization with each other. In the present embodiment, since the first synchronous rotation unit 50 and the second synchronous rotation unit 60 are also provided, the rollers 20b, the first gear 30b, the second gear 40a, and the third gear 45a are synchronously provided. Rotate.

次に、図9Aに示す流路板製造装置2を使用して流路板を製造する方法について説明する。 Next, a method of manufacturing the flow path plate by using the flow path plate manufacturing apparatus 2 shown in FIG. 9A will be described.

まず、図9Aに示すように、帯状の流路形成板11が流路形成板供給部10から供給され、孔形成部20の一対のローラ20a、20b間を通過することにより、流路形成板11には、連続して矩形状の孔11aが形成される。 First, as shown in FIG. 9A, the strip-shaped flow path forming plate 11 is supplied from the flow path forming plate supply section 10 and passes between the pair of rollers 20a and 20b of the hole forming section 20 to form the flow path forming plate. A rectangular hole 11a is continuously formed in the eleven.

次に、連続して孔11aが形成された流路形成板11は、波形成形部30の一対の第1のギア30a、30bの間を通過して波形に成形される。そして、波形に折曲げられた流路形成板11は、接着剤塗布部40に送られ、流路形成板11の山部の頂部に接着剤が塗布される。 Next, the flow path forming plate 11 in which the holes 11a are continuously formed passes between the pair of first gears 30a and 30b of the corrugated forming portion 30, and is formed into a corrugated shape. Then, the flow path forming plate 11 bent into a corrugated shape is sent to the adhesive application portion 40, and the adhesive is applied to the top of the mountain portion of the flow path forming plate 11.

次に、仕切板供給部70から仕切板71が供給され、仕切板71は、仕切板波形成形部45の一対の第3のギア45a、45bの間を通過して波形に成形される。波形に成形された仕切板71は、接着剤が塗布された流路形成板11が搬送される搬送経路において、流路形成板11の山部の頂部の位置と、仕切板71の山部の頂部の位置が一致する位置に供給される。流路形成板11と仕切板71とは接着ローラ80により接着されて、流路板11cとなる。 Next, the partition plate 71 is supplied from the partition plate supply unit 70, and the partition plate 71 passes between the pair of third gears 45a and 45b of the partition plate corrugated forming unit 45 and is formed into a corrugated shape. The corrugated partition plate 71 has the position of the top of the mountain portion of the flow path forming plate 11 and the mountain portion of the partition plate 71 in the transport path in which the flow path forming plate 11 coated with the adhesive is conveyed. It is supplied to the position where the position of the top matches. The flow path forming plate 11 and the partition plate 71 are adhered to each other by the adhesive roller 80 to form the flow path plate 11c.

流路板製造装置2によって形成される流路板11cは、図9Bに示すように、孔11aがあけられ波形に成形された流路形成板11と、波形に成形された仕切板71とを、接着して形成される。流路板11cを、複数枚積層して熱交換素子110が取得される。熱交換素子110には、波形に形成された流路板11cと波形に形成された仕切板71とを積層することで、流路15、流路16が形成される。 As shown in FIG. 9B, the flow path plate 11c formed by the flow path plate manufacturing apparatus 2 comprises a flow path forming plate 11 having a hole 11a and formed into a corrugated shape, and a partition plate 71 formed into a corrugated shape. , Formed by adhesion. A heat exchange element 110 is acquired by stacking a plurality of flow path plates 11c. In the heat exchange element 110, the flow path 15 and the flow path 16 are formed by laminating the flow path plate 11c formed in a corrugation and the partition plate 71 formed in a corrugation.

本実施の形態によれば、ローラ20bの刃先円直径と第3のギア45aのピッチ円直径が同一であり、第1の角度θ1と第4の角度θ4を同一とした。そして、孔形成部20と仕切板波形成形部45を同期して回転させ、仕切板71を、仕切板71と山部の頂部と流路形成板の山部の頂部が接触する位置に供給するので、仕切板71と流路形成板11は、互いの山部の頂部を位置決めされて接着される。 According to the present embodiment, the diameter of the cutting edge circle of the roller 20b and the diameter of the pitch circle of the third gear 45a are the same, and the first angle θ1 and the fourth angle θ4 are the same. Then, the hole forming portion 20 and the partition plate corrugated forming portion 45 are rotated in synchronization, and the partition plate 71 is supplied to a position where the partition plate 71, the top of the mountain portion, and the top of the mountain portion of the flow path forming plate come into contact with each other. Therefore, the partition plate 71 and the flow path forming plate 11 are positioned and bonded to each other at the tops of the mountain portions.

仕切板71も波形に成形されるので、熱交換効率が高くなるとともに、波形の流路形成板11との間で、流路板製造装置1よりも流路断面積の大きな流路16が形成できるので、圧力損失を、流路板製造装置1よりも小さくできる。 Since the partition plate 71 is also formed into a corrugated shape, the heat exchange efficiency is improved, and a flow path 16 having a larger flow path cross-sectional area than the flow path plate manufacturing apparatus 1 is formed between the partition plate 71 and the corrugated flow path forming plate 11. Therefore, the pressure loss can be made smaller than that of the flow path plate manufacturing apparatus 1.

実施の形態1においては、切断刃21を4つの刃21a~21dにより形成して、この切断刃21により流路形成板11を押し切ったが、切断刃21でなくてもよい。切断刃の変形例を図10A、10Bに示す。図10Aに示すように、変形例の切断刃22は、一方のローラ20bの外周から突出し半径と同一方向に伸び、半径方向から見て矩形状を有した中実のブロック状の切断刃22である。流路形成板11は、切断刃22が押し当てられることにより、矩形状に打ち抜かれる。また、図10Bに示すように、切断刃22のみでなく、他方のローラ20aの外周の、一対のローラ20a、20bが回転して切断刃22と対向する位置に凹部23を設け、切断刃22を凹部23に受け入れる構造としてもよい。流路形成板11は、突出する切断刃22と凹部23の間に挟まれて打ち抜かれる。 In the first embodiment, the cutting blade 21 is formed by the four blades 21a to 21d, and the flow path forming plate 11 is pushed through by the cutting blade 21, but the cutting blade 21 does not have to be. Deformation examples of the cutting blade are shown in FIGS. 10A and 10B. As shown in FIG. 10A, the cutting blade 22 of the modified example is a solid block-shaped cutting blade 22 that protrudes from the outer circumference of one roller 20b and extends in the same direction as the radius and has a rectangular shape when viewed from the radial direction. be. The flow path forming plate 11 is punched out in a rectangular shape by being pressed against the cutting blade 22. Further, as shown in FIG. 10B, not only the cutting blade 22 but also the recess 23 is provided on the outer periphery of the other roller 20a at a position where the pair of rollers 20a and 20b rotate to face the cutting blade 22 and the cutting blade 22 is provided. May be configured to be received in the recess 23. The flow path forming plate 11 is sandwiched between the protruding cutting blade 22 and the recess 23 and punched out.

実施の形態1において、切断刃21は、ローラ20bの回転軸の伸びる方向に長辺が伸びる矩形状の外形を備える刃であると説明したが、複数の矩形状の切断刃を回転軸の伸びる方向に配置してもよい。 In the first embodiment, it has been described that the cutting blade 21 is a blade having a rectangular outer shape whose long side extends in the extending direction of the rotating shaft of the roller 20b, but a plurality of rectangular cutting blades extend the rotating shaft. It may be arranged in a direction.

実施の形態1において、ローラ20bの第1の角度θ1は、第1のギア30a、30bの第2の角度θ2と同一であると説明したが、第1の角度θ1は、第2の角度の整数倍であればよい。整数倍とすることで、1つの孔11aに整数倍の山部が対応することとなり、山部が形成される間隔を大きくすることができる。 In the first embodiment, it has been described that the first angle θ1 of the roller 20b is the same as the second angle θ2 of the first gears 30a and 30b, but the first angle θ1 is of the second angle. It may be an integral multiple. By setting the number to an integral multiple, one hole 11a corresponds to a mountain portion having an integral multiple, and the interval at which the mountain portion is formed can be increased.

実施の形態1において、切断刃21は、下方のローラ20bに取り付けられ、ローラ20bと、下方の第1のギア30bと、下方に配置された第2のギア40aと、が同期して回転する。しかし、切断刃21の取り付けられたローラと、一対の第1のギア30a、30bと、第2のギア40aが同期して回転すればよく、切断刃21が上方のローラ20aに設けられても、上方の第1のギア30aを同期させてもよい。 In the first embodiment, the cutting blade 21 is attached to the lower roller 20b, and the roller 20b, the lower first gear 30b, and the lower second gear 40a rotate in synchronization with each other. .. However, the roller to which the cutting blade 21 is attached, the pair of first gears 30a and 30b, and the second gear 40a need only rotate in synchronization, and even if the cutting blade 21 is provided on the upper roller 20a. , The upper first gear 30a may be synchronized.

実施の形態1において、第1の同期回転部50は、第2プーリ34が駆動源に接続されていると説明したが、第1プーリ24、第2プーリ34、第3プーリ44が同期して回転できればよく、駆動源に接続されるプーリは、第1プーリ24でも、第3プーリ44でもよい。 In the first embodiment, the first synchronous rotating unit 50 has described that the second pulley 34 is connected to the drive source, but the first pulley 24, the second pulley 34, and the third pulley 44 are synchronized. As long as it can rotate, the pulley connected to the drive source may be the first pulley 24 or the third pulley 44.

実施の形態1において、流路形成板11の素材は、パルプ素材であると説明したが、パルプ素材に限定されない。例えば、金属素材であるアルミ、鉄、ステンレス又はプラスチック素材、カーボン素材も使用できる。 In the first embodiment, the material of the flow path forming plate 11 has been described as a pulp material, but the material is not limited to the pulp material. For example, aluminum, iron, stainless steel or plastic materials, and carbon materials, which are metal materials, can also be used.

実施の形態1~実施の形態3において、第1の同期回転部50、第2の同期回転部60、及び第3の同期回転部46とは、1対のプーリにベルトをかけ渡して2軸を同期させると説明したが、プーリとベルトの組み合わせでなくてもよい。ギアとチェーンの組合せにしてもよい。また、歯車を組み合わせて回転を同期させる、又は、各プーリ24、34、44、47を独立に回転させ、回転速度が同一となるような制御をして、回転を同期させてもよい。 In the first to third embodiments, the first synchronous rotation unit 50, the second synchronous rotation unit 60, and the third synchronous rotation unit 46 have two shafts by passing a belt over a pair of pulleys. I explained that they are synchronized, but it does not have to be a combination of a pulley and a belt. It may be a combination of a gear and a chain. Further, the rotations may be synchronized by combining gears or controlling the pulleys 24, 34, 44, 47 to rotate independently so that the rotation speeds are the same.

また、切断刃21をローラ20b上に等間隔で配置する例を示したが間隔は互いに異なってもよい。この場合、第1のギア30aと30b、第2のギア40aは、切断刃21の間隔に適合した形状に設計される。 Further, although an example in which the cutting blades 21 are arranged on the rollers 20b at equal intervals is shown, the intervals may be different from each other. In this case, the first gears 30a and 30b and the second gear 40a are designed to have a shape suitable for the distance between the cutting blades 21.

実施の形態2におけるたわみ抑制部12は、流路板製造装置1を構成する各要素間に設けられればよく、例えば、図1Aに示す接着剤塗布部40と接着ローラ80との間に設けてもよい。 The deflection suppressing portion 12 in the second embodiment may be provided between each element constituting the flow path plate manufacturing apparatus 1, and is provided, for example, between the adhesive coating portion 40 shown in FIG. 1A and the adhesive roller 80. May be good.

実施の形態2において、たわみ抑制部12は、搬送される流路形成板11を挟んで配置される一対のたわみ抑制ローラ12a、12aであると説明したが、たわみ抑制部12は、このような形態に限定されない。たわみ抑制部12は、搬送経路に沿って搬送される流路形成板11の下部を支持できればよく、例えば、図5A、図5Bに示す一対のたわみ抑制ローラ12a、12bのうち、流路形成板11の下部を支持するたわみ抑制ローラ12bのみであってもよい。 In the second embodiment, it has been described that the deflection suppressing unit 12 is a pair of deflection suppressing rollers 12a, 12a arranged so as to sandwich the flow path forming plate 11 to be conveyed, but the deflection suppressing unit 12 is such. It is not limited to the form. The deflection suppressing portion 12 only needs to be able to support the lower portion of the flow path forming plate 11 conveyed along the conveying path. For example, among the pair of deflection suppressing rollers 12a and 12b shown in FIGS. 5A and 5B, the flow path forming plate Only the deflection suppressing roller 12b that supports the lower portion of 11 may be used.

実施の形態2において、上方から見たたわみ抑制ローラ12aは、孔11aを挟んで一対のローラ12aa、12abを備えると説明したが、たわみ抑制ローラ12aは、このような形態に限定されない。たわみ抑制部12は、流路形成板11の一部を支持できればよく、たわみ抑制ローラ12aの直径が孔11aより大きければ、搬送される流路形成板11の孔11aが通過する位置に設けられてもよい。また、流路形成板11の幅より長い、円柱状のたわみ抑制ローラとしてもよい。 In the second embodiment, it has been described that the deflection suppressing roller 12a viewed from above includes a pair of rollers 12aa and 12ab with the hole 11a interposed therebetween, but the deflection suppressing roller 12a is not limited to such a form. The deflection suppressing portion 12 only needs to be able to support a part of the flow path forming plate 11, and if the diameter of the deflection suppressing roller 12a is larger than the hole 11a, the deflection suppressing portion 12 is provided at a position where the hole 11a of the flow path forming plate 11 to be conveyed passes. You may. Further, a columnar deflection suppressing roller that is longer than the width of the flow path forming plate 11 may be used.

実施の形態3において、第3の同期回転部46は、孔形成部20の第1プーリ24と仕切板波形成形部45の第4プーリ47に第3ベルト48を掛けわたす構造であったが、例えば、第4プーリ47と、第2プーリ34又は第3プーリ44とに、第3ベルト48を掛け渡すことにより、第1プーリ24の回転と第4プーリ47の回転を同期させてもよい。 In the third embodiment, the third synchronous rotating portion 46 has a structure in which the third belt 48 is hung on the first pulley 24 of the hole forming portion 20 and the fourth pulley 47 of the partition plate corrugated forming portion 45. For example, the rotation of the first pulley 24 and the rotation of the fourth pulley 47 may be synchronized by passing the third belt 48 over the fourth pulley 47 and the second pulley 34 or the third pulley 44.

実施の形態3において、切除部90を備えていてもよい。 In the third embodiment, the excision portion 90 may be provided.

本開示は、本開示の広義の精神と範囲を逸脱することなく、様々な実施の形態及び変形が可能とされるものである。また、上述した実施の形態は、この開示を説明するためのものであり、本開示の範囲を限定するものではない。すなわち、本開示の範囲は、実施の形態ではなく、特許請求の範囲によって示される。そして、特許請求の範囲内及びそれと同等の開示の意義の範囲内で施される様々な変形が、この開示の範囲内とみなされる。 The present disclosure allows for various embodiments and variations without departing from the broad spirit and scope of the present disclosure. Moreover, the above-described embodiment is for explaining this disclosure, and does not limit the scope of the present disclosure. That is, the scope of the present disclosure is shown not by the embodiment but by the scope of claims. And, various modifications made within the scope of the claims and within the scope of the equivalent disclosure are considered to be within the scope of this disclosure.

