JP7001438B2 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP7001438B2
JP7001438B2 JP2017225448A JP2017225448A JP7001438B2 JP 7001438 B2 JP7001438 B2 JP 7001438B2 JP 2017225448 A JP2017225448 A JP 2017225448A JP 2017225448 A JP2017225448 A JP 2017225448A JP 7001438 B2 JP7001438 B2 JP 7001438B2
Authority
JP
Japan
Prior art keywords
flow path
sectional area
adjusting member
area adjusting
main flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017225448A
Other languages
Japanese (ja)
Other versions
JP2019094847A (en
Inventor
豊 藤田
浩範 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2017225448A priority Critical patent/JP7001438B2/en
Publication of JP2019094847A publication Critical patent/JP2019094847A/en
Application granted granted Critical
Publication of JP7001438B2 publication Critical patent/JP7001438B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Description

本開示は圧縮機に関する。 This disclosure relates to a compressor.

従来、例えば自動車や船舶用等に用いられるターボチャージャー等の圧縮機にあっては、高効率化と作動領域の拡大とが課題とされている。その対策の一つとして、小流量時に生じるサージの発生限界を低下させるためのバイパス流路を主流路のほかに設ける構成が知られている。例えば、特許文献1には、動翼群の上流側端部よりも上流において主流路の外側に形成された迂回流路を、外部に設けた動作レバーで開閉する構成が開示されている。 Conventionally, in the case of a compressor such as a turbocharger used for an automobile or a ship, for example, high efficiency and expansion of an operating range have been problems. As one of the countermeasures, a configuration is known in which a bypass flow path is provided in addition to the main flow path in order to reduce the generation limit of the surge generated at a small flow rate. For example, Patent Document 1 discloses a configuration in which a detour flow path formed outside the main flow path upstream of the upstream end of the rotor blade group is opened and closed by an operation lever provided outside.

特開2005-240696号公報Japanese Unexamined Patent Publication No. 2005-240696

しかし、上記特許文献1に開示された圧縮機は、迂回流路の開閉を外部から行う必要があるため、エンジン等への搭載性やコスト面においてさらに改善の余地があった。 However, since the compressor disclosed in Patent Document 1 needs to open and close the detour flow path from the outside, there is room for further improvement in terms of mountability to an engine or the like and cost.

上述した問題に鑑み、本発明の少なくとも一実施形態は、外部入力を必要とせずに作動領域の拡大と高効率化とを両立可能な圧縮機を提供することを目的とする。 In view of the above-mentioned problems, at least one embodiment of the present invention aims to provide a compressor capable of achieving both expansion of an operating region and high efficiency without requiring an external input.

(1)本発明の少なくとも一実施形態に係る圧縮機は、
主流路と、前記主流路に連通するように設けられるバイパス路又は再循環路を含む副流路とを内部に含むケーシングと、
前記主流路内に設けられた複数の動翼と、
開位置、または、該開位置よりも前記副流路の流路断面積が小さい閉位置の一方から他方に移動可能に構成された流路断面積調整部材と、
流体力を受けるように前記主流路内に露出して設けられて、前記主流路の流れが第1流量のときに前記流路断面積調整部材が前記開位置に位置し、前記流れが前記第1流量よりも大きい第2流量のときに前記流路断面積調整部材が前記閉位置に位置するように、前記流体力に起因した駆動力を前記流路断面積調整部材に与えるよう構成された翼素と、
を備える。
(1) The compressor according to at least one embodiment of the present invention is
A casing including a main flow path and a sub-flow path including a bypass path or a recirculation path provided so as to communicate with the main flow path.
A plurality of blades provided in the main flow path and
A flow path cross-sectional area adjusting member configured to be movable from one of the closed positions where the flow path cross-sectional area of the sub-flow path is smaller than the open position or the open position to the other.
It is provided so as to be exposed in the main flow path so as to receive a fluid force, and when the flow rate of the main flow path is the first flow rate, the flow path cross-sectional area adjusting member is located at the open position, and the flow is the first flow rate. The flow path cross-sectional area adjusting member is configured to apply a driving force due to the fluid force to the flow path cross-sectional area adjusting member so that the flow path cross-sectional area adjusting member is located at the closed position when the second flow rate is larger than one flow rate. Tsubasa and
To prepare for.

上記(1)の構成によれば、主流路内が第1流量の際は流路断面積調整部材が開位置に配置されて副流路から主流路内への流れを形成することができる。よって、圧縮機で発生し得るサージを効果的に抑制することができ、作動レンジの下限をより低く設定することができる。一方、第1流量よりも大きい第2流量では、流路断面積調整部材が閉位置に配置されて主流路と副流路との間で流体の流出入が規制される。よって、圧力損失等のロスが少なく高効率な圧縮機を実現することができる。このように、主流路内の流体力により、流路断面積調整部材を副流路に対して閉位置と開位置とに移動できるから、外部からの入力を必要とせずに圧縮機の作動領域の拡大と高効率化とを両立することができる。 According to the configuration of (1) above, when the flow rate in the main flow path is the first flow rate, the flow path cross-sectional area adjusting member is arranged at the open position, and the flow from the sub flow path to the main flow path can be formed. Therefore, the surge that may occur in the compressor can be effectively suppressed, and the lower limit of the operating range can be set lower. On the other hand, in the second flow rate larger than the first flow rate, the flow path cross-sectional area adjusting member is arranged at the closed position to regulate the inflow and outflow of the fluid between the main flow path and the sub flow rate. Therefore, it is possible to realize a highly efficient compressor with less loss such as pressure loss. In this way, the flow path cross-sectional area adjusting member can be moved between the closed position and the open position with respect to the sub flow path by the fluid force in the main flow path, so that the operating region of the compressor does not require an external input. It is possible to achieve both expansion and high efficiency.

(2)いくつかの実施形態では、上記(1)に記載の構成において、
前記副流路は、前記動翼の前縁よりも前記主流路における上流側に位置する出口と、前記出口よりも前記主流路における上流側に位置する入口と、を含む前記バイパス路である。
(2) In some embodiments, in the configuration described in (1) above,
The subflow path is the bypass path including an outlet located upstream in the main flow path from the leading edge of the rotor blade and an inlet located upstream in the main flow path from the outlet.

上記(2)の構成によれば、主流路において動翼の前縁よりも上流に配置された出口とさらに上流に配置された入口とを含むバイパス路により構成された副流路を含む圧縮機において、上記(1)で述べた効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路内の流体力でバイパス路を開放し、バイパス路からの流れによってサージの発生を抑制することができる。一方、主流路内が比較的大流量である第2流量の際には外部からの入力によらず主流路内の流体力でバイパス路を閉塞することができ、圧縮効率の低下を抑制することができる。 According to the configuration of (2) above, a compressor including a sub-flow path composed of a bypass path including an outlet arranged upstream of the leading edge of the rotor blade and an inlet arranged further upstream in the main flow path. In, the effect described in (1) above can be enjoyed. That is, in the case of the first flow rate, which is a relatively small flow rate, the bypass path can be opened by the fluid force in the main flow path regardless of the input from the outside, and the generation of surge can be suppressed by the flow from the bypass path. .. On the other hand, in the case of the second flow rate, which is a relatively large flow rate in the main flow path, the bypass path can be blocked by the fluid force in the main flow path regardless of the input from the outside, and the decrease in compression efficiency can be suppressed. Can be done.

(3)いくつかの実施形態では、上記(2)に記載の構成において、
前記バイパス路内に配置された予旋回ノズルをさらに備える。
(3) In some embodiments, in the configuration described in (2) above,
Further, a pre-turn nozzle arranged in the bypass path is provided.

上記(3)の構成によれば、内部に予旋回ノズルが配置されたバイパス路から主流路内に、動翼の回転方向に沿う旋回流を積極的に付与することができる。つまり、比較的小流量である第1流量の際には流路断面積調整部材が開位置に配置され、上記予旋回ノズルからの旋回流を主流路内に強制的に供給することができるから、圧縮機において小流量の際に発生し得るサージをより効果的に抑制することができる。 According to the configuration (3) above, a swirling flow along the rotation direction of the rotor blade can be positively applied into the main flow path from the bypass path in which the pre-swirl nozzle is arranged inside. That is, at the time of the first flow rate, which is a relatively small flow rate, the flow path cross-sectional area adjusting member is arranged at the open position, and the swirling flow from the pre-swivel nozzle can be forcibly supplied into the main flow rate. , The surge that may occur at a small flow rate in the compressor can be suppressed more effectively.

(4)いくつかの実施形態では、上記(1)に記載の構成において、
前記副流路は、前記動翼に対向する前記ケーシングの内壁に配置された入口と、前記動翼の前縁よりも前記主流路における上流側に配置された出口と、を含む前記再循環路である。
(4) In some embodiments, in the configuration described in (1) above,
The subchannel includes the recirculation path including an inlet located on the inner wall of the casing facing the blade and an outlet located upstream of the blade front edge in the main channel. Is.

上記(4)の構成によれば、主流路において動翼の前縁よりも下流側に配置された入口と上記前縁よりも上流側に配置された出口とを含む再循環路(又は再循環流路)により構成された副流路を含む圧縮機において、上記(1)で述べた効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路内の流体力で再循環路を開放することができる。そして、再循環路からの旋回流でサージの発生を抑制することにより、作動領域の下限を低下させることができる。一方、主流路内が比較的大流量である第2流量の際には外部からの入力によらず主流路内の流体力で再循環路を閉塞し、圧縮効率の低下を抑制することができる。 According to the configuration of (4) above, the recirculation path (or recirculation) including the inlet arranged on the downstream side of the leading edge of the rotor blade and the outlet arranged on the upstream side of the leading edge in the main flow path. The effect described in (1) above can be enjoyed in the compressor including the sub-flow path formed by the flow path). That is, in the case of the first flow rate, which is a relatively small flow rate, the recirculation path can be opened by the fluid force in the main flow path regardless of the input from the outside. Then, the lower limit of the operating region can be lowered by suppressing the generation of the surge due to the swirling flow from the recirculation path. On the other hand, in the case of the second flow rate in which the flow rate in the main flow path is relatively large, the recirculation path can be blocked by the fluid force in the main flow path regardless of the input from the outside, and the decrease in compression efficiency can be suppressed. ..

(5)いくつかの実施形態では、上記(1)~(4)の何れか一つに記載の構成において、
前記流路断面積調整部材は、前記副流路の前記出口を開閉するように配置され、
前記翼素は、前記出口よりも前記主流路における下流側、かつ、前記動翼の前縁の上流側において、前記流路断面積調整部材に取り付けられている。
(5) In some embodiments, in the configuration described in any one of (1) to (4) above,
The flow path cross-sectional area adjusting member is arranged so as to open and close the outlet of the sub flow path.
The blade element is attached to the flow path cross-sectional area adjusting member on the downstream side in the main flow path and on the upstream side of the leading edge of the moving blade from the outlet.

