JP6998959B2 - 神経生理学的信号を使用する反復分類のためのシステムと方法 - Google Patents
神経生理学的信号を使用する反復分類のためのシステムと方法 Download PDFInfo
- Publication number
- JP6998959B2 JP6998959B2 JP2019533183A JP2019533183A JP6998959B2 JP 6998959 B2 JP6998959 B2 JP 6998959B2 JP 2019533183 A JP2019533183 A JP 2019533183A JP 2019533183 A JP2019533183 A JP 2019533183A JP 6998959 B2 JP6998959 B2 JP 6998959B2
- Authority
- JP
- Japan
- Prior art keywords
- image
- images
- target
- neural network
- observer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
- G06F3/015—Input arrangements based on nervous system activity detection, e.g. brain waves [EEG] detection, electromyograms [EMG] detection, electrodermal response detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/241—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
- G06F18/2411—Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches based on the proximity to a decision surface, e.g. support vector machines
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
- G06F18/243—Classification techniques relating to the number of classes
- G06F18/2433—Single-class perspective, e.g. one-against-all classification; Novelty detection; Outlier detection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/017—Gesture based interaction, e.g. based on a set of recognized hand gestures
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/045—Combinations of networks
- G06N3/0455—Auto-encoder networks; Encoder-decoder networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0464—Convolutional networks [CNN, ConvNet]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/088—Non-supervised learning, e.g. competitive learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/0895—Weakly supervised learning, e.g. semi-supervised or self-supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/09—Supervised learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/08—Learning methods
- G06N3/091—Active learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0012—Biomedical image inspection
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/255—Detecting or recognising potential candidate objects based on visual cues, e.g. shapes
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/40—Extraction of image or video features
- G06V10/44—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components
- G06V10/443—Local feature extraction by analysis of parts of the pattern, e.g. by detecting edges, contours, loops, corners, strokes or intersections; Connectivity analysis, e.g. of connected components by matching or filtering
- G06V10/449—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters
- G06V10/451—Biologically inspired filters, e.g. difference of Gaussians [DoG] or Gabor filters with interaction between the filter responses, e.g. cortical complex cells
- G06V10/454—Integrating the filters into a hierarchical structure, e.g. convolutional neural networks [CNN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/764—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using classification, e.g. of video objects
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/778—Active pattern-learning, e.g. online learning of image or video features
- G06V10/7784—Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors
- G06V10/7788—Active pattern-learning, e.g. online learning of image or video features based on feedback from supervisors the supervisor being a human, e.g. interactive learning with a human teacher
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/82—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using neural networks
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20081—Training; Learning
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20084—Artificial neural networks [ANN]
-
- G—PHYSICS
