JP6998264B2 - Manufacturing method of laminated iron core and laminated iron core - Google Patents

Manufacturing method of laminated iron core and laminated iron core Download PDF

Info

Publication number
JP6998264B2
JP6998264B2 JP2018085111A JP2018085111A JP6998264B2 JP 6998264 B2 JP6998264 B2 JP 6998264B2 JP 2018085111 A JP2018085111 A JP 2018085111A JP 2018085111 A JP2018085111 A JP 2018085111A JP 6998264 B2 JP6998264 B2 JP 6998264B2
Authority
JP
Japan
Prior art keywords
iron core
resin
laminated iron
slot
magnetic pole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018085111A
Other languages
Japanese (ja)
Other versions
JP2018113861A5 (en
JP2018113861A (en
Inventor
毅 佐藤
裕介 蓮尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui High Tech Inc
Original Assignee
Mitsui High Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui High Tech Inc filed Critical Mitsui High Tech Inc
Publication of JP2018113861A publication Critical patent/JP2018113861A/en
Publication of JP2018113861A5 publication Critical patent/JP2018113861A5/en
Application granted granted Critical
Publication of JP6998264B2 publication Critical patent/JP6998264B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Iron Core Of Rotating Electric Machines (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、スロットに絶縁層を形成した積層鉄心及び積層鉄心の製造方法に関する。 The present invention relates to a laminated iron core having an insulating layer formed in a slot and a method for manufacturing the laminated iron core.

固定子鉄心(積層鉄心)は、スロットに樹脂を充填し、隣り合うスロットで形成される磁極部の周囲に絶縁層を形成することで、磁極部に巻線したコイルを絶縁している。
例えば、特許文献1には、固定子鉄心全体を樹脂成形金型で覆い、磁極部のみならず固定子鉄心の全表面に、樹脂からなる絶縁層を形成する技術が開示されている。しかし、固定子鉄心全体に絶縁層を形成する場合、樹脂の使用量が多くなって不経済である。
そこで、特許文献2のように、固定子鉄心を成形金型内に配置し、この成形金型内に樹脂を射出して、磁極部の周囲のみに部分的に絶縁層(ボビン)を形成する技術が提案されている。
The stator core (laminated core) insulates the coil wound around the magnetic pole portion by filling the slots with resin and forming an insulating layer around the magnetic pole portions formed by the adjacent slots.
For example, Patent Document 1 discloses a technique in which the entire stator core is covered with a resin molding die, and an insulating layer made of resin is formed not only on the magnetic pole portion but also on the entire surface of the stator core. However, when the insulating layer is formed on the entire stator core, the amount of resin used is large, which is uneconomical.
Therefore, as in Patent Document 2, the stator core is placed in the molding die, and the resin is injected into the molding die to partially form an insulating layer (bobbin) only around the magnetic pole portion. Technology has been proposed.

特開昭61-293136号公報Japanese Unexamined Patent Publication No. 61-293136 特開2006-211822号公報Japanese Unexamined Patent Publication No. 2006-21182

一般的に、固定子鉄心を構成する複数の鉄心片は、プレス金型で打抜き形成されるが、打抜かれた鉄心片は、真円ではなく楕円になろうとする傾向(楕円化傾向)があることが知られている。
このため、絶縁層を部分的に形成する場合、絶縁層を形成するために使用する金型と固定子鉄心の寸法精度の違いにより、固定子鉄心の外周に樹脂漏れが発生して、製品品質の低下を招くおそれがあった。特にスロットは、積層方向と半径方向に開口しているため、この開口した部分からの樹脂漏れが顕著であった。
Generally, a plurality of core pieces constituting the stator core are punched and formed by a press die, but the punched core pieces tend to be elliptical instead of a perfect circle (tendency to be elliptical). It is known.
For this reason, when the insulating layer is partially formed, resin leakage occurs on the outer circumference of the stator core due to the difference in dimensional accuracy between the mold used to form the insulating layer and the stator core, resulting in product quality. There was a risk of causing a decline in. In particular, since the slots are open in the stacking direction and the radial direction, resin leakage from the opened portions is remarkable.

本発明はかかる事情に鑑みてなされたもので、積層鉄心の寸法精度に影響されることなく、スロットに樹脂を充填する際の樹脂漏れを防止可能な積層鉄心及び積層鉄心の製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and provides a method for manufacturing a laminated core and a laminated core capable of preventing resin leakage when filling a slot with resin without being affected by the dimensional accuracy of the laminated core. The purpose is.

第1の発明に係る積層鉄心は、環状のヨーク部と、該ヨーク部の内周側に連接した複数の磁極部と、周方向に隣り合う前記磁極部間に配設されるスロットと、を備える積層鉄心において、
前記スロットにおける基端面、半径方向開口部、及び、前記磁極部の側面に樹脂で一体成形された単一部材からなる絶縁層を備え、前記各スロットに形成された前記絶縁層が平面視して環状であり、前記半径方向開口部が前記絶縁層によって閉じられ
前記磁極部の側面に形成される前記絶縁層の厚みが、前記積層鉄心の積層方向に徐々に薄く又は厚くなっている。
The laminated iron core according to the first invention has an annular yoke portion, a plurality of magnetic pole portions connected to the inner peripheral side of the yoke portion, and a slot arranged between the magnetic pole portions adjacent to each other in the circumferential direction. In the laminated iron core to prepare
An insulating layer made of a single member integrally molded with resin is provided on a proximal end surface, a radial opening, and a side surface of the magnetic pole portion in the slot, and the insulating layer formed in each slot is viewed in a plan view. It is annular and the radial opening is closed by the insulating layer.
The thickness of the insulating layer formed on the side surface of the magnetic pole portion is gradually reduced or thickened in the laminating direction of the laminated iron core .

第1の発明に係る積層鉄心において、磁極部の上面又は下面に絶縁層を備えることが好ましい。 In the laminated iron core according to the first invention, it is preferable to provide an insulating layer on the upper surface or the lower surface of the magnetic pole portion.

また、第1の発明に係る積層鉄心において、磁極部の上面又は下面に形成される絶縁層の角部が、R形状であること又は面取りさせていることが好ましい。 Further, in the laminated iron core according to the first invention, it is preferable that the corner portion of the insulating layer formed on the upper surface or the lower surface of the magnetic pole portion has an R shape or is chamfered.

第2の発明に係る積層鉄心の製造方法は、複数の鉄心片を積層した積層鉄心のスロットの周壁部に樹脂充填を行い、隣り合うスロットで形成される磁極部の周囲に絶縁層を形成する積層鉄心の製造方法において、スロット内に中子部材を配置し、スロットの周壁部と中子部材との間に樹脂を注入して、スロットにおける基端面、半径方向開口部、及び、磁極部の側面に単一部材からなる絶縁層を樹脂で一体成形する工程を含み、各スロットに形成された絶縁層が平面視して環状であり、半径方向開口部が絶縁層によって閉じられている。 In the method for manufacturing a laminated iron core according to the second invention, resin is filled in the peripheral wall portion of a slot of a laminated iron core in which a plurality of core pieces are laminated, and an insulating layer is formed around a magnetic pole portion formed by adjacent slots. In the method of manufacturing a laminated iron core, a core member is placed in the slot, resin is injected between the peripheral wall portion of the slot and the core member, and the base end surface, the radial opening, and the magnetic pole portion of the slot are formed. The step of integrally molding an insulating layer made of a single member on the side surface is included, the insulating layer formed in each slot is annular in a plan view, and the radial opening is closed by the insulating layer.

第2の発明に係る積層鉄心の製造方法において、スロットの半径方向開口部に閉塞部材を当接させて、スロットに樹脂を注入することが好ましい。 In the method for manufacturing a laminated iron core according to the second invention, it is preferable to bring the closing member into contact with the radial opening of the slot and inject the resin into the slot.

本発明に係る積層鉄心の樹脂封止方法において、積層鉄心の積層方向両端面にプレートをそれぞれ当接させ、積層鉄心の半径方向一端面に閉塞部材を当接させて、スロットの開口した部分を閉塞する場合、スロットに注入する樹脂の漏れ出しを防止できる。
特に、閉塞部材が積層鉄心の半径方向に拡縮可能である場合、積層鉄心の寸法精度に影響されることなく、スロットに注入する樹脂の漏れ出しを防止できる。
In the resin sealing method for the laminated core according to the present invention, the plates are brought into contact with both end faces in the stacking direction of the laminated core, and the closing member is brought into contact with one end surface in the radial direction of the laminated core to form an open portion of the slot. When it is blocked, it is possible to prevent the resin injected into the slot from leaking out.
In particular, when the closing member can be expanded and contracted in the radial direction of the laminated iron core, it is possible to prevent leakage of the resin injected into the slot without being affected by the dimensional accuracy of the laminated iron core.

ここで、中子部材をスロット内に配置するので、スロットに注入する樹脂の使用量を削減でき、また、巻線の領域を確保するために、機械加工によって樹脂を除去する必要がなくなる。更に、中子部材により、スロットの開口した部分への樹脂の流れ出しを抑制できるため、樹脂の漏れ出しを防止できる。
なお、プレートの開口部の内面と中子部材の側面との隙間を10μm以下にする場合、この隙間に樹脂が入り込むことがなくなるため、積層鉄心のスロットに樹脂を確実に注入できる。
Here, since the core member is arranged in the slot, the amount of resin to be injected into the slot can be reduced, and it is not necessary to remove the resin by machining in order to secure the winding area. Further, since the core member can suppress the outflow of the resin to the open portion of the slot, it is possible to prevent the resin from leaking out.
When the gap between the inner surface of the opening of the plate and the side surface of the core member is 10 μm or less, the resin does not enter the gap, so that the resin can be reliably injected into the slot of the laminated iron core.

また、プレートに樹脂流路を形成する場合、例えば、中子部材と磁極部の間に確実に樹脂を注入できる。 Further, when the resin flow path is formed in the plate, for example, the resin can be reliably injected between the core member and the magnetic pole portion.

なお、プレートの開口部が、絶縁層の形成範囲に対応して、平面視してスロットよりも大きく形成された場合、プレートの開口部への樹脂の注入を、プレートの開口部の一部に設けた切欠き部を基点にして行う。
樹脂の注入を行う金型に残存する樹脂と、プレートの開口部に残存する(即ち、磁極部に付着した)樹脂とは、一体となって硬化するため、樹脂の硬化後に金型を積層鉄心から離型する際、プレートの開口部で硬化した樹脂(即ち、絶縁層)に割れが発生し易い。このため、プレートの開口部に設けた切欠き部から、プレートの開口部へ樹脂を注入することで、切欠き部で硬化した樹脂に積極的に割れを発生させ、絶縁層の形成範囲で硬化した樹脂の割れを抑制、更には防止することで、良好な品質の(絶縁性の良好な)積層鉄心を製造できる。
When the opening of the plate is formed larger than the slot in a plan view corresponding to the formation range of the insulating layer, the injection of the resin into the opening of the plate is applied to a part of the opening of the plate. The notch provided is used as a starting point.
Since the resin remaining in the mold into which the resin is injected and the resin remaining in the opening of the plate (that is, adhering to the magnetic pole portion) are cured together, the mold is laminated after the resin is cured. When the mold is released from the mold, the resin (that is, the insulating layer) cured at the opening of the plate is liable to crack. Therefore, by injecting the resin into the opening of the plate from the notch provided in the opening of the plate, the resin cured in the notch is positively cracked and cured within the forming range of the insulating layer. By suppressing and further preventing cracking of the resin, it is possible to manufacture a laminated iron core of good quality (good insulation).