上記(5)の構成によれば、流路断面積調整部材によって副流路の出口が開閉されるように構成されたことにより、副流路から主流路への流れの有無を効果的に切り替えることができる。また、流路断面積調整部材の翼素が副流路の出口よりも下流に配置されたことにより、出口からの流れの影響を含めた流体力を効果的に翼素に作用させることができる。 According to the configuration of (5) above, since the outlet of the sub-flow path is opened and closed by the flow path cross-sectional area adjusting member, the presence or absence of the flow from the sub-flow path to the main flow path is effectively switched. be able to. Further, since the blade element of the flow path cross-sectional area adjusting member is arranged downstream from the outlet of the subchannel, the fluid force including the influence of the flow from the outlet can be effectively applied to the blade element. ..

(6)いくつかの実施形態では、上記(5)に記載の構成において、
前記流路断面積調整部材は、前記開位置に配置された際に、前記主流路の流れ方向における前記翼素の上流側端部と前記出口の下流側端部との距離が、前記流れ方向に沿う前記翼素の長さの20%以上になるように構成される。
(6) In some embodiments, in the configuration described in (5) above,
When the flow path cross-sectional area adjusting member is arranged at the open position, the distance between the upstream end of the blade element and the downstream end of the outlet in the flow direction of the main flow direction is the flow direction. It is configured to be 20% or more of the length of the wing element along the line.

副流路の出口からは概して動翼の回転方向に沿った旋回成分を有する旋回流が供給され、この旋回流は主流路内に斜めに流入して動翼に作用する。上記(6)の構成によれば、翼素は副流路の出口から該翼素の翼長の20%以上の間隔を隔てて配置されるから、上記出口からの流れを翼素で妨げることなく動翼に作用させることができる。 A swirling flow having a swirling component along the rotation direction of the rotor blade is generally supplied from the outlet of the subflow path, and this swirling flow flows diagonally into the main flow path and acts on the rotor blade. According to the configuration of (6) above, since the blade elements are arranged at a distance of 20% or more of the blade length of the blade elements from the outlet of the subchannel, the flow from the outlet is obstructed by the blade elements. It can act on the moving blades.

(7)幾つかの実施形態では、上記(5)又は(6)の何れか一つに記載の構成において、
前記流路断面積調整部材は、前記閉位置に配置された際に前記出口の一部のみを閉塞するように構成される。
(7) In some embodiments, in the configuration according to any one of (5) or (6) above.
The flow path cross-sectional area adjusting member is configured to block only a part of the outlet when it is arranged in the closed position.

上記(7)の構成によれば、流路断面積調整部材が閉位置に配置された状態においても、副流路からの流れの一部を主流路に流入させることができる。よって、比較的大流量である第2流量の際に、動翼に供給される流れに該動翼の回転方向に沿う旋回成分を付与することができるから、さらなる圧縮効率の向上を図ることができる。 According to the configuration (7) above, even in a state where the flow path cross-sectional area adjusting member is arranged at the closed position, a part of the flow from the sub flow path can flow into the main flow path. Therefore, at the time of the second flow rate, which is a relatively large flow rate, a turning component along the rotation direction of the moving blade can be added to the flow supplied to the moving blade, so that the compression efficiency can be further improved. can.

(8)いくつかの実施形態では、上記(1)~(7)の何れか一つに記載の構成において、
前記流路断面積調整部材は、前記主流路を規定する前記ケーシングの内壁に沿って少なくとも一部が前記主流路の流れ方向に平行な軸を中心とする環状に形成される。
(8) In some embodiments, in the configuration according to any one of (1) to (7) above,
The flow path cross-sectional area adjusting member is formed in an annular shape centered on an axis parallel to the flow direction of the main flow path at least in part along the inner wall of the casing defining the main flow path.

上記(8)の構成によれば、流路断面積調整部材をケーシングの内壁に沿わせることができるとともに、ケーシングの内壁の周方向にわたって流路断面積調整部材を一体に構成することができる。これにより、閉位置と開位置とを含む移動範囲内において、ケーシングの内壁に沿って流路断面積調整部材を円滑に案内することができる。また、ケーシングの内壁の周方向にわたって複数の副流路が形成された場合、環状に形成された流路断面積調整部材によって複数の副流路を一度に開閉することができる。 According to the configuration of (8) above, the flow path cross-sectional area adjusting member can be aligned with the inner wall of the casing, and the flow path cross-sectional area adjusting member can be integrally configured along the circumferential direction of the inner wall of the casing. Thereby, within the movement range including the closed position and the open position, the flow path cross-sectional area adjusting member can be smoothly guided along the inner wall of the casing. Further, when a plurality of sub-channels are formed in the circumferential direction of the inner wall of the casing, the plurality of sub-channels can be opened and closed at once by the channel cross-sectional area adjusting member formed in an annular shape.

(9)いくつかの実施形態では、上記(1)~(8)の何れか一つに記載の構成において、
前記ケーシングは、前記主流路における流れ方向に沿って前記閉位置と前記開位置との間で前記流路断面積調整部材が移動するよう、前記流路断面積調整部材を案内するように構成されたガイド部を含む。
(9) In some embodiments, in the configuration according to any one of (1) to (8) above,
The casing is configured to guide the flow path cross-sectional area adjusting member so that the flow path cross-sectional area adjusting member moves between the closed position and the open position along the flow direction in the main flow path. Including the guide section.

上記(9)の構成によれば、ガイド部に沿って流路断面積調整部材が閉位置と開位置とに案内される。主流路内が比較的大流量である第2流量の際には、主流路内の流れが順流の状態であるから、該順流に沿って流路断面積調整部材を閉位置に円滑に移動させることができる。また、主流路の流れ方向におけるガイド部の上流側端部及び下流側端部の位置や、流路断面積調整部材の翼素の位置を適切に設定することにより、流路断面積調整部材が作動する流量、すなわち圧縮機の作動レンジを任意に設定することができる。 According to the configuration of (9) above, the flow path cross-sectional area adjusting member is guided to the closed position and the open position along the guide portion. When the second flow rate is relatively large in the main flow path, the flow in the main flow path is in a forward flow state, so that the flow path cross-sectional area adjusting member is smoothly moved to the closed position along the forward flow. be able to. Further, by appropriately setting the positions of the upstream end and the downstream end of the guide portion in the flow direction of the main flow path and the positions of the blade elements of the flow path cross-sectional area adjusting member, the flow path cross-sectional area adjusting member can be made. The operating flow rate, that is, the operating range of the compressor can be set arbitrarily.

(10)いくつかの実施形態では、上記(1)~(9)の何れか一つに記載の構成において、
前記翼素は、前記主流路の上流側に面する凸状湾曲面と、前記主流路の下流側かつ前記動翼の回転方向の上流側に面する凹状湾曲面と、を含み、
前記主流路の流れ方向に対して前記翼素の長さが動翼の長さの80%以下に構成される。
(10) In some embodiments, in the configuration according to any one of (1) to (9) above,
The blade element includes a convex curved surface facing the upstream side of the main flow path and a concave curved surface facing the downstream side of the main flow path and the upstream side in the rotational direction of the rotor blade.
The length of the blade element is 80% or less of the length of the moving blade with respect to the flow direction of the main flow path.

主流路内が小流量である第1流量の際には、副流路からの流れと動翼の回転とに起因して、動翼の回転軸と交差する周方向への旋回成分を有する旋回流が翼素に作用し得る。この点、上記(10)の構成によれば、翼素の凹状湾曲面が主流路の下流側かつ動翼の回転方向の上流側に面するように構成されるから、凹状湾曲面で受けた旋回流を主流路の上流側に導くことで、流路断面積調整部材を開位置に移動させるための駆動力を得ることができる。一方、主流路の流れが第1流量より大きな第2流量の際には、翼素の凸状湾曲面に主流の動圧が作用して流路断面積調整部材が閉位置に移動される。その際、翼素の凸状湾曲面が主流路の上流側に面することにより、主流路の上流からの流れを下流側に円滑に案内することができる。よって、圧力損失に起因した効率低下を抑制することができる。 In the case of the first flow rate, which is a small flow rate in the main flow path, a turn having a turning component in the circumferential direction intersecting the rotation axis of the moving blade due to the flow from the sub flow path and the rotation of the moving blade. The flow can act on the blades. In this respect, according to the configuration of (10) above, since the concave curved surface of the blade is configured to face the downstream side of the main flow path and the upstream side in the rotational direction of the rotor blade, the concave curved surface is received. By guiding the swirling flow to the upstream side of the main flow path, it is possible to obtain a driving force for moving the flow path cross-sectional area adjusting member to the open position. On the other hand, when the flow rate of the main flow path is larger than the first flow rate, the dynamic pressure of the main flow acts on the convex curved surface of the blade element, and the flow path cross-sectional area adjusting member is moved to the closed position. At that time, since the convex curved surface of the blade element faces the upstream side of the main flow path, the flow from the upstream side of the main flow path can be smoothly guided to the downstream side. Therefore, it is possible to suppress the decrease in efficiency due to the pressure loss.

(11)いくつかの実施形態では、上記(1)~(10)の何れか一つに記載の構成において、
前記流路断面積調整部材は、
前記副流路の少なくとも一部を閉塞可能な板部材と、
前記板部材及び前記翼素を、前記翼素の移動に応じて当該移動の方向と異なる向きに前記板部材を移動可能に連結する連結部と、を含む。
(11) In some embodiments, in the configuration according to any one of (1) to (10) above,
The flow path cross-sectional area adjusting member is
A plate member capable of closing at least a part of the sub-flow path, and
It includes a connecting portion that movably connects the plate member and the blade element in a direction different from the direction of the movement according to the movement of the blade element.

上記(11)の構成によれば、副流路を閉塞する板部材を、軸流方向において翼素と逆向きに移動させることができる。これにより、圧縮機の設計の自由度の向上を図ることができる。 According to the configuration of (11) above, the plate member that blocks the auxiliary flow path can be moved in the direction opposite to that of the blade element in the axial flow direction. This makes it possible to improve the degree of freedom in designing the compressor.

(12)いくつかの実施形態では、上記(1)~(11)の何れか一つに記載の構成において、
前記流路断面積調整部材は、
前記閉位置において前記副流路の出口に配置される流量規制部と、
前記流量規制部に対して前記開位置に向かう移動方向の上流側に配置された開口部と、を含む。
(12) In some embodiments, in the configuration according to any one of (1) to (11) above,
The flow path cross-sectional area adjusting member is
A flow rate regulating unit arranged at the outlet of the sub-flow path in the closed position,
It includes an opening arranged on the upstream side in the moving direction toward the open position with respect to the flow rate regulating portion.