- G06—COMPUTING OR CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30004—Biomedical image processing
- G06T2207/30016—Brain
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- Data Mining & Analysis (AREA)
- Artificial Intelligence (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computing Systems (AREA)
- Biomedical Technology (AREA)
- Databases & Information Systems (AREA)
- Multimedia (AREA)
- Molecular Biology (AREA)
- Medical Informatics (AREA)
- Mathematical Physics (AREA)
- Computational Linguistics (AREA)
- Biophysics (AREA)
- Evolutionary Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Human Computer Interaction (AREA)
- Dermatology (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biodiversity & Conservation Biology (AREA)
- Radiology & Medical Imaging (AREA)
- Quality & Reliability (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Image Analysis (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Applications Claiming Priority (3)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201662437065P | 2016-12-21 | 2016-12-21 | |
| US62/437,065 | 2016-12-21 | ||
| PCT/IB2017/058297 WO2018116248A1 (en) | 2016-12-21 | 2017-12-21 | System and method for iterative classification using neurophysiological signals |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| JP2020502683A JP2020502683A (ja) | 2020-01-23 |
| JP2020502683A5 JP2020502683A5 (enExample) | 2020-03-05 |
| JP6998959B2 true JP6998959B2 (ja) | 2022-01-18 |
Family
ID=62626017
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP2019533183A Active JP6998959B2 (ja) | 2016-12-21 | 2017-12-21 | 神経生理学的信号を使用する反復分類のためのシステムと方法 |
Country Status (7)
| Country | Link |
|---|---|
| US (2) | US11580409B2 (enExample) |
| EP (1) | EP3558102B1 (enExample) |
| JP (1) | JP6998959B2 (enExample) |
| CN (1) | CN110139597B (enExample) |
| CA (1) | CA3046939A1 (enExample) |
| IL (1) | IL267518B2 (enExample) |
| WO (1) | WO2018116248A1 (enExample) |
Families Citing this family (32)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP3558102B1 (en) | 2016-12-21 | 2024-11-20 | Innereye Ltd. | System and method for iterative classification using neurophysiological signals |
| US11586928B2 (en) * | 2018-03-09 | 2023-02-21 | Tata Consultancy Services Limited | Method and system for incorporating regression into stacked auto encoder (SAE) |
| KR102695519B1 (ko) * | 2018-07-02 | 2024-08-14 | 삼성전자주식회사 | 영상 모델 구축 장치 및 방법 |
| GB2575852B (en) * | 2018-07-26 | 2021-06-09 | Advanced Risc Mach Ltd | Image processing |
| US11158063B2 (en) * | 2018-07-30 | 2021-10-26 | Hewlett Packard Enterprise Development Lp | Objects and features neural network |
| WO2020028352A1 (en) * | 2018-07-31 | 2020-02-06 | Washington University | Methods and systems for segmenting organs in images using a cnn-based correction network |
| KR102608981B1 (ko) * | 2018-10-24 | 2023-12-01 | 한국전자통신연구원 | 향 시각화 시스템 및 방법 |
| US12114989B2 (en) | 2018-12-04 | 2024-10-15 | Brainvivo Ltd. | Apparatus and method for utilizing a brain feature activity map database to characterize content |
| JP7103237B2 (ja) * | 2019-01-09 | 2022-07-20 | 株式会社明電舎 | 流量予測装置及び流量予測方法 |
| US11715043B2 (en) | 2019-03-01 | 2023-08-01 | Apple Inc. | Semantics preservation for machine learning models deployed as dependent on other machine learning models |
| US10878298B2 (en) * | 2019-03-06 | 2020-12-29 | Adobe Inc. | Tag-based font recognition by utilizing an implicit font classification attention neural network |
| US10984560B1 (en) * | 2019-03-29 | 2021-04-20 | Amazon Technologies, Inc. | Computer vision using learnt lossy image compression representations |
| US10803231B1 (en) | 2019-03-29 | 2020-10-13 | Adobe Inc. | Performing tag-based font retrieval using combined font tag recognition and tag-based font retrieval neural networks |
| CN110084309B (zh) * | 2019-04-30 | 2022-06-21 | 北京市商汤科技开发有限公司 | 特征图放大方法、装置和设备及计算机可读存储介质 |
