JP7002428B2 - Supply and demand adjustment power provision system - Google Patents

Supply and demand adjustment power provision system Download PDF

Info

Publication number
JP7002428B2
JP7002428B2 JP2018177494A JP2018177494A JP7002428B2 JP 7002428 B2 JP7002428 B2 JP 7002428B2 JP 2018177494 A JP2018177494 A JP 2018177494A JP 2018177494 A JP2018177494 A JP 2018177494A JP 7002428 B2 JP7002428 B2 JP 7002428B2
Authority
JP
Japan
Prior art keywords
supply
storage battery
power
value
demand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018177494A
Other languages
Japanese (ja)
Other versions
JP2020048386A (en
Inventor
登志美 横田
雅也 高橋
和英 田中
祐吾 星平
泰弥 岩永
憲一郎 山根
潤 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Power Solutions Co Ltd
Original Assignee
Hitachi Power Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Power Solutions Co Ltd filed Critical Hitachi Power Solutions Co Ltd
Priority to JP2018177494A priority Critical patent/JP7002428B2/en
Publication of JP2020048386A publication Critical patent/JP2020048386A/en
Application granted granted Critical
Publication of JP7002428B2 publication Critical patent/JP7002428B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Description

本発明は、需給調整力提供のために蓄電池を併設した需給調整力提供システムに関する。 The present invention relates to a supply and demand adjusting power providing system provided with a storage battery for providing the supply and demand adjusting power.

CO排出抑制のために、電力をまかなうエネルギ源として、化石燃料のかわりに、太陽光発電や風力発電などの再生可能エネルギの比率を高める必要がある。火力発電機が解列すると、需要の変動に対して系統安定のための調整力供給能力が低下してしまう。一方、個々の再生可能エネルギ発電機には自身の発電値の変動を緩和するための蓄電池を併設している場合がある。風力発電値の変動が最も激しい状況に備えて蓄電池容量を設計しているので、季節や天候によって安定的に発電できる期間には、蓄電池の能力が使われないままとなる。そこで、この蓄電池の能力を調整力として活用できれば、系統安定に貢献できる。 In order to curb CO 2 emissions, it is necessary to increase the ratio of renewable energy such as solar power generation and wind power generation instead of fossil fuels as an energy source to supply power. If the thermal power generators are disengaged, the ability to supply regulatory power to stabilize the grid will decline in response to fluctuations in demand. On the other hand, each renewable energy generator may be equipped with a storage battery for mitigating fluctuations in its own power generation value. Since the storage battery capacity is designed for the situation where the fluctuation of the wind power generation value is the most severe, the capacity of the storage battery remains unused during the period when stable power generation can be performed depending on the season and the weather. Therefore, if the capacity of this storage battery can be utilized as an adjusting power, it can contribute to system stability.

系統安定に貢献するための先行技術として、例えば、特許文献1に記載の発明がある。特許文献1には、分散電源からの供給電力を考慮しつつ、所定地域内の電力需要家や機器の間で電力の需給調整を行う方法が開示されている。 As a prior art for contributing to system stability, for example, there is an invention described in Patent Document 1. Patent Document 1 discloses a method of adjusting the supply and demand of electric power among electric power consumers and devices in a predetermined area while considering the electric power supplied from the distributed power source.

国際公開第2012/147155号International Publication No. 2012/147155

風力発電者所有の変動緩和用蓄電池は、再生可能エネルギの変動緩和要件を満足するのみならず、アンシラリーサービス(需給調整力)用に蓄電池能力を提供することで有効に活用が可能である。いずれの先行技術文献にも、風力発電の変動緩和と調整力用電力提供を両立し、変動緩和に利用する想定期間を通して寿命を確保する蓄電池の充放電制御の詳細は明らかにされていない。したがって、調整力提供によって、想定していた蓄電池使用期間の前に蓄電池が劣化し、調整力提供も変動緩和もできなくなる恐れがある。 Fluctuation mitigation storage batteries owned by wind power generators can be effectively utilized by not only satisfying the volatility mitigation requirements of renewable energy, but also by providing storage battery capacity for ancillary services (supply and demand adjustment capacity). None of the prior art documents has clarified the details of charge / discharge control of the storage battery that achieves both the fluctuation mitigation of wind power generation and the provision of power for adjusting power and secures the life through the assumed period used for the fluctuation mitigation. Therefore, there is a risk that the storage battery will deteriorate before the expected storage battery usage period due to the provision of adjustment power, and it will not be possible to provide adjustment power or mitigate fluctuations.

そこで、本発明は、発電機能および充電機能を有するサイトから電力系統への柔軟な電力の供給と受給を実現することを課題とする。 Therefore, it is an object of the present invention to realize flexible supply and reception of electric power from a site having a power generation function and a charging function to an electric power system.

前記した課題を解決するため、第1の発明は、1つ以上のサイトに設置した蓄電池の充放電の合算が調整力要求値となるように、各前記サイトの蓄電池の調整力提供指令値を計算して各前記サイトの蓄電池に指令する需給調整力提供システムにおいて、前記需給調整力提供システムは、各前記サイトの蓄電池が提供した調整力の各時刻における積算値である調整力提供積算値、および、前記調整力提供積算値の上限値を受け、各前記サイトの蓄電池の調整力提供積算指標を計算する指標算出部と、各前記サイトの蓄電池の容量、充放電量、および各時刻における充電率を受けて、各前記サイトの蓄電池の需給調整力可能量を計算する需給調整力可能量算出部と、前記調整力要求値と前記調整力提供積算指標と前記需給調整力可能量に基づいて、各前記サイトの蓄電池の調整力提供指令値を計算する需給調整力指令算出部と、を備えることを特徴とする需給調整力提供システムである。 In order to solve the above-mentioned problems, in the first invention, the adjustment power provision command value of the storage battery of each said site is set so that the total charge / discharge of the storage batteries installed at one or more sites becomes the adjustment power required value. In the supply / demand adjusting power providing system that calculates and commands the storage battery of each site, the supply / demand adjusting power providing system is an integrated value of the adjusting power provided by the storage battery of each site at each time. And, the index calculation unit that receives the upper limit of the adjustment power provision integrated value and calculates the adjustment power provision integration index of the storage battery of each said site, the capacity of the storage battery of each said site, the charge / discharge amount, and the charge at each time. Based on the supply and demand adjustment power possible amount calculation unit that calculates the supply and demand adjustment power possible amount of the storage battery of each said site, the adjustment power required value, the adjustment power provision integration index, and the supply and demand adjustment power possible amount. The supply and demand adjusting power providing system is characterized by comprising a supply and demand adjusting power command calculation unit for calculating the adjusting power providing command value of the storage battery of each of the above-mentioned sites.

第2の発明は、指令センタより、出力上限指令値と、充放電指令値と、需給調整力指令値を受けて、前記出力上限指令値以下に発電電力を抑制する機能を備える再生可能エネルギ発電機と、前記充放電指令値に従って蓄電池を充放電して現在の充電率を出力する蓄電池システムと、前記出力上限指令値と前記充放電指令値の合算値を、前記需給調整力指令値を差し引いた第1の電力と前記需給調整力指令値に従う第2の電力に分配する電力変換器と、前記第1の電力を測定する第1の電力メータと、前記第2の電力を測定する第2の電力メータ、を備える需給調整力提供システムである。
その他の手段については、発明を実施するための形態のなかで説明する。
The second invention is a renewable energy power generation having a function of receiving an output upper limit command value, a charge / discharge command value, and a supply / demand adjusting force command value from a command center and suppressing the generated power below the output upper limit command value. The machine, the storage battery system that charges and discharges the storage battery according to the charge / discharge command value and outputs the current charge rate, the total value of the output upper limit command value and the charge / discharge command value, and the supply / demand adjustment force command value is subtracted. A power converter that distributes to the first electric power and the second electric power according to the supply / demand adjusting force command value, a first electric power meter that measures the first electric power, and a second electric power that measures the second electric power. It is a supply and demand adjustment power providing system equipped with a power meter.
Other means will be described in the form for carrying out the invention.

本発明によれば、発電機能および充電機能を有するサイトから電力系統への柔軟な電力の供給と受給を実現することができる。 According to the present invention, it is possible to realize flexible supply and reception of electric power from a site having a power generation function and a charging function to an electric power system.

第1と第2の実施形態に係る指令センタの構成の例を示す図である。It is a figure which shows the example of the structure of the command center which concerns on 1st and 2nd Embodiment. 第1実施形態に係る再生可能エネルギ発電機システムの構成の例を示す図である。It is a figure which shows the example of the structure of the renewable energy generator system which concerns on 1st Embodiment. 第1実施形態に係る蓄電池充電可能値の算出方法の説明図である。It is explanatory drawing of the calculation method of the storage battery rechargeable value which concerns on 1st Embodiment. SOCから蓄電池充放電可能量を算出する例を示したグラフである。It is a graph which showed the example which calculates the charge / discharge capacity of a storage battery from SOC. 第1と第2の実施形態に係る指令センタの処理を示すフローチャートである。It is a flowchart which shows the process of the command center which concerns on 1st and 2nd Embodiment. 第2実施形態に係る再生可能エネルギ発電機システムの構成の例を示す図である。It is a figure which shows the example of the structure of the renewable energy generator system which concerns on 2nd Embodiment. 第2実施形態に係る蓄電池充電可能値の算出方法の説明図である。It is explanatory drawing of the calculation method of the storage battery rechargeable value which concerns on 2nd Embodiment. 第3の実施形態に係る指令センタの構成の例を示した図である。It is a figure which showed the example of the structure of the command center which concerns on 3rd Embodiment. 第3の実施形態の充放電必要量に係る説明のグラフである。It is a graph of the explanation concerning the charge / discharge required amount of the 3rd Embodiment. 第3の実施形態に係る指令センタの処理を示すフローチャートである。It is a flowchart which shows the process of the command center which concerns on 3rd Embodiment.

以降、本発明を実施するための形態を、各図と数式を参照して詳細に説明する。
《第1実施形態》
図1は、第1と第2の実施形態に係る指令センタの構成の例を示す図である。
ここでは、第1の第2の実施形態に係る蓄電池併設再生可能エネルギ発電の指令センタ200(以下、指令センタ200と称する)と、グループをなして需給調整力を提供する1つ以上の風力発電サイト1000a~1000cの例を示す。ここでは、再生可能エネルギの例として、風力発電を用いて説明する。また、系統安定のための調整力は需給調整力用の電力取引にて提供するものとする。以下、各風力発電サイト1000a~1000cを区別しないときには、風力発電サイト1000と記載する。
Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the respective figures and mathematical formulas.
<< First Embodiment >>
FIG. 1 is a diagram showing an example of a configuration of a command center according to the first and second embodiments.
Here, a command center 200 (hereinafter referred to as a command center 200) for renewable energy power generation with a storage battery according to the first and second embodiments, and one or more wind power generators that form a group to provide supply and demand adjustment power. An example of sites 1000a to 1000c is shown. Here, as an example of renewable energy, wind power generation will be described. In addition, the adjustment power for grid stability shall be provided by the electricity transaction for the supply and demand adjustment power. Hereinafter, when each wind power generation site 1000a to 1000c is not distinguished, it is described as a wind power generation site 1000.

指令センタ200は、需給調整力提供の開始時刻ts、終了時刻teと、この期間中に番号IDWFの風力発電サイト1000が提供可能な需給調整力積算上限値Wh(IDWF,ts,te)と、各風力発電サイト1000の蓄電池容量Cc(IDWF)の設定を受ける。更に指令センタ200は、時刻tにおける、開始時刻ts以降の各風力発電サイト1000の需給調整力積算WhSUM(IDWF,t)、蓄電池の充電率SOC(IDWF,t)を各風力発電サイト1000より受ける。更に指令センタ200は、各風力発電サイト1000の気象情報Wi(IDWF,t)と需給調整力要求値Wr(t)を受け、これらの値を用いて各風力発電サイト1000への需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)、風力出力上限指令値Wo(IDWF,t)を計算して、各風力発電サイト1000に送信する。 The command center 200 has a start time ts and an end time te for providing the supply and demand adjustment power, and a supply and demand adjustment power integration upper limit Wh A (ID WF , ts, te) that can be provided by the wind power generation site 1000 with the number ID WF during this period. ) And the storage battery capacity Cc (ID WF ) of each wind power generation site 1000 is set. Further, the command center 200 sets the supply / demand adjustment power integration Wh SUM (ID WF , t) of each wind power generation site 1000 after the start time ts at time t and the charge rate SOC (ID WF , t) of the storage battery at each wind power generation site. Receive from 1000. Further, the command center 200 receives the weather information Wi (ID WF , t) of each wind power generation site 1000 and the demand-supply adjustment power required value Wr (t), and uses these values to supply and demand adjustment power to each wind power generation site 1000. W (ID WF , t), storage battery charge / discharge command value Co (ID WF , t), and wind power output upper limit command value Wo (ID WF , t) are calculated and transmitted to each wind power generation site 1000.