上記(12)の構成によれば、例えば、流路断面積調整部材において開位置または閉位置に向かう移動方向の上流側又は下流側の端部を用いて副流路を開閉する構成に比べて、副流路の出口の幅が開口部よりも大きい場合は該開口部の大きさに規制することができる。したがって、回転機械の設計の自由度の向上が図られる。 According to the configuration of (12) above, for example, in the flow path cross-sectional area adjusting member, the sub-flow path is opened and closed by using the end portion on the upstream side or the downstream side in the moving direction toward the open position or the closed position. When the width of the outlet of the sub-flow path is larger than the opening, the size of the opening can be restricted. Therefore, the degree of freedom in designing the rotating machine can be improved.

(13)いくつかの実施形態では、上記(12)に記載の構成において、
前記流路断面積調整部材は、前記翼素よりも少数の前記開口部を含む。
(13) In some embodiments, in the configuration described in (12) above,
The flow path cross-sectional area adjusting member includes the opening, which is smaller than that of the blade element.

上記(13)の構成によれば、開口部の数を翼素の数より少なく構成することで、各々の開口部を軸流方向周りの周方向においてより大きく確保することができる。これにより、例えば、副流路から動翼に付与する旋回流の効果をより大きく確保することができる。 According to the configuration of (13) above, by configuring the number of openings to be smaller than the number of blade elements, it is possible to secure each opening larger in the circumferential direction around the axial flow direction. Thereby, for example, the effect of the swirling flow applied to the rotor blade from the sub flow path can be further ensured.

(14)いくつかの実施形態では、上記(1)~(13)の何れか一つに記載の構成において、
前記軸流方向に沿って少なくとも前記動翼の前縁及びその上流を含む領域であって前記主流路を規定する前記ケーシングの内周近傍に、逆流が生じ得る逆流域が分布し、
前記流路断面積調整部材は、少なくとも前記翼素が前記逆流域に配置されるように構成される。
(14) In some embodiments, in the configuration according to any one of (1) to (13) above,
A backflow region where backflow can occur is distributed in the vicinity of the inner circumference of the casing, which is a region including at least the leading edge of the rotor blade and its upstream along the axial flow direction and defines the main flow path.
The flow path cross-sectional area adjusting member is configured such that at least the blade element is arranged in the backflow region.

上記(14)の構成によれば、比較的小流量の第1流量の際には、逆流による流体力を翼素に確実に作用させることができる。よって、流量の変化に対して応答性の高い流路断面積調整部材を得ることができるため、圧縮機の作動領域の拡大と高効率化とをより確実に達成することができる。 According to the configuration of (14) above, the fluid force due to the backflow can be reliably applied to the blade element at the time of the first flow rate of a relatively small flow rate. Therefore, since it is possible to obtain a flow path cross-sectional area adjusting member having high responsiveness to changes in the flow rate, it is possible to more reliably achieve expansion of the operating region of the compressor and high efficiency.

(15)いくつかの実施形態では、上記(1)~(14)の何れか一つに記載の構成において、
上記圧縮機はターボチャージャーを含む。
(15) In some embodiments, in the configuration according to any one of (1) to (14) above,
The compressor includes a turbocharger.

上記(15)の構成によれば、自動車用又は船舶用等のターボチャージャーにおいて、上記(1)~(14)の何れか一つで述べた効果を享受することができる。 According to the configuration of (15) above, the effect described in any one of (1) to (14) above can be enjoyed in a turbocharger for automobiles or ships.

本発明の少なくとも一実施形態によれば、外部入力を必要とせずに圧縮機の作動領域の拡大と高効率化とを両立することができる。 According to at least one embodiment of the present invention, it is possible to achieve both expansion of the operating range of the compressor and high efficiency without requiring an external input.

一実施形態に係る圧縮機の構成を示す側断面図である。It is a side sectional view which shows the structure of the compressor which concerns on one Embodiment. 一実施形態に係る圧縮機の流路断面積調整部材を示す側断面図であり、(a)は開位置に配置された状態、(b)は閉位置に配置された状態を示す。It is a side sectional view which shows the flow path cross-sectional area adjusting member of the compressor which concerns on one Embodiment, (a) shows the state which was arranged in an open position, (b) shows the state which was arranged in a closed position. 他の実施形態に係る圧縮機の構成例を示す側断面図である。It is a side sectional view which shows the structural example of the compressor which concerns on other embodiment. 一実施形態における流路断面積調整部材の閉塞状態を示す概略図である。It is a schematic diagram which shows the closed state of the flow path cross-sectional area adjusting member in one Embodiment. 一実施形態における流路断面積調整部材の軸方向断面図である。It is an axial sectional view of the flow path cross-sectional area adjusting member in one Embodiment. 一実施形態における翼素に作用する流体力を示す概略図である。It is a schematic diagram which shows the fluid force acting on a blade element in one Embodiment. 他の実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。It is a schematic diagram which shows the structural example of the flow path cross-sectional area adjusting member in another embodiment, (a) shows an open position, (b) shows a closed position. 他の実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。It is a schematic diagram which shows the structural example of the flow path cross-sectional area adjusting member in another embodiment, (a) shows an open position, (b) shows a closed position. 一実施形態における動翼付近の流れ示す概略図であり、(a)は順流の第1状態、(b)は逆流が生じる第2状態を示す。It is a schematic diagram which shows the flow near the moving blade in one embodiment, (a) shows the 1st state of forward flow, and (b) shows the 2nd state where backflow occurs.

以下、添付図面を参照して本発明の幾つかの実施形態について説明する。ただし、実施形態として記載されている又は図面に示されている構成部品の寸法、材質、形状、その相対的配置等は、本発明の範囲をこれに限定する趣旨ではなく、単なる説明例にすぎない。
例えば、「ある方向に」、「ある方向に沿って」、「平行」、「直交」、「中心」、「同心」或いは「同軸」等の相対的或いは絶対的な配置を表す表現は、厳密にそのような配置を表すのみならず、公差、若しくは、同じ機能が得られる程度の角度や距離をもって相対的に変位している状態も表すものとする。
例えば、「同一」、「等しい」及び「均質」等の物事が等しい状態であることを表す表現は、厳密に等しい状態を表すのみならず、公差、若しくは、同じ機能が得られる程度の差が存在している状態も表すものとする。
例えば、四角形状や円筒形状等の形状を表す表現は、幾何学的に厳密な意味での四角形状や円筒形状等の形状を表すのみならず、同じ効果が得られる範囲で、凹凸部や面取り部等を含む形状も表すものとする。
一方、一の構成要素を「備える」、「具える」、「具備する」、「含む」、又は、「有する」という表現は、他の構成要素の存在を除外する排他的な表現ではない。
Hereinafter, some embodiments of the present invention will be described with reference to the accompanying drawings. However, the dimensions, materials, shapes, relative arrangements, etc. of the components described as embodiments or shown in the drawings are not intended to limit the scope of the present invention to this, but are merely explanatory examples. do not have.
For example, expressions that represent relative or absolute arrangements such as "in one direction", "along a certain direction", "parallel", "orthogonal", "center", "concentric" or "coaxial" are exact. Not only does it represent such an arrangement, but it also represents a tolerance or a state of relative displacement at an angle or distance to the extent that the same function can be obtained.
For example, expressions such as "same", "equal", and "homogeneous" that indicate that things are in the same state not only represent exactly the same state, but also have tolerances or differences to the extent that the same function can be obtained. It shall also represent the existing state.
For example, the expression representing a shape such as a quadrangular shape or a cylindrical shape not only represents a shape such as a quadrangular shape or a cylindrical shape in a geometrically strict sense, but also an uneven portion or a chamfer within the range where the same effect can be obtained. It shall also represent the shape including the part and the like.
On the other hand, the expressions "equipped", "equipped", "equipped", "included", or "have" one component are not exclusive expressions excluding the existence of other components.

図1は、一実施形態に係る圧縮機の構成を示す概略図である。図2は、一実施形態に係る圧縮機の流路断面積調整部材を示す側断面図であり、(a)は開位置に配置された状態、(b)は閉位置に配置された状態を示す。
図1及び図2に示すように、本発明の少なくとも一実施形態に係る圧縮機1は、例えば内燃機関に圧縮空気を送り込むための装置(遠心圧縮機)であり、主流路14と、該主流路14に連通するように設けられるバイパス路20A又は再循環路(又は再循環流路)20Bを含む副流路20とを内部に含むケーシング2と、主流路14内に設けられた複数の動翼6と、開位置P1、または、該開位置P1よりも副流路20の流路断面積が小さい閉位置P2の一方から他方に移動可能に構成された流路断面積調整部材30と、流体力を受けるように主流路14内に露出して設けられて、主流路14の流れが第1流量のときに流路断面積調整部材30が開位置P1に位置し、流れが第1流量よりも大きい第2流量のときに流路断面積調整部材30が閉位置に位置するように、流体力に起因した駆動力を流路断面積調整部材30に与えるよう構成された翼素38と、を備えている。
FIG. 1 is a schematic view showing a configuration of a compressor according to an embodiment. FIG. 2 is a side sectional view showing a flow path cross-sectional area adjusting member of a compressor according to an embodiment, in which (a) is arranged in an open position and (b) is arranged in a closed position. show.
As shown in FIGS. 1 and 2, the compressor 1 according to at least one embodiment of the present invention is, for example, a device (centrifugal compressor) for sending compressed air to an internal combustion engine, and has a main flow rate 14 and the mainstream. A casing 2 including a bypass path 20A provided so as to communicate with the path 14 or a sub-flow path 20 including a recirculation path (or recirculation flow path) 20B, and a plurality of motions provided in the main flow path 14. The blade 6 and the flow path cross-sectional area adjusting member 30 configured to be movable from one of the open position P1 or the closed position P2 having a smaller flow path cross-sectional area of the sub-flow path 20 than the open position P1 to the other. It is provided so as to be exposed in the main flow path 14 so as to receive fluid force, and when the flow of the main flow path 14 is the first flow rate, the flow path cross-sectional area adjusting member 30 is located at the open position P1 and the flow is the first flow rate. With the blade element 38 configured to apply the driving force due to the fluid force to the flow path cross-sectional area adjusting member 30 so that the flow path cross-sectional area adjusting member 30 is located in the closed position at the time of the second flow rate larger than , Is equipped.