| US20210018896A1 (en) * | 2019-07-16 | 2021-01-21 | Carnegie Mellon University | Methods and Systems for Noninvasive Mind-Controlled Devices |
| KR102758527B1 (ko) * | 2019-10-29 | 2025-01-21 | 현대자동차주식회사 | 뇌파 신호를 이용한 이미지 생성 장치 및 방법 |
| US11361189B2 (en) * | 2019-12-03 | 2022-06-14 | Ping An Technology (Shenzhen) Co., Ltd. | Image generation method and computing device |
| CN111338482B (zh) * | 2020-03-04 | 2023-04-25 | 太原理工大学 | 一种基于监督自编码的脑控字符拼写识别方法及系统 |
| CN111783942B (zh) * | 2020-06-08 | 2023-08-01 | 北京航天自动控制研究所 | 一种基于卷积循环神经网络的脑认知过程模拟方法 |
| US20230419636A1 (en) * | 2020-11-25 | 2023-12-28 | Hewlett-Packard Development Company, L.P. | Identifying anomaly location |
| KR20230131826A (ko) * | 2021-01-14 | 2023-09-14 | 브레인비보 리미티드 | 일반 콘텐츠 뇌 반응 모델을 사용한 분야별 콘텐츠 분류 |
| CN112800971B (zh) * | 2021-01-29 | 2024-07-16 | 深圳市商汤科技有限公司 | 神经网络训练及点云数据处理方法、装置、设备和介质 |
| US12412098B2 (en) | 2021-03-04 | 2025-09-09 | Samsung Electronics Co., Ltd. | Apparatus and method for neural architecture searching with target data |
| CN113116306A (zh) * | 2021-04-21 | 2021-07-16 | 复旦大学 | 一种基于听觉诱发脑电信号分析的意识障碍辅助诊断系统 |
| CN113095297B (zh) * | 2021-05-11 | 2022-07-15 | 昆明理工大学 | 一种基于一维投影跟踪眼动速率的疲劳检测方法 |
| CN113995423B (zh) * | 2021-06-21 | 2022-12-02 | 西安电子科技大学 | 基于相位保持网络的连续快速视觉演示脑电信号分类方法 |
| CN114931388B (zh) * | 2022-04-26 | 2024-11-01 | 广东医科大学 | 基于并行超顺磁聚类算法的神经元峰电位分类方法、装置、存储介质及计算机设备 |
| EP4300265A1 (en) * | 2022-06-29 | 2024-01-03 | Copysan Communicaciones, SL | Method, system and computer programs for the automatic labeling of images for defect detection |
| US20240160288A1 (en) * | 2022-11-15 | 2024-05-16 | Micron Technology, Inc. | Neuronal to memory device communication |
| CN116383600A (zh) * | 2023-03-16 | 2023-07-04 | 上海外国语大学 | 一种单试次脑电波信号分析方法和系统 |
| CN117056831A (zh) * | 2023-10-13 | 2023-11-14 | 南京龙垣信息科技有限公司 | 基于卷积神经网络的内心独白识别方法 |
| CN117494061A (zh) * | 2024-01-03 | 2024-02-02 | 中国科学院自动化研究所 | 用户兴趣挖掘方法、装置、电子设备及介质 |
Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016193979A1 (en) | 2015-06-03 | 2016-12-08 | Innereye Ltd. | Image classification by brain computer interface |
Family Cites Families (39)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US5513649A (en) | 1994-03-22 | 1996-05-07 | Sam Technology, Inc. | Adaptive interference canceler for EEG movement and eye artifacts |
| US6278961B1 (en) * | 1997-07-02 | 2001-08-21 | Nonlinear Solutions, Inc. | Signal and pattern detection or classification by estimation of continuous dynamical models |
| EP1743281A2 (en) * | 2004-04-14 | 2007-01-17 | Imperial Innovations Limited | Estimation of within-class matrix in image classification |
| US8374687B2 (en) | 2006-01-21 | 2013-02-12 | Honeywell International Inc. | Rapid serial visual presentation triage prioritization based on user state assessment |
| US8244475B2 (en) * | 2007-12-27 | 2012-08-14 | Teledyne Scientific & Imaging, Llc | Coupling human neural response with computer pattern analysis for single-event detection of significant brain responses for task-relevant stimuli |
| JP5544620B2 (ja) * | 2010-09-01 | 2014-07-09 | 独立行政法人産業技術総合研究所 | 意思伝達支援装置及び方法 |
| US8792974B2 (en) | 2012-01-18 | 2014-07-29 | Brainscope Company, Inc. | Method and device for multimodal neurological evaluation |
| US9269046B2 (en) | 2012-01-18 | 2016-02-23 | Brainscope Company, Inc. | Method and device for multimodal neurological evaluation |
| US9111125B2 (en) * | 2013-02-08 | 2015-08-18 | Apple Inc. | Fingerprint imaging and quality characterization |
| CN105051647B (zh) * | 2013-03-15 | 2018-04-13 | 英特尔公司 | 基于生物物理信号的搜集时间和空间模式的大脑计算机接口(bci)系统 |
| CA2909017C (en) | 2013-04-14 | 2022-10-18 | Yissum Research Development Company Of The Hebrew University Of Jerusalem Ltd. | Classifying eeg signals in response to visual stimulus |
| TWI508702B (zh) | 2013-07-10 | 2015-11-21 | Univ Nat Chiao Tung | 即時多通道自動眼動雜訊去除器 |