需給調整力積算上限値Wh(IDWF,ts,te)を用いるのは、各風力発電サイト1000に設置された変動緩和用蓄電池の寿命を想定期間確保するためである。蓄電池の寿命は、サイクル数で決定され、サイクル数は需給調整力積算WhSUM(IDWF,t)が蓄電池容量の何倍に相当するかで換算できる。各風力発電サイト1000に設置された変動緩和用の蓄電池は、単時間断面において必要な需給調整力W(IDWF,t)や、需給調整力積算WhSUM(IDWF,t)のみならず、20年などの設備利用期間を通して蓄電池寿命を確保するために必要な需給調整力積算WhSUM(IDWF,t)の容量となっている。したがって、単時間断面において必要な需給調整力W(IDWF,t)や、需給調整力積算WhSUM(IDWF,t)のみに着目して需給調整力を提供すると、主目的である変動緩和に利用できる期間を短縮してしまう。そこで、需給調整力積算上限値Wh(IDWF,ts,te)を与えて、この範囲内で需給調整力Wを提供することで、変動緩和用蓄電池の寿命を想定期間確保する。 The upper limit of the integrated supply and demand adjustment power Wh A (ID WF , ts, te) is used to secure the life of the fluctuation mitigation storage battery installed at each wind power generation site 1000. The life of the storage battery is determined by the number of cycles, and the number of cycles can be converted by how many times the supply and demand adjustment power integrated Wh SUM (ID WF , t) corresponds to the storage battery capacity. The storage batteries for fluctuation mitigation installed at each wind power generation site 1000 include not only the supply and demand adjustment power W (ID WF , t) required in a single-time cross section and the supply and demand adjustment power integration Wh SUM (ID WF , t). It is the capacity of Wh SUM (ID WF , t) that integrates the supply and demand adjustment power required to secure the life of the storage battery throughout the equipment usage period such as 20 years. Therefore, if the supply and demand adjustment power is provided by focusing only on the supply and demand adjustment power W (ID WF , t) required in the single-time cross section and the supply and demand adjustment power integration Wh SUM (ID WF , t), the main purpose is to mitigate fluctuations. It shortens the period that can be used. Therefore, by giving the supply and demand adjustment power integrated upper limit value Wh A (ID WF , ts, te) and providing the supply and demand adjustment power W within this range, the life of the storage battery for fluctuation mitigation is secured for an assumed period.

図1に示すように、各風力発電サイト1000a~1000cは、指令センタ200より需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)、風力出力上限指令値Wo(IDWF,t)を受けて、指令値に応じた風車および蓄電池の制御後の実際の風力変動緩和結果と充放電量から蓄電池の充電率SOC(t+1)と需給調整力積算WhSUM(IDWF,t+1)を計算して指令センタ200に送る。また、風力発電サイト1000aは、需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)、風力出力上限指令値Wo(IDWF,t)に従って、電力線1100aに風力発電として売る電力を、電力線1200aに需給調整力Wとして売る電力を送る。風力発電サイト1000b,1000cも同様である。需給調整力Wとして売る電力線1200a~1200cの電力は合計して、指令センタ200が受けた需給調整力要求値Wr(t)に対して発電する需給調整力Wとなる。需給調整力Wは、上げ取引の時にはプラスのW値であるが、下げ取引の時にはマイナスのW値である。各風力発電サイト1000a~1000cの構成は、図2~3により後述する。 As shown in FIG. 1, each wind power generation site 1000a to 1000c has a supply / demand adjusting force W (ID WF , t), a storage battery charge / discharge command value Co (ID WF , t), and a wind power output upper limit command value Wo from the command center 200. In response to (ID WF , t), the charge rate SOC (t + 1) of the storage battery and the integrated supply and demand adjustment power Wh SUM (ID) are obtained from the actual wind power fluctuation mitigation result and charge / discharge amount after controlling the wind turbine and storage battery according to the command value. WF , t + 1) is calculated and sent to the command center 200. Further, the wind power generation site 1000a winds on the power line 1100a according to the supply / demand adjusting force W (ID WF , t), the storage battery charge / discharge command value Co (ID WF , t), and the wind power output upper limit command value Wo (ID WF , t). The electric power sold as power generation is sent to the power line 1200a as the supply / demand adjusting power W. The same applies to the wind power generation sites 1000b and 1000c. The electric power of the power lines 1200a to 1200c sold as the supply and demand adjustment power W is summed up to be the supply and demand adjustment power W that generates power with respect to the demand and supply adjustment power required value Wr (t) received by the command center 200. The supply and demand adjustment power W is a positive W value at the time of an up transaction, but is a negative W value at the time of a down transaction. The configuration of each wind power generation site 1000a to 1000c will be described later with reference to FIGS. 2 to 3.

以下、指令センタ200の構成について説明する。進捗指標算出部201は、需給調整力提供の開始時刻ts、終了時刻teと、この期間中に番号IDWFの風力発電サイト1000が提供可能な需給調整力積算上限値Wh(IDWF,ts,te)と、開始時刻ts以降の各風力発電サイトの需給調整力積算WhSUM(IDWF,t)から、Wh(IDWF,ts,te)に対し、需給調整力積算WhSUM(IDWF,t)の進捗に応じて、どの程度、需給調整力Wを提供する余力があるか調整力提供積算の指標Is(IDWF,t)を算出する。 Hereinafter, the configuration of the command center 200 will be described. The progress index calculation unit 201 has a start time ts and an end time te for providing the supply and demand adjustment power, and an upper limit value Wh A (ID WF , ts) for integrating the supply and demand adjustment power that can be provided by the wind power generation site 1000 with the number ID WF during this period. , Te) and the demand-supply adjustment power integration Wh SUM (ID WF , t) of each wind power generation site after the start time ts for Wh A (ID WF , ts, te) . According to the progress of WF (t), how much capacity is available to provide the supply-demand adjustment power W? The index Is (ID WF , t) for accumulating the adjustment power provision is calculated.

Is(IDWF,t)=(Wh(IDWF,ts,te)-WhSUM(IDWF,t))
/Wh(IDWF,ts,te)…(1)

但し、Is(IDWF,t):指標
Wh(IDWF,ts,te):需給調整力積算上限値
WhSUM(IDWF,t):需給調整力積算
Is (ID WF , t) = (Wh A (ID WF , ts, te) -Wh SUM (ID WF , t))
/ Wh A (ID WF , ts, te) ... (1)

However, Is (ID WF , t): Index Wh A (ID WF , ts, te): Supply and demand adjustment power integration upper limit Wh SUM (ID WF , t): Supply and demand adjustment power integration

ここでは、指標Is(IDWF,t)を式(1)で定義しているが、需給調整力積算WhSUM(IDWF,t)と、需給調整力積算上限値Wh(IDWF,ts,te)との差によって定義してもよい。指標Is(IDWF,t)が1に近いほど需給調整力を提供する余力があり、0に近いほど余力がない。進捗指標算出部201は、需給調整力指令算出部204に指標Is(IDWF,t)を送る。 Here, the index Is (ID WF , t) is defined by the equation (1), but the supply and demand adjustment power integration Wh SUM (ID WF , t) and the supply and demand adjustment power integration upper limit Wh A (ID WF , ts). , Te) may be defined by the difference. The closer the index Is (ID WF , t) is to 1, the more supply and demand adjustment power is available, and the closer it is to 0, the less power is available. The progress index calculation unit 201 sends the index Is (ID WF , t) to the supply and demand adjustment force command calculation unit 204.

変動緩和算出部203は、各風力発電サイト1000の気象情報Wi(IDWF,t)を受けて、時刻tにおける各風力発電サイト1000の風力発電予測値Wf(IDWF,t)を予測する。更に変動緩和算出部203は、蓄電池の充電率SOC(IDWF,t)と蓄電池容量Cc(IDWF)から、蓄電池の充放電可能量Caを算出し、蓄電池の充放電可能量Caの範囲で、変動緩和要件に従うために必要な蓄電池の充放電量Cio(IDWF,t)と風力発電出力の上限値W1t(IDWF,t)を計算する。変動緩和要件とは、ここでは、一定時間枠内の発電値の最大値と最小値の差が所定の範囲内になるよう各機器を制御する構成を備える。所定の範囲内とは、例えば、風力発電設備容量の10%などである。蓄電池の充電率SOC(IDWF,t)が100%に近ければ充電可能量は小さくなり、逆に0%に近ければ放電可能量は小さくなり、変動緩和や調整力提供に使える充放電量Cioは乏しくなる。変動緩和算出部203は、需給調整力可能量算出部202に蓄電池の充放電量Cio(IDWF,t)を、需給調整力指令算出部204に風力出力上限指令値Wo(IDWF,t)を送る。 The fluctuation mitigation calculation unit 203 receives the weather information Wi (ID WF , t) of each wind power generation site 1000, and predicts the wind power generation predicted value Wf (ID WF , t) of each wind power generation site 1000 at time t. Further, the fluctuation mitigation calculation unit 203 calculates the chargeable / dischargeable amount Ca of the storage battery from the charge rate SOC (ID WF , t) of the storage battery and the storage battery capacity Cc (ID WF ), and within the range of the chargeable / dischargeable amount Ca of the storage battery. , Calculate the charge / discharge amount Cio (ID WF , t) of the storage battery and the upper limit value W1t (ID WF , t) of the wind power generation output required to comply with the fluctuation mitigation requirements. Here, the fluctuation mitigation requirement includes a configuration in which each device is controlled so that the difference between the maximum value and the minimum value of the power generation value within a fixed time frame is within a predetermined range. The predetermined range is, for example, 10% of the installed capacity of wind power generation. If the charge rate SOC (ID WF , t) of the storage battery is close to 100%, the rechargeable amount will be small, and if it is close to 0%, the dischargeable amount will be small. Becomes scarce. The fluctuation mitigation calculation unit 203 inputs the charge / discharge amount Cio (ID WF , t) of the storage battery to the supply / demand adjustment power possible amount calculation unit 202, and the wind power output upper limit command value Wo (ID WF , t) to the supply / demand adjustment power command calculation unit 204. To send.

変動緩和要件について説明する。図1の図示しないデータ格納部には、各風力発電サイト1000の過去の風力発電値の履歴が保存されている。変動緩和算出部203は、この値を用いて各風力発電サイト1000の変動緩和後の上限値W1t(IDWF,t)および下限値W1b(IDWF,t)を算出する。
需給調整力可能量算出部202は、蓄電池の充電率SOC(IDWF,t)と蓄電池容量Cc(IDWF)から、蓄電池の充放電可能量Ca(IDWF,t)を算出し、変動緩和算出部203から受けた蓄電池の充放電量Cio(IDWF,t)を用いて、各風力発電サイト1000の需給の調整力提供可能量Wn(IDWF,t)を算出する。需給調整力可能量算出部202は、需給調整力指令算出部204に調整力提供可能量Wn(IDWF,t)を送る。
Explain the fluctuation mitigation requirements. In the data storage unit (not shown) of FIG. 1, the history of the past wind power generation values of each wind power generation site 1000 is stored. The fluctuation mitigation calculation unit 203 calculates the upper limit value W1t (ID WF , t) and the lower limit value W1b (ID WF , t) after fluctuation mitigation of each wind power generation site 1000 using this value.
The supply / demand adjustment capacity calculation unit 202 calculates the charge / discharge possible amount Ca (ID WF , t) of the storage battery from the charge rate SOC (ID WF , t) of the storage battery and the storage battery capacity Cc (ID WF ), and alleviates the fluctuation. Using the charge / discharge amount Cio (ID WF , t) of the storage battery received from the calculation unit 203, the amount Wn (ID WF , t) that can provide the adjustment power of the supply and demand of each wind power generation site 1000 is calculated. The supply and demand adjustment power possible amount calculation unit 202 sends the adjustment power provisionable amount Wn (ID WF , t) to the supply and demand adjustment power command calculation unit 204.

需給調整力指令算出部204は、指標Is(IDWF,t)と、調整力提供可能量Wn(IDWF,t)を用いて、需給調整力要求値Wr(t)を満足する各風力発電サイト1000の需給調整力W(IDWF,t)と蓄電池充放電指令値Co(IDWF,t)を計算し、変動緩和算出部203より受けた風力出力上限指令値Wo(IDWF,t)とともに、SOC調整充放電算出部205に送る。これら需給調整力W(IDWF,t)と蓄電池充放電指令値Co(IDWF,t)は、各風力発電サイト1000の蓄電池の調整力提供指令値である。 The supply / demand adjustment power command calculation unit 204 uses the index Is (ID WF , t) and the adjustment power provisionable amount Wn (ID WF , t) to satisfy each wind power generation satisfying the supply / demand adjustment power requirement value Wr (t). The supply and demand adjustment force W (ID WF , t) of the site 1000 and the storage battery charge / discharge command value Co (ID WF , t) are calculated, and the wind power output upper limit command value Wo (ID WF , t) received from the fluctuation mitigation calculation unit 203. At the same time, it is sent to the SOC adjustment charge / discharge calculation unit 205. These supply and demand adjusting power W (ID WF , t) and the storage battery charge / discharge command value Co (ID WF , t) are the adjustment power providing command values of the storage battery of each wind power generation site 1000.