そして、積層鉄心の積層方向両端部の鉄心片について、隣り合う磁極片部を形成するスロット部の半径方向端部が閉じている場合、この閉じた部分とプレートを、平面視して重ねることができ、また、積層鉄心の鉄心片について、隣り合う磁極片部を形成するスロット部の半径方向端部の開口部が、除去可能な連結部で閉じられている場合、この連結部とプレートを、平面視して重ねることができる。これにより、積層鉄心の寸法精度に影響されることなく、スロットに注入する樹脂の漏れ出しを確実に防止できる(特に、スロットの積層方向の開口した部分からの樹脂の漏れ出しを防止できる)。
更に、上記した連結部を用いる場合、スロットに注入した樹脂を硬化させた後、鉄心片から連結部を除去することで、全てのスロット部の半径方向端部を開口できるため、モータ特性の低下を防止できる。
Then, when the radial ends of the slot portions forming the adjacent magnetic pole pieces are closed for the iron core pieces at both ends in the stacking direction of the laminated iron core, the closed portion and the plate can be overlapped with each other in a plan view. Also, for the core pieces of the laminated core, if the opening at the radial end of the slot that forms the adjacent magnetic pole pieces is closed by a removable connection, then this connection and the plate, It can be viewed in a plan view and overlapped. As a result, it is possible to reliably prevent the resin to be injected into the slot from leaking without being affected by the dimensional accuracy of the laminated iron core (in particular, it is possible to prevent the resin from leaking from the open portion in the stacking direction of the slot).
Further, when the above-mentioned connecting portion is used, the radial end portion of all the slot portions can be opened by removing the connecting portion from the iron core piece after curing the resin injected into the slot, so that the motor characteristics are deteriorated. Can be prevented.

そして、プレートのスロット先端側に位置する端面が、平面視して鉄心片のスロットの先端側の端面より基側に位置する場合、閉塞部材を積層鉄心の半径方向一端面に当接させる際に、閉塞部材がプレートの端面に接触することを防止できる。このため、積層鉄心の半径方向一端面に閉塞部材を確実に当接させることができるので、スロットの半径方向の開口した部分からの樹脂の漏れ出しを確実に防止できる。 When the end face located on the slot tip side of the plate is located on the base side of the end face on the tip end side of the slot of the iron core piece in a plan view, when the closing member is brought into contact with the radial end surface of the laminated iron core. , It is possible to prevent the closing member from coming into contact with the end face of the plate. Therefore, since the closing member can be reliably brought into contact with one end surface in the radial direction of the laminated iron core, leakage of the resin from the radial opening portion of the slot can be reliably prevented.

更に、閉塞部材の積層鉄心との当接部を弾性部材で構成する場合、例えば、積層鉄心の寸法にバラツキが生じても、弾性部材の変形によってバラツキを吸収できるため、樹脂の漏れ出しを確実に防止できる。 Further, when the contact portion of the closing member with the laminated iron core is made of an elastic member, for example, even if the dimensions of the laminated iron core vary, the variation can be absorbed by the deformation of the elastic member, so that the resin leaks reliably. Can be prevented.

また、スロットに樹脂を注入する前に、積層鉄心の半径方向他端面側に位置決め部材を配置する場合、この位置決め部材と閉塞部材とで、積層鉄心を半径方向両側から挟み込むことができる。
スロットに樹脂を注入する際、積層鉄心は、閉塞部材によって半径方向の内側から外側(又は、外側から内側)に向けて応力の影響を受け、変形し易くなる。このため、積層鉄心の半径方向他端面側に位置決め部材を配置することで、積層鉄心が閉塞部材によって応力の影響を受けても、対抗力を働かせることができる。これにより、積層鉄心の変形を抑制、更には防止できるので、例えば、磁極部(隣り合う磁極片部の間)の先側からの樹脂の漏れ出しを抑制、更には防止できる。
Further, when the positioning member is arranged on the other end surface side in the radial direction of the laminated iron core before the resin is injected into the slot, the laminated iron core can be sandwiched from both sides in the radial direction by the positioning member and the closing member.
When the resin is injected into the slot, the laminated iron core is affected by stress from the inside to the outside (or from the outside to the inside) in the radial direction by the closing member, and is easily deformed. Therefore, by arranging the positioning member on the other end surface side in the radial direction of the laminated iron core, it is possible to exert a counterforce even if the laminated iron core is affected by stress by the closing member. As a result, deformation of the laminated iron core can be suppressed and further prevented, so that, for example, leakage of resin from the front side of the magnetic pole portion (between adjacent magnetic pole pieces) can be suppressed and further prevented.

(A)は本発明の一実施の形態に係る積層鉄心の樹脂封止方法の説明図、(B)は同積層鉄心の樹脂封止方法を示す部分拡大平面図、(C)は変形例1に係る積層方向閉塞工程を示す部分拡大平面図である。(A) is an explanatory view of a resin sealing method of a laminated iron core according to an embodiment of the present invention, (B) is a partially enlarged plan view showing a resin sealing method of the laminated iron core, and (C) is a modified example 1. It is a partially enlarged plan view which shows the stacking direction closing process which concerns on. 同積層鉄心の樹脂封止方法の積層方向閉塞工程を示す部分斜視図である。It is a partial perspective view which shows the stacking direction closing process of the resin sealing method of the laminated iron core. 同積層鉄心の樹脂封止方法の半径方向閉塞工程を示す部分平面図である。It is a partial plan view which shows the radial closing process of the resin sealing method of the laminated iron core. (A)は図3の部分拡大平面図、(B)は図3のa-a矢視断面図である。(A) is a partially enlarged plan view of FIG. 3, and (B) is a cross-sectional view taken along the line aa of FIG. 変形例2に係る積層鉄心の説明図である。It is explanatory drawing of the laminated iron core which concerns on modification 2. 同積層鉄心の平面図である。It is a top view of the laminated iron core. (A)は変形例3に係る積層方向閉塞工程を示す部分拡大平面図、(B)は(A)のb-b矢視断面図である。(A) is a partially enlarged plan view showing a stacking direction closing step according to Modification 3, and (B) is a cross-sectional view taken along the line bb of (A). (A)は本発明の一実施の形態に係る積層鉄心の樹脂封止方法の半径方向閉塞工程を示す説明図、(B)、(C)はそれぞれ変形例4、5に係る半径方向閉塞工程を示す説明図である。(A) is an explanatory diagram showing a radial closing step of the resin sealing method of the laminated iron core according to the embodiment of the present invention, and (B) and (C) are radial closing steps according to Modifications 4 and 5, respectively. It is explanatory drawing which shows. (A)~(C)はそれぞれ変形例6~8に係る半径方向閉塞工程を示す説明図である。(A) to (C) are explanatory views which show the radial closing process which concerns on modification 6-8 respectively.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
まず、図1~図3を参照しながら、本発明の一実施の形態に係る積層鉄心の樹脂封止方法を用いて製造した積層鉄心10について説明する。
Subsequently, an embodiment embodying the present invention will be described with reference to the attached drawings, and the present invention will be understood.
First, the laminated iron core 10 manufactured by using the resin sealing method of the laminated iron core according to the embodiment of the present invention will be described with reference to FIGS. 1 to 3.

積層鉄心10は、固定子鉄心(ステータ)である。
この積層鉄心10は、環状の複数の鉄心片11、12を積層して形成されている。
図1(A)、(B)に示すように、鉄心片11は、積層鉄心10の積層方向両端部に位置するものであり、隣り合う磁極片部を形成するスロット部の半径方向端部(内側端部)が閉じている。また、この鉄心片11以外の(その他の)鉄心片12は、積層鉄心10の積層方向両端部を除く領域(積層方向中央部)に位置するものであり、隣り合う磁極片部を形成するスロット部の半径方向端部(内側端部)が開口部となっている(開口している)。
The laminated core 10 is a stator core (stator).
The laminated iron core 10 is formed by laminating a plurality of annular iron core pieces 11 and 12.
As shown in FIGS. 1A and 1B, the iron core pieces 11 are located at both ends of the laminated iron core 10 in the stacking direction, and the radial end portions of the slot portions forming the adjacent magnetic pole pieces are formed. Inner end) is closed. Further, the (other) iron core piece 12 other than the iron core piece 11 is located in a region (central portion in the stacking direction) excluding both ends in the stacking direction of the laminated iron core 10, and is a slot forming adjacent magnetic pole pieces. The radial end (inner end) of the portion is an opening (opening).

上記した鉄心片11、12は、環状の一体構造のものであるが、複数の円弧状の鉄心片部を環状に連結できる分割構造のものであってもよい。なお、鉄心片12については、複数の円弧状の鉄心片部の周方向の一部が連結部で繋がり、この連結部を折曲げて環状にできる構造のものでもよい。
また、積層鉄心は、それぞれ環状の複数の鉄心片を積層して形成した複数のブロック鉄心を、順次転積することで形成したものでもよい(図2~図4においては、この形態の積層鉄心を図示している)。なお、複数のブロック鉄心は、全て同一形状であるが、例えば、一部のブロック鉄心が異なる形状でもよい。
The above-mentioned iron core pieces 11 and 12 have an annular integrated structure, but may have a divided structure capable of connecting a plurality of arcuate iron core pieces in an annular shape. The iron core piece 12 may have a structure in which a part of a plurality of arcuate iron core pieces in the circumferential direction is connected by a connecting portion and the connecting portion can be bent to form an annular shape.
Further, the laminated core may be formed by sequentially rolling a plurality of block cores formed by laminating a plurality of annular core pieces (in FIGS. 2 to 4, this form of the laminated core). Is illustrated). The plurality of block cores all have the same shape, but for example, some block cores may have different shapes.

鉄心片11、12は、厚みが、例えば、0.10~0.5mm程度の電磁鋼板やアモルファス等からなる条材(薄板条材)から打抜き形成されるものである。なお、鉄心片11、12は、1枚の条材から打抜いたものや、条材を複数枚(例えば、2枚、更には3枚以上)重ねた状態で打抜いたものでもよい。
ここで、鉄心片11は、スロット部の半径方向端部が打抜かれることなく、隣り合う磁極片部の半径方向端部(先端部)を連結する連結部13が形成されたものである。この連結部13の半径方向の幅は、積層鉄心10の種類や大きさにもよるが、例えば、0.5~5mm程度である。
また、鉄心片12は、スロット部の半径方向端部が打抜かれ、隣り合う磁極片部の半径方向端部(先端部)に隙間が形成されたものである。
The iron core pieces 11 and 12 are formed by punching from a strip (thin plate strip) made of an electromagnetic steel sheet or amorphous steel having a thickness of, for example, about 0.10 to 0.5 mm. The iron core pieces 11 and 12 may be punched out from one strip, or may be punched in a state where a plurality of strips (for example, two or even three or more) are stacked.
Here, the iron core piece 11 is formed with a connecting portion 13 that connects the radial end portions (tip portions) of the adjacent magnetic pole pieces without punching out the radial end portion of the slot portion. The width of the connecting portion 13 in the radial direction is, for example, about 0.5 to 5 mm, although it depends on the type and size of the laminated iron core 10.
Further, in the iron core piece 12, the radial end portion of the slot portion is punched out, and a gap is formed at the radial end portion (tip portion) of the adjacent magnetic pole pieces.

積層鉄心10は、積層方向に隣り合う鉄心片11、12同士、鉄心片12、12同士が、かしめで連結されているが、かしめ、樹脂(熱硬化性樹脂(例えば、エポキシ樹脂)や熱可塑性樹脂)、接着剤、及び、溶接のいずれか1又は2以上を用いて、連結することもできる。
なお、上記した鉄心片11の枚数は、積層方向の片側で、例えば、1枚が好ましいが、複数枚(例えば、2枚又は3枚程度)でもよい。
In the laminated iron core 10, the iron core pieces 11 and 12 adjacent to each other in the laminating direction and the iron core pieces 12 and 12 are connected by caulking, but the caulking, resin (thermosetting resin (for example, epoxy resin) or thermoplastic) It can also be connected using any one or more of resin), an adhesive, and welding.
The number of the above-mentioned iron core pieces 11 is preferably one on one side in the stacking direction, for example, but may be a plurality of pieces (for example, about two or three pieces).

積層鉄心10は、環状のヨーク部14と、このヨーク部14の内周側に一体的に連接した複数の磁極部15とを有している。この周方向に隣り合う磁極部15は、周方向に隣り合うスロット16によって形成されている。
ヨーク部14と磁極部15は、ヨーク片部と磁極片部を有する鉄心片11、12を複数積層することで、それぞれ形成されている。この磁極片部は、条材に対してスロット部を打抜くことで形成され、この磁極片部を積層することでスロット16が形成される。
The laminated iron core 10 has an annular yoke portion 14 and a plurality of magnetic pole portions 15 integrally connected to the inner peripheral side of the yoke portion 14. The magnetic pole portions 15 adjacent to each other in the circumferential direction are formed by slots 16 adjacent to each other in the circumferential direction.
The yoke portion 14 and the magnetic pole portion 15 are formed by stacking a plurality of iron core pieces 11 and 12 having a yoke piece portion and a magnetic pole piece portion, respectively. The magnetic pole piece portion is formed by punching a slot portion with respect to the strip, and the slot 16 is formed by laminating the magnetic pole piece portion.

従って、スロット16は、積層鉄心10の積層方向両端部の半径方向端部が連結部13で閉じられ、積層鉄心10の積層方向両端部を除く領域の半径方向端部が、積層方向に渡って開口している。これにより、スロット16は、積層方向両側に開口した積層方向開口部17と、半径方向に開口した半径方向開口部18とを有する。
また、磁極部15の周囲(即ち、上面、下面、両側面、及び、基端面(スロット16の基端面))には絶縁層が形成されている。この絶縁層は、スロット16の周壁部に、上記した樹脂(積層方向に隣り合う鉄心片同士を連結するために用いられる樹脂)と同成分又は異なる成分の樹脂19を充填し硬化させることで形成される。
なお、図2、図3に示す符号20は、積層鉄心10をボルト締めする際に使用するボルト孔であって、ヨーク部14の半径方向外側に突出して、周方向に間隔を有して設けられたボルト耳20aに形成されている。このボルト孔20の個数は3個であるが、積層鉄心10の種類等によって種々変更でき、例えば、0個でもよく、また、2個以上の複数個でもよい。
Therefore, in the slot 16, the radial ends of both ends of the laminated core 10 in the stacking direction are closed by the connecting portion 13, and the radial ends of the region excluding both ends of the laminated core 10 in the stacking direction extend in the stacking direction. It is open. As a result, the slot 16 has a stacking direction opening 17 opened on both sides in the stacking direction and a radial opening 18 opened in the radial direction.
Further, an insulating layer is formed around the magnetic pole portion 15 (that is, the upper surface, the lower surface, both side surfaces, and the proximal end surface (the proximal end surface of the slot 16)). This insulating layer is formed by filling the peripheral wall portion of the slot 16 with a resin 19 having the same component or a different component as the above-mentioned resin (resin used for connecting adjacent iron core pieces in the stacking direction) and curing the resin. Will be done.
Reference numerals 20 shown in FIGS. 2 and 3 are bolt holes used when bolting the laminated iron core 10, and are provided so as to project outward in the radial direction of the yoke portion 14 and have an interval in the circumferential direction. It is formed on the bolt ear 20a. The number of the bolt holes 20 is 3, but it can be variously changed depending on the type of the laminated iron core 10, and may be, for example, 0 or a plurality of 2 or more.

上記したように、積層鉄心10は、隣り合う磁極片部を形成するスロット部の半径方向端部が閉じた鉄心片11と、隣り合う磁極片部を形成するスロット部の半径方向端部が開口部となった鉄心片12とを積層して形成したものであるが、積層鉄心は、鉄心片12のみを複数積層して形成したものでもよい。
この場合、積層鉄心の半径方向端部が、積層方向に渡って開口する。
As described above, in the laminated iron core 10, the iron core piece 11 in which the radial end portion of the slot portion forming the adjacent magnetic pole piece portion is closed and the radial end portion of the slot portion forming the adjacent magnetic pole piece portion are open. Although it is formed by laminating the iron core pieces 12 as the portions, the laminated iron core may be formed by laminating only a plurality of iron core pieces 12.
In this case, the radial end of the laminated iron core opens in the laminated direction.

また、図5、図6を参照しながら、変形例2に係る積層鉄心10aについて説明するが、この積層鉄心10aは、上記した積層鉄心10と略同様の構成であるため、符号に「a」を付し、詳しい説明を省略する。
積層鉄心10aは、固定子鉄心(ステータ)であり、複数の環状の鉄心片11aを積層して形成されたものである。
各鉄心片11aは、環状に配置した複数の磁極片部の先端(半径方向内側)に形成された環状(リング状)のスクラップ部(連結部の一例)13aにより、隣り合う磁極片部を形成するスロット部の半径方向端部の開口部が閉じられている。
Further, the laminated iron core 10a according to the modified example 2 will be described with reference to FIGS. 5 and 6, but since the laminated iron core 10a has substantially the same configuration as the above-mentioned laminated iron core 10, the reference numeral is “a”. Is added, and detailed explanation is omitted.
The laminated iron core 10a is a stator core (stator), and is formed by laminating a plurality of annular iron core pieces 11a.
Each iron core piece 11a forms adjacent magnetic pole pieces by an annular (ring-shaped) scrap portion (an example of a connecting portion) 13a formed at the tips (inside in the radial direction) of a plurality of magnetic pole pieces arranged in an annular shape. The opening at the radial end of the slot is closed.

このスクラップ部13aは、複数の鉄心片11aを積層することで、積層スクラップ体21となる。なお、各スクラップ部にかしめを形成し、複数のスクラップ部を連結して積層スクラップ体を形成することもでき、また、各スクラップ部を周方向に複数に分割して、積層スクラップ体を周方向に分割することもできる。
これにより、スロット16aは、半径方向に開口する半径方向開口部18aが、積層スクラップ体21により閉じられる。
The scrap portion 13a becomes a laminated scrap body 21 by laminating a plurality of iron core pieces 11a. It is also possible to form a caulking in each scrap part and connect a plurality of scrap parts to form a laminated scrap body, or to divide each scrap part into a plurality of pieces in the circumferential direction to form a laminated scrap body in the circumferential direction. It can also be divided into.
As a result, in the slot 16a, the radial opening 18a that opens in the radial direction is closed by the laminated scrap body 21.

積層スクラップ体21は、磁極部15aの周囲に絶縁層を形成した後、スロット16aの半径方向端部(半径方向開口部18a)を開口させるため、磁極部の先端から除去される(除去可能となっている)。
このため、鉄心片11aを前記した条材から打抜く際に、スクラップ部13aをプッシュバックにより形成し、各磁極片部の先端とは分離された状態にしておくのがよい。つまり、スクラップ部13aを鉄心片11aの各磁極片部の先端から一旦分離した後、再度嵌め込む。
The laminated scrap body 21 is removed from the tip of the magnetic pole portion (removable) in order to open the radial end portion (radial opening portion 18a) of the slot 16a after forming an insulating layer around the magnetic pole portion 15a. It has become).
Therefore, when the iron core piece 11a is punched out from the strip, it is preferable to form the scrap portion 13a by pushback and keep it in a state of being separated from the tip of each magnetic pole piece portion. That is, the scrap portion 13a is once separated from the tip of each magnetic pole piece portion of the iron core piece 11a, and then fitted again.

続いて、本発明の一実施の形態に係る積層鉄心の樹脂封止方法について、図1~図4を参照しながら説明する。
積層鉄心の樹脂封止方法は、金型(図示しない)を用いて条材から打抜いた複数の鉄心片11、12を積層して積層鉄心10を形成した後、複数のスロット16の周壁部に樹脂19を充填し硬化させて、磁極部15の周囲(ここでは、磁極部15の上面、下面、両側面、及び、基端面(スロット16の基端面))に絶縁層を形成する方法であり、積層鉄心製造工程、積層方向閉塞工程、半径方向閉塞工程、及び、樹脂充填工程、を有している。以下、詳しく説明する。
Subsequently, the resin sealing method of the laminated iron core according to the embodiment of the present invention will be described with reference to FIGS. 1 to 4.
In the resin sealing method of the laminated iron core, a plurality of iron core pieces 11 and 12 punched out from the strip using a die (not shown) are laminated to form the laminated iron core 10, and then the peripheral wall portions of the plurality of slots 16 are formed. Is filled with resin 19 and cured to form an insulating layer around the magnetic pole portion 15 (here, the upper surface, the lower surface, both side surfaces, and the proximal end surface (base end surface of the slot 16) of the magnetic pole portion 15). It has a laminated iron core manufacturing process, a laminating direction closing step, a radial closing step, and a resin filling step. Hereinafter, it will be described in detail.

(積層鉄心製造工程)
金型を用いて条材から打抜いた複数の鉄心片11、12を順次積層して、積層鉄心10を製造する。
この積層鉄心10は、環状のヨーク部14と、このヨーク部14の内周側に一体的に連接した複数の磁極部15とを有し、この磁極部15は、周方向に隣り合うスロット16で形成される。この時点では、磁極部15の周囲に、前記した絶縁層は形成されていない。
(Laminate iron core manufacturing process)
A plurality of iron core pieces 11 and 12 punched out from a strip using a die are sequentially laminated to manufacture a laminated iron core 10.
The laminated iron core 10 has an annular yoke portion 14 and a plurality of magnetic pole portions 15 integrally connected to the inner peripheral side of the yoke portion 14, and the magnetic pole portions 15 are adjacent slots 16 in the circumferential direction. Is formed by. At this point, the above-mentioned insulating layer is not formed around the magnetic pole portion 15.