ケーシング2は、略円筒状の内部空間を有しており、該円筒の中心軸10の一端の開口から流入した空気を、他端に配置されたインペラ(羽根車)4の回転により径方向に圧縮し、該インペラ4の接線方向に配置された圧縮室12に空気を送るための流路(主流路14)を規定する。ケーシング2の内部には、例えば環状部材3を配置することで副流路20を形成してもよい。この場合は上記開口から環状部材3の内側を通ってインペラ4に向かう主流50の通過経路が主流路14であり、環状部材3とケーシング2との間が副流路20としてのバイパス路20A(その内部を通過する流れが副流56)である。
インペラ4は、中心軸10と同軸の図示しない回転軸を中心に回転可能に設けられる。インペラ4には周方向に沿って複数の動翼6(羽根)が設けられている。
動翼6は、軸方向の上流から流入した空気を下流側において接線方向(或いは径方向)に送出するように形成されている。
流路断面積調整部材30は、主流路14において動翼6の最上流側の端部である前縁8よりも上流側に配置されており、開位置P1と閉位置P2との間で往復移動可能に設けられている。なお、説明の便宜上、図1の上半分は流路断面積調整部材30が開位置P1に配置された状態を示しており、図1の下半分は流路断面積調整部材30が閉位置P2に配置された状態を示している。
翼素38は、主流路14内の流れ(例えば空気流)に基づく流体力を受けて駆動される。例えば、翼素38は、主流路14内を上流側から下流側に流れる順流や、下流側から上流側に向かう逆流、或いは、中心軸周りに流れる旋回流から駆動力を得ることにより、上流から下流、下流から上流、或いは、中心軸10周りの周方向に向かう駆動力を流路断面積調整部材30に付与することができる。
The casing 2 has a substantially cylindrical internal space, and the air flowing in from the opening at one end of the central axis 10 of the cylinder is radially radial due to the rotation of the impeller (impeller) 4 arranged at the other end. A flow path (main flow path 14) for compressing and sending air to the compression chamber 12 arranged in the tangential direction of the impeller 4 is defined. An auxiliary flow path 20 may be formed by arranging, for example, an annular member 3 inside the casing 2. In this case, the main flow path 14 is the passage path of the main flow 50 from the opening to the impeller 4 through the inside of the annular member 3, and the bypass path 20A (the bypass path 20A) between the annular member 3 and the casing 2 is used as the auxiliary flow path 20. The flow passing through the inside is a side flow 56).
The impeller 4 is rotatably provided around a rotation axis (not shown) coaxial with the central axis 10. The impeller 4 is provided with a plurality of moving blades 6 (blades) along the circumferential direction.
The rotor blade 6 is formed so as to send out the air flowing in from the upstream in the axial direction in the tangential direction (or the radial direction) on the downstream side.
The flow path cross-sectional area adjusting member 30 is arranged on the upstream side of the leading edge 8 which is the end of the moving blade 6 on the most upstream side in the main flow path 14, and reciprocates between the open position P1 and the closed position P2. It is provided so that it can be moved. For convenience of explanation, the upper half of FIG. 1 shows a state in which the flow path cross-sectional area adjusting member 30 is arranged at the open position P1, and the lower half of FIG. 1 shows the flow path cross-sectional area adjusting member 30 at the closed position P2. It shows the state of being placed in.
The blade element 38 is driven by receiving a fluid force based on a flow (for example, an air flow) in the main flow path 14. For example, the blade element 38 obtains a driving force from a forward flow flowing from the upstream side to the downstream side in the main flow path 14, a backflow from the downstream side to the upstream side, or a swirling flow flowing around the central axis from the upstream side. A driving force toward the downstream, the downstream to the upstream, or the circumferential direction around the central axis 10 can be applied to the flow path cross-sectional area adjusting member 30.

上記の構成によれば、主流路14内が第1流量の際は流路断面積調整部材30が開位置P1に配置されて副流路20から主流路14内への流れを形成することができる。よって、圧縮機1で発生し得るサージを効果的に抑制することができるから、作動レンジの下限をより低く設定することができる。なお、第1流量は、主流路14内の流れが比較的低速であって、中心軸10周りの旋回流や逆流が発生し得るような流量に設定され得る。一方、第1流量よりも大きい第2流量では、流路断面積調整部材30が閉位置P2に配置されて主流路14と副流路20との間で流体の流出入が規制される。よって、圧力損失等のロスが少なく高効率な圧縮機1を実現することができる。このように、主流路14内の流体力により、流路断面積調整部材30を副流路20に対して閉位置P2と開位置P1とに移動できるから、外部からの入力を必要とせずに圧縮機1の作動領域の拡大と高効率化とを両立することができるのである。 According to the above configuration, when the flow rate in the main flow path 14 is the first flow rate, the flow path cross-sectional area adjusting member 30 is arranged at the open position P1 to form a flow from the sub flow path 20 into the main flow path 14. can. Therefore, since the surge that may occur in the compressor 1 can be effectively suppressed, the lower limit of the operating range can be set lower. The first flow rate can be set so that the flow in the main flow path 14 is relatively slow and a swirling flow or a backflow around the central axis 10 can occur. On the other hand, in the second flow rate larger than the first flow rate, the flow path cross-sectional area adjusting member 30 is arranged at the closed position P2, and the inflow and outflow of the fluid is restricted between the main flow path 14 and the sub flow path 20. Therefore, it is possible to realize a highly efficient compressor 1 with less loss such as pressure loss. In this way, the flow path cross-sectional area adjusting member 30 can be moved to the closed position P2 and the open position P1 with respect to the sub flow path 20 by the fluid force in the main flow path 14, so that no external input is required. It is possible to achieve both expansion of the operating area of the compressor 1 and high efficiency.

いくつかの実施形態では、上記構成において、副流路20は、動翼6の前縁8よりも主流路14における上流側に位置する出口24と、該出口24よりも主流路14における上流側に位置する入口22と、を含むバイパス路20Aであってもよい(例えば図1、図2及び図8参照)。このようにすれば、主流路14において動翼6の前縁8よりも上流側に配置された出口24とさらに上流側に配置された入口22とを含むバイパス路20Aにより構成された副流路20を含む圧縮機1において、上述した効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路14内の流体力でバイパス路20Aを開放することができる。一般に、バイパス路20Aの出口24から主流路14には、インペラ4(又は動翼6)の回転に沿った旋回成分を有する流れが供給される。このように、インペラ4に流入する流れに予めインペラ4の回転と同方向の旋回成分を付与することにより、動翼6への流入角を該動翼6のコード方向に沿わせることができるため、剥離が抑制されてサージが抑制される。よって、バイパス路20Aからの流れによってサージの発生を抑制することができる。一方、主流路14内が比較的大流量である第2流量の際には外部からの入力によらず主流路14内の流体力でバイパス路20Aを閉塞することができるので、圧縮効率の低下を抑制することができる。 In some embodiments, in the above configuration, the subchannel 20 has an outlet 24 located upstream of the leading edge 8 of the blade 6 in the main channel 14 and an outlet 24 upstream of the outlet 24 in the main channel 14. It may be a bypass path 20A including an inlet 22 located at (see, eg, FIG. 1, FIG. 2 and FIG. 8). In this way, in the main flow path 14, the sub-flow path composed of the bypass path 20A including the outlet 24 arranged on the upstream side of the leading edge 8 of the rotor blade 6 and the inlet 22 arranged on the further upstream side in the main flow path 14. The above-mentioned effects can be enjoyed in the compressor 1 including the 20. That is, in the case of the first flow rate, which is a relatively small flow rate, the bypass path 20A can be opened by the fluid force in the main flow path 14 regardless of the input from the outside. Generally, a flow having a turning component along the rotation of the impeller 4 (or blade 6) is supplied from the outlet 24 of the bypass path 20A to the main flow path 14. In this way, by imparting a turning component in the same direction as the rotation of the impeller 4 to the flow flowing into the impeller 4 in advance, the inflow angle to the rotor blade 6 can be made to follow the chord direction of the rotor blade 6. , Peeling is suppressed and surge is suppressed. Therefore, the generation of the surge can be suppressed by the flow from the bypass path 20A. On the other hand, in the case of the second flow rate in which the flow rate in the main flow path 14 is relatively large, the bypass path 20A can be blocked by the fluid force in the main flow path 14 regardless of the input from the outside, so that the compression efficiency is lowered. Can be suppressed.

いくつかの実施形態において、圧縮機1は、バイパス路20A内に配置された予旋回ノズル26をさらに備えていてもよい(例えば図2参照)。
予旋回ノズル26は、インペラ4に流入する流れに、該インペラ4の回転と同方向の旋回成分を予め強制的に付与することにより、インペラ4の回転効率の低下を抑制して圧縮効率の向上を図るものである。このように予旋回ノズル26を備えた構成とすれば、内部に予旋回ノズル26が配置されたバイパス路20Aから主流路14内に、動翼6の回転方向に沿う旋回流58を積極的に付与することができる。つまり、比較的小流量である第1流量の際には流路断面積調整部材30が開位置P1に配置され、上記予旋回ノズル26からの旋回流58を主流路14内に強制的に供給することができるから、圧縮機1において小流量の際に発生し得るサージをより効果的に抑制することができる。
In some embodiments, the compressor 1 may further include a pre-swivel nozzle 26 located in the bypass path 20A (see, eg, FIG. 2).
The pre-swivel nozzle 26 forcibly applies a swivel component in the same direction as the rotation of the impeller 4 to the flow flowing into the impeller 4 in advance, thereby suppressing a decrease in the rotation efficiency of the impeller 4 and improving the compression efficiency. Is intended. With the configuration provided with the pre-swivel nozzle 26 in this way, the swirl flow 58 along the rotation direction of the rotor blade 6 is positively generated in the main flow path 14 from the bypass path 20A in which the pre-swivel nozzle 26 is arranged. Can be granted. That is, at the time of the first flow rate, which is a relatively small flow rate, the flow path cross-sectional area adjusting member 30 is arranged at the open position P1, and the swirling flow 58 from the pre-swirl nozzle 26 is forcibly supplied into the main flow path 14. Therefore, it is possible to more effectively suppress the surge that may occur when the flow rate is small in the compressor 1.