| US9436279B2 (en) * | 2014-03-31 | 2016-09-06 | Rovi Guides, Inc. | Systems and methods for controlling user devices based on brain activity |
| MX2016015708A (es) * | 2014-05-30 | 2017-03-16 | Univ Michigan Regents | Interfaz cerebro-computadora para facilitar la seleccion directa de respuestas de opcion multiple y la identificacion de cambios de estado. |
| US10130813B2 (en) | 2015-02-10 | 2018-11-20 | Neuropace, Inc. | Seizure onset classification and stimulation parameter selection |
| US11071501B2 (en) * | 2015-08-14 | 2021-07-27 | Elucid Bioiwaging Inc. | Quantitative imaging for determining time to adverse event (TTE) |
| US10413724B2 (en) * | 2015-10-23 | 2019-09-17 | Hrl Laboratories, Llc | Method for low latency automated closed-loop synchronization of neurostimulation interventions to neurophysiological activity |
| CN105868712A (zh) | 2016-03-28 | 2016-08-17 | 中国人民解放军信息工程大学 | 基于后验概率模型的脑电与机器视觉目标图像检索方法 |
| KR102707594B1 (ko) * | 2016-11-11 | 2024-09-19 | 삼성전자주식회사 | 홍채 영역 추출 방법 및 장치 |
| EP3558102B1 (en) | 2016-12-21 | 2024-11-20 | Innereye Ltd. | System and method for iterative classification using neurophysiological signals |
| US10546242B2 (en) * | 2017-03-03 | 2020-01-28 | General Electric Company | Image analysis neural network systems |
| US20190035113A1 (en) * | 2017-07-27 | 2019-01-31 | Nvidia Corporation | Temporally stable data reconstruction with an external recurrent neural network |
| US11154251B2 (en) * | 2018-02-10 | 2021-10-26 | The Governing Council Of The University Of Toronto | System and method for classifying time series data for state identification |
| WO2019213221A1 (en) | 2018-05-01 | 2019-11-07 | Blackthorn Therapeutics, Inc. | Machine learning-based diagnostic classifier |
| EP3674994A1 (en) * | 2018-12-27 | 2020-07-01 | Bull SAS | Method of blocking or passing messages sent via a firewall based on parsing of symbols strings contained in messages among different keywords |
| EP3674999A1 (en) * | 2018-12-27 | 2020-07-01 | Bull SAS | Method of classification of images among different classes |
| US11423118B2 (en) * | 2019-01-07 | 2022-08-23 | Massachusetts Institute Of Technology | Model agnostic time series analysis via matrix estimation |
| US11481578B2 (en) * | 2019-02-22 | 2022-10-25 | Neuropace, Inc. | Systems and methods for labeling large datasets of physiological records based on unsupervised machine learning |
| US11562278B2 (en) * | 2019-05-16 | 2023-01-24 | Siemens Aktiengesellschaft | Quantum machine learning algorithm for knowledge graphs |
| US10803646B1 (en) * | 2019-08-19 | 2020-10-13 | Neon Evolution Inc. | Methods and systems for image and voice processing |
| US11593617B2 (en) * | 2019-12-31 | 2023-02-28 | X Development Llc | Reservoir computing neural networks based on synaptic connectivity graphs |
| US11620487B2 (en) * | 2019-12-31 | 2023-04-04 | X Development Llc | Neural architecture search based on synaptic connectivity graphs |
| WO2021195784A1 (en) * | 2020-04-03 | 2021-10-07 | Armstrong Caitrin | Systems and methods for treatment selection |
| US11468288B2 (en) * | 2020-07-28 | 2022-10-11 | Oken Technologies, Inc. | Method of and system for evaluating consumption of visual information displayed to a user by analyzing user's eye tracking and bioresponse data |
| US12354256B2 (en) * | 2020-10-19 | 2025-07-08 | Northwestern University | Brain feature prediction using geometric deep learning on graph representations of medical image data |
| KR102321601B1 (ko) * | 2020-11-19 | 2021-11-05 | 주식회사 휴런 | 뇌 영상을 이용한 알츠하이머병의 생물학적 분류 장치 및 방법 |
| JP7552287B2 (ja) * | 2020-11-25 | 2024-09-18 | セイコーエプソン株式会社 | 物体検出方法、物体検出装置、及び、コンピュータープログラム |
| US20220301718A1 (en) * | 2021-03-16 | 2022-09-22 | Seshadri Paravastu | System, Device, and Method of Determining Anisomelia or Leg Length Discrepancy (LLD) of a Subject by Using Image Analysis and Machine Learning |