なお、条材から鉄心片11、12を打抜くに際しては、積層鉄心10の積層方向両端部に位置する鉄心片11の場合、隣り合う磁極片部の先端部を連結させておき(連結部13を形成してスロット部の先端部を閉じ)、これ以外の鉄心片12の場合、隣り合う磁極片部の先端部に隙間を形成する(スロット部の先端部を開口させる)。
なお、連結部13の形成は、プッシュバックにより形成してもよい。つまり、連結部13の両端が鉄心片11から一旦分離された後、鉄心片11に嵌め込まれた形態としてもよい。
これにより、スロット16は、図1(A)に示すように、積層鉄心10の積層方向両端部の先端部が連結部13で閉じられ、前記した積層方向開口部17と半径方向開口部18を有する形状となる。
When punching the iron core pieces 11 and 12 from the strip, in the case of the iron core pieces 11 located at both ends of the laminated iron core 10 in the stacking direction, the tips of the adjacent magnetic pole pieces are connected (connecting portion 13). (The tip of the slot portion is closed), and in the case of the other iron core pieces 12, a gap is formed at the tips of the adjacent magnetic pole pieces (the tip of the slot portion is opened).
The connecting portion 13 may be formed by pushback. That is, both ends of the connecting portion 13 may be once separated from the iron core piece 11 and then fitted into the iron core piece 11.
As a result, as shown in FIG. 1A, in the slot 16, the tips of both ends of the laminated iron core 10 in the stacking direction are closed by the connecting portion 13, and the above-mentioned laminated direction opening 17 and the radial opening 18 are closed. It has a shape to have.

(積層方向閉塞工程)
図1(A)、図2に示すように、積層鉄心10の積層方向両端面である上面22と下面23にそれぞれ、上プレート24と下プレート25を当接させて、スロット16の積層方向開口部17(ここでは、後述する中子部材28との接触領域を除く部分)を閉じる。なお、図2は、説明の便宜上、積層鉄心10の上面22に上プレート24の一部が部分的に当接した状態を示しているが、実際は、上プレート24は環状となって、積層鉄心10の上面22を覆った状態となっている(図3も同様)。また、下プレート25も上プレート24と同様、環状となっているが、説明の便宜上、図2においては図示していない(図3も同様)。
(Laminating direction closing process)
As shown in FIGS. 1A and 2, the upper plate 24 and the lower plate 25 are brought into contact with the upper surface 22 and the lower surface 23, which are both end faces in the stacking direction of the laminated iron core 10, respectively, and the slot 16 is opened in the stacking direction. The portion 17 (here, the portion excluding the contact region with the core member 28 described later) is closed. Note that FIG. 2 shows a state in which a part of the upper plate 24 is partially in contact with the upper surface 22 of the laminated iron core 10 for convenience of explanation, but in reality, the upper plate 24 is annular and the laminated iron core is formed. The upper surface 22 of 10 is covered (the same applies to FIG. 3). Further, the lower plate 25 is also annular like the upper plate 24, but is not shown in FIG. 2 for convenience of explanation (the same applies to FIG. 3).

上下プレート24、25は、平面視して積層方向開口部17と重複する範囲に設置されている。具体的には、図1(A)、(B)に示すように、環状となった上プレート24は、その内周面(スロット先端側に位置する端面)が、平面視して磁極部15(スロット16)の先端より磁極部15の基側に位置し、かつ、連結部13上に位置するように、設置されている(下プレート25も同様)。また、上プレート24は、少なくとも積層方向開口部17を覆えばよく、ここではヨーク部14も覆っている。
なお、上プレート24(下プレート25も同様)の内周面は、図1(B)においては真円形状となっているが、これに限定されるものではなく、例えば、図1(C)に示す上プレート26のように、波打った形状とすることも、また、多角形状とすることもできる。
The upper and lower plates 24 and 25 are installed in a range overlapping the opening in the stacking direction 17 in a plan view. Specifically, as shown in FIGS. 1 (A) and 1 (B), the inner peripheral surface (the end surface located on the slot tip side) of the annular upper plate 24 has a magnetic pole portion 15 in a plan view. It is installed so as to be located on the base side of the magnetic pole portion 15 from the tip of the (slot 16) and on the connecting portion 13 (the same applies to the lower plate 25). Further, the upper plate 24 may cover at least the opening in the stacking direction, and here, the yoke portion 14 is also covered.
The inner peripheral surface of the upper plate 24 (the same applies to the lower plate 25) has a perfect circular shape in FIG. 1 (B), but is not limited to this, and is not limited to this, for example, FIG. 1 (C). Like the upper plate 26 shown in the above, it may have a wavy shape or a polygonal shape.

このように、上下プレート24、25で積層方向に拘束された積層鉄心10を、ベースプレート27上に配置する。
ベースプレート27には、図1(A)、図2、図3、図4(B)に示すように、各スロット16内に配置する中子部材28が、周方向に渡って複数立設配置されている。図2、図3においては、説明の便宜上、一部のスロット16についてのみ、中子部材28を配置した状態を図示しているが、実際は、全てのスロット16内に中子部材28が配置される。
また、ベースプレート27には、図2、図3に示すように、複数のボルト孔20にそれぞれ挿通可能な位置決めロッド28aが、周方向に渡って間隔を有して複数(ここでは3本)立設配置されている。
In this way, the laminated iron core 10 constrained in the laminating direction by the upper and lower plates 24 and 25 is arranged on the base plate 27.
As shown in FIGS. 1A, 2, 3 and 4B, a plurality of core members 28 arranged in each slot 16 are vertically arranged on the base plate 27 in the circumferential direction. ing. In FIGS. 2 and 3, for convenience of explanation, a state in which the core member 28 is arranged only in a part of the slots 16 is shown, but in reality, the core member 28 is arranged in all the slots 16. To.
Further, as shown in FIGS. 2 and 3, a plurality of positioning rods 28a (three in this case) that can be inserted into the plurality of bolt holes 20 stand at intervals in the circumferential direction on the base plate 27. It is installed.

なお、中子部材と位置決めロッドは、ベースプレートに設けることなく、上下プレートのいずれか一方に設けることもできる。
また、中子部材は、長手方向(積層方向)に幅狭又は幅広となったテーパ形状(傾斜角度:例えば、1度以下、更には0.5度以下)としてもよい。これにより、スロット内への中子部材の挿入や、後述する樹脂充填工程後に行う中子部材の取外しが容易となる。このとき、磁極部の両側面に形成される絶縁層(樹脂)の厚みは、中子部材に倣って積層鉄心の積層方向に徐々に薄く又は厚くなる。このため、磁極部にコイルを巻くに際し、絶縁層の厚みが薄い側(スロットの開口幅が広い方)からスロット内にコイルを挿入することで、コイルが挿入し易くなるという利点も得られる。
The core member and the positioning rod may be provided on either of the upper and lower plates without being provided on the base plate.
Further, the core member may have a tapered shape (inclination angle: for example, 1 degree or less, further 0.5 degree or less) narrow or wide in the longitudinal direction (stacking direction). This facilitates the insertion of the core member into the slot and the removal of the core member performed after the resin filling step described later. At this time, the thickness of the insulating layer (resin) formed on both side surfaces of the magnetic pole portion gradually becomes thinner or thicker in the laminating direction of the laminated iron core, following the core member. Therefore, when winding the coil around the magnetic pole portion, by inserting the coil into the slot from the side where the thickness of the insulating layer is thin (the one having the wider opening width of the slot), there is an advantage that the coil can be easily inserted.

この中子部材28は、その上端が、上下プレート24、25と積層鉄心10の合計高さより高い位置にあり(位置決めロッド28aも同様)、その周囲側面が、スロット16の内周面(スロット周壁)とは僅少の隙間を有するものである。なお、この隙間の幅は、形成する絶縁層の厚みに応じて種々変更できる。また、中子部材28の配置位置を、スロット16の半径方向開口部18側へ寄せることで、後述する樹脂充填工程における樹脂漏れの更なる抑制が可能になる。
このため、上下プレート24、25で拘束した積層鉄心10を、ベースプレート27上に載置することで、図4(B)に示すように、中子部材28は、上プレート24に形成された開口部29と、下プレート25に形成された開口部30を介して、積層鉄心10を積層方向に貫通し、その先部(上部)は、上プレート24の上方に突出する。
The upper end of the core member 28 is located at a position higher than the total height of the upper and lower plates 24 and 25 and the laminated iron core 10 (the same applies to the positioning rod 28a), and the peripheral side surface thereof is the inner peripheral surface of the slot 16 (slot peripheral wall). ) Has a small gap. The width of this gap can be variously changed according to the thickness of the insulating layer to be formed. Further, by moving the arrangement position of the core member 28 toward the radial opening 18 side of the slot 16, it is possible to further suppress the resin leakage in the resin filling step described later.
Therefore, by placing the laminated iron core 10 restrained by the upper and lower plates 24 and 25 on the base plate 27, the core member 28 has an opening formed in the upper plate 24 as shown in FIG. 4 (B). The laminated iron core 10 is penetrated in the laminated direction through the portion 29 and the opening 30 formed in the lower plate 25, and the tip portion (upper portion) thereof protrudes above the upper plate 24.

次に、ベースプレート27上に配置した積層鉄心10の上プレート24の上面に、モールド型31(上型)を載置する。
モールド型31は、図1(A)、図4(B)に示すように、樹脂19を収容する樹脂溜めポット32と、この樹脂溜めポット32内の樹脂19をスロット16に注入するプランジャー33とを有するものである。
また、モールド型31には、図4(B)に示すように、中子部材28の先部が嵌入可能な位置決め凹部34が、中子部材28(スロット16)の数に対応して、複数形成されている(位置決めロッド28aについても同様)。
Next, the mold mold 31 (upper mold) is placed on the upper surface of the upper plate 24 of the laminated iron core 10 arranged on the base plate 27.
As shown in FIGS. 1A and 4B, the mold 31 has a resin reservoir 32 for accommodating the resin 19 and a plunger 33 for injecting the resin 19 in the resin reservoir 32 into the slot 16. And have.
Further, as shown in FIG. 4B, the mold 31 has a plurality of positioning recesses 34 into which the tip portion of the core member 28 can be fitted, depending on the number of the core member 28 (slot 16). It is formed (the same applies to the positioning rod 28a).