需給調整力指令算出部204は、IDソート部204-1とソート順割当部204-2からなる。IDソート部204-1は、指標Is(IDWF,t)を受けて、指標が大きい順すなわち需給調整力を提供する余力がある順に風力発電サイトの優先順位を決定する。IDソート部204-1は、ソート順割当部204-2に、風力発電サイト1000の優先順位を送る。ソート順割当部204-2は、風力発電サイト1000の優先順位の順に、割り当てた調整力提供可能量Wn(IDWF,t)の総和が需給調整力要求値Wr(t)となるように、調整力提供可能量Wn(IDWF,t)以下の値を、番号IDWFの風力発電サイト1000に割り当て、それに必要な蓄電池の充放電量Cioを計算する。ソート順割当部204-2は、計算した需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)と、変動緩和算出部203より受けた風力出力上限指令値Wo(IDWF,t)をSOC調整充放電算出部205に送る。もし割り当て前の調整力提供可能量Wn(IDWF,t)の総和が需給調整力要求値Wr(t)より小さければ、割り当て前の調整力提供可能量Wn(IDWF,t)の総和の上限まで割り当てて処理を終える。風力発電サイト1000が1箇所のみであっても同様に需給調整力の割り当てを行うことができ,もしそのひとつの風力発電サイト1000の指標Is(IDWF,t)が0以下であれば需給調整力を提供しない。これにより、指標Is(IDWF,t)が0以下の風力発電サイト1000の需給調整力の割り当ては0となり、その風力発電サイト1000の蓄電池の寿命を計画通りとすることができる。 The supply and demand adjustment power command calculation unit 204 includes an ID sort unit 204-1 and a sort order allocation unit 204-2. The ID sorting unit 204-1 receives the index Is (ID WF , t) and determines the priority of the wind power generation site in descending order of the index, that is, in order of having the capacity to provide the supply and demand adjustment power. The ID sort unit 204-1 sends the priority of the wind power generation site 1000 to the sort order allocation unit 204-2. The sort order allocation unit 204-2 arranges that the sum of the allocated adjustment power provisionable amount Wn (ID WF , t) becomes the supply / demand adjustment power requirement value Wr (t) in the order of priority of the wind power generation site 1000. A value less than or equal to the adjustable amount that can be provided Wn (ID WF , t) is assigned to the wind power generation site 1000 of the number ID WF , and the required charge / discharge amount Cio of the storage battery is calculated. The sort order allocation unit 204-2 has the calculated supply / demand adjustment force W (ID WF , t), the storage battery charge / discharge command value Co (ID WF , t), and the wind power output upper limit command value Wo received from the fluctuation mitigation calculation unit 203. (ID WF , t) is sent to the SOC adjustment charge / discharge calculation unit 205. If the sum of the adjustment power that can be provided before allocation Wn (ID WF , t) is smaller than the supply and demand adjustment power requirement value Wr (t), the sum of the adjustment power that can be provided before allocation Wn (ID WF , t) Allocate up to the upper limit and finish the process. Even if there is only one wind power generation site 1000, the supply and demand adjustment power can be allocated in the same way, and if the index Is (ID WF , t) of one of the wind power generation sites 1000 is 0 or less, the supply and demand adjustment is performed. Does not provide power. As a result, the allocation of the supply and demand adjusting power of the wind power generation site 1000 having the index Is (ID WF , t) of 0 or less becomes 0, and the life of the storage battery of the wind power generation site 1000 can be set as planned.

需給調整力W(IDWF,t)を提供すれば、蓄電池充放電によって蓄電池は劣化するが、指標Is(IDWF,t)を用いて需給調整力W(IDWF,t)を計算することで、需給調整力による劣化を想定内にとどめることができ、各風力発電サイト1000の事業計画に沿った蓄電池の想定寿命を確保できる。 If the supply and demand adjusting force W (ID WF , t) is provided, the storage battery deteriorates due to charging and discharging of the storage battery, but the supply and demand adjusting force W (ID WF , t) should be calculated using the index Is (ID WF , t). Therefore, the deterioration due to the supply and demand adjustment ability can be kept within the expected range, and the expected life of the storage battery in line with the business plan of each wind power generation site 1000 can be secured.

SOC調整充放電算出部205は、蓄電池の充電率SOC(IDWF,t)を受けて、これがあらかじめ定めたSOC上限(IDWF)とSOC下限(IDWF)の範囲にあるかをチェックし、範囲を外れていれば範囲内に近づけるよう蓄電池充放電指令値Co(IDWF,t)と、変動緩和Wm(IDWF,t)を修正、外れていなければそのままとする。SOC調整充放電算出部205は、計算した需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)と、風力出力上限指令値Wo(IDWF,t)を各風力発電サイト1000に送る。修正は次のように行う。この時、各風力発電サイト1000の変動緩和の上下限値と需給調整力可能量算出部202で計算した充放電可能量Ca(IDWF,t)を用いて、次のように行う。 The SOC adjustment charge / discharge calculation unit 205 receives the charge rate SOC (ID WF , t) of the storage battery, checks whether it is within the predetermined SOC upper limit (ID WF ) and SOC lower limit (ID WF ), and checks whether it is within the range of the predetermined SOC upper limit (ID WF) and SOC lower limit (ID WF). If it is out of the range, the storage battery charge / discharge command value Co (ID WF , t) and the fluctuation mitigation Wm (ID WF , t) are corrected so that they are closer to the range. If they are not out of the range, they are left as they are. The SOC adjustment charge / discharge calculation unit 205 inputs the calculated supply / demand adjustment force W (ID WF , t), the storage battery charge / discharge command value Co (ID WF , t), and the wind power output upper limit command value Wo (ID WF , t). Send to wind power site 1000. Make the correction as follows. At this time, using the upper and lower limit values of fluctuation mitigation of each wind power generation site 1000 and the charge / discharge possible amount Ca (ID WF , t) calculated by the supply / demand adjustable amount possible amount calculation unit 202, the following is performed.

蓄電池の充電率SOC(IDWF,t)<SOC下限(IDWF):SOCを上げるため、充電できる条件にあれば充電する。充電できる条件を、式(2)に示す。 Charging rate of storage battery SOC (ID WF , t) <SOC lower limit (ID WF ): In order to raise the SOC, charge the battery if it is in a chargeable condition. The conditions under which charging is possible are shown in the equation (2).

Wm(IDWF,t)>Wmb(IDWF,t)…(2)

但し、Wm(IDWF,t) :変動緩和
Wmb(IDWF,t):変動緩和下限値
Wm (ID WF , t)> Wmb (ID WF , t) ... (2)

However, Wm (ID WF , t): Fluctuation mitigation Wmb (ID WF , t): Fluctuation mitigation lower limit

充電すると変動緩和Wm(IDWF,t)は低下するため、低下しても変動緩和要件を満足できる必要がある
蓄電池充放電指令値Co(IDWF,t)が充電であれば、式(3)のようになる。
Since the fluctuation mitigation Wm (ID WF , t) decreases when charging, it is necessary to satisfy the fluctuation mitigation requirements even if it decreases. If the storage battery charge / discharge command value Co (ID WF , t) is charged, the formula (3) )become that way.

Ca(IDWF,t)>Co(IDWF,t)…(3)

但し、Ca(IDWF,t):充放電可能量
Co(IDWF,t):蓄電池充放電指令値
Ca (ID WF , t)> Co (ID WF , t) ... (3)

However, Ca (ID WF , t): chargeable / dischargeable amount Co (ID WF , t): storage battery charge / discharge command value

蓄電池充放電指令値Co(IDWF,t)が充電であれば、式(2)の右辺と式(3)の右辺の小さいほうの値、充電でなければ式(2)の右辺の充電が可能なので、蓄電池充放電指令値Co(IDWF,t)にその値を加算し、変動緩和Wm(IDWF,t)からその値を減算して修正する。 If the storage battery charge / discharge command value Co (ID WF , t) is charging, the smaller value on the right side of equation (2) and the right side of equation (3) is charged, and if not, the right side of equation (2) is charged. Since it is possible, the value is added to the storage battery charge / discharge command value Co (ID WF , t), and the value is subtracted from the fluctuation relaxation Wm (ID WF , t) to correct the value.

蓄電池の充電率SOC(IDWF,t)>SOC上限(IDWF):SOCを下げるため、放電できる条件にあれば放電する。放電できる条件と、蓄電池充放電指令値Co(IDWF,t)と変動緩和Wm(IDWF,t)の修正方法は、充電と同様の考え方で行う。
SOC調整充放電算出部205を備えることで、調整力要求量が長い時間にわたり、上げ取引または下げ取引に偏っていた場合に、風力発電から蓄電池に電力を補うため調整力を提供し続けることができる。
Charging rate of storage battery SOC (ID WF , t)> SOC upper limit (ID WF ): In order to lower the SOC, discharge if the conditions allow discharge. The conditions under which the battery can be discharged, and the method of correcting the storage battery charge / discharge command value Co (ID WF , t) and the fluctuation mitigation Wm (ID WF , t) are performed in the same way as for charging.
By providing the SOC adjustment charge / discharge calculation unit 205, it is possible to continue to provide the adjustment power to supplement the power from the wind power generation to the storage battery when the adjustment power requirement is biased to the up transaction or the down transaction for a long time. can.

以下、図2~3を用いて、風力発電サイト1000aの構成と動作について説明する。ほかの風力発電サイト1000b,1000cの構成も同様である。図2は、第1実施形態に係る再生可能エネルギ発電機システムの構成の例を示す図である。図3は、第1実施形態に係る蓄電池充電可能値の算出方法の説明図である。
本実施形遺体では、需給調整力は変動緩和要件とは無関係に提供できる契約とする。この契約は、風力発電サイト1000が連系する連系線容量に余裕がある場合には、変動緩和要件の枠を外れたとしても調整力提供が優先される場合に用いられると考えられる。一方、風力発電サイト1000が連系する連系線容量に余裕がない場合には、需給調整力は変動緩和要件の範囲で提供されると考えられ、これについては別の実施形態にて後述する。
Hereinafter, the configuration and operation of the wind power generation site 1000a will be described with reference to FIGS. 2 to 3. The same applies to the configurations of the other wind power generation sites 1000b and 1000c. FIG. 2 is a diagram showing an example of the configuration of the renewable energy generator system according to the first embodiment. FIG. 3 is an explanatory diagram of a method for calculating a rechargeable battery chargeable value according to the first embodiment.
In this embodiment, the supply and demand adjustment ability is a contract that can be provided regardless of the fluctuation mitigation requirements. It is considered that this contract will be used when the provision of adjustment power is prioritized even if the frame of the fluctuation mitigation requirement is out of the range when the interconnection line capacity to which the wind power generation site 1000 is connected has a margin. On the other hand, when the interconnection line capacity to which the wind power generation site 1000 is interconnected is insufficient, it is considered that the supply and demand adjustment ability is provided within the range of the fluctuation mitigation requirement, which will be described later in another embodiment. ..

図2に、風力発電サイト1000の例を示す。
風力発電サイト1000は、指令センタ200より受けた需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)、風力出力上限指令値Wo(IDWF,t)に従って、電力系統2000に発電電力を出力する。その結果、風力発電として売る電力W1は、課された変動緩和要件を満足するものである。風力発電サイト1000は、電力線1100を介して風力発電として売る電力W1を送り、電力線1200を介して需給調整力として売る電力W2を送る。
FIG. 2 shows an example of the wind power generation site 1000.
The wind power generation site 1000 is in accordance with the supply / demand adjusting force W (ID WF , t) received from the command center 200, the storage battery charge / discharge command value Co (ID WF , t), and the wind power output upper limit command value Wo (ID WF , t). The generated power is output to the power system 2000. As a result, the electric power W1 sold as wind power generation satisfies the imposed fluctuation mitigation requirements. The wind power generation site 1000 sends the electric power W1 to be sold as wind power generation via the power line 1100, and sends the electric power W2 to be sold as a supply / demand adjusting force via the power line 1200.

風力発電サイト1000は、電力メータ9,10,11と、電力変換器(BTB:Back-to-back)8と、制御部300と、蓄電池システム3と、風力発電設備2と、受給調整力積算部4とを備える。風力発電サイト1000は、電力変換器12を介して電力系統2000に接続される。
電力メータ10は、電力線1100と電力線1200の合流点より風力発電サイト1000側に設置され、風力発電として売る電力W1を測定する。電力メータ10は、電力線101,103と電力変換器13を介して風力発電設備2に接続される。更に電力メータ10は、電力線101,104と電力変換器14を介して蓄電池システム3に接続される。
The wind power generation site 1000 includes power meters 9, 10 and 11, a power converter (BTB: Back-to-back) 8, a control unit 300, a storage battery system 3, a wind power generation facility 2, and an integrated receiving adjustment force. A unit 4 is provided. The wind power generation site 1000 is connected to the power system 2000 via the power converter 12.
The power meter 10 is installed on the wind power generation site 1000 side from the confluence of the power lines 1100 and 1200, and measures the power W1 sold as wind power generation. The power meter 10 is connected to the wind power generation facility 2 via the power lines 101 and 103 and the power converter 13. Further, the power meter 10 is connected to the storage battery system 3 via the power lines 101 and 104 and the power converter 14.

電力メータ11は、電力線1100と電力線1200の合流点より電力変換器8側に設置され、需給調整力として売る電力W2を測定する。この電力メータ11は、電力線102を介して電力変換器8に接続される。この電力メータ11が必要な理由は、風力発電として売る電力W1と、需給調整力として売る電力W2を区別するためである。特に、需給調整力要求量が下げ取引の場合でも対価が生じるが、合算後のみの電力測定では、需給調整力として売る電力W2と風力発電として売る電力W1の量がわからなくなるのを防ぐためである。 The power meter 11 is installed on the power converter 8 side from the confluence of the power lines 1100 and 1200, and measures the power W2 sold as a supply / demand adjusting force. The power meter 11 is connected to the power converter 8 via the power line 102. The reason why the watt-hour meter 11 is necessary is to distinguish between the electric power W1 sold as wind power generation and the electric power W2 sold as supply and demand adjusting power. In particular, even if the demand for supply and demand adjustment power is lowered, consideration will be incurred, but in order to prevent the amount of power W2 sold as supply and demand adjustment power and the amount of power W1 sold as wind power generation from being lost in the power measurement only after the summation. be.

電力変換器8は、潮流を分ける働きをもち、変圧器15,16と、AC/DCコンバータ17とDC/ACコンバータ18とを備える。電力変換器8の一方は、電力線102,1200を介して電力変換器12に接続され、他方は電力線101,103,104に接続される。DC/ACコンバータ18は、制御部300より受給調整力Wを受けて動作する。 The power converter 8 has a function of dividing the power flow, and includes transformers 15 and 16, an AC / DC converter 17, and a DC / AC converter 18. One of the power converters 8 is connected to the power converter 12 via the power lines 102 and 1200, and the other is connected to the power lines 101, 103 and 104. The DC / AC converter 18 operates by receiving a receiving adjustment force W from the control unit 300.