図3は、他の実施形態に係る圧縮機の構成例を示す側断面図である。
図3に非限定的に例示するように、いくつかの実施形態において、副流路20は、動翼6に対向するケーシング2の内壁に配置された入口22と、動翼6の前縁8よりも主流路14における上流側に配置された出口24と、を含む再循環路20Bであってもよい。
すなわち再循環路20Bは、動翼6の前縁8よりも主流路14における下流側に配置された入口22と、動翼6の前縁8よりも主流路14における上流側に配置された出口24とを含む還流路であってもよい。
圧縮機1内に上記のような再循環路20Bを設けた場合、回転するインペラ4の外周側に配置された入口22から、該インペラ4の回転に伴う旋回成分を有する流れ(副流56)が上流側に送られ、出口24から主流50に戻される。このため、主流路14内では見かけ流量が増加されて流速が増加する。これにより、回転する動翼6への流入角を該動翼6のコード方向に沿わせることができるため、剥離が抑制されてサージが抑制されるのである。
上記の構成によれば、主流路14において動翼6の前縁8よりも下流側に配置された入口22と前縁8よりも上流側に配置された出口24とを含む再循環路20Bである副流路20を含む圧縮機1において、上述した効果を享受することができる。すなわち、比較的小流量である第1流量の際には外部からの入力によらず主流路14内の流体力で再循環路20Bを開放することができる。そして、再循環路20Bからの旋回流58でサージの発生を抑制することにより、作動領域の下限を低下させることができる。一方、主流路14内が比較的大流量である第2流量の際には外部からの入力によらず主流路14内の流体力で再循環路20Bを閉塞し、圧縮効率の低下を抑制することができる。
FIG. 3 is a side sectional view showing a configuration example of a compressor according to another embodiment.
As illustrated in FIG. 3 without limitation, in some embodiments, the subchannel 20 has an inlet 22 located on the inner wall of the casing 2 facing the rotor blade 6 and a leading edge 8 of the rotor blade 6. It may be a recirculation path 20B including an outlet 24 arranged on the upstream side of the main flow path 14.
That is, the recirculation path 20B has an inlet 22 arranged on the downstream side in the main flow path 14 from the leading edge 8 of the rotor blade 6 and an outlet arranged on the upstream side in the main flow path 14 from the leading edge 8 of the rotor blade 6. It may be a return path including 24.
When the recirculation path 20B as described above is provided in the compressor 1, a flow having a swirling component accompanying the rotation of the impeller 4 from the inlet 22 arranged on the outer peripheral side of the rotating impeller 4 (secondary flow 56). Is sent to the upstream side and returned to the mainstream 50 from the outlet 24. Therefore, the apparent flow rate is increased in the main flow path 14, and the flow velocity is increased. As a result, the inflow angle to the rotating rotor blade 6 can be made along the cord direction of the rotor blade 6, so that the peeling is suppressed and the surge is suppressed.
According to the above configuration, in the recirculation path 20B including the inlet 22 arranged on the downstream side of the leading edge 8 of the rotor blade 6 and the outlet 24 arranged on the upstream side of the leading edge 8 in the main flow path 14. The above-mentioned effect can be enjoyed in the compressor 1 including a certain sub-channel 20. That is, in the case of the first flow rate, which is a relatively small flow rate, the recirculation path 20B can be opened by the fluid force in the main flow path 14 regardless of the input from the outside. Then, by suppressing the generation of the surge in the swirling flow 58 from the recirculation path 20B, the lower limit of the operating region can be lowered. On the other hand, when the second flow rate is relatively large in the main flow path 14, the recirculation path 20B is blocked by the fluid force in the main flow path 14 regardless of the input from the outside, and the decrease in compression efficiency is suppressed. be able to.

いくつかの実施形態では、上記の何れかに記載の構成において、流路断面積調整部材30は、副流路20の出口24を開閉するように配置されてもよい(例えば図1~3及び図8参照)。また、翼素38は、出口24よりも主流路14における下流側、かつ、動翼6の前縁8の上流側において、流路断面積調整部材30に取り付けられていてもよい(例えば図1~3参照)。このように構成すれば、流路断面積調整部材30によって副流路20の出口24が開閉されるように構成されたことにより、副流路20から主流路14への流れの有無を効果的に切り替えることができる。また、流路断面積調整部材30の翼素38が副流路20の出口24よりも下流に配置されたことにより、出口24からの流れの影響を含めた流体力を効果的に翼素38に作用させることができる。
なお、他の実施形態では、例えば、副流路20の入口22を流路断面積調整部材30で開閉するように構成してもよい。このような構成によっても、流路断面積調整部材30で出口24を開閉する構成と同様の効果を得ることができる。さらに、他の実施形態では、流路断面積調整部材30により副流路20の入口22と出口24の両方を開閉するように構成してもよい。
In some embodiments, in any of the above configurations, the flow path cross-sectional area adjusting member 30 may be arranged to open and close the outlet 24 of the sub-flow passage 20 (eg, FIGS. 1 to 3 and). See FIG. 8). Further, the blade element 38 may be attached to the flow path cross-sectional area adjusting member 30 on the downstream side of the main flow path 14 from the outlet 24 and on the upstream side of the leading edge 8 of the moving blade 6 (for example, FIG. 1). See ~ 3). With this configuration, the outlet 24 of the sub-flow path 20 is opened and closed by the flow path cross-sectional area adjusting member 30, so that the presence or absence of a flow from the sub-flow path 20 to the main flow path 14 is effective. Can be switched to. Further, since the blade element 38 of the flow path cross-sectional area adjusting member 30 is arranged downstream of the outlet 24 of the auxiliary flow path 20, the blade element 38 effectively exerts the fluid force including the influence of the flow from the outlet 24. Can act on.
In another embodiment, for example, the inlet 22 of the sub-flow path 20 may be configured to be opened and closed by the flow path cross-sectional area adjusting member 30. With such a configuration, it is possible to obtain the same effect as the configuration in which the outlet 24 is opened and closed by the flow path cross-sectional area adjusting member 30. Further, in another embodiment, both the inlet 22 and the outlet 24 of the sub-flow path 20 may be opened and closed by the flow path cross-sectional area adjusting member 30.

いくつかの実施形態において、流路断面積調整部材30は、例えば図2(a)及び図2(b)に非限定的に例示するように、開位置P1に配置された際に、主流路14の流れ方向における翼素38の上流側端部38A(図2(b)参照)と出口24の下流側端部24B(図2(a)参照)との距離L1が、流れ方向に沿う翼素38の長さ(翼素長)L2の20%以上になるように構成されてもよい。
副流路20の出口24からは概して動翼6の回転方向に沿った旋回成分を有する旋回流58(図4参照)が供給され、この旋回流58は主流路14内に斜めに流入さて動翼6に作用する。したがって、副流路20の出口24から該翼素38の翼長L2の20%以上の間隔を隔てて下流側に翼素38を配置することにより、上記出口24からの流れを翼素38で妨げることなく動翼6に作用させることができる。
In some embodiments, the flow path cross-sectional area adjusting member 30 is arranged in the open position P1 as illustrated in FIGS. 2 (a) and 2 (b), for example, when the main flow path is arranged. A blade whose distance L1 between the upstream end 38A of the blade element 38 (see FIG. 2B) and the downstream end 24B of the outlet 24 (see FIG. 2A) in the flow direction of 14 is along the flow direction. It may be configured to be 20% or more of the length (wing element length) L2 of the element 38.
A swirling flow 58 (see FIG. 4) having a swirling component along the rotation direction of the rotor blade 6 is generally supplied from the outlet 24 of the subflow path 20, and the swirling flow 58 is obliquely flowed into the main flow path 14 to move. It acts on the blade 6. Therefore, by arranging the blade element 38 on the downstream side at a distance of 20% or more of the blade length L2 of the blade element 38 from the outlet 24 of the auxiliary flow path 20, the flow from the outlet 24 is caused by the blade element 38. It can act on the moving blade 6 without hindering it.

図4は、一実施形態における流路断面積調整部材の閉塞状態を示す概略図である。
図4に非限定的に例示するように、幾つかの実施形態では、上記の何れか一つに記載の構成において、流路断面積調整部材30は、閉位置P2に配置された際に出口24の一部のみを閉塞するように構成されてもよい。このように構成すれば、流路断面積調整部材30が閉位置P2に配置された状態においても、副流路20からの流れの一部を主流路14に流入させることができる。よって、比較的大流量である第2流量の際に、動翼6に供給される流れに該動翼6の回転方向に沿う旋回成分を付与することができるから、さらなる圧縮効率の向上を図ることができる。
FIG. 4 is a schematic view showing a closed state of the flow path cross-sectional area adjusting member in one embodiment.
As illustrated in FIG. 4 without limitation, in some embodiments, in the configuration according to any one of the above, the flow path cross-sectional area adjusting member 30 exits when it is arranged at the closed position P2. It may be configured to block only a part of 24. With this configuration, even in a state where the flow path cross-sectional area adjusting member 30 is arranged at the closed position P2, a part of the flow from the sub flow path 20 can flow into the main flow path 14. Therefore, at the time of the second flow rate, which is a relatively large flow rate, a turning component along the rotation direction of the moving blade 6 can be added to the flow supplied to the moving blade 6, so that the compression efficiency can be further improved. be able to.

図5は、一実施形態における流路断面積調整部材の軸方向断面図である。
図5に非限定的に例示するように、いくつかの実施形態では、上記の何れかに記載の構成において、流路断面積調整部材30は、主流路14を規定するケーシング2の内壁に沿って少なくとも一部が主流路14の流れ方向に平行な軸を中心とする環状に形成された環状部34を含んでいてもよい。このように構成すれば、流路断面積調整部材30をケーシング2の内壁に沿わせることができるとともに、ケーシング2の内壁の周方向にわたって流路断面積調整部材30を一体に構成することができる。これにより、閉位置P2と開位置P1とを含む移動範囲内において、ケーシング2の内壁に沿って流路断面積調整部材30を円滑に案内することができる。また、ケーシング2の内壁の周方向にわたって複数の副流路20が形成された場合、環状に形成された流路断面積調整部材30によって複数の副流路20を一度に開閉することができる。
なお、流路断面積調整部材30は、軸方向視にて完全な環状でなく弧状に形成されていてもよい。
FIG. 5 is an axial cross-sectional view of the flow path cross-sectional area adjusting member in one embodiment.
As illustrated in FIG. 5, in some embodiments, in any of the above configurations, the flow path cross-sectional area adjusting member 30 is along the inner wall of the casing 2 that defines the main flow path 14. Further, at least a part thereof may include an annular portion 34 formed in an annular shape centered on an axis parallel to the flow direction of the main flow path 14. With this configuration, the flow path cross-sectional area adjusting member 30 can be aligned with the inner wall of the casing 2, and the flow path cross-sectional area adjusting member 30 can be integrally configured over the circumferential direction of the inner wall of the casing 2. .. As a result, the flow path cross-sectional area adjusting member 30 can be smoothly guided along the inner wall of the casing 2 within the moving range including the closed position P2 and the open position P1. Further, when a plurality of sub-flow paths 20 are formed in the circumferential direction of the inner wall of the casing 2, the plurality of sub-flow paths 20 can be opened and closed at once by the flow path cross-sectional area adjusting member 30 formed in an annular shape.
The flow path cross-sectional area adjusting member 30 may be formed in an arc shape instead of a perfect annular shape in the axial direction.