これにより、スロット16内での中子部材28の位置決めができるため、樹脂溜めポット32内の樹脂19を、上プレート24(一方のプレート)に形成された樹脂流路35を介してスロット16に注入する際、注入時の圧力で中子部材28の位置がずれることを防止できる。なお、下プレートにも樹脂流路を形成することが好ましい。
上下プレート24、25に形成した開口部29、30の大きさは、平面視してスロット16の大きさより小さく、中子部材28が挿通可能で、かつ、スロット16への樹脂19の注入時に、中子部材28の側面と開口部29、30の内面との隙間から、樹脂19が漏れ出すことを抑制、更には防止可能な範囲で設定できる。この隙間の大きさは、樹脂19のフィラー径にもよるが、例えば、10μm以下(更には5μm以下)にすることが好ましい。
As a result, the core member 28 can be positioned in the slot 16, so that the resin 19 in the resin reservoir pot 32 is placed in the slot 16 via the resin flow path 35 formed in the upper plate 24 (one plate). At the time of injection, it is possible to prevent the position of the core member 28 from being displaced due to the pressure at the time of injection. It is preferable to form a resin flow path also on the lower plate.
The size of the openings 29, 30 formed in the upper and lower plates 24, 25 is smaller than the size of the slot 16 in a plan view, the core member 28 can be inserted, and the resin 19 is injected into the slot 16. The resin 19 can be prevented from leaking from the gap between the side surface of the core member 28 and the inner surfaces of the openings 29 and 30, and can be set within a range that can be prevented. The size of this gap depends on the filler diameter of the resin 19, but is preferably 10 μm or less (further, 5 μm or less), for example.

また、上プレート24には凹部(彫り込み)36が形成され、この上プレート24上にモールド型31を載置することで、樹脂19をスロット16に案内するための樹脂流路35が形成される。なお、図2、図3、図4(A)においては、説明の便宜上、樹脂流路35を大きく図示しているが、樹脂流路35は各スロット16にそれぞれ対応するため、実際は小さい。
図4(A)に示すように、樹脂流路35の樹脂流入口を、平面視して中子部材28を中心としてその周囲に複数(ここでは5箇所)設けることで、中子部材28の側面と開口部29、30の内面との隙間から、樹脂19を満遍なく(均等に)注入できる。なお、上記した上下プレート24、25は、スロット16の積層方向開口部17(ここでは、中子部材28を除く領域)を閉塞可能な構成であれば、特に限定されるものではなく、例えば、鉄心片11、12を打抜く条材から打抜かれたダミー板を用いることもできる。
Further, a recess (engraving) 36 is formed in the upper plate 24, and by placing the mold 31 on the upper plate 24, a resin flow path 35 for guiding the resin 19 to the slot 16 is formed. .. In FIGS. 2, 3, and 4 (A), the resin flow path 35 is shown in large size for convenience of explanation, but the resin flow path 35 is actually small because it corresponds to each slot 16.
As shown in FIG. 4A, the resin inflow port of the resin flow path 35 is provided in a plurality of (here, 5 places) around the core member 28 in a plan view, whereby the core member 28 is provided. The resin 19 can be injected evenly (evenly) through the gap between the side surface and the inner surface of the openings 29 and 30. The upper and lower plates 24 and 25 described above are not particularly limited as long as they can close the opening in the stacking direction of the slot 16 (here, the region excluding the core member 28), and are not particularly limited. It is also possible to use a dummy plate punched from a strip material for punching the iron core pieces 11 and 12.

また、上記した上プレート24の代わりに、図7(A)の中心線(一点鎖線)の右側に示す上プレート24aを用いて、スロット16の積層方向開口部17を閉じることもできる(下プレートも同様)。なお、図7(A)の中心線の左側には、比較例である上プレート24bを示している(図7(B)も同様)。
この上プレート24a、24bには開口部29a、29bがそれぞれ形成され、この開口部29a、29bの大きさを、図7(B)に示す磁極部15の上面22に形成する絶縁層36a、36bの形成範囲に対応して、図7(A)に示すように、平面視してスロット16(磁極部15の輪郭)よりも大きくしている(下プレートも同様)。
Further, instead of the upper plate 24 described above, the upper plate 24a shown on the right side of the center line (dashed line) in FIG. 7A can be used to close the stacking direction opening 17 of the slot 16 (lower plate). The same applies). The upper plate 24b, which is a comparative example, is shown on the left side of the center line in FIG. 7 (A) (the same applies to FIG. 7 (B)).
The upper plates 24a and 24b are formed with openings 29a and 29b, respectively, and the sizes of the openings 29a and 29b are set to the insulating layers 36a and 36b formed on the upper surface 22 of the magnetic pole portion 15 shown in FIG. 7B. As shown in FIG. 7 (A), it is made larger than the slot 16 (outline of the magnetic pole portion 15) in a plan view (the same applies to the lower plate).

この場合、樹脂の注入を行うモールド型(モールド型31と略同様の構成)に形成された樹脂注入口31a、31bは、その一部が、平面視して開口部29a、29bにそれぞれ重複するように配置される(図7(A)の斜線部)。
このとき、モールド型の樹脂注入口31a、31bに残存する樹脂と、上プレート24a、24bの開口部29a、29bに残存する樹脂とは、一体となって硬化するため、図7(A)、(B)の左側に示す比較例では、以下の問題がある。
樹脂の硬化後にモールド型を積層鉄心から離型する際、形成した絶縁層36b(特に、尖った角部)に、欠けや割れが発生し易くなる(図7(B)の左側の部分拡大図の斜線部)。このため、絶縁層36bの厚みが減少し、磁極部15と、これに巻いたコイルとの間で、必要な絶縁距離を確保できなくなり、絶縁不良を招くおそれがある。
In this case, a part of the resin injection ports 31a and 31b formed in the mold mold for injecting the resin (having substantially the same configuration as the mold mold 31) overlaps the openings 29a and 29b in a plan view, respectively. (The shaded area in FIG. 7A).
At this time, the resin remaining in the mold-type resin injection ports 31a and 31b and the resin remaining in the openings 29a and 29b of the upper plates 24a and 24b are cured together, so that FIG. 7 (A) shows. The comparative example shown on the left side of (B) has the following problems.
When the mold is released from the laminated iron core after the resin is cured, the formed insulating layer 36b (particularly, sharp corners) is likely to be chipped or cracked (partially enlarged view on the left side of FIG. 7B). The shaded area). Therefore, the thickness of the insulating layer 36b is reduced, and the required insulating distance cannot be secured between the magnetic pole portion 15 and the coil wound around the magnetic pole portion 15, which may lead to poor insulation.

そこで、上記した問題の対策として、図7(A)、(B)の右側に示すように、上プレート24aの開口部29aの内周側の一部に凹状の切欠き部30aを設け、この切欠き部30aを基点として(樹脂注入口31aと切欠き部30aの重複部分から)、上プレート24aの開口部29aへ樹脂を注入する。
なお、ここでは、切欠き部30aの形成位置を、開口部29aの半径方向中央部としているが、開口部に樹脂を注入できれば特に限定されるものではなく、例えば、半径方向端部でもよい。また、切欠き部30aの形状を、凹状にしているが、これに限定されるものではなく、例えば、その内側の輪郭形状を、円弧状、楕円弧状、U字状、V字状等にすることもできる。
Therefore, as a countermeasure against the above-mentioned problem, as shown on the right side of FIGS. 7A and 7B, a concave notch 30a is provided in a part of the inner peripheral side of the opening 29a of the upper plate 24a. Using the notch 30a as a base point (from the overlapping portion of the resin injection port 31a and the notch 30a), the resin is injected into the opening 29a of the upper plate 24a.
Here, the position where the cutout portion 30a is formed is the radial center portion of the opening portion 29a, but the present invention is not particularly limited as long as the resin can be injected into the opening portion, and may be, for example, a radial end portion. Further, the shape of the notch portion 30a is concave, but the shape is not limited to this, and for example, the contour shape inside the notch portion 30a is made into an arc shape, an elliptical arc shape, a U shape, a V shape, or the like. You can also do it.

これにより、磁極部15の上面22に形成される絶縁層36aの周方向の長さを、比較例である絶縁層36bの長さより長くできる。従って、絶縁性への影響が少ない部分、即ち、切欠き部30aで硬化させた樹脂に積極的に割れを発生させ、絶縁が必要となる領域(絶縁層36bの形成範囲に相当)で硬化させた樹脂の割れ(図7(B)の左側の部分拡大図の斜線部)を抑制、更には防止できるため、絶縁性の良好な積層鉄心を製造できる。
なお、図7(B)の右側に示すように、絶縁層36aの角部をR形状にしたり、また、面取りすることで、樹脂の割れの発生を抑制することもできる。この場合、形成する絶縁層の形状に対応して、モールド型等に加工を施すのがよい。
As a result, the length of the insulating layer 36a formed on the upper surface 22 of the magnetic pole portion 15 in the circumferential direction can be made longer than the length of the insulating layer 36b which is a comparative example. Therefore, the resin cured at the notch 30a, which has little effect on the insulating property, is positively cracked and cured in the region where insulation is required (corresponding to the formation range of the insulating layer 36b). Since cracking of the resin (shaded portion in the enlarged view on the left side of FIG. 7B) can be suppressed and further prevented, a laminated iron core having good insulating properties can be manufactured.
As shown on the right side of FIG. 7B, the occurrence of cracks in the resin can be suppressed by forming the corners of the insulating layer 36a into an R shape or chamfering the corners. In this case, it is preferable to process the mold or the like according to the shape of the insulating layer to be formed.

(半径方向閉塞工程)
図1(A)、(B)、図3に示すように、磁極部15の先端面で形成される積層鉄心10の内周面(半径方向一端面の一例)37に閉塞部材38を当接させて、スロット16の半径方向開口部18を閉じる。
閉塞部材38は、図1(A)、図3に示すように、逆円錐台状の昇降手段39と、この昇降手段39の周囲に複数設けられた拡縮部40とを有している。この昇降手段39は、軸心を中心として周方向に複数(ここでは6個)に分割されたガイド部41を有し、各ガイド部41の外側(先側)に拡縮部40が設けられている。
(Radical closing process)
As shown in FIGS. 1A, 1B, and 3B, the closing member 38 abuts on the inner peripheral surface (an example of one end surface in the radial direction) 37 of the laminated iron core 10 formed on the tip surface of the magnetic pole portion 15. And close the radial opening 18 of the slot 16.
As shown in FIGS. 1A and 3A, the closing member 38 has an inverted truncated cone-shaped elevating means 39 and a plurality of expansion / contraction portions 40 provided around the elevating means 39. The elevating means 39 has a guide portion 41 divided into a plurality (here, 6 pieces) in the circumferential direction about the axis, and an expansion / contraction portion 40 is provided on the outside (front side) of each guide portion 41. There is.

拡縮部40の基端には、ガイド部41の傾斜した外周面42に沿って摺動可能な斜面43が形成され、拡縮部40の先端には、積層鉄心10の内周面37に当接してスロット16の半径方向開口部18を閉じる垂直な当接面44が形成されている。また、各拡縮部40の基側にはスライド凸部(図示しない)が上下方向に設けられ、このスライド凸部がガイド部41の上下方向に形成されたスライド溝部に摺動可能に取付けられている(スライド凸部とスライド溝部の取付け箇所は逆でもよい)。
なお、各拡縮部40の下面は、自由状態(閉塞部材38が積層鉄心10の上方に位置する状態)では、昇降手段39(ガイド部41)の下面より下方に位置した状態となっている。
A slidable slope 43 is formed at the base end of the expansion / contraction portion 40 along the inclined outer peripheral surface 42 of the guide portion 41, and the tip of the expansion / contraction portion 40 abuts on the inner peripheral surface 37 of the laminated iron core 10. A vertical contact surface 44 is formed to close the radial opening 18 of the slot 16. Further, a slide convex portion (not shown) is provided in the vertical direction on the base side of each expansion / contraction portion 40, and the slide convex portion is slidably attached to the slide groove portion formed in the vertical direction of the guide portion 41. (The mounting points of the slide protrusion and the slide groove may be reversed).
The lower surface of each expansion / contraction portion 40 is located below the lower surface of the elevating means 39 (guide portion 41) in a free state (a state in which the closing member 38 is located above the laminated iron core 10).

これにより、昇降手段39を下降させることで、各拡縮部40の下面がベースプレート27の上面に接触し、各拡縮部40はガイド部41の外周面42に沿って上方へ移動すると共に、平面視して半径方向に拡がる方向に移動するため、各拡縮部40の当接面44を積層鉄心10の内周面37に当接させることができる。また、昇降手段39を上昇させることで、各拡縮部40はガイド部41の外周面42に沿って下方へ移動すると共に、平面視して半径方向に縮まる方向に移動するため、各拡縮部40の当接面44を積層鉄心10の内周面37から離すことができる。
このように、閉塞部材38は、積層鉄心10の半径方向に拡縮可能になっている。
なお、閉塞部材38の積層鉄心10との当接部(当接面44)は、弾性部材(例えば、フッ素系樹脂、シリコン系樹脂、ウレタン系樹脂等)で構成されていることが好ましい。
As a result, by lowering the elevating means 39, the lower surface of each expansion / contraction portion 40 comes into contact with the upper surface of the base plate 27, and each expansion / contraction portion 40 moves upward along the outer peripheral surface 42 of the guide portion 41 and is viewed in a plan view. Since it moves in the direction of expanding in the radial direction, the contact surface 44 of each expansion / contraction portion 40 can be brought into contact with the inner peripheral surface 37 of the laminated iron core 10. Further, by raising the elevating means 39, each of the expansion / contraction portions 40 moves downward along the outer peripheral surface 42 of the guide portion 41, and at the same time, moves in a direction of contraction in the radial direction in a plan view. The contact surface 44 of the above can be separated from the inner peripheral surface 37 of the laminated iron core 10.
In this way, the closing member 38 can be expanded and contracted in the radial direction of the laminated iron core 10.
The contact portion (contact surface 44) of the closing member 38 with the laminated iron core 10 is preferably made of an elastic member (for example, a fluorine-based resin, a silicon-based resin, a urethane-based resin, or the like).

上記したように、閉塞部材38の各拡縮部40を、平面視して半径方向に拡がる方向に移動させて、積層鉄心10の内周面37に当接させた場合、積層鉄心10は、閉塞部材38によって、半径方向の内側から外側に向けて応力の影響を受けることになる。
このとき、積層鉄心10は、図2、図3、図8(A)に示すように、ボルト孔20に位置決めロッド28aが挿通され、ベースプレート27上に位置決めされているため、位置決めロッド28aが配置された領域(位相)では、上記した閉塞部材38による応力に対する対抗力が働き、積層鉄心10の変形は抑制、更には防止される。
しかしながら、位置決めロッド28aによる対抗力の影響が小さい領域(位相)では、閉塞部材38による応力によって積層鉄心10が変形し、磁極部15(隣り合う磁極片部の間)の先側から、樹脂が漏れ出し易くなる。
As described above, when each of the expansion / contraction portions 40 of the closing member 38 is moved in the direction of expanding in the radial direction in a plan view and brought into contact with the inner peripheral surface 37 of the laminated iron core 10, the laminated iron core 10 is closed. The member 38 is affected by stress from the inside to the outside in the radial direction.
At this time, as shown in FIGS. 2, 3, and 8 (A), the laminated iron core 10 has the positioning rod 28a inserted into the bolt hole 20 and positioned on the base plate 27, so that the positioning rod 28a is arranged. In the region (phase), the counterforce against the stress caused by the closing member 38 acts, and the deformation of the laminated iron core 10 is suppressed or further prevented.
However, in the region (phase) where the influence of the counterforce by the positioning rod 28a is small, the laminated iron core 10 is deformed by the stress of the closing member 38, and the resin is released from the tip side of the magnetic pole portion 15 (between the adjacent magnetic pole pieces). It becomes easy to leak.

そこで、スロット16に樹脂19を注入する前に、図8(B)、(C)、図9(A)~(C)の形態にすることが好ましい。
図8(B)は、閉塞部材38とは反対側に位置する積層鉄心10の外周面(半径方向他端面の一例)45側に、積層鉄心10の位置決め部材46を配置し、位置決め部材46と閉塞部材38の各拡縮部40とで、積層鉄心10を半径方向両側から挟み込んでいる。
具体的には、位置決め部材46を、円柱状の複数(ここでは、3本)の位置決めピン47で構成し、この位置決めピン47を積層鉄心10の周方向に等間隔で、ベースプレート(ベースプレート27と略同様の構成)に立設配置している。
Therefore, before injecting the resin 19 into the slot 16, it is preferable to form the forms shown in FIGS. 8 (B), 8 (C), and 9 (A) to 9 (C).
In FIG. 8B, the positioning member 46 of the laminated iron core 10 is arranged on the outer peripheral surface (an example of the other end surface in the radial direction) 45 side of the laminated iron core 10 located on the side opposite to the closing member 38, and the positioning member 46 The laminated iron core 10 is sandwiched between the expansion / contraction portions 40 of the closing member 38 from both sides in the radial direction.
Specifically, the positioning member 46 is composed of a plurality of columnar (here, three) positioning pins 47, and the positioning pins 47 are arranged at equal intervals in the circumferential direction of the laminated iron core 10 with the base plate (base plate 27). It is placed upright in a structure (almost the same configuration).

この位置決めピン47は、積層鉄心10の周方向に隣り合う位置決めロッド28aの間に位置し、しかも、3本の位置決めピン47と3本の位置決めロッド28aを、積層鉄心10の軸心を中心として等角度に配置している。なお、ここでは、閉塞部材38の各拡縮部40に対抗する位置に、位置決めピン47と位置決めロッド28aを配置している。
これにより、位置決めロッド28aによる対抗力の影響が小さい領域を、位置決めピン47で補完できるため、積層鉄心10の変形を抑制、更には防止できる。
従って、磁極部15(隣り合う磁極片部の間)の先側(内径側)からの樹脂の漏れ出しを抑制、更には防止できる。
The positioning pin 47 is located between the positioning rods 28a adjacent to each other in the circumferential direction of the laminated iron core 10, and the three positioning pins 47 and the three positioning rods 28a are centered on the axis of the laminated iron core 10. They are arranged at equal angles. Here, the positioning pin 47 and the positioning rod 28a are arranged at positions facing each of the expansion / contraction portions 40 of the closing member 38.
As a result, the region where the influence of the counterforce by the positioning rod 28a is small can be complemented by the positioning pin 47, so that the deformation of the laminated iron core 10 can be suppressed or further prevented.
Therefore, leakage of the resin from the front side (inner diameter side) of the magnetic pole portion 15 (between the adjacent magnetic pole pieces) can be suppressed and further prevented.

図8(C)は、上記した図8(B)において、積層鉄心10の外周面45に、平面視してV字状の切欠き溝48を形成し、この切欠き溝48内に位置決めピン47の一部を嵌入させた状態で当接させている。
このように、積層鉄心10の形状を変更することで、位置決めピン47による対抗力を更に高めることができる。また、積層鉄心10の位置決め精度が高められるというメリットも生じる。
8 (C) shows a V-shaped notch groove 48 formed in a plan view on the outer peripheral surface 45 of the laminated iron core 10 in the above-mentioned FIG. 8 (B), and a positioning pin is formed in the notch groove 48. A part of 47 is brought into contact with the fitting.
By changing the shape of the laminated iron core 10 in this way, the counterforce by the positioning pin 47 can be further increased. In addition, there is an advantage that the positioning accuracy of the laminated iron core 10 is improved.

図9(A)は、上記した図8(B)に示した積層鉄心10の周方向に隣り合う位置決めロッド28aと位置決めピン47の間に、更に位置決めピン47を配置している。即ち、積層鉄心10の周方向に隣り合う位置決めロッド28aの間に、3本(複数)の位置決めピン47を配置し、しかも、9本の位置決めピン47と3本の位置決めロッド28aを、積層鉄心10の軸心を中心として等角度に配置している。
なお、新たに配置された位置決めピン47(図8(B)で配置されていない位置決めピン47)は、隣り合う拡縮部40の間と対抗する位置に配置されている。
In FIG. 9A, the positioning pin 47 is further arranged between the positioning rod 28a and the positioning pin 47 adjacent to each other in the circumferential direction of the laminated iron core 10 shown in FIG. 8B. That is, three (plural) positioning pins 47 are arranged between the positioning rods 28a adjacent to each other in the circumferential direction of the laminated iron core 10, and the nine positioning pins 47 and the three positioning rods 28a are placed on the laminated iron core. It is arranged at an equal angle around the axis of 10.
The newly arranged positioning pin 47 (positioning pin 47 not arranged in FIG. 8B) is arranged at a position opposite to the space between the adjacent expansion / contraction portions 40.

図9(B)は、積層鉄心10の外周面45側に配置する位置決め部材49を、積層鉄心10の外周面45に当接可能な当接面50を備えた、平面視して円弧状の複数(ここでは、3個)の位置決めブロック51で構成したものである。この位置決めブロック51は、積層鉄心10の周方向に等間隔で、積層鉄心10の周方向に隣り合うボルト耳20aの間に位置するように、ベースプレート(ベースプレート27と略同様の構成)に立設配置しているが、ベースプレートとは独立して配置してもよい。
なお、各位置決めブロック51は、積層鉄心10側(積層鉄心10の軸心側)へ押圧(加圧)することもできる。
FIG. 9B shows an arcuate shape in a plan view, wherein the positioning member 49 arranged on the outer peripheral surface 45 side of the laminated iron core 10 is provided with a contact surface 50 capable of contacting the outer peripheral surface 45 of the laminated iron core 10. It is composed of a plurality of (here, three) positioning blocks 51. The positioning block 51 is erected on a base plate (similar to the base plate 27) so as to be located between bolt ears 20a adjacent to each other in the circumferential direction of the laminated iron core 10 at equal intervals in the circumferential direction of the laminated iron core 10. Although it is arranged, it may be arranged independently of the base plate.
Each positioning block 51 can also be pressed (pressurized) toward the laminated iron core 10 side (axial core side of the laminated iron core 10).