風力発電設備2は、風を受け、かつ風力出力上限指令値Wo(IDWF,t)に従って発電する設備であり、電力変換器13と電力線103,101,1100を介して電力変換器12に接続される。風力発電設備2の風なり発電とは、出力抑制を受けずに風力発電する場合の発電のことである。風力発電設備2は、制御部300より風力出力上限指令値Wo(IDWF,t)を受ける。風なり発電値が風力出力上限指令値Wo(IDWF,t)より大きい場合、風力発電設備2は、発電電力が風力出力上限指令値Wo(IDWF,t)になるように発電電力を抑制する。風が弱く風なりの発電値が風力出力上限指令値Wo(IDWF,t)より小さい場合は、風なり発電値で発電する。電力メータ9は、風力発電設備2の発電電力を測定する。風なり発電は、指令センタ200にて風力発電予測値Wf(IDWF,t)として予測される値である。 The wind power generation facility 2 is a facility that receives wind and generates power according to the wind power output upper limit command value Wo (ID WF , t), and is connected to the power converter 12 via the power converter 13 and the power lines 103, 101, 1100. Will be done. The wind power generation of the wind power generation facility 2 is power generation in the case of wind power generation without being subjected to output suppression. The wind power generation facility 2 receives a wind power output upper limit command value Wo (ID WF , t) from the control unit 300. When the wind power generation value is larger than the wind power output upper limit command value Wo (ID WF , t), the wind power generation facility 2 suppresses the generated power so that the generated power becomes the wind power output upper limit command value Wo (ID WF , t). do. If the wind is weak and the wind power generation value is smaller than the wind power output upper limit command value Wo (ID WF , t), power is generated at the wind power generation value. The electricity meter 9 measures the electric power generated by the wind power generation facility 2. The wind power generation is a value predicted as a wind power generation predicted value Wf (ID WF , t) at the command center 200.

蓄電池システム3は、いずれも図示されない一または複数の蓄電池と、その充放電を交流に変換するための電力交換器と、蓄電池の充電率SOC(State of charge)を測定または推定し出力するSOC検出部からなる。なお、SOC検出部は、蓄電池システム3ではなく制御部300に設けてもよい。蓄電池システム3は、指令センタ200より受けた蓄電池充放電指令値Co(IDWF,t)を受けて充放電する。SOC状態に応じて指令どおりの充放電ができない場合がある。充電率SOCが100%の状態であれば、充電はできないし、充電率SOCが0%の状態であれば、放電はできない。そのため、蓄電池システム3は、電圧値やそれまでの充放電履歴から蓄電池の充電率SOCを測定または推定し、指令センタ200にその値を出力する。 The storage battery system 3 has one or more storage batteries (not shown), a power exchanger for converting the charge / discharge into alternating current, and SOC detection that measures or estimates and outputs the charge rate SOC (State of charge) of the storage battery. It consists of parts. The SOC detection unit may be provided in the control unit 300 instead of the storage battery system 3. The storage battery system 3 receives the storage battery charge / discharge command value Co (ID WF , t) received from the command center 200 and charges / discharges. Depending on the SOC status, charging / discharging as instructed may not be possible. If the charge rate SOC is 100%, charging is not possible, and if the charge rate SOC is 0%, discharge is not possible. Therefore, the storage battery system 3 measures or estimates the charge rate SOC of the storage battery from the voltage value and the charge / discharge history up to that point, and outputs the value to the command center 200.

風力発電サイト1000は、風力発電として売る電力W1は課された変動緩和要件を満足しつつ、電力線1200に需給調整力を電力系統に出力もしくは電力系統から受け取る。指令センタ200では、変動緩和要件と需給調整力提供を両立するため、需給調整力W(IDWF,t)、蓄電池充放電指令値Co(IDWF,t)、風力出力上限指令値Wo(IDWF,t)を計算して送ってくるので、制御部300は、情報受信部5にて指令値を受け取って、電力変換器8や蓄電池システム3や風力発電設備2に指令値を送る。制御部300は、需給調整力W(IDWF,t)を潮流を分ける電力変換器8に送り、蓄電池充放電指令値Co(IDWF,t)を蓄電池システム3に送り、風力出力上限指令値Wo(IDWF,t)を風力発電設備2に送る。 At the wind power generation site 1000, the electric power W1 sold as wind power generation outputs the supply and demand adjustment power to the electric power line 1200 to the electric power system or receives from the electric power system while satisfying the imposed fluctuation mitigation requirements. In the command center 200, in order to achieve both the requirement for easing fluctuations and the provision of supply / demand adjustment power, the supply / demand adjustment power W (ID WF , t), the storage battery charge / discharge command value Co (ID WF , t), and the wind power output upper limit command value Wo (ID). Since the WF , t) is calculated and sent, the control unit 300 receives the command value in the information receiving unit 5 and sends the command value to the power converter 8, the storage battery system 3, and the wind power generation facility 2. The control unit 300 sends the supply / demand adjusting force W (ID WF , t) to the power converter 8 that divides the tide, sends the storage battery charge / discharge command value Co (ID WF , t) to the storage battery system 3, and wind power output upper limit command value. Wo (ID WF , t) is sent to the wind power generation facility 2.

潮流を分ける電力変換器8は、電力線103と電力線104を介して出力される風力発電設備2と蓄電池システム3の電力から需給調整力W(IDWF,t)として指定された電力を電力線102に分流する。電力変換器8は、電力線102への接続側に変圧器15および電力線104への接続側に変圧器16を備える。変圧器15または変圧器16は、どちらか一方には必ず備える必要がある。電力線101,102,105は、ループを構成しているため、変圧器15または変圧器16によって零相経路を断っている。これにより、安定した動作をさせ、かつノイズ拡散を防止させることができる。 The power converter 8 that divides the power flow transfers the power specified as the supply / demand adjusting power W (ID WF , t) from the power of the wind power generation facility 2 and the storage battery system 3 output via the power line 103 and the power line 104 to the power line 102. Divide. The power converter 8 includes a transformer 15 on the connection side to the power line 102 and a transformer 16 on the connection side to the power line 104. Either the transformer 15 or the transformer 16 must be provided in either of them. Since the power lines 101, 102, and 105 form a loop, the zero-phase path is cut off by the transformer 15 or the transformer 16. As a result, stable operation can be achieved and noise diffusion can be prevented.

図3は、第1実施形態に係る蓄電池充電可能値の算出方法の説明図である。
図3を用いて、指令センタ200の変動緩和算出部203と需給調整力可能量算出部202で計算する需給調整力可能量W(IDWF,t)算出方法を説明する。以下、風力発電サイト1000の番号IDWFを省略して以下説明する。図3は、風力発電サイト1000の発電値の例を示している。
FIG. 3 is an explanatory diagram of a method for calculating a rechargeable battery chargeable value according to the first embodiment.
With reference to FIG. 3, a method of calculating the supply and demand adjustment power possible amount WA (ID WF , t) calculated by the fluctuation mitigation calculation unit 203 and the supply and demand adjustment power possible amount calculation unit 202 of the command center 200 will be described. Hereinafter, the description will be made with the number ID WF of the wind power generation site 1000 omitted. FIG. 3 shows an example of the power generation value of the wind power generation site 1000.

図3の第1グラフの横軸は、時刻である。第1グラフの縦軸は発電出力であり、電力メータ10で計測される出力値W1oを示している。説明を簡単にするため、この図では、電力取引用の電力メータ11で計測される電力値は0とする。図3の第2グラフの横軸は時刻、縦軸は蓄電池システム3の出力値であり、放電は正の値を、充電は負の値をとる。図3の第2グラフの横軸は時刻、縦軸は蓄電池システム3の備える蓄電池の充電率である。図3の各グラフの横軸の時刻は、同一の時刻である。 The horizontal axis of the first graph in FIG. 3 is time. The vertical axis of the first graph is the power generation output, and indicates the output value W1o measured by the power meter 10. For the sake of simplicity, in this figure, the power value measured by the power meter 11 for power trading is set to 0. The horizontal axis of the second graph of FIG. 3 is the time, the vertical axis is the output value of the storage battery system 3, and the discharge has a positive value and the charge has a negative value. The horizontal axis of the second graph of FIG. 3 is the time, and the vertical axis is the charge rate of the storage battery included in the storage battery system 3. The time on the horizontal axis of each graph in FIG. 3 is the same time.

図3の第1グラフに示す電力メータ10で計測される出力値W1oは、電力系統に連系するための変動緩和要件が課されており、変動緩和要件はn分間の最大値と最小値の差がL以下とする。第1グラフには、各時刻における、上記変動緩和要件を満足するための出力値W1oの許容範囲である上限値W1tと下限値W1bを示している。 The output value W1o measured by the power meter 10 shown in the first graph of FIG. 3 is subject to fluctuation mitigation requirements for interconnection to the power system, and the fluctuation mitigation requirements are the maximum and minimum values for n minutes. The difference is L or less. The first graph shows an upper limit value W1t and a lower limit value W1b, which are allowable ranges of the output value W1o for satisfying the fluctuation mitigation requirement at each time.

風なり発電値は、変動緩和算出部203で予測した風力発電予測値Wf(t)である。蓄電池の充放電可能量Caの範囲で、変動緩和要件に従うために必要な蓄電池の充放電量Cio(IDWF,t)と風力発電出力の上限値W1t(IDWF,t)を計算する。上限値W1t≧出力値W1o≧下限値W1bとなるよう、風力発電予測値Wf(t)から、充放電値、出力上限指令値、W2出力の指令値を算出する。風なりの発電値およびその予測値として風力発電予測値Wf(t)を示している。時刻t1においては、出力値W1o(t1)=風なり発電値Wf(t1)であり、蓄電池からの充放電がなくても風なりの発電値Wfで上限値W1t以下かつ下限値W1b以上である。時刻t2においては、風なり発電値Wfが下限値W1bを下回ってしまうため、蓄電池より放電することで出力値W1oが下限値W1bと同じくなるようにし、要件を満足させる。時刻t3においては、風なり発電値が上限値W1tを上回るため、蓄電池が充電することで出力値W1oが上限値W1tと同じくなるようにし、要件を満足させる。 The wind power generation value is the wind power generation predicted value Wf (t) predicted by the fluctuation mitigation calculation unit 203. Within the range of the chargeable / dischargeable amount Ca of the storage battery, the charge / discharge amount Cio (ID WF , t) of the storage battery required to comply with the fluctuation mitigation requirement and the upper limit value W1t (ID WF , t) of the wind power generation output are calculated. The charge / discharge value, the output upper limit command value, and the W2 output command value are calculated from the wind power generation predicted value Wf (t) so that the upper limit value W1t ≧ output value W1o ≧ lower limit value W1b. The wind power generation value and the wind power generation predicted value Wf (t) are shown as the predicted value. At time t1, the output value W1o (t1) = the wind power generation value Wf (t1), and the wind power generation value Wf is equal to or less than the upper limit value W1t and the lower limit value W1b or more even if there is no charge / discharge from the storage battery. .. At time t2, the wind power generation value Wf falls below the lower limit value W1b, so that the output value W1o becomes the same as the lower limit value W1b by discharging from the storage battery, and the requirement is satisfied. At time t3, the wind power generation value exceeds the upper limit value W1t, so that the output value W1o becomes the same as the upper limit value W1t by charging the storage battery, and the requirement is satisfied.

蓄電池の放電を行うと、第3グラフに示すように蓄電池の充電率SOCは低下し、充電を行えば蓄電池の充電率SOCは上昇する。また、蓄電池の端子電圧制約により、SOCに応じて、蓄電池充電可能値Xcと蓄電池放電可能値Xdが変化する。需給調整力指令算出部204は、SOCから蓄電池充電可能値Xcと蓄電池放電可能値Xdを算出する。 When the storage battery is discharged, the charge rate SOC of the storage battery decreases as shown in the third graph, and when the storage battery is charged, the charge rate SOC of the storage battery increases. Further, due to the terminal voltage constraint of the storage battery, the storage battery rechargeable value Xc and the storage battery dischargeable value Xd change according to the SOC. The supply and demand adjustment force command calculation unit 204 calculates the storage battery chargeable value Xc and the storage battery dischargeable value Xd from the SOC.

図3の第1グラフには、各時刻のSOC値に応じた蓄電池充電可能値Xcと蓄電池放電可能値Xdを示している。 The first graph of FIG. 3 shows the storage battery rechargeable value Xc and the storage battery dischargeable value Xd according to the SOC value at each time.

需給調整力指令算出部204は、各時刻における、電力取引に供給可能な電力を次のように算出する。
時刻t1においては、風力発電予測値Wf(t)は上限値W1tと下限値W1bの範囲に収まっている。この場合、変動緩和に蓄電池の充放電は使われないため、蓄電池のSOCに応じた充放電可能量Caをすべて調整力に提供できる。
The supply and demand adjustment power command calculation unit 204 calculates the electric power that can be supplied to the electric power transaction at each time as follows.
At time t1, the predicted wind power generation value Wf (t) is within the range of the upper limit value W1t and the lower limit value W1b. In this case, since the charge / discharge of the storage battery is not used to mitigate the fluctuation, all the charge / discharge possible amounts Ca according to the SOC of the storage battery can be provided to the adjusting force.