本出願は、2019年2月8日に出願された、日本国特許出願特願2019-21217号に基づく。本明細書中に日本国特許出願特願2019-21217号の明細書、特許請求の範囲、図面全体を参照として取り込むものとする。 This application is based on Japanese Patent Application No. 2019-21217 filed on February 8, 2019. The specification, claims, and the entire drawing of Japanese Patent Application No. 2019-21217 shall be incorporated into this specification as a reference.

本開示は、流路板を製造する流路板製造装置に好適に利用できる。 The present disclosure can be suitably used for a flow path plate manufacturing apparatus for manufacturing a flow path plate.

1 流路板製造装置、2 流路板製造装置、8 熱交換素子、10 流路形成板供給部、11 流路形成板、11a 孔、11b 両側部、11c 流路板、12 たわみ抑制部、12a、12b たわみ抑制ローラ、12aa、12ab ローラ、13、14、15,16 流路、20 孔形成部、20a、20b ローラ、21 切断刃、21a、21b、21c、21d 刃、22 切断刃、23 凹部、24 第1プーリ、30 波形成形部、30a、30b 第1のギア、34 第2プーリ、40 接着剤塗布部、40a 第2のギア、40b 接着剤供給部、40bb 貯留容器、44 第3プーリ、45 仕切板波形成形部、45a、45b 第3のギア、46 第3の同期回転部、47 第4プーリ、48 第3ベルト、50 第1の同期回転部、51 第1ベルト、60 第2の同期回転部、61 第2ベルト、70 仕切板供給部、71 仕切板、80 接着ローラ、80a、80b ローラ、81 流路板本体、82 流路板、90 切除部、100、110 熱交換素子、101 第1の流路板ユニット、102 第2の流路板ユニット、200 対向流路部、210 第1の流路板、220 第4の流路板、300 第1の交差流路部、310 第2の流路板、320 第5の流路板、400 第2の交差流路部、410 第3の流路板、420 第6の流路板、500,600 接着テープ、700 補強テープ、800 流路板、801 流路形成板、802 仕切板、801a、801b 流路。 1 Flow board manufacturing device, 2 Flow board manufacturing device, 8 Heat exchange element, 10 Flow path forming plate supply section, 11 Flow path forming plate, 11a hole, 11b both sides, 11c Flow path board, 12 Deflection suppression section, 12a, 12b Deflection suppression roller, 12aa, 12ab roller, 13, 14, 15, 16 flow path, 20 hole forming part, 20a, 20b roller, 21 cutting blade, 21a, 21b, 21c, 21d blade, 22 cutting blade, 23 Recess, 24 1st pulley, 30 corrugated molding part, 30a, 30b 1st gear, 34 2nd pulley, 40 adhesive coating part, 40a 2nd gear, 40b adhesive supply part, 40bb storage container, 44 3rd Pulley, 45 Partition plate corrugated forming part, 45a, 45b 3rd gear, 46 3rd synchronous rotating part, 47 4th pulley, 48 3rd belt, 50 1st synchronous rotating part, 51 1st belt, 60th 2 Synchronous rotating part, 61 2nd belt, 70 partition plate supply part, 71 partition plate, 80 adhesive roller, 80a, 80b roller, 81 flow path plate body, 82 flow path plate, 90 cutting part, 100, 110 heat exchange Element, 101 1st flow board unit, 102 2nd flow board unit, 200 countercurrent flow board, 210 1st flow board, 220 4th flow board, 300 1st cross flow board , 310 2nd flow board, 320 5th flow board, 400 2nd crossing flow board, 410 3rd flow board, 420 6th flow board, 500,600 adhesive tape, 700 reinforcement Tape, 800 flow path plate, 801 flow path forming plate, 802 partition plate, 801a, 801b flow path.