また、上記した積層鉄心10は、ボルト耳20aが形成されたものであるが、図9(C)に示すボルト耳20aのない積層鉄心10bでも、積層鉄心10bの外周面(半径方向他端面の一例)52側に、積層鉄心10bの位置決め部材53を配置して、位置決め部材53と閉塞部材38とで、積層鉄心10bを半径方向両側から挟み込むことができる。
この位置決め部材53を、複数(ここでは、6本)の位置決めピン47で構成し、この位置決めピン47を積層鉄心10bの周方向に等間隔で、ベースプレートに立設配置している。なお、6本の位置決めピン47は、積層鉄心10bの軸心を中心として等角度に配置されている。
Further, although the above-mentioned laminated iron core 10 is formed with bolt ears 20a, even in the laminated iron core 10b without bolt ears 20a shown in FIG. 9C, the outer peripheral surface of the laminated iron core 10b (the other end surface in the radial direction). Example) A positioning member 53 of the laminated iron core 10b can be arranged on the 52 side, and the laminated iron core 10b can be sandwiched between the positioning member 53 and the closing member 38 from both sides in the radial direction.
The positioning member 53 is composed of a plurality of (here, six) positioning pins 47, and the positioning pins 47 are vertically arranged on the base plate at equal intervals in the circumferential direction of the laminated iron core 10b. The six positioning pins 47 are arranged at equal angles with respect to the axis of the laminated iron core 10b.

(樹脂充填工程)
図1(A)、図4(A)、(B)に示すように、上下プレート24、25、中子部材28、及び、閉塞部材38によって閉空間としたスロット16に樹脂19を注入する。
樹脂19は、モールド型31のプランジャー33を押し下げることで、樹脂溜めポット32内から樹脂流路35を介して、中子部材28とスロット周壁との間に注入される。次に、スロット16に注入された樹脂19を硬化させることで、磁極部15の上面、下面、両側面、及び、基端面に、絶縁層を形成できる。
そして、各拡縮部40の当接面44を積層鉄心10の内周面37から離した後、積層鉄心10から上下プレート24、25、及び、中子部材28を取外すことで、各磁極部15の周囲に絶縁層が形成された積層鉄心10が得られる。
(Resin filling process)
As shown in FIGS. 1 (A), 4 (A), and (B), the resin 19 is injected into the upper and lower plates 24 and 25, the core member 28, and the slot 16 which is closed by the closing member 38.
The resin 19 is injected from inside the resin reservoir 32 between the core member 28 and the peripheral wall of the slot via the resin flow path 35 by pushing down the plunger 33 of the mold 31. Next, by curing the resin 19 injected into the slot 16, an insulating layer can be formed on the upper surface, the lower surface, both side surfaces, and the base end surface of the magnetic pole portion 15.
Then, after separating the contact surface 44 of each expansion / contraction portion 40 from the inner peripheral surface 37 of the laminated iron core 10, the upper and lower plates 24 and 25 and the core member 28 are removed from the laminated iron core 10, so that each magnetic pole portion 15 A laminated iron core 10 having an insulating layer formed around the core 10 is obtained.

上記した閉空間としたスロット16への樹脂19の注入は、モールド型31により積層鉄心10に対し、積層方向に一定荷重を加えた状態で行う。なお、一定荷重とは、例えば、1つの積層鉄心10あたり5~100kN程度である。
ここで、荷重が5kN未満の場合、積層鉄心は積厚偏差の影響を受けるため、荷重不足によって積層鉄心の積層方向端部で隙間が生じ、樹脂の漏れ出しや未充填が発生するおそれがある。一方、荷重が100kN超の場合、加えられた荷重の解放時(モールド型の除去時)に、各鉄心片が元の状態に戻ろうとするため(スプリングバックにより)、硬化させた樹脂に割れが発生するおそれがある。
The resin 19 is injected into the slot 16 having the closed space described above in a state where a constant load is applied to the laminated iron core 10 in the laminating direction by the mold 31. The constant load is, for example, about 5 to 100 kN per one laminated iron core 10.
Here, when the load is less than 5 kN, the laminated core is affected by the stack thickness deviation, so that a gap may occur at the end of the laminated core in the stacking direction due to insufficient load, and resin leakage or unfilling may occur. .. On the other hand, when the load exceeds 100 kN, each iron core piece tries to return to its original state (due to springback) when the applied load is released (when the mold is removed), so that the cured resin cracks. It may occur.

なお、磁極部15の上面と下面を覆う樹脂19は、積層鉄心10と当接する上下プレート24、25の面に、図示しないざぐり(彫り込み)を形成することで、磁極部15の両側面を覆う樹脂19と一体形成され、その結果、磁極部15の周囲に絶縁層が形成される。
ここで、さぐりの深さ形態は、任意で設定してよい。
樹脂密封性を向上させたい場合は、ざぐりの深さを深く形成することが好ましく、樹脂量を削減したい場合は、ざぐりの深さを浅く形成することが好ましい。
また、磁極部15の上面と下面に絶縁層を形成しない場合であっても、磁極部15の両側面に連通するよう、上面と下面の一部の位置にざぐりを設定することが好ましい。この場合、樹脂量の削減に加え、鉄心片11が積層鉄心10から剥がれることを防止することができる。
The resin 19 that covers the upper surface and the lower surface of the magnetic pole portion 15 covers both side surfaces of the magnetic pole portion 15 by forming counterbore (engraving) (not shown) on the surfaces of the upper and lower plates 24 and 25 that are in contact with the laminated iron core 10. It is integrally formed with the resin 19, and as a result, an insulating layer is formed around the magnetic pole portion 15.
Here, the depth form of the search may be set arbitrarily.
When it is desired to improve the resin sealing property, it is preferable to form a deep counterbore, and when it is desired to reduce the amount of resin, it is preferable to form a shallow counterbore.
Further, even when the insulating layer is not formed on the upper surface and the lower surface of the magnetic pole portion 15, it is preferable to set a counterbore at a part of the upper surface and the lower surface so as to communicate with both side surfaces of the magnetic pole portion 15. In this case, in addition to reducing the amount of resin, it is possible to prevent the iron core piece 11 from peeling off from the laminated iron core 10.

上記したように、上下プレート24、25と閉塞部材38を用いて樹脂封止を行うに際し、積層鉄心10(鉄心片11)を用いることが、スロット16に注入する樹脂19の漏れ出しを防止する観点から望ましい。なお、樹脂封止後に、連結部13を機械加工で除去してもよく、これにより、電気的特性を向上させることができる。
しかし、前記した鉄心片12のみを複数積層した積層鉄心でも、上下プレート24、25と閉塞部材38を用いた樹脂封止を行うことによって、積層鉄心10よりも漏れ出しの防止効果は劣るものの、従来と比較して漏れ出しの防止効果を向上できる。
As described above, when the resin is sealed using the upper and lower plates 24 and 25 and the closing member 38, the use of the laminated iron core 10 (iron core piece 11) prevents the resin 19 to be injected into the slot 16 from leaking out. Desirable from the point of view. After sealing the resin, the connecting portion 13 may be removed by machining, whereby the electrical characteristics can be improved.
However, even in the laminated iron core in which only the above-mentioned iron core pieces 12 are laminated, the effect of preventing leakage is inferior to that of the laminated iron core 10 by performing resin sealing using the upper and lower plates 24 and 25 and the closing member 38. The effect of preventing leakage can be improved as compared with the conventional method.

なお、前記した積層鉄心10aについては、図5、図6に示すように、半径方向開口部18aが積層スクラップ体21により閉じられている。このため、上記した樹脂充填工程でスロット16aに樹脂19を注入する場合、注入する樹脂19の半径方向開口部18aからの流出は、積層スクラップ体21によって塞き止められる。
従って、上記した半径方向閉塞工程では、閉塞部材38の拡縮部40の当接面44を、積層スクラップ体21の内周面37aに当接させることで、閉塞部材38を、樹脂19の注入圧で積層スクラップ体21が変形しない程度に、予備的に使用することができる。
なお、積層鉄心10aの各磁極部15aの周囲に絶縁層を形成し、この積層鉄心10aから、閉塞部材38、上下プレート24、25、及び、中子部材(図示しない)を取外した後は、積層スクラップ体21を磁極部15aに対して積層方向にずらすことで、積層スクラップ体21を除去する。これにより、スロット16aの半径方向開口部18aが開口する。
As for the laminated iron core 10a described above, as shown in FIGS. 5 and 6, the radial opening 18a is closed by the laminated scrap body 21. Therefore, when the resin 19 is injected into the slot 16a in the resin filling step described above, the outflow of the injected resin 19 from the radial opening 18a is blocked by the laminated scrap body 21.
Therefore, in the radial closing step described above, the contact surface 44 of the expansion / contraction portion 40 of the closing member 38 is brought into contact with the inner peripheral surface 37a of the laminated scrap body 21, so that the closing member 38 is injected with the resin 19. It can be used preliminaryly to the extent that the laminated scrap body 21 is not deformed.
After forming an insulating layer around each magnetic pole portion 15a of the laminated iron core 10a and removing the closing member 38, the upper and lower plates 24, 25, and the core member (not shown) from the laminated iron core 10a, The laminated scrap body 21 is removed by shifting the laminated scrap body 21 with respect to the magnetic pole portion 15a in the stacking direction. As a result, the radial opening 18a of the slot 16a opens.

以上のように、本発明の積層鉄心の樹脂封止方法を適用することで、積層鉄心の寸法精度に影響されることなく、スロットに樹脂を充填する際の樹脂漏れを防止できる。 As described above, by applying the resin sealing method of the laminated iron core of the present invention, it is possible to prevent resin leakage when filling the slot with the resin without being affected by the dimensional accuracy of the laminated iron core.

以上、本発明を、実施の形態を参照して説明してきたが、本発明は何ら上記した実施の形態に記載の構成に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組合せて本発明の積層鉄心の樹脂封止方法を構成する場合も本発明の権利範囲に含まれる。
例えば、前記実施の形態においては、積層鉄心の積層方向両端面にプレートを当接させる積層方向閉塞工程を行った後、積層鉄心の半径方向一端面に閉塞部材を当接させる半径方向閉塞工程を行った場合について説明したが、半径方向閉塞工程を行った後に積層方向閉塞工程を行ってもよく、また、積層方向閉塞工程と半径方向閉塞工程を同時に行ってもよい。なお、半径方向閉塞工程で使用する閉塞部材は、前記実施の形態においては、複数の拡縮部が同期して半径方向に拡縮する構成となっていたが、各拡縮部が個別に半径方向に拡縮可能な構成でもよい。
Although the present invention has been described above with reference to the embodiments, the present invention is not limited to the configuration described in the above-described embodiments, and the matters described in the claims. It also includes other embodiments and variations that may be considered within the scope. For example, the case where the resin sealing method for the laminated iron core of the present invention is formed by combining a part or all of the above-described embodiments and modifications thereof is also included in the scope of rights of the present invention.
For example, in the above-described embodiment, after performing the stacking direction closing step of abutting the plates on both end faces in the stacking direction of the laminated core, the radial closing step of contacting the closing member with the radial one end surface of the laminated core is performed. Although the case where this is performed has been described, the stacking direction closing step may be performed after the radial closing step is performed, or the stacking direction closing step and the radial closing step may be performed at the same time. In the above-described embodiment, the closing member used in the radial closing step has a configuration in which a plurality of expansion / contraction portions are synchronously expanded / contracted in the radial direction, but each expansion / contraction portion is individually expanded / contracted in the radial direction. It may be a possible configuration.