Td(t)=Xc(t)…(4)
但し、Td(t):W2下げ取引可能値
Xc(t):蓄電池充電可能値

Ti(t)=Xd(t)…(5)
但し:Ti(t):W2上げ取引可能値
Xd(t):蓄電池放電可能値

Zd(t)=0…(6)
但し:Zd(t):変動緩和用放電値

Zc(t)=0…(7)
但し:Zc(t):変動緩和用充電値
Td (t) = Xc (t) ... (4)
However, Td (t): W2 lower transaction value Xc (t): storage battery rechargeable value

Ti (t) = Xd (t) ... (5)
However: Ti (t): W2 increase transaction possible value Xd (t): storage battery discharge possible value

Zd (t) = 0 ... (6)
However: Zd (t): Discharge value for fluctuation mitigation

Zc (t) = 0 ... (7)
However: Zc (t): Charge value for fluctuation mitigation

時刻t2においては、風力発電予測値Wf(t)が下限値W1bを下回ってしまうため、変動緩和用に蓄電池より放電する。そこで、電力取引に向けられる量は、変動緩和用の放電を差し引き、次のように計算できる。 At time t2, the predicted wind power generation value Wf (t) falls below the lower limit value W1b, so that the battery is discharged from the storage battery to mitigate fluctuations. Therefore, the amount directed to electricity trading can be calculated as follows by subtracting the discharge for fluctuation mitigation.

Td(t)=Xc(t)…(4)

但し、Td(t):W2下げ取引可能値
Xc(t):蓄電池充電可能値

Ti(t)=Xd(t)-Zd(t)…(8)

但し:Ti(t):W2上げ取引可能値
Xd(t):蓄電池放電可能値
Zd(t):変動緩和用放電値

Zd(t)=MIN(W1b(t)-Wf(t),Xd(t))…(9)

但し:Zd(t) :変動緩和用放電値
W1b(t):下限値
Wf(t) :風力発電予測値
Xd(t) :蓄電池放電可能値

Zc(t)=0…(10)
但し:Zc(t):変動緩和用充電値
Td (t) = Xc (t) ... (4)

However, Td (t): W2 lower transaction value Xc (t): storage battery rechargeable value

Ti (t) = Xd (t) -Zd (t) ... (8)

However: Ti (t): W2 increase transaction possible value Xd (t): Storage battery discharge possible value Zd (t): Fluctuation mitigation discharge value

Zd (t) = MIN (W1b (t) -Wf (t), Xd (t)) ... (9)

However: Zd (t): Discharge value for fluctuation mitigation W1b (t): Lower limit value Wf (t): Predicted wind power generation value Xd (t): Possible discharge value of storage battery

Zc (t) = 0 ... (10)
However: Zc (t): Charge value for fluctuation mitigation

時刻t3においては、風力発電予測値Wf(t)が上限値W1tを上回るため、変動緩和用に蓄電池が充電する。そこで、電力取引に向けられる充電量は、変動緩和用の充電を差し引き、次のように計算する。 At time t3, the predicted wind power generation value Wf (t) exceeds the upper limit value W1t, so that the storage battery is charged for fluctuation mitigation. Therefore, the amount of charge directed to electricity trading is calculated as follows by subtracting the charge for mitigating fluctuations.


Ti(t)=Xd(t)…(5)

但し、Ti(t):W2上げ取引可能値
Xd(t):蓄電池放電可能値

Td(t)=Xc(t)-Zc(t)…(11)
但し、Td(t):W2下げ取引可能値
Xc(t):蓄電池充電可能値
Zc(t):変動緩和用充電値

Zd(t)=0…(6)
但し:Zd(t):変動緩和用放電値

Zc(t)=MIN(Wf(t)-W1t(t),Xc(t))…(12)
但し、Zc(t):変動緩和用充電値
Wf(t):風力発電予測値
W1t(t):上限値
Xc(t):蓄電池充電可能値

Ti (t) = Xd (t) ... (5)

However, Ti (t): W2 increase transaction possible value Xd (t): storage battery discharge possible value

Td (t) = Xc (t) -Zc (t) ... (11)
However, Td (t): W2 lower transaction possible value Xc (t): Storage battery chargeable value Zc (t): Fluctuation mitigation charge value

Zd (t) = 0 ... (6)
However: Zd (t): Discharge value for fluctuation mitigation

Zc (t) = MIN (Wf (t) -W1t (t), Xc (t)) ... (12)
However, Zc (t): charge value for fluctuation mitigation Wf (t): wind power generation predicted value W1t (t): upper limit value Xc (t): storage battery rechargeable value

以上の考え方により、時刻t1、t2、t3の各場合について、W2上げ取引可能値TiとW2下げ取引可能値Tdを算出できる。 Based on the above concept, the W2 up-transactionable value Ti and the W2 down-transactionable value Td can be calculated for each of the times t1, t2, and t3.

図4は、蓄電池システム3のSOCと蓄電池充電可能値Xcと蓄電池放電可能値Xdを説明するグラフである。
蓄電池充電可能値Xcは、SOC充電下限値以上かつSOC充電上限値以下で単調増加する。なお、SOC充電下限値は、0%である。
蓄電池放電可能値Xdは、SOC放電下限値以上かつSOC放電上限値以下で単調増加する。なお、SOC放電上限値は、100%である。なお、蓄電池放電可能値Xdは、負の値として示している。
つまり、蓄電池システム3から放電できるのは、SOCがSOC放電下限値以上、充電できるのは、SOCがSOC充電上限値以下の範囲である。蓄電池システム3は、SOCが100%近くなれば充電はできない。
FIG. 4 is a graph illustrating the SOC of the storage battery system 3, the storage battery rechargeable value Xc, and the storage battery dischargeable value Xd.
The chargeable value Xc of the storage battery increases monotonically when it is equal to or more than the lower limit of SOC charging and less than or equal to the upper limit of SOC charging. The lower limit of SOC charging is 0%.
The storage battery dischargeable value Xd monotonically increases when the SOC discharge lower limit value or more and the SOC discharge upper limit value or less. The SOC discharge upper limit is 100%. The storage battery dischargeable value Xd is shown as a negative value.
That is, the storage battery system 3 can be discharged from the SOC in the range of the SOC discharge lower limit value or more, and can be charged in the range of the SOC charge upper limit value or less. The storage battery system 3 cannot be charged when the SOC is close to 100%.

図5に、指令センタ200の動作フローを示す。
まず、ステップS100において、指令センタ200は、初期化処理を行う。進捗指標算出部201は、需給調整力提供の開始時刻ts、終了時刻te、需給調整力積算上限値Wh(IDWF,ts,te)の設定を受ける。また、需給調整力積算WhSUM(IDWF,ts)=0に初期化する。需給調整力可能量算出部202は、蓄電池容量Cc(IDWF)の設定を受ける。変動緩和算出部203は、各風力発電サイト1000の風力発電設備容量の設定を受ける。変動緩和要件を計算するのに必要だからである。
FIG. 5 shows the operation flow of the command center 200.
First, in step S100, the command center 200 performs initialization processing. The progress index calculation unit 201 receives the setting of the start time ts, the end time te, and the supply and demand adjustment power integration upper limit value Wh A (ID WF , ts, te) of the supply and demand adjustment power provision. In addition, the supply and demand adjustment power integration Wh SUM (ID WF , ts) = 0 is initialized. The supply and demand adjusting ability calculation unit 202 receives the setting of the storage battery capacity Cc (ID WF ). The fluctuation mitigation calculation unit 203 receives the setting of the installed wind power generation capacity of each wind power generation site 1000. This is because it is necessary to calculate the fluctuation mitigation requirements.

ステップS101において、指令センタ200は、現在時刻tが開始時刻ts以前ならば(No)、このステップS101の判定を繰り返し、現在時刻tが開始時刻tsよりも後ならば(Yes)、ステップS102に進む。 In step S101, the command center 200 repeats the determination in step S101 if the current time t is before the start time ts (No), and if the current time t is after the start time ts (Yes), the command center 200 goes to step S102. move on.

ステップS102において、指令センタ200は、現在時刻tが終了時刻te以前ならば(No)、ステップS103に進み、現在時刻tが終了時刻teよりも後ならば(Yes)、図5の処理を終了する。
つまり、需給調整力提供の開始時刻ts以降の各時刻において、設定された開始時刻tsから終了時刻teまで、指令センタ200は、ステップS103~S109の処理を繰り返す。
In step S102, the command center 200 proceeds to step S103 if the current time t is before the end time te (No), and ends the process of FIG. 5 if the current time t is after the end time te (Yes). do.
That is, at each time after the start time ts of providing the supply and demand adjusting force, the command center 200 repeats the processes of steps S103 to S109 from the set start time ts to the end time te.

ステップS103において、変動緩和算出部203は、各風力発電サイト1000の気象情報Wiを受けて変動緩和W(IDWF,t)を算出する。
ステップS104において、進捗指標算出部201は、各風力発電サイト1000より需給調整力積算WhSUM(IDWF,t)を受信し、進捗指標WhI(IDWF,t)を算出する。
ステップS105において、需給調整力可能量算出部202は、蓄電池の充電率SOC(t)を受信し、需給調整力可能量WA(IDWF,t)を算出する。
In step S103, the fluctuation mitigation calculation unit 203 receives the weather information Wi of each wind power generation site 1000 and calculates the fluctuation mitigation W (ID WF , t).
In step S104, the progress index calculation unit 201 receives the supply and demand adjustment power integration Wh SUM (ID WF , t) from each wind power generation site 1000, and calculates the progress index WhI (ID WF , t).
In step S105, the supply and demand adjusting power possible amount calculation unit 202 receives the charge rate SOC (t) of the storage battery and calculates the supply and demand adjusting power possible amount WA (ID WF , t).

ステップS106において、需給調整力指令算出部204は、需給調整力要求値Wr(t)を受信し、需給調整力W(IDWF,t)指令を算出する。
ステップS107において、SOC調整充放電算出部205は、SOC調整のための蓄電池充放電指令値Co(IDWF,t)を算出し、ステップS108において、計算結果を各風力発電サイト1000に送付する。
In step S106, the supply and demand adjustment force command calculation unit 204 receives the supply and demand adjustment force required value Wr (t) and calculates the supply and demand adjustment force W (ID WF , t) command.
In step S107, the SOC adjustment charge / discharge calculation unit 205 calculates the storage battery charge / discharge command value Co (ID WF , t) for SOC adjustment, and in step S108, sends the calculation result to each wind power generation site 1000.

ステップS109において、指令センタ200は、次の時刻に更新する。ここでは、1秒ごとに計算と送受信ができるものとしているが、送受信に時間が掛かるのであれば、その時間以上の待ち時間を入れてステップS103~S109の処理を繰り返すことでもよい。 In step S109, the command center 200 updates at the next time. Here, it is assumed that calculation and transmission / reception can be performed every second, but if transmission / reception takes time, the processes of steps S103 to S109 may be repeated with a waiting time longer than that time.

本実施形態では、需給調整力指令算出部204は、IDソート部204-1とソート順割当部204-2からなると説明したが、それ以外の構成や方法で、需給調整力W(IDWF,t)指令を算出することもできる。例えば、需給調整力指令算出部204は、指標Is(IDWF,t)>0である風力発電サイト1000の中で、調整力提供可能量Wn(IDWF,t)の割合にしたがって需給調整力要求値Wr(t)を案分して需給調整力W(IDWF,t)を決定してもよい。例えば調整力提供可能量Wn(IDWF,t)の割合にしたがって需給調整力要求値Wr(t)を案分したのち、指標Is(IDWF,t)=0の風力発電サイト1000に割り当てられた需給調整力W(IDWF,t)を、調整力提供可能量Wn(IDWF,t)が需給調整力W(IDWF,t)より大きい風力発電サイト1000に、前式左辺の大きい順や小さい順に割り当ててもよく、また、按分に割り当ててもよい。 In the present embodiment, it has been explained that the supply and demand adjustment power command calculation unit 204 includes an ID sort unit 204-1 and a sort order allocation unit 204-2, but the supply and demand adjustment power W (ID WF , t) The command can also be calculated. For example, the supply and demand adjustment power command calculation unit 204 has the supply and demand adjustment power according to the ratio of the adjustment power provisionable amount Wn (ID WF , t) in the wind power generation site 1000 in which the index Is (ID WF , t)> 0. The supply and demand adjusting force W (ID WF , t) may be determined by prorating the required value Wr (t). For example, after dividing the supply and demand adjustment power requirement value Wr (t) according to the ratio of the adjustment power provisionable amount Wn (ID WF , t), it is assigned to the wind power generation site 1000 with the index Is (ID WF , t) = 0. The supply and demand adjustment power W (ID WF , t) is assigned to the wind power generation site 1000 whose adjustment power supply amount Wn (ID WF , t) is larger than the supply and demand adjustment power W (ID WF , t), in descending order of the left side of the front formula. It may be assigned in ascending order, or it may be assigned proportionally.

以上に説明した方法により、需給調整力指令算出部204は、指標Is(IDWF,t)>0である風力発電サイト1000のみに調整力提供可能量Wn(IDWF,t)を割り当てることになる。したがって、指令センタ200は、需給調整力提供の開始時刻tsから終了時刻teまでの期間中に、番号IDWFの風力発電サイト1000に、需給調整力積算が需給調整力積算上限値Wh(IDWF,ts,te)以下となるように、需給調整力W(IDWF,t)の指令を出すことができる。
なお、気象情報Wiは、各風力発電サイト1000の気象情報Wi(IDWF,t)のみならず、より広範囲の気象情報を用いてもよい。
By the method described above, the supply and demand adjustment power command calculation unit 204 allocates the adjustment power provisionable amount Wn (ID WF , t) only to the wind power generation site 1000 having the index Is (ID WF , t)> 0. Become. Therefore, in the command center 200, during the period from the start time ts of the supply and demand adjustment power provision to the end time te, the supply and demand adjustment power integration is performed at the wind power generation site 1000 of the number ID WF , and the supply and demand adjustment power integration upper limit value Wh A (ID). It is possible to issue a command of the supply and demand adjusting force W (ID WF , t) so as to be WF , ts, te) or less.
As the weather information Wi, not only the weather information Wi (ID WF , t) of each wind power generation site 1000 but also a wider range of weather information may be used.

本実施形態では、再生可能エネルギ発電機として風力発電機を用いる場合について説明したが、そのほかの太陽光発電や地熱発電も変動緩和のための蓄電池を備えていれば、同様に利用することができる。
本実実施形態では、需給調整力可能量算出部202は、指令センタ200内にあるとして説明したが、各風力発電サイト1000やその他のサイトで計算してその結果受け取る構成であってもよい。そのほかの構成要素も、指令センタ200外で計算し、その結果を受け取ることでも同様の効果がある。
本実施形態では、風力発電サイト1000やその他のサイトが複数あるものとして説明したが、単一のサイトの構成でも良い。その場合は、そのひとつのサイトの指標Is(IDWF,t)が0以下であれば需給調整力を提供しない。これにより、指標Is(IDWF,t)が0以下の風力発電サイトの需給調整力の割り当ては0となるが、その風力発電サイト1000の蓄電池の寿命を計画通りとすることができる。
In this embodiment, a case where a wind power generator is used as a renewable energy generator has been described, but other solar power generation and geothermal power generation can also be used in the same manner as long as they are equipped with a storage battery for mitigating fluctuations. ..
In the present embodiment, the supply and demand adjustment capacity calculation unit 202 has been described as being located in the command center 200, but it may be configured to calculate at each wind power generation site 1000 or another site and receive the result. Other components can be calculated outside the command center 200 and the results can be received to have the same effect.
In the present embodiment, it has been described that there are a plurality of wind power generation sites 1000 and other sites, but a single site configuration may be used. In that case, if the index Is (ID WF , t) of the one site is 0 or less, the supply and demand adjustment power is not provided. As a result, the allocation of the supply / demand adjusting power of the wind power generation site whose index Is (ID WF , t) is 0 or less becomes 0, but the life of the storage battery of the wind power generation site 1000 can be set as planned.

《第2の実施形態》
第1の実施形態では、風力発電サイト1000の例として、需給調整力は変動緩和要件とは無関係に提供できる契約であるとして図2の構成を示した。この契約は、風力発電サイト1000が連系する連系線容量に余裕がある場合には、変動緩和要件の枠を外れたとしても調整力提供が優先される場合に用いられると考えられる。一方、風力発電サイト1000が連系する連系線容量に余裕がない場合には、需給調整力は変動緩和要件の範囲で提供されると考えられ、これについて、第2の実施形態で説明する。各風力発電サイト1000で、両方の場合が混在することもあるため、指令センタ200では、各風力発電サイト1000の調整力提供可能量Wn(IDWF,t)を計算する際に、各風力発電サイト1000がどちらの場合であるかを判断して計算する。
<< Second Embodiment >>
In the first embodiment, as an example of the wind power generation site 1000, the configuration of FIG. 2 is shown assuming that the supply and demand adjustment ability is a contract that can be provided regardless of the fluctuation mitigation requirement. It is considered that this contract will be used when the provision of adjustment power is prioritized even if the frame of the fluctuation mitigation requirement is out of the range when the interconnection line capacity to which the wind power generation site 1000 is connected has a margin. On the other hand, when the interconnection line capacity to which the wind power generation site 1000 is interconnected is insufficient, it is considered that the supply and demand adjustment ability is provided within the range of the fluctuation mitigation requirement, which will be described in the second embodiment. .. Since both cases may be mixed at each wind power generation site 1000, the command center 200 calculates each wind power generation when calculating the adjustment power provisionable amount Wn (ID WF , t) of each wind power generation site 1000. Determine and calculate which case the site 1000 is.

図6に、風力発電サイト1000の例を示し、図2の構成と異なる部分を中心に説明する。風力発電サイト1000は、電力線1100に風力発電として売る電力W3を、電力線1200に需給調整力として売る電力W2を送る。
第1の実施形態と異なる点は、変動緩和要件を満足するかを測定する電力メータ10を電力線1100と1200の合流点より電力系統側に、設置する構成であることである。本実施形態では以降、電力メータ10で計測する電力をW1と称する。需給調整力として売る電力W2を測定するための電力メータ11は、第1の実施形態と同様に合流点より風力発電サイト1000側に設置する。そのほかの構成は第1の実施形態と同様である。風力発電として売る電力W3を測定するために、電力メータ17を設置しているが、これを設置せずに、電力メータ10から電力メータ11を差し引いて計算することもできる。
FIG. 6 shows an example of the wind power generation site 1000, and the description will be centered on a portion different from the configuration of FIG. The wind power generation site 1000 sends the electric power W3 sold as wind power generation to the power line 1100 and the electric power W2 sold as power supply / supply adjusting power to the power line 1200.
The difference from the first embodiment is that the power meter 10 for measuring whether or not the fluctuation mitigation requirement is satisfied is installed on the power system side from the confluence of the power lines 1100 and 1200. In the present embodiment, the electric power measured by the electric power meter 10 is hereinafter referred to as W1. The power meter 11 for measuring the power W2 sold as the supply and demand adjusting power is installed on the wind power generation site 1000 side from the confluence point as in the first embodiment. Other configurations are the same as those of the first embodiment. A power meter 17 is installed to measure the power W3 sold as wind power generation, but it is also possible to calculate by subtracting the power meter 11 from the power meter 10 without installing the power meter 17.

図7は、第2実施形態に係る蓄電池充電可能値の算出方法の説明図である。
また、この構成の場合、調整力提供可能量Wnは、変動緩和の上下限と図7で示す方法で計算される。
FIG. 7 is an explanatory diagram of a method for calculating a rechargeable battery chargeable value according to the second embodiment.
Further, in the case of this configuration, the adjustable force provisionable amount Wn is calculated by the upper and lower limits of fluctuation mitigation and the method shown in FIG.

時刻t1においては、出力値W1o(t1)=風力発電予測値Wf(t)であるが、出力値W1o(t1)を下限値W1bまで下げて、(風力発電予測値Wf(t)-下限値W1b)の電力量を下げ電力取引に融通することができる。これをW2下げ取引可能値Td1(t1)とする。しかし、出力値W1oを下限値W1bまで下げるためには、風なり発電値と下限値W1bの差分を、蓄電池に充電する必要がある。すなわち、蓄電池充電可能値Xc(t)までしか出力値W1oを下げられない。下げ電力取引に融通できるのは、W2下げ取引可能値Td1(t)と蓄電池充電可能値Xc(t)のうち小さいほうの値である。また、下限値W1bは、直前のn分間の出力値W1oの最大値-Lにより算出し、上限値W1tは、直前のn分間の出力値W1oの最小値+Lにより算出する。 At time t1, the output value W1o (t1) = the predicted wind power generation value Wf (t), but the output value W1o (t1) is lowered to the lower limit value W1b (wind power generation predicted value Wf (t) -lower limit value). It is possible to reduce the amount of electric power of W1b) and accommodate electric power trading. This is defined as the W2 lower transaction possible value Td1 (t1). However, in order to reduce the output value W1o to the lower limit value W1b, it is necessary to charge the storage battery with the difference between the wind power generation value and the lower limit value W1b. That is, the output value W1o can be lowered only up to the rechargeable battery chargeable value Xc (t). It is the smaller of the W2 lower transaction possible value Td1 (t) and the storage battery rechargeable value Xc (t) that can be accommodated in the lower power transaction. Further, the lower limit value W1b is calculated by the maximum value −L of the output value W1o for the immediately preceding n minutes, and the upper limit value W1t is calculated by the minimum value + L of the output value W1o for the immediately preceding n minutes.


Td1(t)=Wf(t)-W1b(t)…(13)
但し、Td1(t):W2下げ取引可能値
Wf(t) :風力発電予測値
W1b(t):下限値

Td(t)=MIN(Td1(t),Xc(t))…(14)

但し、Td(t):W2下げ取引可能値
Td1(t):W2下げ取引可能値
Xc(t):蓄電池充電可能値

Zd(t)=0
但し、Zd(t):変動緩和用放電値
Zc(t)=0
但し、Zc(t):変動緩和用充電値

Td1 (t) = Wf (t) -W1b (t) ... (13)
However, Td1 (t): W2 lower transaction possible value Wf (t): Wind power generation predicted value W1b (t): Lower limit value

Td (t) = MIN (Td1 (t), Xc (t)) ... (14)

However, Td (t): W2 lower transaction possible value Td1 (t): W2 lower transaction possible value Xc (t): Storage battery chargeable value

Zd (t) = 0
However, Zd (t): discharge value for fluctuation mitigation Zc (t) = 0
However, Zc (t): charge value for mitigating fluctuations

同様に、上限値W1tと風なり発電値との差の電力量を、上げ電力取引に融通することができ、これをW2上げ取引可能値Ti1(t1)とする。上げ電力取引に融通できるのは、W2上げ取引可能値Ti1(t)と蓄電池充電可能値Xc(t)のうち小さいほうの値である。 Similarly, the electric energy of the difference between the upper limit value W1t and the wind power generation value can be accommodated in the increased power transaction, and this is set as the W2 increased transaction possible value Ti1 (t1). The value that can be accommodated in the power increase transaction is the smaller of the W2 increase transaction possible value Ti1 (t) and the storage battery chargeable value Xc (t).

Ti1(t)=W1t(t)-Wf(t)…(15)
但し、Ti1(t):W2上げ取引可能値
W1t(t):上限値
Wf(t):風力発電予測値

Ti(t)=MIN(Ti1(t),Xd(t))…(16)
但し:Ti(t):W2上げ取引可能値
Ti1(t):W2上げ取引可能値
Xd(t):蓄電池放電可能値

Zd(t)=0…(17)
但し、Zd(t):変動緩和用放電値

Zc(t)=0…(18)
但し、Zc(t):変動緩和用充電値
Ti1 (t) = W1t (t) -Wf (t) ... (15)
However, Ti1 (t): W2 increase transaction possible value W1t (t): upper limit value Wf (t): wind power generation predicted value

Ti (t) = MIN (Ti1 (t), Xd (t)) ... (16)
However: Ti (t): W2 increase transaction possible value Ti1 (t): W2 increase transaction possible value Xd (t): Storage battery discharge possible value

Zd (t) = 0 ... (17)
However, Zd (t): discharge value for fluctuation mitigation

Zc (t) = 0 ... (18)
However, Zc (t): charge value for mitigating fluctuations

時刻t2においては、風なり発電値が下限値W1bを下回ってしまうため、変動緩和用に蓄電池より放電する。そこで、電力取引に向けられる量を次のように計算できる。下げ取引であれば式(19)~(21)により計算する。上げ取引であれば式(22)~(23)により計算し、出力値W1oは下限値W1bとなっているためW2下げ取引可能値Td(t2)は0である。また、電力取引がなくても変動緩和用に蓄電池より放電する必要がある。この変動緩和用放電値も、蓄電池放電可能値Xd以下である必要がある。変動緩和用放電値Zdが蓄電池放電可能値Xdより大きい場合は、出力値W1oが変動緩和要件を逸脱することになる。 At time t2, the wind power generation value falls below the lower limit value W1b, so that the battery is discharged from the storage battery to mitigate fluctuations. Therefore, the amount directed to electricity trading can be calculated as follows. If it is a downturn transaction, it is calculated by the formulas (19) to (21). If it is an up transaction, it is calculated by the formulas (22) to (23), and since the output value W1o is the lower limit value W1b, the W2 down transaction possible value Td (t2) is 0. In addition, even if there is no electricity transaction, it is necessary to discharge from the storage battery to mitigate fluctuations. The discharge value for mitigating fluctuations also needs to be equal to or less than the storage battery dischargeable value Xd. When the fluctuation mitigation discharge value Zd is larger than the storage battery dischargeable value Xd, the output value W1o deviates from the fluctuation mitigation requirement.

Td(t)=Td1(t)=0…(19)
但し、Td(t):W2下げ取引可能値
Td1(t):W2下げ取引可能値

Zd(t)=MIN(W1b(t)-Wf(t),Xd(t)) …(20)
但し:Zd(t):変動緩和用放電値
W1b(t):下限値
Wf(t):風力発電予測値
Xd(t):蓄電池放電可能値

Zc(t)=0…(21)
但し、Zc(t):変動緩和用充電値

Ti1(t)=W1t(t)-W1b(t)…(22)
但し、Ti1(t):W2上げ取引可能値
W1t(t):上限値
W1b(t):下限値

Ti(t)=MIN(Ti1(t),Xd(t)-Zd(t))…(23)
但し、Ti(t):W2上げ取引可能値
Ti1(t):W2上げ取引可能値
Xd(t):蓄電池放電可能値
Zd(t):変動緩和用放電値
Td (t) = Td1 (t) = 0 ... (19)
However, Td (t): W2 lower transaction possible value Td1 (t): W2 lower transaction possible value

Zd (t) = MIN (W1b (t) -Wf (t), Xd (t)) ... (20)
However: Zd (t): Discharge value for fluctuation mitigation W1b (t): Lower limit value Wf (t): Predicted wind power generation value Xd (t): Possible discharge value of storage battery

Zc (t) = 0 ... (21)
However, Zc (t): charge value for mitigating fluctuations

Ti1 (t) = W1t (t) -W1b (t) ... (22)
However, Ti1 (t): W2 increase transaction possible value W1t (t): upper limit value W1b (t): lower limit value

Ti (t) = MIN (Ti1 (t), Xd (t) -Zd (t)) ... (23)
However, Ti (t): W2 increase transaction possible value Ti1 (t): W2 increase transaction possible value Xd (t): Storage battery discharge possible value Zd (t): Fluctuation mitigation discharge value

時刻t3においては、風なり発電値が上限値W1tを上回るため、変動緩和用に蓄電池が充電する。そこで電力取引に向けられるのは、下げ取引であれば式(24)~(26)により計算する。上げ取引であれば式(27)~(28)により計算し、W2上げ取引可能値Ti(t3)は0である。 At time t3, the wind power generation value exceeds the upper limit value W1t, so that the storage battery is charged for fluctuation mitigation. Therefore, if it is a downturn transaction, it is calculated by the formulas (24) to (26) that are directed to the electricity transaction. If it is a raised transaction, it is calculated by the formulas (27) to (28), and the W2 raised transaction possible value Ti (t3) is 0.