| US11645836B1 (en) * | 2022-06-30 | 2023-05-09 | Intuit Inc. | Adversarial detection using discriminator model of generative adversarial network architecture |
-
2017
- 2017-12-21 EP EP17883157.4A patent/EP3558102B1/en active Active
- 2017-12-21 WO PCT/IB2017/058297 patent/WO2018116248A1/en not_active Ceased
- 2017-12-21 CN CN201780081627.6A patent/CN110139597B/zh active Active
- 2017-12-21 JP JP2019533183A patent/JP6998959B2/ja active Active
- 2017-12-21 IL IL267518A patent/IL267518B2/en unknown
- 2017-12-21 US US16/471,587 patent/US11580409B2/en active Active
- 2017-12-21 CA CA3046939A patent/CA3046939A1/en active Pending
-
2023
- 2023-02-08 US US18/107,037 patent/US12001607B2/en active Active
Patent Citations (1)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2016193979A1 (en) | 2015-06-03 | 2016-12-08 | Innereye Ltd. | Image classification by brain computer interface |
Also Published As
| Publication number | Publication date |
|---|---|
| US20200193299A1 (en) | 2020-06-18 |
| IL267518B2 (en) | 2024-04-01 |
| CN110139597B (zh) | 2022-12-30 |
| US20230185377A1 (en) | 2023-06-15 |
| JP2020502683A (ja) | 2020-01-23 |
| EP3558102A4 (en) | 2020-07-22 |
| US12001607B2 (en) | 2024-06-04 |
| EP3558102B1 (en) | 2024-11-20 |
| IL267518B1 (en) | 2023-12-01 |
| IL267518A (en) | 2019-08-29 |
| EP3558102A1 (en) | 2019-10-30 |
| US11580409B2 (en) | 2023-02-14 |
| WO2018116248A1 (en) | 2018-06-28 |
| CA3046939A1 (en) | 2018-06-28 |
| CN110139597A (zh) | 2019-08-16 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| JP6998959B2 (ja) | 神経生理学的信号を使用する反復分類のためのシステムと方法 | |
| JP6959419B2 (ja) | ブレインコンピュータインタフェースによる画像の分類 | |
| EP2986203B1 (en) | Classifying eeg signals in response to visual stimulus | |
| IL300879A (en) | A method and system for quantifying attention | |
| Ko et al. | Semi-supervised deep adversarial learning for brain-computer interface | |
| CN114564990A (zh) | 一种基于多通道反馈胶囊网络的脑电信号分类方法 | |
| Abdullah et al. | Assessment and Evaluation of cancer CT images using deep learning Techniques | |
| Jayadurga et al. | Leveraging Ensemble Techniques for Enhanced Eye State Classification with EEG Data | |
| Karaduman et al. | Determining the Demands of Disabled People by Artificial Intelligence Methods | |
| Kardam et al. | BSPKTM-SIFE-WST: bispectrum based channel selection using set-based-integer-coded fuzzy granular evolutionary algorithm and wavelet scattering transform for motor imagery EEG classification | |
| CN112085057A (zh) | 基于深度神经网络可视化的眼底图像生成方法及系统 | |
| Vishnupriya et al. | Hyperband-Optimized 1D CNN for Automated Seizure Classification in EEG Signals | |
| Azar | MSCABiNET: A Lightweight Attention-Enhanced CNN-BiLSTM Model for EEG-Based Emotion Recognition | |
| Ehtemami et al. | Analyzing and Clustering of baseline and non-baseline EEG signal using MATLAB toolboxes |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20191030 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20191031 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191216 |
|
| A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191216 |
|
| A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210225 |
|
| A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210302 |
|
| A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20210526 |
|
| A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210901 |
|
| TRDD | Decision of grant or rejection written | ||
| A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20211124 |
|
| A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20211221 |
|
| R150 | Certificate of patent or registration of utility model |
Ref document number: 6998959 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
| R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |