JP7003474B2 - Method for manufacturing silicon oxide thin film laminate - Google Patents

Method for manufacturing silicon oxide thin film laminate Download PDF

Info

Publication number
JP7003474B2
JP7003474B2 JP2017148291A JP2017148291A JP7003474B2 JP 7003474 B2 JP7003474 B2 JP 7003474B2 JP 2017148291 A JP2017148291 A JP 2017148291A JP 2017148291 A JP2017148291 A JP 2017148291A JP 7003474 B2 JP7003474 B2 JP 7003474B2
Authority
JP
Japan
Prior art keywords
thin film
silicon oxide
oxide thin
reaction
film laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017148291A
Other languages
Japanese (ja)
Other versions
JP2019025434A (en
Inventor
厚志 高木
雄一 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2017148291A priority Critical patent/JP7003474B2/en
Publication of JP2019025434A publication Critical patent/JP2019025434A/en
Application granted granted Critical
Publication of JP7003474B2 publication Critical patent/JP7003474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Description

本発明は、酸化ケイ素薄膜積層体の製造方法に関し、詳しくは、プラスチック基材の表面に多孔質酸化ケイ素薄膜を積層した酸化ケイ素薄膜積層体の製造方法に関する。 The present invention relates to a method for producing a silicon oxide thin film laminate, and more particularly to a method for producing a silicon oxide thin film laminate in which a porous silicon oxide thin film is laminated on the surface of a plastic base material.

酸化ケイ素薄膜形成方法として、ゾルゲル法により形成されたところの、ケイ素、アルミニウム、ジルコニウム、及びハフニウムより成る群から選択される少なくとも一種の元素の無機化合物を含有するゾル液を、基材上に塗布し、200℃を超えない温度に加熱処理しながら、大きくとも100mJ/cmの紫外線を照射する酸化ケイ素薄膜形成方法が知られている(特許文献1)。 As a method for forming a silicon oxide thin film, a sol solution containing an inorganic compound of at least one element selected from the group consisting of silicon, aluminum, zirconium, and hafnium, which is formed by the sol-gel method, is applied onto a substrate. However, there is known a method for forming a silicon oxide thin film that irradiates an ultraviolet ray of at most 100 mJ / cm 2 while heat-treating to a temperature not exceeding 200 ° C. (Patent Document 1).

特開2002-187738号公報Japanese Unexamined Patent Publication No. 2002-187738

ところで、加熱工程が必須である上記の方法をプラスチック基材に適用した場合、基材の劣化を免れず、反射防止フィル等の高精度の光学部材を得ることは困難である。加えて、均一熱処理の困難性を考慮すると、大面積成膜には対応できず、しかも、短時間成膜が困難であるため、生産性に劣るという問題がある。 By the way, when the above method, which requires a heating step, is applied to a plastic base material, deterioration of the base material is unavoidable, and it is difficult to obtain a highly accurate optical member such as an antireflection fill. In addition, considering the difficulty of uniform heat treatment, there is a problem that productivity is inferior because it is not possible to form a large area film and it is difficult to form a film in a short time.

本発明は、上記実情に鑑みなされたものであり、その目的は、プラスチック基材の表面に多孔質酸化ケイ素薄膜を積層する酸化ケイ素薄膜積層体の製造方法であって、加熱工程を必須とせず、従って、精度の高い光学部材に適用でき、しかも、大面積・短時間成膜が可能な酸化ケイ素薄膜積層体の製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and an object thereof is a method for manufacturing a silicon oxide thin film laminate in which a porous silicon oxide thin film is laminated on the surface of a plastic base material, and does not require a heating step. Therefore, it is an object of the present invention to provide a method for manufacturing a silicon oxide thin film laminate, which can be applied to a highly accurate optical member and can form a large area and a short time film formation.

本発明者らは、上記の課題を達成するため、ゾルゲル法において、加水分解性シラン化合物を巧みに活用し、特定条件での紫外線照射を行うならば、加熱工程を必須とせずにプラスチック基材の表面に多孔質酸化ケイ素薄膜を形成することが出来るとの知見を得た。 In order to achieve the above-mentioned problems, the present inventors skillfully utilize the hydrolyzable silane compound in the sol-gel method, and if ultraviolet irradiation is performed under specific conditions, the plastic base material does not require a heating step. It was found that a porous silicon oxide thin film can be formed on the surface of the sol-gel process.

本発明は、上記の知見に基づき完成されたものであり、その要旨は、加水分解性シラン化合物を加水分解および縮合反応させて得られる反応組成物より成るバインダー液とシリカ微粒子とを含有する酸化ケイ素薄膜形成用塗工液をプラスチック基材表面に塗布した後、乾燥し、酸素の存在下に紫外線(ただし、照射強度が100mW/cm 以下の紫外線を除く)を照射して硬化させることを特徴とする酸化ケイ素薄膜積層体の製造方法に存する。 The present invention has been completed based on the above findings, and the gist thereof is an oxidation containing a binder liquid consisting of a reaction composition obtained by hydrolyzing and condensing a hydrolyzable silane compound and silica fine particles. After applying the coating liquid for forming a silicon thin film to the surface of the plastic substrate, it is dried and cured by irradiating it with ultraviolet rays (excluding ultraviolet rays having an irradiation intensity of 100 mW / cm 2 or less) in the presence of oxygen. It exists in a method for producing a characteristic silicon oxide thin film laminate.

以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.

先ず、加水分解性シラン化合物を加水分解および縮合反応させて得られる反応組成物より成るバインダー液について説明する。 First, a binder liquid composed of a reaction composition obtained by hydrolyzing and condensing a hydrolyzable silane compound will be described.

バインダーは、シリカ粒子間に作用して酸化ケイ素薄膜を形成すると共に、基材表面に酸化ケイ素薄膜を接着させる作用を有するが、その作用は、その調製法の違いによって得られる反応組成物の性状によって大きく異なり、理想的なバインダーは、-OH基を多量に備えた直鎖状構造に富む反応組成物である。そして、斯かる理想的なバインダーを使用するならば、基材に対する酸化ケイ素薄膜の密着性を顕著に改善することが出来る。 The binder acts between the silica particles to form a silicon oxide thin film and also has an action of adhering the silicon oxide thin film to the surface of the base material, and the action is the properties of the reaction composition obtained by the difference in the preparation method. The ideal binder is a reaction composition rich in linear structure with a large amount of —OH groups. Then, if such an ideal binder is used, the adhesion of the silicon oxide thin film to the substrate can be remarkably improved.