Ti(t)=Ti1(t)=0…(24)
但し、Ti(t):W2上げ取引可能値
Ti1(t):W2上げ取引可能値

Zd(t)=0…(25)
但し、Zd(t):変動緩和用放電値

Zc(t)=MIN(Wf(t)-W1t(t),Xc(t))…(26)
但し:Zc(t):変動緩和用充電値
Wf(t):風力発電予測値
W1t(t):上限値
Xc(t):蓄電池充電可能値

Td1(t)=W1t(t)-W1b(t)…(27)
但し、Td1(t):W2下げ取引可能値
W1t(t):上限値
W1b(t):下限値

Td(t)=MIN(Td1(t),Xc(t)-Zc(t)) …(28)
但し、Td(t):W2下げ取引可能値
Td1(t):W2下げ取引可能値
Xc(t):蓄電池放電可能値
Zc(t):変動緩和用放電値

Ti (t) = Ti1 (t) = 0 ... (24)
However, Ti (t): W2 increase transaction possible value Ti1 (t): W2 increase transaction possible value

Zd (t) = 0 ... (25)
However, Zd (t): discharge value for fluctuation mitigation

Zc (t) = MIN (Wf (t) -W1t (t), Xc (t)) ... (26)
However: Zc (t): Charge value for fluctuation mitigation Wf (t): Wind power generation predicted value W1t (t): Upper limit value Xc (t): Storage battery rechargeable value

Td1 (t) = W1t (t) -W1b (t) ... (27)
However, Td1 (t): W2 lower transaction possible value W1t (t): upper limit value W1b (t): lower limit value

Td (t) = MIN (Td1 (t), Xc (t) -Zc (t)) ... (28)
However, Td (t): W2 lower transaction possible value Td1 (t): W2 lower transaction possible value Xc (t): Storage battery discharge possible value Zc (t): Fluctuation mitigation discharge value

第2の実施形態においても、変動緩和要件は、一定時間枠内の発電値の最大値と最小値の差が所定の範囲内とする内容を前提として説明した。それ以外の変動緩和要件として、太陽光発電と協調して風力発電するサイトにおいて、合成出力が所定の閾値Wth[kW]を超えないようにする内容もある。その場合に、例えば風力発電の出力が、所定の閾値[kW]と太陽光発電値Ws[kW]となるように蓄電池の充放電を行うとして、上記時刻t1または時刻t3の制御において、上限値W1tと下限値W1bを以下のように設定して計算できる。 Also in the second embodiment, the fluctuation mitigation requirement has been described on the premise that the difference between the maximum value and the minimum value of the power generation value within a fixed time frame is within a predetermined range. As another requirement for mitigating fluctuations, there is also a content to prevent the combined output from exceeding a predetermined threshold value Wth [kW] at a site that generates wind power in cooperation with solar power generation. In that case, for example, assuming that the storage battery is charged and discharged so that the output of the wind power generation becomes a predetermined threshold value [kW] and the solar power generation value Ws [kW], the upper limit value in the control of the time t1 or the time t3. W1t and the lower limit value W1b can be set and calculated as follows.

W1t(t)=Wth-Ws(t)…(29)
但し、W1t(t):上限値
Wth:所定の閾値[kW]
Ws(t):太陽光発電値[kW]

W1b(t)=-∞…(30)
但し、W1b(t):下限値
W1t (t) = Wth-Ws (t) ... (29)
However, W1t (t): upper limit value Wth: predetermined threshold value [kW]
Ws (t): Solar power generation value [kW]

W1b (t) =-∞ ... (30)
However, W1b (t): lower limit value

《第3の実施形態》
図8は、第3の実施形態に係る指令センタ200Bの構成の例を示した図である。
第1、第2の実施形態では、変動緩和用蓄電池を対象とした調整力提供の方法を説明した。蓄電池は、変動緩和用途以外に停電時バックアップ用途など、需給調整力以外に用途を兼ねている蓄電池を用いることができる。図8にその指令センタ200Bと風力発電サイト1000b,1000cを含む各蓄電池サイトの構成例を示す。第1の実施形態との差異は、第1の実施形態の風力発電サイト1000aを、バックアップ用蓄電池システム1000dとしている点、指令センタ200Bに需給調整力用途外充放電算出部203Bを備える点である。なお、バックアップ用蓄電池システム1000dは、風力発電設備2を備えていないほかは、風力発電サイト1000aと同様に構成されている。
バックアップ用蓄電池は、時刻tにおけるバックアップ用途に必要な電力量の計算が異なるため、需給調整力用途外充放電算出部203Bでこれを計算する。
<< Third Embodiment >>
FIG. 8 is a diagram showing an example of the configuration of the command center 200B according to the third embodiment.
In the first and second embodiments, the method of providing the adjusting force for the storage battery for fluctuation mitigation has been described. As the storage battery, it is possible to use a storage battery that has a purpose other than the supply and demand adjusting ability, such as a backup use in the event of a power failure, in addition to the use for mitigating fluctuations. FIG. 8 shows a configuration example of each storage battery site including the command center 200B and the wind power generation sites 1000b and 1000c. The difference from the first embodiment is that the wind power generation site 1000a of the first embodiment is a backup storage battery system 1000d, and the command center 200B is provided with a charge / discharge calculation unit 203B for outside supply / demand adjustment power. .. The backup storage battery system 1000d is configured in the same manner as the wind power generation site 1000a except that the backup storage battery system 1000d is not provided with the wind power generation facility 2.
Since the backup storage battery has a different calculation of the amount of electric power required for the backup application at time t, this is calculated by the supply / demand adjusting power non-application charge / discharge calculation unit 203B.

図9は、第3の実施形態の充放電必要量に係る説明のグラフである。
時刻tにおけるバックアップ用途に必要な電力量の計算は次のように行う。バックアップ対象がオフィスであれば、平日日中は多くの電力を利用するが休日や夜間は必要な電力は少ない。そうした電力需要から、時刻ごとのバックアップに必要なSOCを図9のように表せる。
具体的にいうと、前日の夜の19時から午前5時までSOCをaだけ低くして、午前5時から午前9時に掛けてSOCを100%に変化させる。午後の16時になると、SOCを次第に低くして,夜の19には再びSOCをaだけ低くする。
したがって、蓄電池の充電率SOC(IDWF,t)がバックアップに必要なSOC以上であれば、バックアップに必要な充放電量は0と計算し、すなわち需給調整力にすべて使うことが可能である。蓄電池の充電率SOC(IDWF,t)がバックアップに必要なSOC以下であれば、バックアップに必要な放電量は無限大、充電量は0とする。すなわち放電の場合は需給調整力に使える電力は0であり充電の場合はすべて使うことが可能である。
FIG. 9 is a graph for explaining the required charge / discharge amount according to the third embodiment.
The amount of power required for backup at time t is calculated as follows. If the backup target is an office, it uses a lot of power during the day on weekdays, but requires less power on holidays and at night. From such power demand, the SOC required for time-by-time backup can be represented as shown in FIG.
Specifically, the SOC is lowered by a from 19:00 to 5 am the night before, and the SOC is changed to 100% from 5 am to 9 am. At 16:00 pm, the SOC is gradually lowered, and at 19 at night, the SOC is lowered again by a.
Therefore, if the charge rate SOC (ID WF , t) of the storage battery is equal to or higher than the SOC required for backup, the charge / discharge amount required for backup is calculated to be 0, that is, it can be fully used for the supply / demand adjustment ability. If the charge rate SOC (ID WF , t) of the storage battery is equal to or less than the SOC required for backup, the amount of discharge required for backup is infinite and the amount of charge is 0. That is, in the case of discharging, the electric power that can be used for the supply and demand adjusting force is 0, and in the case of charging, all can be used.

図10は、第3の実施形態に係る指令センタ200Bの処理を示すフローチャートである。
第3の実施形態の指令センタ200Bの動作フローは、図5に示した第1の実施形態の動作フローのうち、ステップS103の変動緩和Wm(IDWF,t)算出を、図10に示す調整力用途外充放電算出処理に変えることで実現できる。図10の処理は、需給調整力用途外充放電算出部203Bにて行う。
ステップS200において、需給調整力用途外充放電算出部203Bは、すべての蓄電池サイトについて処理を実施したか判定する。需給調整力用途外充放電算出部203Bは、未処理の蓄電池サイトがあるならば(No)、ステップS201の処理に進み、すべての蓄電池サイトの処理を実施したならば(Yes)、図10の処理を終了する。
FIG. 10 is a flowchart showing the processing of the command center 200B according to the third embodiment.
In the operation flow of the command center 200B of the third embodiment, among the operation flows of the first embodiment shown in FIG. 5, the fluctuation mitigation Wm (ID WF , t) calculation in step S103 is adjusted as shown in FIG. It can be realized by changing to the charge / discharge calculation process outside the power application. The processing of FIG. 10 is performed by the supply / demand adjusting force non-use charge / discharge calculation unit 203B.
In step S200, the supply / demand adjusting power non-use charge / discharge calculation unit 203B determines whether or not the processing has been performed for all the storage battery sites. If there is an unprocessed storage battery site (No), the supply and demand adjusting power external charge / discharge calculation unit 203B proceeds to the process of step S201, and if all the storage battery sites are processed (Yes), FIG. 10 shows. End the process.

ステップS201において、需給調整力用途外充放電算出部203Bは、次の番号IDWFをセットする。ステップS202において、需給調整力用途外充放電算出部203Bは、番号IDWFの蓄電池サイトはバックアップ用であるかどうかを判定する。この判定がYesであれば、ステップS203に進み、時刻ごとのバックアップに必要なSOCから蓄電池の充放電量Cio(IDWF,t)を算出すると、ステップS200の処理に戻る。
ステップS202の判定がNoならば、ステップS204に進み、変動緩和W(IDWF,t)算出により風力出力上限指令値Wo(IDWF,t)と蓄電池の充放電量Cio(IDWF,t)を算出すると、ステップS200の処理に戻る。
In step S201, the supply / demand adjusting force non-use charge / discharge calculation unit 203B sets the next number ID WF . In step S202, the supply / demand adjusting power non-use charge / discharge calculation unit 203B determines whether the storage battery site of the number ID WF is for backup. If this determination is Yes, the process proceeds to step S203, the charge / discharge amount Cio (ID WF , t) of the storage battery is calculated from the SOC required for backup at each time, and the process returns to step S200.
If the determination in step S202 is No, the process proceeds to step S204, and the wind power output upper limit command value Wo (ID WF , t) and the charge / discharge amount Cio (ID WF , t) of the storage battery are calculated by calculating the fluctuation mitigation W (ID WF , t). Is calculated, the process returns to the process of step S200.

以上、第3の実施形態では、バックアップ用蓄電池と変動緩和用蓄電池を用いた需給調整力提供の方法を述べた。バックアップ用蓄電池においても、設置にあたっての想定寿命を確保することが必要であるため、調整力提供期間における需給調整力積算上限値Wh(IDWF,ts,te)を用いて提供量を決定する必要がある。また、バックアップ用、変動緩和用以外の用途の蓄電池でも、同様に行うことができる。すなわち、需給調整力用途外充放電算出部203Bは、再生可能エネルギの変動緩和用途やバックアップ用途など、調整力提供と異なる用途に利用する蓄電池の充放電量Cioを計算することができる。 As described above, in the third embodiment, the method of providing the supply and demand adjusting ability using the backup storage battery and the fluctuation mitigation storage battery has been described. Since it is necessary to secure the expected life of the backup storage battery as well, the supply amount is determined using the supply and demand adjustment power integration upper limit Wh A (ID WF , ts, te) during the adjustment power provision period. There is a need. Further, the same can be performed with a storage battery for purposes other than backup and fluctuation mitigation. That is, the supply / demand adjusting power non-use charge / discharge calculation unit 203B can calculate the charge / discharge amount Cio of the storage battery used for the use different from the adjustment power provision such as the use for mitigating fluctuations in renewable energy and the use for backup.

図1の各風力発電サイトの蓄電池の用途が、第1の実施形態~第3の実施形態までに説明した以外であっても、調整力提供期間における需給調整力積算上限値Wh(IDWF,ts,te)を適切に設定することで、指令センタ200Bは、その範囲内の調整力提供指令値を算出できる。 Even if the use of the storage battery at each wind power generation site in FIG. 1 is not described in the first to third embodiments, the supply and demand adjustment power integration upper limit value Wh A (ID WF ) during the adjustment power provision period , Ts, te), the command center 200B can calculate the adjustment force providing command value within the range.

また、一部のサイトの蓄電池の用途が調整力提供専用である場合も、需給調整力積算上限値Wh(IDWF,ts,te)を無限大に設定し、指令センタ200Bは同様に指令値計算することで実現できる。その場合は、調整力提供専用の蓄電池から優先して調整力を提供し、調整力提供専用の蓄電池で調整力提供できない場合のみ、ほかのサイトの蓄電池に充放電が割り当てられることになる。 In addition, even when the storage battery of some sites is used exclusively for providing adjustment power, the supply and demand adjustment power integration upper limit value Wh A (ID WF , ts, te) is set to infinity, and the command center 200B gives a command in the same manner. It can be realized by calculating the value. In that case, the storage battery dedicated to providing the adjusting power is given priority to provide the adjusting power, and the charge / discharge is assigned to the storage battery of another site only when the storage battery dedicated to providing the adjusting power cannot provide the adjusting power.