Claims (6)

帯状の第1の基板を第1の方向に伸びる搬送経路に沿って搬送しながら、熱交換素子に使用される流路板を製造する流路板製造装置であって、
互いの回転軸が前記搬送経路を挟んで平行に且つ前記搬送経路に垂直に配置され、逆方向に回転する一対のローラと、前記一対のローラの何れか一方のローラに取付けられ、前記一方のローラの周面から半径と平行に突出し半径方向から見て矩形状の外形をもつ切断刃と、を備え、前記一対のローラ間に前記第1の基板を通過させることにより、前記切断刃が前記第1の基板を打ち抜き矩形状の孔を形成する孔形成部と、
互いの回転軸が前記搬送経路を挟んで平行に且つ前記一対のローラと平行に配置され、互いに噛み合う一対の第1のギアを備え、前記一対の第1のギア間に前記孔形成部により孔が形成された前記第1の基板を通過させて、前記第1の基板を波形に成形する第1の波形成形部と、
前記一方のローラの回転軸と、前記一対の第1のギアの何れか一方のギアの回転軸と、を同期して回転させる第1の同期回転部と、
前記第1の波形成形部により波形に成形された前記第1の基板に、前記第1の基板とは別に供給される第2の基板を接着して流路板を取得する接着部と、
を備える流路板製造装置。
A flow path plate manufacturing device that manufactures a flow path plate used for a heat exchange element while transporting a strip-shaped first substrate along a transfer path extending in the first direction.
The rotating shafts of each other are arranged parallel to the transport path and perpendicular to the transport path, and are attached to a pair of rollers rotating in opposite directions and one of the pair of rollers. A cutting blade that protrudes parallel to the radius from the peripheral surface of the roller and has a rectangular outer shape when viewed from the radial direction is provided, and the cutting blade is made to pass the first substrate between the pair of rollers. A hole forming portion that punches out the first substrate to form a rectangular hole, and a hole forming portion.
A pair of first gears in which the rotation axes of each other are arranged parallel to each other and parallel to the pair of rollers and mesh with each other are provided, and holes are formed between the pair of first gears by the hole forming portion. A first corrugated forming portion that forms the first substrate into a corrugated shape by passing through the first substrate on which the above-mentioned first substrate is formed.
A first synchronous rotating portion that synchronously rotates the rotating shaft of one of the rollers and the rotating shaft of one of the pair of first gears.
An adhesive portion for obtaining a flow path plate by adhering a second substrate separately supplied from the first substrate to the first substrate formed into a corrugation by the first corrugated molding portion.
A flow board manufacturing device including.
前記接着部は、
前記第1の波形成形部を通過した前記第1の基板の搬送経路に配置され、前記一方のローラの回転軸と回転軸が平行である第2のギアと、前記第2のギアの歯先に接着剤を供給する接着剤供給部と、を備え、前記第2のギアの歯先に供給された接着剤を、前記第2のギアを回転させながら、波形に成形された前記第1の基板の山部又は谷部に接触させて塗布し、
前記一方のローラの回転軸と、前記第2のギアの回転軸と、を同期して回転させる第2の同期回転部を更に備える、
請求項1に記載の流路板製造装置。
The adhesive portion is
A second gear arranged in a transport path of the first substrate that has passed through the first corrugated molding portion and having a rotation axis parallel to the rotation axis of one of the rollers, and a tooth tip of the second gear. The first unit is provided with an adhesive supply unit for supplying the adhesive to the second gear, and the adhesive supplied to the tooth tips of the second gear is formed into a corrugated shape while rotating the second gear. Apply by contacting the peaks or valleys of the substrate,
Further, a second synchronous rotation unit for synchronously rotating the rotation shaft of the one roller and the rotation shaft of the second gear is provided.
The flow path plate manufacturing apparatus according to claim 1.
前記接着部は、
前記第1の基板とは別に供給される第2の基板と接着剤が塗布された前記第1の基板とを接着させて流路板本体を形成する流路板本体形成部と、
前記流路板本体の幅方向の両側部を、前記搬送経路に沿って切除して流路板を取得する切除部と、を備える、