バインダー液の調製においては、2官能の加水分解性シラン化合物から成り且つその少なくとも50重量%が多量体である加水分解性シラン化合物を使用し、シリカ粒子の不存在下、加水分解性シラン化合物を溶解した親水性溶媒溶液中に撹拌条件下で酸触媒水溶液を連続的に滴下して前記の反応を行うのが好ましい。 In the preparation of the binder solution, a hydrolyzable silane compound composed of a bifunctional hydrolyzable silane compound and having a multimeric content of at least 50% by weight thereof is used to prepare the hydrolyzable silane compound in the absence of silica particles. It is preferable to carry out the above reaction by continuously dropping an acid catalyst aqueous solution into the dissolved hydrophilic solvent solution under stirring conditions.

加水分解性シラン化合物は、アルコキシ基、アルコキシアルコキシ基、アシルオキシ基、アリールオキシ基、アミノキシ基、アミド基、ケトオキシム基、イソシアネート基、ハロゲン原子等の加水分解性基を有するシラン化合物である。 The hydrolyzable silane compound is a silane compound having a hydrolyzable group such as an alkoxy group, an alkoxyalkoxy group, an acyloxy group, an aryloxy group, an aminoxy group, an amide group, a ketooxime group, an isocyanate group and a halogen atom.

上記の中ではアルコキシシラン化合物が好適に使用される。アルコキシ基(-OR)のアルキル基としては、メチル基、エチル基、プロピル基、ブチル基等の低級アルキル基が例示される。加水分解性基の数により、1~4官能のものが知られている。 Among the above, an alkoxysilane compound is preferably used. Examples of the alkyl group of the alkoxy group (−OR) include lower alkyl groups such as a methyl group, an ethyl group, a propyl group and a butyl group. Those having 1 to 4 functionalities are known depending on the number of hydrolyzable groups.

アルコキシシラン化合物の代表例としては、ジメチルジメトキシシラン(DMDMS)、メチルトリメトキシシラン(MTMS)、テトラメトキシシラン(TMOS)、ジメチルジエトキシシラン(DMDES)、メチルトリエトキシシラン(MTES)、テトラエトキシシラン(TEOS)等が挙げられる。 Typical examples of alkoxysilane compounds are dimethyldimethoxysilane (DMDMS), methyltrimethoxysilane (MTMS), tetramethoxysilane (TMS), dimethyldiethoxysilane (DMDES), methyltriethoxysilane (MTES), and tetraethoxysilane. (TEOS) and the like.

加水分解性シラン化合物の多量体は上記のような単量体を縮合により多量化重合(オリゴマー化)したものである。この反応においては、先ず、アルコキシ基の加水分解によりシラノール基(-Si-OH)が形成される。同時にアルコール(R-OH)が生成する。次いで、シラノール基の(脱水)縮合によりシロキサン結合(-Si-O-Si-O-)が形成され、この縮合を繰り返してシロキサンオリゴマーが形成される。アルコキシシラン化合物の多量体としては、アルコキシ基の加水分解性、縮合性などの面から、Rがメチル基であるテトラメトキシシランの多量体またはRがエチル基であるテトラエトキシシランの多量体が好ましい。 The multimer of the hydrolyzable silane compound is a multimerized polymerization (oligomerization) of the above-mentioned monomers by condensation. In this reaction, first, a silanol group (-Si-OH) is formed by hydrolysis of the alkoxy group. At the same time, alcohol (R-OH) is produced. Next, a siloxane bond (—Si—O—Si—O—) is formed by (dehydration) condensation of silanol groups, and this condensation is repeated to form a siloxane oligomer. As the multimer of the alkoxysilane compound, a multimer of tetramethoxysilane in which R is a methyl group or a multimer of tetraethoxysilane in which R is an ethyl group is preferable from the viewpoint of hydrolyzability and condensability of the alkoxy group. ..

多量体の構造には、直鎖状、分枝状、環状、網目状構造があるが、直鎖状構造を持つものとしてテトラアルコキシシランの多量体を示せば、次の一般式で表される。
[化1]
RO(Si(OR)O)R・・・(I)
The structure of the multimer includes a linear structure, a branched structure, a cyclic structure, and a network structure. If the multimer of tetraalkoxysilane is shown as having a linear structure, it is represented by the following general formula. ..
[Chemical 1]
RO (Si (OR) 2 O) n R ... (I)

一般式中、nは多量体の多量化度を表わす。通常入手できる多量体はnが異なる多量体の組成物であり、従って、分子量分布を有する。なお、多量化度は平均したnで表される。 In the general formula, n represents the degree of mulching of multimers. Usually available multimers are compositions of multimers with different n and therefore have a molecular weight distribution. The degree of mass increase is represented by an average of n.

テトラアルコキシシラン等の4官能加水分解性シラン化合物またはその多量体の多量化度を「シリカ分」で表すこともある。「シリカ分」とは、その化合物から生成するシリカ(SiO)の質量割合であり、その化合物を安定に加水分解し、焼成して生成するシリカの量を測定することにより得られる。また、「シリカ分」はその化合物の1分子に対して生成するシリカの割合を示すものでもあり、次式で計算される値である。
[数1]
シリカ分(質量部)=多量化度×SiOの分子量/該化合物の分子量
The degree of increase in the amount of a tetrafunctional hydrolyzable silane compound such as tetraalkoxysilane or a multimer thereof may be expressed by "silica content". The "silica content" is the mass ratio of silica (SiO 2 ) produced from the compound, and is obtained by stably hydrolyzing the compound and measuring the amount of silica produced by firing. Further, "silica content" also indicates the ratio of silica produced to one molecule of the compound, and is a value calculated by the following equation.
[Number 1]
Silica content (parts by mass) = degree of mass increase x molecular weight of SiO 2 / molecular weight of the compound

多量化度nは、通常2~100、好ましくは2~70、更に好ましくは2~50である。斯かる多量体は、既に市販されているのでそれを利用するのが簡便である。多量化度nが大きくなるに従い、生成するバインダーの分子量が大きくなり、かつ分子量分布が広くなるため、多量化度nが100を超える多量体は不適切である。 The degree of mulching n is usually 2 to 100, preferably 2 to 70, and more preferably 2 to 50. Since such a multimer is already on the market, it is convenient to use it. As the degree of mulching n increases, the molecular weight of the produced binder increases and the molecular weight distribution becomes wider. Therefore, a multimer having a degree of mulching n of more than 100 is inappropriate.

加水分解性シラン化合物の多量体の市販品としては、三菱ケミカル社製のMKCシリケートMS51、MKCシリケートMS56、MKCシリケートMS57、MKCシリケートMS56S(いずれもテトラメトキシシランの多量体)、コルコート社製のメチルシリケート51(テトラメトキシシランの多量体)、メチルシリケート53A、エチルシリケート40、エチルシリケート48、多摩化学工業社製のエチルシリケート40、シリケート45(いずれもテトラエトキシシランの多量体)等が挙げられる。 Commercially available products of multimers of hydrolyzable silane compounds include MKC silicate MS51, MKC silicate MS56, MKC silicate MS57, MKC silicate MS56S (all are tetramethoxysilane multimers) manufactured by Mitsubishi Chemical Co., Ltd., and methyl manufactured by Corcote. Examples thereof include silicate 51 (multimer of tetramethoxysilane), methyl silicate 53A, ethyl silicate 40, ethyl silicate 48, ethyl silicate 40 manufactured by Tama Chemical Industry Co., Ltd., and silicate 45 (all of which are multimers of tetraethoxysilane).

2官能の加水分解性シラン化合物中の多量体比率は好ましくは70重量%以上である。多量体の使用量が少ない場合は、単量体の受ける加水分解および縮合反応により、OH基が減少することや、反応組成物中に分枝状、環状、網目状構造が増加する。 The multimer ratio in the bifunctional hydrolyzable silane compound is preferably 70% by weight or more. When the amount of the multimer used is small, the hydrolysis and condensation reactions of the monomer reduce the OH groups and increase the branched, cyclic and reticulated structures in the reaction composition.

加水分解および縮合反応は逐次に行われ、その(加熱による)反応過程にシリカ粒子が存在すると反応途中に生成した各成分がシリカ粒子表面に吸着する。この吸着は、バインダー成分OH基とシリカ粒子OH基が水素結合や、シロキサン結合が形成された強固な状態であり、バインダーの持つ基材密着性や酸化ケイ素薄膜の強度増加に寄与するOH基が減少することになる。また、シリカ粒子に吸着したバインダー成分が架橋点となり、分岐構造や網目構造を増加させる。これに対して、シリカ粒子の不存在下に調製された反応生成物はOH基を多量に備えた直鎖構造に富んだものとなる。そこで、シリカ粒子の不存在下にバインダー液を調製し、得られたバインダー液とシリカ微粒子とを室温にて混合することにより酸化ケイ素薄膜形成用塗工液を調製する。 The hydrolysis and condensation reactions are carried out sequentially, and if silica particles are present in the reaction process (by heating), each component generated during the reaction is adsorbed on the surface of the silica particles. This adsorption is a strong state in which the OH groups of the binder component and the OH groups of the silica particles are hydrogen-bonded or siloxane bonds are formed, and the OH groups that contribute to the adhesion of the binder to the substrate and the increase in the strength of the silicon oxide thin film are present. It will decrease. In addition, the binder component adsorbed on the silica particles becomes a cross-linking point, which increases the branched structure and the network structure. On the other hand, the reaction product prepared in the absence of silica particles is rich in a linear structure having a large amount of OH groups. Therefore, a binder liquid is prepared in the absence of silica particles, and the obtained binder liquid and silica fine particles are mixed at room temperature to prepare a coating liquid for forming a silicon oxide thin film.

前記の反応は、加水分解性シラン化合物を溶解した親水性溶媒溶液中に撹拌条件下で酸触媒水溶液を連続的に滴下して行う。 The above reaction is carried out by continuously dropping an acid catalyst aqueous solution into a hydrophilic solvent solution in which a hydrolyzable silane compound is dissolved under stirring conditions.

親水性溶媒としては、加水分解性シラン化合物の多量体を溶解し得る限り、特に制限されないが、一般的には、メタノール、エタノール、プロパノール、ブタノール等のアルコール類、エチルセロソルブ、ブチルセロソルブ、プロピルセロソルブ類などのセロソルブ類、エチレングリコール、プロピレングリコール、ヘキシレングリコールなどのグリコール類が使用される。 The hydrophilic solvent is not particularly limited as long as it can dissolve a multimer of the hydrolyzable silane compound, but is generally limited to alcohols such as methanol, ethanol, propanol and butanol, ethyl cellosolve, butyl cellosolve and propyl cellosolve. Cellulosolves such as, ethylene glycol, propylene glycol, glycols such as hexylene glycol are used.

親水性溶媒の使用量は、特に制限されないが、バインダー液にシリカ微粒子を混合して調製される酸化ケイ素薄膜形成用塗工液の塗布性を考慮し、加水分解性シラン化合物100重量部に対する割合として、通常0.1~100重量倍、好ましくは1~10重量で倍ある。因に、加水分解性シラン化合物の多量体は、前述のように多量化度の異なる成分から成る組成物であり、重合度が高くなるに従い粘度が高くなる。一方、その単量体、例えば、ジメチルジメトキシシランの市販品は、通常99重量%純度の溶液である。 The amount of the hydrophilic solvent used is not particularly limited, but is a ratio to 100 parts by weight of the hydrolyzable silane compound in consideration of the coatability of the coating liquid for forming a silicon oxide thin film prepared by mixing silica fine particles with the binder liquid. It is usually 0.1 to 100 times by weight, preferably 1 to 10 times by weight. Incidentally, the multimer of the hydrolyzable silane compound is a composition composed of components having different degrees of polymerization as described above, and the viscosity increases as the degree of polymerization increases. On the other hand, the commercially available product of the monomer, for example, dimethyldimethoxysilane, is usually a solution having a purity of 99% by weight.

酸触媒水溶液中の酸濃度は、通常0.1~0.0001重量%、好ましくは0.01~0.001重量%の範囲である。酸触媒をこのような低濃度の水溶液として使用するならば、反応系内に多量の水が同伴させられることとなり、その結果、競争反応である縮合反応の反応速度を抑制することが出来る。そのため、傾向としては、加水分解で生じたOH基が適切な速度で消失し、OH基を多量に備えた直鎖構造に富む反応組成物が得られ易くなる。 The acid concentration in the aqueous acid catalyst solution is usually in the range of 0.1 to 0.0001% by weight, preferably 0.01 to 0.001% by weight. When the acid catalyst is used as such a low-concentration aqueous solution, a large amount of water is involved in the reaction system, and as a result, the reaction rate of the condensation reaction, which is a competitive reaction, can be suppressed. Therefore, the tendency is that the OH groups generated by hydrolysis disappear at an appropriate rate, and it becomes easy to obtain a reaction composition rich in a linear structure having a large amount of OH groups.

酸触媒の使用量は、親水性溶媒溶液中の加水分解性シラン化合物の加水分解性基(代表的にはアルコキシ基)の総量100モルに対して、通常0.001~10ミリモル、好ましくは0.01~10ミリモルである。 The amount of the acid catalyst used is usually 0.001 to 10 mmol, preferably 0, based on 100 mol of the total amount of hydrolyzable groups (typically alkoxy groups) of the hydrolyzable silane compound in the hydrophilic solvent solution. It is 0.01 to 10 mmol.

酸触媒水溶液は連続的に滴下されるが、その滴下速度は反応系内の温度が急上昇しないように適宜選択される。酸触媒水溶液の滴下速度は、親水性溶媒溶液100ml当たり、通常1~10ml/min、好ましくは3~5ml/minである。滴下された触媒水溶液は撹拌により直ちに均一に拡散され均一な加水分解が行われる。なお、撹拌方法は通常の化学反応で採用されている方法を採用することが出来る。 The acid catalyst aqueous solution is continuously dropped, and the dropping rate is appropriately selected so that the temperature in the reaction system does not rise sharply. The dropping rate of the acid catalyst aqueous solution is usually 1 to 10 ml / min, preferably 3 to 5 ml / min per 100 ml of the hydrophilic solvent solution. The dropped catalyst aqueous solution is immediately and uniformly diffused by stirring, and uniform hydrolysis is performed. As the stirring method, the method adopted in a normal chemical reaction can be adopted.

加水分解性シラン化合物の加水分解および縮合反応は、実際的には、逐次に且つ並行して行われる。OH基を多量に備えた直鎖構造に富む反応組成物を得るとの観点から、可能な限り加水分解と縮合反応とが各別に行われるように、次の3段階に分けて行うのが好ましい。 The hydrolysis and condensation reactions of the hydrolyzable silane compound are practically carried out sequentially and in parallel. From the viewpoint of obtaining a reaction composition rich in a linear structure containing a large amount of OH groups, it is preferable to carry out the hydrolysis and condensation reactions separately in the following three steps as much as possible. ..

(1)加水分解反応工程:
撹拌条件下に親水性溶媒溶液に酸触媒水溶液を滴下することによって行う。反応温度は、通常5~50℃、好ましく10~40℃である。反応温度が上記範囲未満では加水分解反応が遅くなり過ぎ、上記範囲超過では縮合反応の回避が困難となる。反応温度の制御は、反応器のジャケットに導通される冷媒の温度・循環量や酸触媒水溶液の滴下速度などによって行われる。親水性溶媒の沸点が低い場合は還流条件下に加水分解反応を行う。反応時間は、通常1~60分、好ましくは5~30分である。
(1) Hydrolysis reaction step:
This is done by dropping an acid catalyst aqueous solution into a hydrophilic solvent solution under stirring conditions. The reaction temperature is usually 5 to 50 ° C, preferably 10 to 40 ° C. If the reaction temperature is less than the above range, the hydrolysis reaction becomes too slow, and if it exceeds the above range, it becomes difficult to avoid the condensation reaction. The reaction temperature is controlled by the temperature and circulation amount of the refrigerant conducted on the jacket of the reactor, the dropping speed of the acid catalyst aqueous solution, and the like. If the boiling point of the hydrophilic solvent is low, the hydrolysis reaction is carried out under reflux conditions. The reaction time is usually 1 to 60 minutes, preferably 5 to 30 minutes.

加水分解反応は発熱反応であり、反応液は通常1~15℃温度上昇する。加水分解反応が実質的に完了したことを確認するため、酸触媒水溶液の滴下終了後に反応温度が5~10℃低下するまで撹拌を続行するのが好ましい。 The hydrolysis reaction is an exothermic reaction, and the temperature of the reaction solution usually rises by 1 to 15 ° C. In order to confirm that the hydrolysis reaction is substantially completed, it is preferable to continue stirring until the reaction temperature drops by 5 to 10 ° C. after the completion of dropping the acid catalyst aqueous solution.

(2)縮合反応工程:
前記工程に引き続き、必要に応じて反応温度を高め、撹拌条件下に行う。反応温度は、通常40~80℃、好ましく50~60℃である。反応温度が上記範囲未満では縮合反応が遅くなり過ぎ、上記範囲超過では過剰な縮合反応の回避が困難となる。昇温速度は、通常0.1~10℃/分とされる。
反応時間は、通常1~120分、好ましくは5~60分である。
(2) Condensation reaction step:
Following the above steps, the reaction temperature is raised as necessary and the reaction is carried out under stirring conditions. The reaction temperature is usually 40 to 80 ° C, preferably 50 to 60 ° C. If the reaction temperature is less than the above range, the condensation reaction becomes too slow, and if the reaction temperature exceeds the above range, it becomes difficult to avoid an excessive condensation reaction. The rate of temperature rise is usually 0.1 to 10 ° C./min.
The reaction time is usually 1 to 120 minutes, preferably 5 to 60 minutes.

(3)縮合反応停止工程:
反応液を冷却して縮合反応を停止する。冷却温度は通常10~30℃である。この際、縮合反応組成物の濃度低減のために親水性溶媒を添加する冷却希釈により縮合反応を停止するのが一層効果的である。なお、親水性溶媒は反応溶媒と同一のものが好適であるが、液性調整のため別の親水性溶媒を使用しても良い。
(3) Condensation reaction stop step:
The reaction solution is cooled to stop the condensation reaction. The cooling temperature is usually 10 to 30 ° C. At this time, it is more effective to stop the condensation reaction by cooling dilution with which a hydrophilic solvent is added in order to reduce the concentration of the condensation reaction composition. The hydrophilic solvent is preferably the same as the reaction solvent, but another hydrophilic solvent may be used for adjusting the liquid property.

親水性溶媒の添加量は、加水分解性シラン化合物、反応に供した親水性溶媒および酸触媒水溶液の総量に対する親水性溶媒の濃度として表した場合、通常50~150重量%の範囲である。 The amount of the hydrophilic solvent added is usually in the range of 50 to 150% by weight when expressed as the concentration of the hydrophilic solvent with respect to the total amount of the hydrolyzable silane compound, the hydrophilic solvent used for the reaction and the acid catalyst aqueous solution.

前記の冷却希釈による縮合反応停止工程によれば、得られるバインダー液の保存安定性が高くなり、また、各用途の要求に合う濃度に調整し得るバインダー液の調製が可能になる。 According to the above-mentioned step of stopping the condensation reaction by cooling dilution, the storage stability of the obtained binder liquid is improved, and it becomes possible to prepare a binder liquid that can be adjusted to a concentration that meets the requirements of each application.

前上記の縮合反応工程により、得られる反応組成物の重量平均分子量が決定される。重量平均分子量は、通常1000~5000、好ましくは2000~4000である。斯かる分子量は均多量化度nが2~100の多量体に相当する。 The weight average molecular weight of the obtained reaction composition is determined by the above-mentioned condensation reaction step. The weight average molecular weight is usually 1000 to 5000, preferably 2000 to 4000. Such a molecular weight corresponds to a multimer having a degree of equalization n of 2 to 100.

上記の重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により下記の条件で測定された値である。 The above weight average molecular weight is a value measured by gel permeation chromatography (GPC) under the following conditions.

[溶媒] テトラヒドロフラン
[装置名] TOSOH HLC-8220GPC
[カラム] TOSOH TSKgel Super HM-N(2本)とHZ1000(1本)を接続して使用。
[カラム温度] 40℃
[試料濃度] 0.01質量%
[流速] 0.6ml/min
[較正曲線] PEG(分子量20000、4000、1000、200の4点3次式近似による較正曲線を使用。
[Solvent] Tetrahydrofuran [Device name] TOSOH HLC-8220GPC
[Column] TOSOH TSKgel Super HM-N (2) and HZ1000 (1) are connected and used.
[Column temperature] 40 ° C
[Sample concentration] 0.01% by mass
[Flow velocity] 0.6 ml / min
[Calibration curve] PEG (calibration curve based on 4-point cubic approximation with molecular weights of 20000, 4000, 1000, and 200 is used.

前記の反応組成物より成る酸化ケイ素薄膜形成用バインダー液は、実質的に透明であり、カオリン濁度計を用いて測定した結果濁度は10以下である。 The binder liquid for forming a silicon oxide thin film composed of the above reaction composition is substantially transparent, and the turbidity is 10 or less as a result of measurement using a kaolin turbidity meter.

次に、酸化ケイ素薄膜形成用塗工液について説明する。酸化ケイ素薄膜形成用塗工液は、前記で得られたバインダー液とシリカ微粒子とを混合することにより調製される。 Next, the coating liquid for forming a silicon oxide thin film will be described. The coating liquid for forming a silicon oxide thin film is prepared by mixing the binder liquid obtained above with the silica fine particles.

シリカ微粒子としては、特に制限されず、平均粒子径5~100nmの球状非凝集シリカ微粒子、平均粒子径が10~100nmの中空状非凝集シリカ微粒子、平均一次粒径が5~100nmの鎖状凝集シリカ微粒子の少なくとも一種からなるシリカ微粒子などが挙げられる。これらは、形成される酸化ケイ素薄膜の目的に応じて適宜選択される。 The silica fine particles are not particularly limited, and are spherical non-aggregated silica fine particles having an average particle diameter of 5 to 100 nm, hollow non-aggregated silica fine particles having an average particle diameter of 10 to 100 nm, and chain aggregate having an average primary particle diameter of 5 to 100 nm. Examples thereof include silica fine particles composed of at least one type of silica fine particles. These are appropriately selected depending on the purpose of the silicon oxide thin film to be formed.

球状非凝集シリカ微粒子の具体例としては、日産化学工業株式会社製の「スノーテックス(登録商標)-O」、「スノーテックス(登録商標)-O-40」、「スノーテックス(登録商標)-OL」、扶桑化学工業製の「クォートロン(登録商標)-PL-1」、「クォートロン(登録商標)-PL-3」、「クォートロン(登録商標)-PL-7」等が挙げられる。 Specific examples of spherical non-aggregated silica fine particles include "Snowtex (registered trademark) -O", "Snowtex (registered trademark) -O-40", and "Snowtex (registered trademark)-" manufactured by Nissan Chemical Industries, Ltd. Examples include "OL", "Quatron (registered trademark) -PL-1", "Quatron (registered trademark) -PL-3", and "Quatron (registered trademark) -PL-7" manufactured by Fuso Chemical Industries.

鎖状凝集シリカ微粒子の具体例としては、日産化学工業株式会社製の「スノーテックス(登録商標)-OUP」(平均長さ:40~100nm)、「スノーテックス(登録商標)-UP」(平均長さ:40~100nm)、「スノーテックス(登録商標)PS-M」(平均長さ:80~150nm)、「スノーテックス(登録商標)PS-MO」(平均長さ:80~150nm)、「スノーテックス(登録商標)PS-S」(平均長さ:80~120nm)、「スノーテックス(登録商標)PS-SO」(平均長さ:80~120nm)、「IPA-ST-UP」(平均長さ:40~100nm)、日本国触媒化成工業株式会社製の「ファインカタロイドF-120」等が挙げられる。 Specific examples of the chain-aggregated silica fine particles include "Snowtex (registered trademark) -UP" (average length: 40 to 100 nm) and "Snowtex (registered trademark) -UP" (average) manufactured by Nissan Chemical Industry Co., Ltd. Length: 40-100 nm), "Snowtex® PS-M" (average length: 80-150 nm), "Snowtex® PS-MO" (average length: 80-150 nm), "Snowtex (registered trademark) PS-S" (average length: 80 to 120 nm), "Snowtex (registered trademark) PS-SO" (average length: 80 to 120 nm), "IPA-ST-UP" ( (Average length: 40 to 100 nm), "Fine Cataloid F-120" manufactured by Japan Catalytic Chemical Industry Co., Ltd. and the like can be mentioned.

酸化ケイ素薄膜形成用塗工液は、基材に塗布する際の塗工性、塗膜の膜厚や平滑性などを考慮して、適切な濃度に調製される。濃度調整は前述の親水性溶媒の添加により行われるが、この濃度調整はシリカ微粒子を混合する前に行うことも後に行うこともできる。 The coating liquid for forming a silicon oxide thin film is prepared at an appropriate concentration in consideration of coatability when applied to a substrate, film thickness and smoothness of the coating film, and the like. The concentration adjustment is performed by adding the above-mentioned hydrophilic solvent, and this concentration adjustment can be performed before or after mixing the silica fine particles.

次に、酸化ケイ素薄膜の形成について説明する。酸化ケイ素薄膜は、酸化ケイ素薄膜形成用塗工液をプラスチック基材表面に塗布した後に乾燥と硬化を行うことによって形成される。 Next, the formation of the silicon oxide thin film will be described. The silicon oxide thin film is formed by applying a coating liquid for forming a silicon oxide thin film to the surface of a plastic substrate, and then drying and curing the thin film.