いくつかの実施形態において、ケーシング2は、主流路14における流れ方向に沿って閉位置P2と開位置P1との間で流路断面積調整部材30が移動するよう、流路断面積調整部材30を案内するように構成されたガイド部40を含んでいてもよい(例えば図2及び図5参照)。このようなガイド部40は、例えば、ケーシング2の内壁と、これに対向する流路断面積調整部材30の対向面との何れか一方に形成された溝状の凹部と、何れか他方に形成され、上記凹部に摺動(スライド移動)可能に係合する凸状の係合部とで構成されてもよい。このようにガイド部40を含む構成とすれば、ガイド部40に沿って流路断面積調整部材30が閉位置P2と開位置P1とに案内される。例えば、主流路14内が比較的大流量である第2流量の際には、主流路14内の流れが順流の状態であるから、該順流に沿って流路断面積調整部材30を閉位置P2に円滑に移動させることができる。また、主流路14の流れ方向におけるガイド部40の上流側端部40A(図2(b)参照)及び下流側端部40B(図2(a)参照)の位置や、流路断面積調整部材30の翼素38の位置を適切に設定することにより、流路断面積調整部材30が作動する流量、すなわち圧縮機1の作動レンジを任意に設定することができる。
なお、ガイド部40による流路断面積調整部材30の移動方向は、主流路14内の流れ方向に限定されず、主流路14内の流れを受けた翼素38によって生成される駆動力に応じた方向であってもよい。例えば、図4に非限定的に例示するように、主流路14内で上流側から下流側に流れる主流50や副流路20からの旋回流58を受けて、主流50と交差する方向に対して翼素38が駆動力を生成する構成であってもよい。すなわち、例えば、主流50の流れ方向又は中心軸10に直交する方向や(中心軸10の周方向)であってもよいし、主流50の流れ方向や中心軸10に対して斜め方向に駆動力を生成する構成であってもよい。
In some embodiments, the casing 2 has a flow path cross-sectional area adjusting member 30 such that the flow path cross-sectional area adjusting member 30 moves between the closed position P2 and the open position P1 along the flow direction in the main flow path 14. May include a guide section 40 configured to guide (see, for example, FIGS. 2 and 5). Such a guide portion 40 is formed in, for example, a groove-shaped recess formed in either one of the inner wall of the casing 2 and the facing surface of the flow path cross-sectional area adjusting member 30 facing the inner wall, and the other. It may be composed of a convex engaging portion that is slidably (sliding) engaged with the concave portion. With the configuration including the guide portion 40 in this way, the flow path cross-sectional area adjusting member 30 is guided to the closed position P2 and the open position P1 along the guide portion 40. For example, in the case of the second flow rate in which the flow rate in the main flow path 14 is relatively large, the flow in the main flow path 14 is in a forward flow state, so that the flow path cross-sectional area adjusting member 30 is closed along the forward flow. It can be smoothly moved to P2. Further, the positions of the upstream end 40A (see FIG. 2B) and the downstream end 40B (see FIG. 2A) of the guide portion 40 in the flow direction of the main flow path, and the flow path cross-sectional area adjusting member. By appropriately setting the position of the blade element 38 of 30, the flow rate at which the flow path cross-sectional area adjusting member 30 operates, that is, the operating range of the compressor 1 can be arbitrarily set.
The moving direction of the flow path cross-sectional area adjusting member 30 by the guide portion 40 is not limited to the flow direction in the main flow path 14, and depends on the driving force generated by the blade element 38 that has received the flow in the main flow path 14. It may be in the same direction. For example, as illustrated in FIG. 4 without limitation, in a direction that receives a swirling flow 58 from an upstream side to a downstream side in the main flow path 14 and a swirling flow 58 from the sub flow path 20 and intersects the main flow 50. The blade element 38 may be configured to generate a driving force. That is, for example, it may be in the flow direction of the mainstream 50 or in a direction orthogonal to the central axis 10 (circumferential direction of the central axis 10), or may be a driving force in the flow direction of the mainstream 50 or in an oblique direction with respect to the central axis 10. May be configured to generate.

図6は、一実施形態における翼素に作用する流体力を示す概略図である。
図6に非限定的に例示するように、いくつかの実施形態において、翼素38は、主流路14の上流側に面する凸状湾曲面38Bと、主流路14の下流側かつ動翼6の回転方向の上流側に面する凹状湾曲面38Cと、を含み、主流路14の流れ方向(中心軸10に沿って上流側から下流側に向かう方向)に対して翼素38の長さが動翼6の長さの80%以下に構成されてもよい。
主流路14内が小流量である第1流量の際には、副流路20からの流れと動翼6の回転とに起因して、中心軸10と交差する周方向への旋回成分を有する旋回流58(図4参照)が翼素38に作用し得る。この点、上記のように構成すれば、翼素38の凹状湾曲面38Cが主流路14の下流側かつ動翼6の回転方向の上流側に面するように構成されるから、凹状湾曲面38Cで受けた旋回流58を主流路14の上流側に導くことで、流路断面積調整部材30を開位置P1に移動させるための駆動力を得ることができる。一方、主流路14の流れが第1流量より大きな第2流量の際には、翼素38の凸状湾曲面38Bに主流(順流)50の動圧が作用して流路断面積調整部材30が閉位置P2に移動される。その際、翼素38の凸状湾曲面38Bが主流路14の上流側に面することにより、主流路14における上流からの流れを下流側に円滑に案内することができる。よって、圧力損失に起因した効率低下を抑制することができる。
FIG. 6 is a schematic view showing the fluid force acting on the blade element in one embodiment.
As illustrated in FIG. 6 without limitation, in some embodiments, the blade element 38 has a convex curved surface 38B facing the upstream side of the main flow path 14 and a moving blade 6 downstream of the main flow path 14. The length of the blade element 38 includes the concave curved surface 38C facing the upstream side in the rotation direction of the blade, and the length of the blade element 38 with respect to the flow direction of the main flow path 14 (the direction from the upstream side to the downstream side along the central axis 10). It may be configured to be 80% or less of the length of the rotor blade 6.
In the case of the first flow rate, which is a small flow rate in the main flow path 14, it has a turning component in the circumferential direction intersecting the central axis 10 due to the flow from the sub flow path 20 and the rotation of the rotor blade 6. The swirling flow 58 (see FIG. 4) can act on the blade element 38. In this respect, if it is configured as described above, the concave curved surface 38C of the blade element 38 is configured to face the downstream side of the main flow path 14 and the upstream side in the rotational direction of the moving blade 6, so that the concave curved surface 38C By guiding the swirling flow 58 received in the above to the upstream side of the main flow path 14, it is possible to obtain a driving force for moving the flow path cross-sectional area adjusting member 30 to the open position P1. On the other hand, when the flow of the main flow path 14 is larger than the first flow rate, the dynamic pressure of the main flow (forward flow) 50 acts on the convex curved surface 38B of the blade element 38, and the flow path cross-sectional area adjusting member 30 Is moved to the closed position P2. At that time, since the convex curved surface 38B of the blade element 38 faces the upstream side of the main flow path 14, the flow from the upstream side in the main flow path 14 can be smoothly guided to the downstream side. Therefore, it is possible to suppress the decrease in efficiency due to the pressure loss.

図7はいくつかの実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。図8は他の実施形態における流路断面積調整部材の構成例を示す概略図であり、(a)は開位置、(b)は閉位置を示す。
図7及び図8に非限定的に例示するように、いくつかの実施形態において、流路断面積調整部材30は、副流路20の少なくとも一部を閉塞可能な板部材32と、該板部材32及び翼素38を、翼素38の移動に応じて当該移動の方向と異なる向きに板部材32を移動可能に連結する連結部44と、を含んでいてもよい。
「翼素38の移動方向と異なる向き」は、例えば、翼素38の移動方向に対して斜め方向であってもよいし、翼素38の移動方向と真逆の向きであってもよい。
例えば図7に非限定的に例示するように、連結部44としてのワイヤ45と該ワイヤ45の支持部46とを介して板部材32と翼素38とを連結してもよい。この場合、例えば主流路14内が第1流量の際に逆流52の流体力を受けて翼素38が主流路14の下流側から上流側に移動すると、ワイヤ45及び支持部46を介して板部材32が逆向きに、すなわち下流側に引かれて駆動され、流路断面積調整部材30が開位置P1に配置される(図7(a)参照)。一方、第2流量の際には翼素38が下流側に駆動され、板部材32は上流側に駆動されて閉位置P2に配置される(図7(b)参照)。幾つかの実施形態では、このような板部材32を閉位置P2側に付勢するための弾性部材(例えばバネ等)を設けてもよい。
また、図8に非限定的に示すように、連結部44として、板部材32と翼素38とを逆向きに案内するリンク機構47を採用してもよい。この場合は、板部材32及び翼素38にそれぞれ一端が連結されたリンクの他端同士を回動自在に連結し、各節が所定の軌道に沿って移動するように構成することで翼素38と板部材32とを異なる方向に移動させることができる。また、各リンクの長さを適切に設定することで、翼素38の移動に伴う該翼素38の移動距離と板部材32の移動距離とが異なるように構成することができる。
このように連結部44を含む構成によれば、副流路20を閉塞する板部材32を、翼素38の移動方向と異なる向きに移動させることができる。これにより、圧縮機1の設計の自由度の向上を図ることができる。
7A and 7B are schematic views showing a configuration example of a flow path cross-sectional area adjusting member in some embodiments, in which FIG. 7A shows an open position and FIG. 7B shows a closed position. 8A and 8B are schematic views showing a configuration example of a flow path cross-sectional area adjusting member in another embodiment, in which FIG. 8A shows an open position and FIG. 8B shows a closed position.
As illustrated in FIGS. 7 and 8, in some embodiments, the channel cross-sectional area adjusting member 30 includes a plate member 32 capable of closing at least a part of the subchannel 20 and the plate. The member 32 and the blade element 38 may include a connecting portion 44 that movably connects the plate member 32 in a direction different from the direction of the movement according to the movement of the blade element 38.
The "direction different from the moving direction of the blade element 38" may be, for example, an oblique direction with respect to the moving direction of the blade element 38, or may be a direction opposite to the moving direction of the blade element 38.
For example, as illustrated in FIG. 7, the plate member 32 and the blade element 38 may be connected via the wire 45 as the connecting portion 44 and the support portion 46 of the wire 45. In this case, for example, when the blade element 38 moves from the downstream side to the upstream side of the main flow path 14 due to the fluid force of the backflow 52 when the inside of the main flow path 14 is the first flow rate, the plate is passed through the wire 45 and the support portion 46. The member 32 is pulled in the opposite direction, that is, toward the downstream side and driven, and the flow path cross-sectional area adjusting member 30 is arranged at the open position P1 (see FIG. 7A). On the other hand, at the time of the second flow rate, the blade element 38 is driven to the downstream side, and the plate member 32 is driven to the upstream side and arranged at the closed position P2 (see FIG. 7B). In some embodiments, an elastic member (eg, a spring or the like) for urging such a plate member 32 toward the closed position P2 may be provided.
Further, as shown in FIG. 8 without limitation, a link mechanism 47 that guides the plate member 32 and the blade element 38 in the opposite directions may be adopted as the connecting portion 44. In this case, the other ends of the link, one end of which is connected to the plate member 32 and the blade element 38, are rotatably connected to each other so that each node moves along a predetermined trajectory. The 38 and the plate member 32 can be moved in different directions. Further, by appropriately setting the length of each link, the movement distance of the blade element 38 and the movement distance of the plate member 32 due to the movement of the blade element 38 can be configured to be different from each other.
According to the configuration including the connecting portion 44 as described above, the plate member 32 that closes the auxiliary flow path 20 can be moved in a direction different from the moving direction of the blade element 38. This makes it possible to improve the degree of freedom in designing the compressor 1.