請求項2に記載の流路板製造装置。
The adhesive portion is
A flow path plate main body forming portion that forms a flow path plate main body by adhering a second substrate supplied separately from the first substrate and the first substrate coated with an adhesive to form a flow path plate main body.
Both sides of the flow path plate body in the width direction are cut along the transport path to obtain a flow path plate.
The flow path plate manufacturing apparatus according to claim 2.
前記搬送経路を搬送される前記第1の基板を支持することにより、前記第1の基板のたわみを抑制するたわみ抑制部を更に備える、
請求項1から3の何れか1項に記載の流路板製造装置。
By supporting the first substrate transported along the transport path, a deflection suppressing portion for suppressing the deflection of the first substrate is further provided.
The flow path plate manufacturing apparatus according to any one of claims 1 to 3.
前記一方のローラの回転軸と回転軸が平行に配置され、互いに噛み合う一対の第3のギアを備え、前記第2の基板を通過させて、前記第2の基板を波形に成形する第2の波形成形部と、
前記一方のローラの回転軸と、前記一対の第3のギアの何れか一方のギアの回転軸と、を同期して回転させる第3の同期回転部と、を更に備え、
波形に形成された前記第2の基板は、前記第2の基板の山部又は谷部の頂部と、前記接着剤が塗布された前記第1の基板の山部又は谷部の頂部とが接触する位置に供給される、
請求項2に記載の流路板製造装置。
A second roller having a rotation axis and a rotation axis arranged in parallel with each other, provided with a pair of third gears that mesh with each other, and passed through the second substrate to form the second substrate into a corrugated shape. Corrugated part and
Further, a third synchronous rotating portion for synchronously rotating the rotating shaft of the one roller and the rotating shaft of one of the pair of third gears is provided.
In the corrugated second substrate, the top of the peak or valley of the second substrate and the top of the peak or valley of the first substrate coated with the adhesive are in contact with each other. Supply to the position to
The flow path plate manufacturing apparatus according to claim 2.
熱交換素子に使用される流路板を製造する流路板製造方法であって、It is a flow path plate manufacturing method for manufacturing a flow path plate used for a heat exchange element.
回転軸が平行に配置された一対のローラの間に第1の基板を通過させ、前記一対のローラの何れか一方のローラに取付けられた切断刃により前記第1の基板を打ち抜き、孔を形成するステップと、 The first substrate is passed between a pair of rollers in which the rotation axes are arranged in parallel, and the first substrate is punched out by a cutting blade attached to one of the rollers of the pair of rollers to form a hole. Steps to do and
互いに噛み合う一対のギアの間に、前記孔が形成された前記第1の基板を通過させて、前記第1の基板を波形に成形するステップと、 A step of forming the first substrate into a corrugated shape by passing the first substrate in which the holes are formed between a pair of gears that mesh with each other.
前記ローラの回転軸と前記ギアの回転軸とを同期して回転させるステップと、 A step of synchronizing the rotation axis of the roller and the rotation axis of the gear with each other,
波形に成形された前記第1の基板に、前記第1の基板とは別に供給される第2の基板を接着するステップと、 A step of adhering a second substrate, which is supplied separately from the first substrate, to the first substrate formed into a corrugated shape.
を備える流路板製造方法。 A flow path plate manufacturing method.
JP2020571250A 2019-02-08 2020-02-06 Flow board manufacturing equipment and flow board manufacturing method Active JP7004856B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019021217 2019-02-08
JP2019021217 2019-02-08
PCT/JP2020/004476 WO2020162525A1 (en) 2019-02-08 2020-02-06 Flow-path-plate manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPWO2020162525A1 JPWO2020162525A1 (en) 2021-09-09
JP7004856B2 true JP7004856B2 (en) 2022-01-21