プラスチック基材は、フィルム(100μm以下)であってもそれより厚いシートであってもよい。因に、プラスチックスとしては、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリイミド(PI)、ポリメチルメタクリレート(PMMA)、シクロオレフィンポリマー(COP)等が挙げられる。基材の表面は、表面改質処理したものでも、処理してないものでも、どちらにでも適用できる。 The plastic substrate may be a film (100 μm or less) or a thicker sheet. Incidentally, examples of the plastics include polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), polyimide (PI), polymethylmethacrylate (PMMA), cycloolefin polymer (COP) and the like. The surface of the base material can be either surface-modified or untreated.

塗工液の塗布は、特に制限されず、ディップコート法、スピンコート法、ダイコート法、スプレーコート法、グラビアコート法、ロールコート法、カーテンコート法、スクリーン印刷法、インクジェット印刷法を挙げることができる。 The application of the coating liquid is not particularly limited, and examples thereof include a dip coating method, a spin coating method, a die coating method, a spray coating method, a gravure coating method, a roll coating method, a curtain coating method, a screen printing method, and an inkjet printing method. can.

塗布膜厚は形成される酸化ケイ素薄膜の目的に応じて適宜選択される。通常50~5000nmである。 The coating film thickness is appropriately selected according to the purpose of the silicon oxide thin film to be formed. It is usually 50 to 5000 nm.

上記の乾燥は溶媒を除去するために行われ、乾燥温度は通常50~80℃であり、熱風乾燥機などが好適に使用される。乾燥時間は通常1~10分、好ましくは1~5分である。 The above-mentioned drying is performed to remove the solvent, the drying temperature is usually 50 to 80 ° C., and a hot air dryer or the like is preferably used. The drying time is usually 1 to 10 minutes, preferably 1 to 5 minutes.

上記の硬化処理は、主としてバインダー液に含まれるシラノール基(Si-OH)と基材表面のヒドロキシル基やカルボキシル基などの酸素含有官能基を結合させるために行われ、これにより酸化ケイ素薄膜が形成される。 The above curing treatment is mainly performed to bond the silanol group (Si—OH) contained in the binder solution with an oxygen-containing functional group such as a hydroxyl group or a carboxyl group on the surface of the substrate, whereby a silicon oxide thin film is formed. Will be done.

上記の硬化処理は酸素の存在下に紫外線を照射して行う。紫外線には、近紫外線(near UV、波長200~380nm)、遠紫外線(波長10~200nm)及び極端紫外線(extreme UV、波長1~10nm)が含まれるが、通常は遠紫外線が有効である。紫外線の線源としては、例えば、低圧水銀ランプ、高圧水銀ランプ、エキシマ紫外線(エキシマUV)ランプ、ハライドランプ、レーザー等が挙げられる。紫外線の照射時間は通常1秒~3分である。 The above curing treatment is performed by irradiating ultraviolet rays in the presence of oxygen. Ultraviolet rays include near ultraviolet rays (near UV, wavelength 200 to 380 nm), far ultraviolet rays (wavelength 10 to 200 nm), and extreme ultraviolet rays (extreme UV, wavelength 1 to 10 nm), but far ultraviolet rays are usually effective. Examples of the ultraviolet source include a low-pressure mercury lamp, a high-pressure mercury lamp, an excimer ultraviolet (excimer UV) lamp, a halide lamp, and a laser. The irradiation time of ultraviolet rays is usually 1 second to 3 minutes.

基材としてプラスチックス基材を使用し、酸素の存在下に紫外線を照射して行う硬化処理の場合、基材密着性が顕著に改良された酸化ケイ素薄膜が形成される。その理由は次のように推定される。 In the case of a curing treatment in which a plastic base material is used as a base material and ultraviolet rays are irradiated in the presence of oxygen, a silicon oxide thin film having significantly improved base material adhesion is formed. The reason is presumed as follows.

すなわち、紫外線の作用で発生した活性酸素によりプラスチック基材表面が活性化(改質)され、バインダー液に含まれるシラノール基(Si-OH)と基材表面とが強固に結合される。 That is, the surface of the plastic base material is activated (modified) by the active oxygen generated by the action of ultraviolet rays, and the silanol group (Si—OH) contained in the binder liquid and the surface of the base material are firmly bonded.

本発明の酸化ケイ素薄膜積層体の製造方法においては、前記の硬化処理に加熱工程を必須としないため、大面積・短時間成膜が可能である。また、枚葉式の他長尺のプラスチックス基材を使用した連続的製造も可能である。 In the method for producing a silicon oxide thin film laminate of the present invention, a heating step is not essential for the curing treatment, so that a large area and a short time film formation are possible. In addition, continuous production using a single-wafer type or a long plastic base material is also possible.

連続的製造としては、特に、ロール状に巻回されたプラスチック基材を引き出しながらその表面に酸化ケイ素薄膜形成用コーティング液をコーティングする第1工程と、第1工程から搬出されたプラスチック基材の表面のコーティング液を乾燥する第2工程と、第2工程から搬出されたプラスチック基材の表面に酸素の存在下に紫外線を照射して硬化させる第3工程とを包含する酸化ケイ素薄膜積層体の連続的製造方法が推奨される。 In the continuous production, in particular, the first step of drawing out the plastic base material wound in a roll shape and coating the surface with the coating liquid for forming a silicon oxide thin film, and the plastic base material carried out from the first step. A silicon oxide thin film laminate comprising a second step of drying the surface coating liquid and a third step of irradiating the surface of the plastic substrate carried out from the second step with ultraviolet rays in the presence of oxygen to cure the surface. A continuous manufacturing method is recommended.

以下、本発明を実施例より更に詳細に説明するが、本発明はその要旨を超えない限り以下の実施例に限定されるものではない。以下の諸例における分析方法は次の通りである。 Hereinafter, the present invention will be described in more detail than the examples, but the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. The analysis methods in the following examples are as follows.