(変形例)
本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
(Modification example)
The present invention is not limited to the above-described embodiment, and includes various modifications. For example, the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations. It is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment, and it is also possible to add the configuration of another embodiment to the configuration of one embodiment. Further, it is also possible to add / delete / replace a part of the configuration of each embodiment with another configuration.

上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。 Each of the above configurations, functions, processing units, processing means, and the like may be partially or wholly realized by hardware such as an integrated circuit. Each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be placed in a recording device such as a memory, hard disk, SSD (Solid State Drive), or a recording medium such as a flash memory card or DVD (Digital Versatile Disk). can.

各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には、殆ど全ての構成が相互に接続されていると考えてもよい。 In each embodiment, the control lines and information lines indicate what is considered necessary for explanation, and do not necessarily indicate all the control lines and information lines in the product. In practice, it may be considered that almost all configurations are interconnected.

2 風力発電設備
3 蓄電池システム
4 需給調整力積算部
5 情報受信部
8 電力変換器
9,10,11 電力メータ
12,13,14 電力変換器
15,16 変圧器
17 AC/DCコンバータ
18 DC/ACコンバータ
101,102,103,104 電力線
200,200B 指令センタ
201 進捗指標算出部 (指標算出部)
202 需給調整力可能量算出部
203 変動緩和算出部
203B 需給調整力用途外充放電算出部
204 需給調整力指令算出部
300 制御部
1000a~1000c 風力発電サイト (サイトの一例)
1000d バックアップ用蓄電池システム (サイトの一例)
1100a~1100c,1200a~1200c 電力線
2000 電力系統
2 Wind power generation equipment 3 Storage battery system 4 Supply / demand adjustment power integrating unit 5 Information receiving unit 8 Power converter 9,10,11 Power meter 12,13,14 Power converter 15,16 Transformer 17 AC / DC converter 18 DC / AC Converter 101, 102, 103, 104 Power line 200, 200B Command center 201 Progress index calculation unit (index calculation unit)
202 Supply and demand adjustment power possible amount calculation unit 203 Fluctuation mitigation calculation unit 203B Supply and demand adjustment power External charge / discharge calculation unit 204 Supply and demand adjustment power command calculation unit 300 Control unit 1000a to 1000c Wind power generation site (example of site)
1000d backup storage battery system (an example of the site)
1100a to 1100c, 1200a to 1200c power line 2000 power system

Claims (8)

1つ以上のサイトに設置した蓄電池の充放電の合算が調整力要求値となるように、各前記サイトの蓄電池の調整力提供指令値を計算して各前記サイトの蓄電池に指令する需給調整力提供システムにおいて、
前記需給調整力提供システムは、
各前記サイトの蓄電池が提供した調整力の各時刻における積算値である調整力提供積算値、および、前記調整力提供積算値の上限値を受け、各前記サイトの蓄電池の調整力提供積算指標を計算する指標算出部と、
各前記サイトの蓄電池の容量、充放電量、および各時刻における充電率を受けて、各前記サイトの蓄電池の需給調整力可能量を計算する需給調整力可能量算出部と、
前記調整力要求値と前記調整力提供積算指標と前記需給調整力可能量に基づいて、各前記サイトの蓄電池の調整力提供指令値を計算する需給調整力指令算出部と、
を備えることを特徴とする需給調整力提供システム。
Demand and supply adjustment power that calculates the adjustment power provision command value of the storage battery of each said site and commands the storage battery of each said site so that the total charge and discharge of the storage batteries installed at one or more sites becomes the adjustment power required value. In the provision system
The supply and demand adjustment power provision system is
The adjustment power provision integrated value, which is the integrated value of the adjustment power provided by the storage battery of each site at each time, and the upper limit of the adjustment power provision integrated value are received, and the adjustment power provision integration index of the storage battery of each site is used. The index calculation unit to calculate and
A supply and demand adjustment capacity calculation unit that calculates the supply and demand adjustment capacity possible amount of the storage battery of each site based on the capacity, charge / discharge amount, and charge rate of the storage battery at each site.
A supply and demand adjustment power command calculation unit that calculates the adjustment power provision command value of the storage battery of each site based on the adjustment power requirement value, the adjustment power provision integration index, and the supply and demand adjustment power possible amount.
A supply and demand adjustment power provision system characterized by being equipped with.
各前記サイトの蓄電池は、再生可能エネルギ発電機サイトに併設され変動緩和に用いられ、
気象情報から前記再生可能エネルギ発電機サイトの発電量を計算し、前記発電量の変動緩和に基づき各前記サイトの蓄電池の充放電量を計算する変動緩和算出部を更に備える、
ことを特徴とする請求項1に記載の需給調整力提供システム。
The storage battery at each of the above sites is installed next to the renewable energy generator site and used for fluctuation mitigation.
Further provided with a fluctuation mitigation calculation unit that calculates the power generation amount of the renewable energy generator site from the weather information and calculates the charge / discharge amount of the storage battery of each said site based on the fluctuation mitigation of the power generation amount.
The supply and demand adjusting ability providing system according to claim 1.
各前記サイトの蓄電池は、停電時バックアップ用の蓄電池であり、
前記需給調整力可能量算出部は、バックアップ用に必要な蓄電池の充電率を保持し、前記蓄電池の充電率から、各時刻における需給調整力可能量を算出する、
ことを特徴とする請求項1に記載の需給調整力提供システム。
The storage battery at each site is a storage battery for backup in the event of a power failure.
The supply and demand adjustment capacity calculation unit holds the charge rate of the storage battery required for backup, and calculates the supply and demand adjustment capacity possible amount at each time from the charge rate of the storage battery.
The supply and demand adjusting ability providing system according to claim 1.
前記需給調整力指令算出部は、
前記調整力提供積算値が調整力提供積算上限値以上となる各前記サイトの蓄電池には、調整力提供指令値を割り当てない、
ことを特徴とする請求項1に記載の需給調整力提供システム。
The supply and demand adjustment power command calculation unit
The adjustment power provision command value is not assigned to the storage battery of each site where the adjustment power provision integrated value is equal to or larger than the adjustment power provision integration upper limit value.
The supply and demand adjusting ability providing system according to claim 1.
各前記サイトの蓄電池の調整力提供と異なる用途に利用する充放電量を計算する需給調整力用途外充放電算出部、
を更に備えることを特徴とする請求項1に記載の需給調整力提供システム。
Supply and demand adjustment power to calculate the amount of charge and discharge used for different purposes from the provision of adjustment power of the storage battery at each site.
The supply and demand adjusting power providing system according to claim 1, further comprising.
前記需給調整力用途外充放電算出部は、
前記サイトごと蓄電池の用途に応じて、前記サイトごと蓄電池の需給調整力用途外の充放電量を計算する、
ことを特徴とする請求項5に記載の需給調整力提供システム。
The supply and demand adjustment power out-of-use charge / discharge calculation unit
The supply and demand adjustment power of the storage battery for each site is calculated according to the application of the storage battery for each site.
The supply and demand adjusting ability providing system according to claim 5.
指令センタより、出力上限指令値と、充放電指令値と、需給調整力指令値を受けて、前記出力上限指令値以下に発電電力を抑制する機能を備える再生可能エネルギ発電機と、
前記充放電指令値に従って蓄電池を充放電して現在の充電率を出力する蓄電池システムと、
前記出力上限指令値と前記充放電指令値の合算値を、前記需給調整力指令値を差し引いた第1の電力と前記需給調整力指令値に従う第2の電力に分配する電力変換器と、
前記第1の電力を測定する第1の電力メータと、
前記第2の電力を測定する第2の電力メータ、
を備える需給調整力提供システム。
A renewable energy generator having a function of suppressing power generation below the output upper limit command value by receiving an output upper limit command value, a charge / discharge command value, and a supply and demand adjustment force command value from a command center.
A storage battery system that charges and discharges the storage battery according to the charge / discharge command value and outputs the current charge rate.
A power converter that distributes the sum of the output upper limit command value and the charge / discharge command value to the first power obtained by subtracting the supply and demand adjustment force command value and the second power according to the supply and demand adjustment force command value.
The first power meter for measuring the first power and
A second electricity meter that measures the second power,
Supply and demand adjustment power provision system equipped with.
前記指令センタは、前記第1の電力が満足すべき変動緩和要件を保持し、前記変動緩和要件に基づいて、前記出力上限指令値と、前記充放電指令値と、前記需給調整力指令値を算出する、
ことを特徴とする請求項7に記載の需給調整力提供システム。
The command center holds the fluctuation mitigation requirement that the first electric power should be satisfied with, and based on the fluctuation mitigation requirement, the output upper limit command value, the charge / discharge command value, and the supply / demand adjustment force command value are set. calculate,
The supply and demand adjusting ability providing system according to claim 7.
JP2018177494A 2018-09-21 2018-09-21 Supply and demand adjustment power provision system Active JP7002428B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018177494A JP7002428B2 (en) 2018-09-21 2018-09-21 Supply and demand adjustment power provision system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018177494A JP7002428B2 (en) 2018-09-21 2018-09-21 Supply and demand adjustment power provision system

Publications (2)

Publication Number Publication Date
JP2020048386A JP2020048386A (en) 2020-03-26
JP7002428B2 true JP7002428B2 (en) 2022-01-20

Family

ID=69901844

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018177494A Active JP7002428B2 (en) 2018-09-21 2018-09-21 Supply and demand adjustment power provision system

Country Status (1)

Country Link
JP (1) JP7002428B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322864B2 (en) * 2020-11-12 2023-08-08 トヨタ自動車株式会社 Charging control system, charging control device and charging control program
CN115917907A (en) * 2020-11-16 2023-04-04 三菱重工业株式会社 Adjustment force measuring device, adjustment force measuring system, adjustment force measuring method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147155A1 (en) 2011-04-26 2012-11-01 株式会社 日立製作所 Power management device, power management system, power management method, and power management program
JP2014233096A (en) 2011-09-27 2014-12-11 三洋電機株式会社 Charge and discharge system
JP2015176304A (en) 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Storage battery control method and storage battery control device
US20150381089A1 (en) 2013-02-07 2015-12-31 Vestas Wind Systems A/S Power plant & energy storage system for provision of grid ancillary services
JP2017046507A (en) 2015-08-28 2017-03-02 株式会社日立製作所 System stabilization system
JP2017093173A (en) 2015-11-11 2017-05-25 三菱重工業株式会社 Power storage device control system, condition notification device, and power storage device control method
JP2019140862A (en) 2018-02-15 2019-08-22 株式会社日立パワーソリューションズ Storage battery-combined renewable energy generator system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012147155A1 (en) 2011-04-26 2012-11-01 株式会社 日立製作所 Power management device, power management system, power management method, and power management program
JP2014233096A (en) 2011-09-27 2014-12-11 三洋電機株式会社 Charge and discharge system
US20150381089A1 (en) 2013-02-07 2015-12-31 Vestas Wind Systems A/S Power plant & energy storage system for provision of grid ancillary services
JP2015176304A (en) 2014-03-14 2015-10-05 パナソニックIpマネジメント株式会社 Storage battery control method and storage battery control device
JP2017046507A (en) 2015-08-28 2017-03-02 株式会社日立製作所 System stabilization system
JP2017093173A (en) 2015-11-11 2017-05-25 三菱重工業株式会社 Power storage device control system, condition notification device, and power storage device control method
JP2019140862A (en) 2018-02-15 2019-08-22 株式会社日立パワーソリューションズ Storage battery-combined renewable energy generator system

Also Published As

Publication number Publication date
JP2020048386A (en) 2020-03-26

Similar Documents

Publication Publication Date Title
US8541982B2 (en) Battery system
Kabir et al. Coordinated control of grid-connected photovoltaic reactive power and battery energy storage systems to improve the voltage profile of a residential distribution feeder
JP4170565B2 (en) Power fluctuation smoothing apparatus and control method of distributed power supply system including the same
AU2012366196B2 (en) Methods and apparatus for dispatching electrical energy from distributed energy resources
US8914158B2 (en) Regulation of contribution of secondary energy sources to power grid
US9343926B2 (en) Power controller
EP2587623A1 (en) Dc power distribution system
WO2011118766A1 (en) Electric power supply system, central management device, power system stabilization system, central management device control method, and central management device control program
JP7002428B2 (en) Supply and demand adjustment power provision system
WO2015059873A1 (en) Power management apparatus
JP5551492B2 (en) Power supply system
JP5602547B2 (en) Grid interconnection method and grid interconnection system
JP6820677B2 (en) Power management equipment and programs
JP6189092B2 (en) Multi-purpose control device for grid storage battery
JP6580950B2 (en) Power management equipment
JP2011176948A (en) Billing apparatus, billing method, and billing system
Morrissey et al. Optimal energy storage schedules for load leveling and ramp rate control in distribution systems
JP7047224B2 (en) Centralized management device
JP2004048982A (en) Method for using secondary battery and power receiving system
JP6670867B2 (en) Renewable energy generator system with storage battery
Hollinger et al. Analysis of the minimum activation period of batteries in frequency containment reserve
CN117941196A (en) Control method and control device of energy storage system
JP7007202B2 (en) Power management system and power management method
JP7242084B2 (en) Renewable energy systems, how electricity is traded
JP7181036B2 (en) power supply system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211227

R150 Certificate of patent or registration of utility model

Ref document number: 7002428

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150