Family

ID=71947610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020571250A Active JP7004856B2 (en) 2019-02-08 2020-02-06 Flow board manufacturing equipment and flow board manufacturing method

Country Status (2)

Country Link
JP (1) JP7004856B2 (en)
WO (1) WO2020162525A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515934B1 (en) * 2014-11-13 2015-05-04 유라이닝(주) Apparatus for Softening and Keeping the Pipeline Repairing Reinforcement Tube and Non-Excavation Type Pipeline Reparing Method using the Same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888972A (en) 1988-07-01 1989-12-26 Pronto Auto Repair Dealerships Inc. Process and apparatus for the manufacture of radiator cooling fins
WO2008129669A1 (en) 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element
JP4344835B2 (en) 2002-10-24 2009-10-14 東京エレクトロン株式会社 Single wafer processing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS613996A (en) * 1984-06-15 1986-01-09 Mitsubishi Heavy Ind Ltd Fin for heat exchanger and manufacture thereof
JPH04344835A (en) * 1991-05-17 1992-12-01 Mitsubishi Heavy Ind Ltd Forming method for needle-like fin
FR2811248B1 (en) * 2000-07-04 2002-10-11 Nordon Cryogenie Snc METHOD FOR MANUFACTURING A CORRUGATED VANE FOR A PLATE HEAT EXCHANGER AND DEVICE FOR CARRYING OUT SUCH A PROCESS
JP6793858B2 (en) * 2017-12-14 2020-12-02 三菱電機株式会社 Manufacturing method of flow path plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888972A (en) 1988-07-01 1989-12-26 Pronto Auto Repair Dealerships Inc. Process and apparatus for the manufacture of radiator cooling fins
JP4344835B2 (en) 2002-10-24 2009-10-14 東京エレクトロン株式会社 Single wafer processing equipment
WO2008129669A1 (en) 2007-04-17 2008-10-30 Mitsubishi Electric Corporation Process for manufacturing total heat exchanger element and total heat exchanger element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515934B1 (en) * 2014-11-13 2015-05-04 유라이닝(주) Apparatus for Softening and Keeping the Pipeline Repairing Reinforcement Tube and Non-Excavation Type Pipeline Reparing Method using the Same

Also Published As

Publication number Publication date
JPWO2020162525A1 (en) 2021-09-09
WO2020162525A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
US6003283A (en) Vented flexible honeycomb
JP7004856B2 (en) Flow board manufacturing equipment and flow board manufacturing method
JP4528822B2 (en) Paper binding tool, and its manufacturing system and manufacturing apparatus
JP2012504691A (en) Method for producing multilayer adhesive laminate
US7896999B2 (en) Method of forming open core web elements
WO2008003015A2 (en) Method and apparatus for manufacturing open core elements from web material
JP2001047533A (en) Corrugation roll and corrugated cardboard manufacturing apparatus
JP6793858B2 (en) Manufacturing method of flow path plate
JP2016107254A (en) Filter core and method for manufacturing the same
US3770549A (en) Method and apparatus for manufacturing honeycomb structures
JP5426103B2 (en) Composite sheet manufacturing method and apparatus
CN110573823A (en) Flow path plate, heat exchange element, heat exchange ventilator, and method for manufacturing flow path plate
WO2020162590A1 (en) Hollow structure and luggage board
CN110670799B (en) Structural plate with cavity and manufacturing method thereof
CN108136612B (en) Method for applying a coating to one side of a selected first subset of parallel strips and selective strip coating apparatus
US10568484B2 (en) Method for producing cleaning member, and system for producing cleaning member
WO2019203194A1 (en) Hollow structure and method for manufacturing same
US7771813B2 (en) Sandwich panel core
JP2019168132A (en) Method for manufacturing heat exchange element and channel plate
JPH0825535A (en) Flexible honeycomb panel
JP3205471B2 (en) Manufacturing method of honeycomb core
JP7467784B1 (en) Apparatus and method for manufacturing web member
JP3999590B2 (en) Adsorption element and method for manufacturing the same
US20080078495A1 (en) Web Fluting Apparatus and method of Forming Open Core Web Elements
JPH02204001A (en) Plywood and manufacture thereof

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210113

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220104

R150 Certificate of patent or registration of utility model

Ref document number: 7004856

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150