いくつかの実施形態では、上記の何れかに記載の構成において、流路断面積調整部材30は、閉位置P2において副流路20の出口24に配置される流量規制部32Aと、該流量規制部32Aに対して開位置P1に向かう移動方向の上流側に配置された開口部36と、を含んでもよい(例えば図2及び図3参照)。
このように流路断面積調整部材30が開口部36を含む構成によれば、例えば、流路断面積調整部材30において開位置P1または閉位置P2に向かう移動方向の上流側又は下流側の端部を用いて副流路20を開閉する構成(例えば図1、図4及び図7参照)に比べて、例えば、副流路20の出口24の幅が開口部36よりも大きい場合は該開口部の大きさに規制することができる。したがって、圧縮機1の設計の自由度の向上が図られる。
なお、開口部36の開口面積は副流路20の出口24の断面積より大きくてもよい。また、このような開口部36や、上記翼素38、インペラ4の動翼6は、中心軸10の周方向に亘って各々が等間隔に配置されていてもよい。
In some embodiments, in any of the above configurations, the flow path cross-sectional area adjusting member 30 has a flow rate control section 32A arranged at the outlet 24 of the sub-flow rate 20 at the closed position P2 and the flow rate control. It may include an opening 36 arranged on the upstream side in the moving direction toward the open position P1 with respect to the portion 32A (see, for example, FIGS. 2 and 3).
According to the configuration in which the flow path cross-sectional area adjusting member 30 includes the opening 36, for example, the upstream or downstream end of the flow path cross-sectional area adjusting member 30 in the moving direction toward the open position P1 or the closed position P2. Compared to a configuration in which the sub-flow path 20 is opened and closed using a portion (see, for example, FIGS. 1, 4, and 7), for example, when the width of the outlet 24 of the sub-flow path 20 is larger than that of the opening 36, the opening is widened. It can be regulated by the size of the part. Therefore, the degree of freedom in designing the compressor 1 can be improved.
The opening area of the opening 36 may be larger than the cross-sectional area of the outlet 24 of the subchannel 20. Further, such an opening 36, the blade element 38, and the moving blade 6 of the impeller 4 may be arranged at equal intervals along the circumferential direction of the central axis 10.

いくつかの実施形態において、流路断面積調整部材30は、翼素38よりも少数の開口部36を含んでいてもよい。このように開口部36の数を翼素38の数より少なく構成することで、各々の開口部36を動翼6の回転軸周りの周方向においてより大きく確保することができる。これにより、例えば、副流路20から動翼6に付与する旋回流58の効果をより大きく確保することができる。 In some embodiments, the flow path cross-sectional area adjusting member 30 may include a smaller number of openings 36 than the blade element 38. By configuring the number of openings 36 to be smaller than the number of blade elements 38 in this way, it is possible to secure a larger number of openings 36 in the circumferential direction around the rotation axis of the rotor blade 6. Thereby, for example, the effect of the swirling flow 58 applied to the rotor blade 6 from the sub flow path 20 can be further ensured.

図9は一実施形態における動翼付近の流れ示す概略図であり、(a)は順流の第1状態、(b)は逆流が生じる第2状態を示す。
いくつかの実施形態では、動翼6の回転による軸流方向に沿って少なくとも動翼6の前縁8及びその上流を含む領域であって主流路14を規定するケーシング2の内周近傍に、逆流52が生じ得る逆流域54が分布し(図9(b)参照)、流路断面積調整部材30は、少なくとも翼素38が逆流域54に配置されるように構成されてもよい。このように構成すれば、比較的小流量の第1流量の際には、逆流による流体力を翼素38に確実に作用させることができる。よって、流量の変化に対して応答性の高い流路断面積調整部材30を得ることができるため、圧縮機1の作動領域の拡大と高効率化とをより確実に達成することができる。
9A and 9B are schematic views showing the flow near the rotor blade in one embodiment, where FIG. 9A shows a first state of forward flow and FIG. 9B shows a second state in which backflow occurs.
In some embodiments, a region including at least the leading edge 8 of the rotor blade 6 and its upstream along the axial flow direction due to the rotation of the rotor blade 6 and near the inner circumference of the casing 2 defining the main flow path 14. The backflow region 54 in which the backflow 52 can occur is distributed (see FIG. 9B), and the flow path cross-sectional area adjusting member 30 may be configured such that at least the blade elements 38 are arranged in the backflow region 54. With this configuration, the fluid force due to the backflow can be reliably applied to the blade element 38 at the time of the first flow rate, which is a relatively small flow rate. Therefore, since the flow path cross-sectional area adjusting member 30 having high responsiveness to the change in the flow rate can be obtained, it is possible to more reliably achieve the expansion of the operating region of the compressor 1 and the improvement of efficiency.

いくつかの実施形態において、圧縮機1はターボチャージャーを含んでもよい。すなわち、圧縮機1は、内燃機関の吸気側に配置され、該内燃機関の排気エネルギーを用いて回転する排気タービンと共通の回転軸によってインペラ4を回転するターボチャージャーのコンプレッサであってもよい。このようにすれば、自動車用又は船舶用等のターボチャージャーにおいて、上記何れかで述べた効果を享受することができる。 In some embodiments, the compressor 1 may include a turbocharger. That is, the compressor 1 may be a turbocharger compressor that is arranged on the intake side of the internal combustion engine and rotates the impeller 4 by a rotation shaft common to the exhaust turbine that rotates using the exhaust energy of the internal combustion engine. By doing so, it is possible to enjoy the effect described in any of the above in a turbocharger for automobiles or ships.

本発明の少なくとも一実施形態によれば、外部入力を必要とせずに圧縮機1の作動領域の拡大と高効率化とを両立することができる。また、外部からの入力を必要としないことにより、例えば、エンジン等への搭載性の向上を図ることができるとともに、構成の簡素化及び低コスト化を図ることができる。 According to at least one embodiment of the present invention, it is possible to achieve both expansion of the operating region of the compressor 1 and high efficiency without requiring an external input. Further, by not requiring an input from the outside, for example, it is possible to improve the mountability on an engine or the like, and it is possible to simplify the configuration and reduce the cost.

本発明は上述した幾つかの実施形態に限定されることはなく、上述した実施形態に変形を加えた形態や、これらの形態を適宜組み合わせた形態も含む。 The present invention is not limited to the above-mentioned embodiments, and includes a modified form of the above-described embodiment and a combination of these embodiments as appropriate.

1 圧縮機(ターボチャージャー)
2 ケーシング
3 環状部材
4 インペラ
6 動翼
8 前縁
10 回転軸
12 圧縮室
14 主流路
20 副流路
20A バイパス路
20B 再循環路
22 入口
24 出口
24B 下流側端部
26 予旋回ノズル
30 流路断面積調整部材
32 板部材
32A 流量規制部
34 環状部
36 開口部
38 翼素
38A 上流側端部
38B 凸状湾曲面
38C 凹状湾曲面
40 ガイド部
40A 上流側端部
40B 下流側端部
42 係合部(凸部)
44 連結部
45 ワイヤ
46 支持部
47 リンク機構
50 順流
52 逆流
54 逆流域
56 副流
58 旋回流
P1 開位置
P2 閉位置
L1 出口の下流側端部と翼素の上流側端部との距離(開位置)
L2 翼素長
1 Compressor (turbocharger)
2 Casing 3 Circular member 4 Impeller 6 Blade 8 Leading edge 10 Rotating shaft 12 Compression chamber 14 Main flow path 20 Sub flow path 20A Bypass path 20B Recirculation path 22 Inlet 24 Outlet 24B Downstream side end 26 Pre-swivel nozzle 30 Flow path disconnection Area adjustment member 32 Plate member 32A Flow control part 34 Circular part 36 Opening part 38 Wing element 38A Upstream side end part 38B Convex curved surface 38C Concave curved surface 40 Guide part 40A Upstream side end part 40B Downstream side end part 42 Engaging part (Convex part)
44 Connecting part 45 Wire 46 Support part 47 Link mechanism 50 Forward flow 52 Backflow 54 Backflow area 56 Side flow 58 Swirling flow P1 Open position P2 Closed position L1 Distance between the downstream end of the outlet and the upstream end of the blade element (open) position)
L2 wing element length

Claims (15)

主流路と、前記主流路に連通するように設けられるバイパス路又は再循環路を含む副流路とを内部に含むケーシングと、
前記主流路内に設けられた複数の動翼と、
開位置、または、該開位置よりも前記副流路の流路断面積が小さい閉位置の一方から他方に移動可能に構成された流路断面積調整部材と、
流体力を受けるように前記主流路内に露出して設けられて、前記主流路の流れが第1流量のときに前記流路断面積調整部材が前記開位置に位置し、前記流れが前記第1流量よりも大きい第2流量のときに前記流路断面積調整部材が前記閉位置に位置するように、前記流体力に起因した駆動力を前記流路断面積調整部材に与えるよう構成された翼素と、
を備え、
前記流路断面積調整部材は、外部入力には依らずに、前記翼素に作用する前記流体力によって、前記開位置または前記閉位置の一方から他方に移動可能に構成されている
ことを特徴とする圧縮機。
A casing including a main flow path and a sub-flow path including a bypass path or a recirculation path provided so as to communicate with the main flow path.
A plurality of blades provided in the main flow path and
A flow path cross-sectional area adjusting member configured to be movable from one of the closed positions where the flow path cross-sectional area of the sub-flow path is smaller than the open position or the open position to the other.
It is provided so as to be exposed in the main flow path so as to receive a fluid force, and when the flow rate of the main flow path is the first flow rate, the flow path cross-sectional area adjusting member is located at the open position, and the flow is the first flow rate. The flow path cross-sectional area adjusting member is configured to apply a driving force due to the fluid force to the flow path cross-sectional area adjusting member so that the flow path cross-sectional area adjusting member is located at the closed position when the second flow rate is larger than one flow rate. Tsubasa and
Equipped with
The flow path cross-sectional area adjusting member is characterized in that it can move from one of the open position or the closed position to the other by the fluid force acting on the blade element without depending on an external input. Compressor.
前記副流路は、前記動翼の前縁よりも前記主流路における上流側に位置する出口と、前記出口よりも前記主流路における上流側に位置する入口と、を含む前記バイパス路である
ことを特徴とする請求項1に記載の圧縮機。
The subflow path is the bypass path including an outlet located upstream in the main flow path from the leading edge of the rotor blade and an inlet located upstream in the main flow path from the outlet. The compressor according to claim 1.
前記バイパス路内に配置された予旋回ノズルをさらに備える
ことを特徴とする請求項2に記載の圧縮機。
The compressor according to claim 2, further comprising a pre-swirl nozzle arranged in the bypass path.
前記副流路は、前記動翼に対向する前記ケーシングの内壁に配置された入口と、前記動翼の前縁よりも前記主流路における上流側に配置された出口と、を含む前記再循環路である
ことを特徴とする請求項1に記載の圧縮機。
The subchannel includes the recirculation path including an inlet located on the inner wall of the casing facing the blade and an outlet located upstream of the blade front edge in the main channel. The compressor according to claim 1, wherein the compressor is characterized by being.
前記流路断面積調整部材は、前記副流路の出口を開閉するように配置され、
前記翼素は、前記出口よりも前記主流路における下流側、かつ、前記動翼の前縁の上流側において、前記流路断面積調整部材に取り付けられている
ことを特徴とする請求項1~4の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjusting member is arranged so as to open and close the outlet of the sub flow path.
Claims 1 to 1, wherein the blade element is attached to the flow path cross-sectional area adjusting member on the downstream side in the main flow path from the outlet and on the upstream side of the leading edge of the moving blade. The compressor according to any one of 4.
前記流路断面積調整部材は、前記開位置に配置された際に、前記主流路の流れ方向における前記翼素の上流側端部と前記出口の下流側端部との距離が、前記流れ方向に沿う前記翼素の長さの20%以上になるように構成されている
ことを特徴とする請求項5に記載の圧縮機。
When the flow path cross-sectional area adjusting member is arranged at the open position, the distance between the upstream end of the blade element and the downstream end of the outlet in the flow direction of the main flow direction is the flow direction. The compressor according to claim 5, wherein the compressor is configured to have a length of 20% or more of the blade element according to the above.
前記流路断面積調整部材は、前記閉位置に配置された際に前記出口の一部のみを閉塞するように構成される
ことを特徴とする請求項5又は6の何れか一項に記載の圧縮機。
The aspect according to any one of claims 5 or 6, wherein the flow path cross-sectional area adjusting member is configured to close only a part of the outlet when it is arranged in the closed position. Compressor.
前記流路断面積調整部材は、前記主流路を規定する前記ケーシングの内壁に沿って少なくとも一部が前記主流路の流れ方向に平行な軸を中心とする環状に形成されている
ことを特徴とする請求項1~7の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjusting member is characterized in that at least a part thereof is formed in an annular shape centered on an axis parallel to the flow direction of the main flow path along the inner wall of the casing defining the main flow path. The compressor according to any one of claims 1 to 7.
前記ケーシングは、前記主流路における流れ方向に沿って前記閉位置と前記開位置との間で前記流路断面積調整部材が移動するよう、前記流路断面積調整部材を案内するように構成されたガイド部を含む
ことを特徴とする請求項1~8の何れか一項に記載の圧縮機。
The casing is configured to guide the flow path cross-sectional area adjusting member so that the flow path cross-sectional area adjusting member moves between the closed position and the open position along the flow direction in the main flow path. The compressor according to any one of claims 1 to 8, wherein the compressor includes a guide portion.
前記翼素は、前記主流路の上流側に面する凸状湾曲面と、前記主流路の下流側かつ前記動翼の回転方向の上流側に面する凹状湾曲面と、を含み、
前記主流路の流れ方向に対して前記翼素の長さが動翼の長さの80%以下に構成される
ことを特徴とする請求項1~9の何れか一項に記載の圧縮機。
The blade element includes a convex curved surface facing the upstream side of the main flow path and a concave curved surface facing the downstream side of the main flow path and the upstream side in the rotational direction of the rotor blade.
The compressor according to any one of claims 1 to 9, wherein the length of the blade element is 80% or less of the length of the moving blade with respect to the flow direction of the main flow path.
前記流路断面積調整部材は、
前記副流路の少なくとも一部を閉塞可能な板部材と、
前記板部材及び前記翼素を、前記翼素の移動に応じて当該移動の方向と異なる向きに前記板部材を移動可能に連結する連結部と、を含む
ことを特徴とする請求項1~10の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjusting member is
A plate member capable of closing at least a part of the sub-flow path, and
Claims 1 to 10 include a connecting portion that movably connects the plate member and the blade element in a direction different from the direction of the movement according to the movement of the blade element. The compressor according to any one of the above.
前記流路断面積調整部材は、
前記閉位置において前記副流路の出口に配置される流量規制部と、
前記流量規制部に対して前記開位置に向かう移動方向の上流側に配置された開口部と、を含む
ことを特徴とする請求項1~11の何れか一項に記載の圧縮機。
The flow path cross-sectional area adjusting member is
A flow rate regulating unit arranged at the outlet of the sub-flow path in the closed position,
The compressor according to any one of claims 1 to 11, wherein the compressor includes an opening arranged on the upstream side in a moving direction toward the open position with respect to the flow rate regulating portion.
前記流路断面積調整部材は、前記翼素よりも少数の前記開口部を含む
ことを特徴とする請求項12に記載の圧縮機。
The compressor according to claim 12, wherein the flow path cross-sectional area adjusting member includes a smaller number of openings than the blade element.
前記主流路の軸流方向に沿って少なくとも前記動翼の前縁及びその上流を含む領域であって前記主流路を規定する前記ケーシングの内周近傍に、前記主流路の流れの逆流が生じ得る逆流域が分布し、
前記流路断面積調整部材は、少なくとも前記翼素が前記逆流域に配置されるように構成される
ことを特徴とする請求項1~13の何れか一項に記載の圧縮機。
Backflow of the flow of the main flow path may occur in the vicinity of the inner circumference of the casing which defines the main flow path at least in the region including the leading edge of the rotor blade and its upstream along the axial flow direction of the main flow path. Backflow area is distributed,
The compressor according to any one of claims 1 to 13, wherein the flow path cross-sectional area adjusting member is configured such that at least the blade elements are arranged in the backflow region.
前記圧縮機はターボチャージャーを含む
ことを特徴とする請求項1~14の何れか一項に記載の圧縮機。
The compressor according to any one of claims 1 to 14, wherein the compressor includes a turbocharger.
JP2017225448A 2017-11-24 2017-11-24 Compressor Active JP7001438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017225448A JP7001438B2 (en) 2017-11-24 2017-11-24 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017225448A JP7001438B2 (en) 2017-11-24 2017-11-24 Compressor

Publications (2)

Publication Number Publication Date
JP2019094847A JP2019094847A (en) 2019-06-20
JP7001438B2 true JP7001438B2 (en) 2022-01-19

Family

ID=66971344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017225448A Active JP7001438B2 (en) 2017-11-24 2017-11-24 Compressor

Country Status (1)

Country Link
JP (1) JP7001438B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021124069A (en) * 2020-02-06 2021-08-30 三菱重工業株式会社 Compressor housing, compressor with compressor housing, and turbocharger with compressor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188600A (en) 2000-12-18 2002-07-05 Hitachi Ltd Rotor blade control type axial blower
JP2003106299A (en) 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2003106293A (en) 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2006002650A (en) 2004-06-17 2006-01-05 Toyota Motor Corp Centrifugal compressor interlocking inlet vane with bypass control valve
JP2012177311A (en) 2011-02-25 2012-09-13 Ihi Corp Centrifugal compressor
JP2013087623A (en) 2011-10-13 2013-05-13 Hitachi Plant Technologies Ltd Axial flow type fluid machinery
US20140093354A1 (en) 2011-05-10 2014-04-03 Borgwarner Inc. Compressor of an exhaust-gas turbocharger
DE102013020656A1 (en) 2013-12-12 2014-07-31 Daimler Ag Radial compressor for radial-flow turbine of internal combustion engine for e.g. passenger car, has locking element moved between recirculation channel and open position and releasing open position relative to walls of housing

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002188600A (en) 2000-12-18 2002-07-05 Hitachi Ltd Rotor blade control type axial blower
JP2003106299A (en) 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2003106293A (en) 2001-09-28 2003-04-09 Mitsubishi Heavy Ind Ltd Fluid machinery
JP2006002650A (en) 2004-06-17 2006-01-05 Toyota Motor Corp Centrifugal compressor interlocking inlet vane with bypass control valve
JP2012177311A (en) 2011-02-25 2012-09-13 Ihi Corp Centrifugal compressor
US20140093354A1 (en) 2011-05-10 2014-04-03 Borgwarner Inc. Compressor of an exhaust-gas turbocharger
JP2013087623A (en) 2011-10-13 2013-05-13 Hitachi Plant Technologies Ltd Axial flow type fluid machinery
DE102013020656A1 (en) 2013-12-12 2014-07-31 Daimler Ag Radial compressor for radial-flow turbine of internal combustion engine for e.g. passenger car, has locking element moved between recirculation channel and open position and releasing open position relative to walls of housing

Also Published As

Publication number Publication date
JP2019094847A (en) 2019-06-20

Similar Documents

Publication Publication Date Title
CN107816440B (en) Centrifugal compressor
KR101021827B1 (en) Centrifugal compressor
KR102076638B1 (en) Mixed-flow turbocharger with variable turbine geometry
US7870731B2 (en) Exhaust gas turbocharger for an internal combustion engine
US9771942B2 (en) Exhaust gas turbocharger having guiding screen rings that are rotatable relative to each other
US20150354591A1 (en) Centrifugal compressor
JP2008544126A (en) Exhaust turbocharger exhaust turbine
JP4944717B2 (en) Variable turbine
KR20170093156A (en) Exhaust gas turbocharger with combined adjustment device for bypass valve and flow connection
KR20070011228A (en) Turbocharger comprising a compresser having two back-to-back impellers
JP2016173051A (en) Impeller trim rate variable mechanism for centrifugal compressor
JP2017020514A (en) Centrifugal compressor
JP2016500416A (en) Turbine exhaust gas guide and turbine control method
WO2013106503A1 (en) Turbocharger with variable turbine geometry having grooved guide vanes
KR102215296B1 (en) Compressor
JP7001438B2 (en) Compressor
US10132190B2 (en) Turbocharger with progressively variable A/R ratio
JP5148425B2 (en) Centrifugal compressor
JP5427900B2 (en) Mixed flow turbine
KR20190113648A (en) Turbine with adjusting ring
CN113412364B (en) Supercharger housing and supercharger provided with same
US11946377B2 (en) Variable nozzle device, turbine, and turbocharger
JP7232352B2 (en) Compressor and turbocharger comprising the compressor
JP4441349B2 (en) Turbocharger and turbine
JP2023000817A (en) turbocharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211224

R150 Certificate of patent or registration of utility model

Ref document number: 7001438

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150