実施例1
<酸化ケイ素薄膜形成用バインダー液の調製>
(1)加水分解反応工程:
2Lのジャケット付き反応器に、信越シリコーン社製の商品「KBM22」(ジメチルメトキシシラン含量99重量%)50質量部、三菱ケミカル社製商品「シリケートMS51」(平均多量化度n:7、メチルシリケートオリゴマー含量99.8重量%)200質量部、エタノール500質量部を仕込み、反応上限温度を40℃に設定し、攪拌条件下、0.007重量%の塩酸水溶液330質量部を10分かけて滴下した。この時、発熱反応により5~10℃反応温度が上昇した。反応温度が5~10℃低下するまで撹拌を続行した。なお、2官能の加水分解性シラン化合物中の多量体の割合(「KBM22」と「シリケートMS51」の合計量に対するシリケートMS51の割合)は80重量%である。
Example 1
<Preparation of binder liquid for forming silicon oxide thin film>
(1) Hydrolysis reaction step:
In a 2L reactor with a jacket, 50 parts by mass of Shinetsu Silicone's product "KBM22" (dimethylmethoxysilane content 99% by weight), Mitsubishi Chemical's product "Sylicate MS51" (average mass n: 7, methylsilicate) 200 parts by mass of oligomer content 99.8% by weight) and 500 parts by mass of ethanol were charged, the upper limit reaction temperature was set to 40 ° C., and under stirring conditions, 330 parts by mass of a 0.007% by weight aqueous hydrochloric acid solution was added dropwise over 10 minutes. did. At this time, the reaction temperature increased by 5 to 10 ° C. due to the exothermic reaction. Stirring was continued until the reaction temperature dropped by 5-10 ° C. The ratio of the multimer to the bifunctional hydrolyzable silane compound (ratio of silicate MS51 to the total amount of "KBM22" and "silicate MS51") is 80% by weight.

(2)縮合反応工程:
塩酸水溶液滴下後、撹拌条件下、30分かけて60℃に昇温し、60℃で30分間保持した。その後、室温まで冷却した。
(2) Condensation reaction step:
After dropping the aqueous hydrochloric acid solution, the temperature was raised to 60 ° C. over 30 minutes under stirring conditions, and the temperature was maintained at 60 ° C. for 30 minutes. Then, it cooled to room temperature.

(3)縮合反応停止工程:
冷却後、エタノール1100質量部を混合し、30分攪拌することにより、アルコキシシラン組成物(A)2180質量部を得た。
(3) Condensation reaction stop step:
After cooling, 1100 parts by mass of ethanol was mixed and stirred for 30 minutes to obtain 2180 parts by mass of the alkoxysilane composition (A).

<酸化ケイ素薄膜形成用塗工液の調製>
前記で得られたアルコキシラン組成物(A)2180質量部に、エタノール12000質量部を加え、30分攪拌することにより、アルコキシシラン組成物(B)14180を得た。
<Preparation of coating liquid for forming silicon oxide thin film>
12000 parts by mass of ethanol was added to 2180 parts by mass of the alkoxylan composition (A) obtained above, and the mixture was stirred for 30 minutes to obtain 14180 parts of the alkoxysilane composition (B).

上記で得られたアルコキシシラン組成物(B)14180質量部に球状非凝集シリカ2040質量部(日産化学工業社製の商品「スノーテックスO」)を加え、30分攪拌することにより、酸化ケイ素薄膜形成用塗工液を得た。 A silicon oxide thin film is formed by adding 2040 parts by mass of spherical non-aggregated silica (product "Snowtex O" manufactured by Nissan Chemical Industries, Ltd.) to 14180 parts by mass of the alkoxysilane composition (B) obtained above and stirring for 30 minutes. A coating liquid for forming was obtained.

<酸化ケイ素薄膜積層体の製造>
52×76mmにカットした厚み125μmのポリエチレンテレフタレート(PET)フィルム(東洋紡社製の「コスモシャインA-4100」)の易接着未処理面に、実施例1で得られた酸化ケイ素薄膜形成用塗工液を滴下し、スピンコーター(ミカサ社製の「MS-A150」)で1200rpm、30秒コートすることで薄膜を作製した。
<Manufacturing of silicon oxide thin film laminate>
Coating for forming a silicon oxide thin film obtained in Example 1 on the easily adhesive-treated surface of a polyethylene terephthalate (PET) film (“Cosmo Shine A-4100” manufactured by Toyobo Co., Ltd.) having a thickness of 125 μm cut to 52 × 76 mm. The liquid was dropped and coated with a spin coater (“MS-A150” manufactured by Mikasa) at 1200 rpm for 30 seconds to prepare a thin film.

その後、溶媒を除去するために、定温恒温送風機(ヤマト科学社製)に入れ、70℃、1分で乾燥した。次に、大気下で高圧水銀ランプ(アイグラフィックス社製)を用いて、照度130mW/cm、積算光量1000mJ/cmの紫外線を照射することで、厚さ100nmの酸化ケイ素薄膜積層PETを得た。 Then, in order to remove the solvent, it was placed in a constant temperature constant temperature blower (manufactured by Yamato Kagaku Co., Ltd.) and dried at 70 ° C. for 1 minute. Next, by irradiating ultraviolet rays with an illuminance of 130 mW / cm 2 and an integrated light intensity of 1000 mJ / cm 2 using a high-pressure mercury lamp (manufactured by Eye Graphics) in the atmosphere, a silicon oxide thin film laminated PET having a thickness of 100 nm was formed. Obtained.

[密着性試験方法]
JIS K5600に準拠して、付着テープとしてニチバン(株)製の工業用24mmセロテープ(登録商標)を用いて、クロスカット法による付着性試験を行い、密着性を評価した。
すなわち、カッターナイフで5mm間隔の25個の碁盤目を作り、セロハンテープを膜表面に貼付け、引き離した後に、膜が剥離せずに残った数を数えて評価した。
なお、酸化ケイ素薄膜は、ガラス質に近い性状であるため、カッターナイフで碁盤目を作る際に亀裂が生じ易く、その正確な密着性試験が困難となるため、JIS K5600の碁盤目の間隔は1mmまたは2mmとなっているが、碁盤目の間隔を5mmに変更した。
マス目の合計(25個)に対する剥がれなかったマス目の数の割合(膜残存率)を求めた。結果を表1に示す。
[Adhesion test method]
Adhesion was evaluated by a cross-cut method using an industrial 24 mm cellophane tape (registered trademark) manufactured by Nichiban Co., Ltd. as an adhesive tape in accordance with JIS K5600.
That is, 25 grids at 5 mm intervals were made with a cutter knife, cellophane tape was attached to the surface of the film, and after pulling apart, the number of remaining sheets without peeling of the film was counted and evaluated.
Since the silicon oxide thin film has a property close to that of glass, cracks are likely to occur when making a grid with a cutter knife, which makes it difficult to perform an accurate adhesion test. Although it is 1 mm or 2 mm, the interval between the grids was changed to 5 mm.
The ratio of the number of squares that did not peel off (membrane residual ratio) to the total number of squares (25) was determined. The results are shown in Table 1.

[耐湿熱性試験]
実施例および比較例で作成した酸化ケイ素薄膜積層PETを、温度60℃、相対湿度95%の環境に設定した環境試験器内(ESPEC社製SH-641)に30分保持し、耐久性評価を行った。密着性の低下状態について上記の密着性試験方法により評価した。結果を表1に示す。
[Moisture resistance test]
The silicon oxide thin film laminated PET prepared in the examples and comparative examples was held in an environmental tester (SH-641 manufactured by ESPEC) set in an environment of a temperature of 60 ° C. and a relative humidity of 95% for 30 minutes to evaluate the durability. went. The state of reduced adhesion was evaluated by the above-mentioned adhesion test method. The results are shown in Table 1.

比較例1:
紫外線を照射しなかったこと以外は、実施例1と同様にして、酸化ケイ素薄膜積層PETの作製を行った。結果を表1に示す。
Comparative Example 1:
A silicon oxide thin film laminated PET was produced in the same manner as in Example 1 except that it was not irradiated with ultraviolet rays. The results are shown in Table 1.

比較例2:
溶媒の除去を120℃、10分行い、紫外線を照射しなかったこと以外は、実施例1と同様にして、酸化ケイ素薄膜積層PETの作製を行った。結果を表1に示す。
Comparative Example 2:
The silicon oxide thin film laminated PET was prepared in the same manner as in Example 1 except that the solvent was removed at 120 ° C. for 10 minutes and no ultraviolet light was irradiated. The results are shown in Table 1.

Figure 0007003474000001
Figure 0007003474000001

Claims (1)

加水分解性シラン化合物を加水分解および縮合反応させて得られる反応組成物より成るバインダー液とシリカ微粒子とを含有する酸化ケイ素薄膜形成用塗工液をプラスチック基材表面に塗布した後、乾燥し、酸素の存在下に紫外線(ただし、照射強度が100mW/cm 以下の紫外線を除く)を照射して硬化させることを特徴とする酸化ケイ素薄膜積層体の製造方法。 A coating solution for forming a silicon oxide thin film containing a binder solution composed of a reaction composition obtained by hydrolyzing and condensing a hydrolyzable silane compound and silica fine particles is applied to the surface of a plastic substrate, and then dried. A method for producing a silicon oxide thin film laminate, which comprises irradiating an ultraviolet ray (excluding an ultraviolet ray having an irradiation intensity of 100 mW / cm 2 or less) in the presence of oxygen to cure the silicon oxide thin film laminate.
JP2017148291A 2017-07-31 2017-07-31 Method for manufacturing silicon oxide thin film laminate Active JP7003474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017148291A JP7003474B2 (en) 2017-07-31 2017-07-31 Method for manufacturing silicon oxide thin film laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148291A JP7003474B2 (en) 2017-07-31 2017-07-31 Method for manufacturing silicon oxide thin film laminate

Publications (2)

Publication Number Publication Date
JP2019025434A JP2019025434A (en) 2019-02-21
JP7003474B2 true JP7003474B2 (en) 2022-01-20

Family

ID=65475489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148291A Active JP7003474B2 (en) 2017-07-31 2017-07-31 Method for manufacturing silicon oxide thin film laminate

Country Status (1)

Country Link
JP (1) JP7003474B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179543A (en) 2003-12-22 2005-07-07 Hikifune:Kk Method for producing silica sol and method for forming hard film
JP2011173345A (en) 2010-02-25 2011-09-08 Mitsubishi Chemicals Corp Method for manufacturing laminate
JP2016087843A (en) 2014-10-31 2016-05-23 タキロン株式会社 Synthetic resin laminate having thermosetting hard coat layer and method for producing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS637883A (en) * 1986-06-30 1988-01-13 Japan Synthetic Rubber Co Ltd Method for modifying film
JPH091064A (en) * 1995-06-16 1997-01-07 Sekisui Chem Co Ltd Manufacture of laminate
JPH11279304A (en) * 1998-03-30 1999-10-12 Dainippon Printing Co Ltd Hard coat film for film substrate and its preparation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005179543A (en) 2003-12-22 2005-07-07 Hikifune:Kk Method for producing silica sol and method for forming hard film
JP2011173345A (en) 2010-02-25 2011-09-08 Mitsubishi Chemicals Corp Method for manufacturing laminate
JP2016087843A (en) 2014-10-31 2016-05-23 タキロン株式会社 Synthetic resin laminate having thermosetting hard coat layer and method for producing the same

Also Published As

Publication number Publication date
JP2019025434A (en) 2019-02-21

Similar Documents

Publication Publication Date Title
US5945172A (en) Coating agent composition and articles treated with said composition
WO2019146628A1 (en) Film for led lighting equipment, and led lighting equipment
US11384259B2 (en) Void-containing layer, laminate, method for producing void-containing layer, optical member, and optical apparatus
JP5583214B2 (en) Polysiloxane coating using hybrid copolymer
JP6563750B2 (en) Paint and production method thereof
JP5708499B2 (en) Method for producing resin substrate having hard coat layer
WO2015186360A1 (en) Transparent article with antifog film
JP6365751B1 (en) Binder liquid for forming silicon oxide thin film and method for producing coating liquid
JP2017505250A (en) High energy ray-curable acryloxy functional silicone composition for release film for dielectric ceramic forming material, and release film for dielectric ceramic forming material using the same
JP2015123592A (en) Water-repellent film, and method for manufacturing the same
JP2021532221A (en) New polysiloxane compositions and their use
JP5108417B2 (en) Base material with antireflection film
JP7003474B2 (en) Method for manufacturing silicon oxide thin film laminate
JP7009988B2 (en) Roll-shaped wound body of silicon oxide thin film laminate and its manufacturing method
JP6988470B2 (en) Photoresist and photolithography
JP6933032B2 (en) Silicon oxide thin film laminated transparent material
CN109195793A (en) Plexiglas plate and its manufacturing method
JP6904247B2 (en) Method for manufacturing porous silicon oxide thin film transfer material and method for manufacturing molded product with porous silicon oxide thin film
WO2021193789A1 (en) Optical member, and backlight unit and image display device using said optical member
JP2006016480A (en) Curable composition and transparent substrate having cured coated film of the composition
JP2016016338A (en) Method of manufacturing resin substrate with hard coat layer
JP2020063180A (en) Coating liquid for forming surface coating layer and porous silicon laminate
JP2020091961A (en) Lighting cover
JP2012194502A (en) Antireflection film
JP6609721B1 (en) Void layer, laminate, method for producing gap layer, optical member and optical device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180425

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213