また、前記実施の形態においては、樹脂封止の対象である積層鉄心が固定子鉄心の場合について説明したが、スロットが設けられた回転子鉄心でもよい。なお、積層鉄心としては、スロットが、半径方向の内側端部に開口したものに限定されるものではなく、半径方向の外側端部に開口したものでもよい。
そして、前記実施の形態においては、スロットのみに樹脂を注入した場合について説明したが、積層鉄心の構成に応じて、例えば、磁石挿入孔が形成されている場合や、複数の鉄心片を連結するための連結用孔が形成されている場合には、スロットへ樹脂を注入すると共に、磁石挿入孔や連結用孔にも樹脂を注入(同時注入)することができる。
Further, in the above-described embodiment, the case where the laminated iron core to be resin-sealed is a stator core has been described, but a rotor core provided with a slot may be used. The laminated iron core is not limited to the slot opened at the inner end portion in the radial direction, and may be opened at the outer end portion in the radial direction.
Then, in the above-described embodiment, the case where the resin is injected only into the slots has been described, but depending on the configuration of the laminated iron core, for example, when a magnet insertion hole is formed or a plurality of iron core pieces are connected. When the connecting hole for the purpose is formed, the resin can be injected into the slot and the resin can be injected (simultaneously injected) into the magnet insertion hole and the connecting hole.

更に、前記実施の形態においては、スロットへの樹脂の注入を、積層鉄心全体に対して一度に行った場合について説明したが、例えば、積層鉄心を予め設定した角度回動させながら、各スロットに順次樹脂の注入を行うこともできる。
なお、スロットへの樹脂の注入は、1つのプランジャー(樹脂溜めポット)から1つのスロットへ行うことができるが、樹脂流路の形成位置を種々変更することにより、1つのプランジャーから複数のスロットへ行うこともできる。
また、樹脂の注入は、積層鉄心の上方から行うことに限定されるものではなく、下方から行うこともできる。
Further, in the above-described embodiment, the case where the resin is injected into the slots at once for the entire laminated iron core has been described. However, for example, the laminated iron core is rotated by a preset angle to each slot. It is also possible to inject the resin sequentially.
The resin can be injected into one slot from one plunger (resin reservoir pot), but by changing the formation position of the resin flow path in various ways, a plurality of resins can be injected from one plunger. You can also go to the slot.
Further, the injection of the resin is not limited to being performed from above the laminated iron core, and may be performed from below.

10、10a、10b:積層鉄心、11、11a、12:鉄心片、13:連結部、13a:スクラップ部(連結部)、14、14a:ヨーク部、15、15a:磁極部、16、16a:スロット、17、17a:積層方向開口部、18、18a:半径方向開口部、19:樹脂、20:ボルト孔、20a:ボルト耳、21:積層スクラップ体、22、22a:上面(端面)、23、23a:下面(端面)、24、24a、24b:上プレート、25:下プレート、26:上プレート、27:ベースプレート、28:中子部材、28a:位置決めロッド、29、29a、29b、30:開口部、30a:切欠き部、31:モールド型、31a、31b:樹脂注入口、32:樹脂溜めポット、33:プランジャー、34:位置決め凹部、35:樹脂流路、36:凹部、36a、36b:絶縁層、37、37a:内周面(半径方向一端面)、38:閉塞部材、39:昇降手段、40:拡縮部、41:ガイド部、42:外周面、43:斜面、44:当接面、45:外周面(半径方向他端面)、46:位置決め部材、47:位置決めピン、48:切欠き溝、49:位置決め部材、50:当接面、51:位置決めブロック、52:外周面(半径方向他端面)、53:位置決め部材
10, 10a, 10b: Laminated iron core, 11, 11a, 12: Iron core piece, 13: Connecting part, 13a: Scrap part (connecting part), 14, 14a: York part, 15, 15a: Magnetic pole part, 16, 16a: Slots, 17, 17a: Laminated openings, 18, 18a: Radial openings, 19: Resin, 20: Bolt holes, 20a: Bolt ears, 21: Laminated scraps, 22, 22a: Top surface (end face), 23 , 23a: Bottom surface (end face), 24, 24a, 24b: Upper plate, 25: Lower plate, 26: Upper plate, 27: Base plate, 28: Core member, 28a: Positioning rod, 29, 29a, 29b, 30: Opening, 30a: Notch, 31: Mold type, 31a, 31b: Resin inlet, 32: Resin reservoir, 33: Plunger, 34: Positioning recess, 35: Resin flow path, 36: Recess, 36a, 36b: Insulation layer, 37, 37a: Inner peripheral surface (one end surface in the radial direction), 38: Closing member, 39: Elevating means, 40: Expansion / contraction portion, 41: Guide portion, 42: Outer peripheral surface, 43: Slope, 44: Contact surface, 45: outer peripheral surface (radial other end surface), 46: positioning member, 47: positioning pin, 48: notch groove, 49: positioning member, 50: contact surface, 51: positioning block, 52: outer circumference Surface (radial other end surface), 53: Positioning member

Claims (3)

環状のヨーク部と、該ヨーク部の内周側に連接した複数の磁極部と、周方向に隣り合う前記磁極部間に配設されるスロットと、を備える積層鉄心において、
前記スロットにおける基端面、半径方向開口部、及び、前記磁極部の側面に樹脂で一体成形された単一部材からなる絶縁層を備え、前記各スロットに形成された前記絶縁層が平面視して環状であり、前記半径方向開口部が前記絶縁層によって閉じられ
前記磁極部の側面に形成される前記絶縁層の厚みが、前記積層鉄心の積層方向に徐々に薄く又は厚くなることを特徴とする積層鉄心。
In a laminated iron core including an annular yoke portion, a plurality of magnetic pole portions connected to the inner peripheral side of the yoke portion, and a slot arranged between the magnetic pole portions adjacent to each other in the circumferential direction.
An insulating layer made of a single member integrally molded with resin is provided on a proximal end surface, a radial opening, and a side surface of the magnetic pole portion in the slot, and the insulating layer formed in each slot is viewed in a plan view. It is annular and the radial opening is closed by the insulating layer.
A laminated iron core characterized in that the thickness of the insulating layer formed on the side surface of the magnetic pole portion gradually becomes thinner or thicker in the laminating direction of the laminated iron core.
複数の鉄心片を積層した積層鉄心のスロットの周壁部に樹脂充填を行い、隣り合う前記スロットで形成される磁極部の周囲に絶縁層を形成する積層鉄心の製造方法において、
前記スロット内に中子部材を配置し、前記スロットの周壁部と前記中子部材との間に樹脂を注入して、前記スロットにおける基端面、半径方向開口部、及び、前記磁極部の側面に単一部材からなる絶縁層を樹脂で一体成形する工程を含み、
前記各スロットに形成された前記絶縁層が平面視して環状であり、前記半径方向開口部が前記絶縁層によって閉じられていることを特徴とする積層鉄心の製造方法。
In a method for manufacturing a laminated iron core in which a peripheral wall portion of a slot of a laminated iron core in which a plurality of iron core pieces are laminated is filled with resin and an insulating layer is formed around a magnetic pole portion formed in the adjacent slots.
A core member is arranged in the slot, and resin is injected between the peripheral wall portion of the slot and the core member to form a proximal end surface, a radial opening, and a side surface of the magnetic pole portion in the slot. Including the process of integrally molding an insulating layer made of a single member with resin.
A method for manufacturing a laminated iron core, wherein the insulating layer formed in each of the slots is annular in a plan view, and the radial opening is closed by the insulating layer.
請求項に記載の積層鉄心の製造方法において、前記スロットの半径方向開口部に閉塞部材を当接させて、前記スロットに樹脂を注入することを特徴とする積層鉄心の製造方法。 The method for manufacturing a laminated iron core according to claim 2 , wherein a closing member is brought into contact with the radial opening of the slot, and resin is injected into the slot.
JP2018085111A 2015-08-11 2018-04-26 Manufacturing method of laminated iron core and laminated iron core Active JP6998264B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015159079 2015-08-11
JP2015159079 2015-08-11

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016010715A Division JP6335944B2 (en) 2015-08-11 2016-01-22 Resin sealing method for laminated core

Publications (3)

Publication Number Publication Date
JP2018113861A JP2018113861A (en) 2018-07-19
JP2018113861A5 JP2018113861A5 (en) 2019-02-14
JP6998264B2 true JP6998264B2 (en) 2022-01-18

Family

ID=58048145

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2016010715A Active JP6335944B2 (en) 2015-08-11 2016-01-22 Resin sealing method for laminated core
JP2018085111A Active JP6998264B2 (en) 2015-08-11 2018-04-26 Manufacturing method of laminated iron core and laminated iron core

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2016010715A Active JP6335944B2 (en) 2015-08-11 2016-01-22 Resin sealing method for laminated core

Country Status (1)

Country Link
JP (2) JP6335944B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017163797A (en) * 2016-03-11 2017-09-14 本田技研工業株式会社 Manufacturing method of stator for electric motor and stator for electric motor
JP7042666B2 (en) * 2018-03-28 2022-03-28 株式会社三井ハイテック Manufacturing method of iron core products
JP2023150514A (en) * 2022-03-31 2023-10-16 株式会社三井ハイテック Method for manufacturing core part of rotary electric machine, apparatus for manufacturing core part, and core part

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028188A1 (en) 2001-09-21 2003-04-03 Aisin Aw Co., Ltd. Core with insulation member, and method of producing the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6260447A (en) * 1985-09-09 1987-03-17 Toshiba Corp Molding equipment for molded type stator
JPH0650939B2 (en) * 1988-06-27 1994-06-29 三菱電機株式会社 Electric motor stator manufacturing method
JPH0993881A (en) * 1995-09-20 1997-04-04 Fujitsu General Ltd Molding die for insulating stator
JP3299090B2 (en) * 1995-09-20 2002-07-08 株式会社富士通ゼネラル Molds for stator insulation
JP2003143791A (en) * 2001-11-02 2003-05-16 Toyota Motor Corp Stator of rotating-electric machine
JP2003324913A (en) * 2002-05-08 2003-11-14 Aisin Aw Co Ltd Method of manufacturing core equipped with insulating material, and core manufactured thereby
JP2005086852A (en) * 2003-09-05 2005-03-31 Yaskawa Electric Corp Stator of rotating machine
US20060145558A1 (en) * 2004-05-28 2006-07-06 Toshiaki Kashihara Alternator for a vehicle
JP2006340491A (en) * 2005-06-01 2006-12-14 Mitsui High Tec Inc Method for manufacturing stator laminated core
JP2007295764A (en) * 2006-04-27 2007-11-08 Hitachi Ltd Stator of rotary electric machine and ac generator
JP5139903B2 (en) * 2008-07-16 2013-02-06 株式会社三井ハイテック Laminated iron core and method for manufacturing the same
JP5688919B2 (en) * 2010-05-11 2015-03-25 株式会社三井ハイテック Manufacturing method of laminated iron core
JP5399343B2 (en) * 2010-08-20 2014-01-29 株式会社三井ハイテック Permanent magnet resin sealing method and laminated iron core manufactured by the method
JP5805385B2 (en) * 2010-12-14 2015-11-04 株式会社三井ハイテック Manufacturing method of laminated iron core
JP5839851B2 (en) * 2011-06-23 2016-01-06 日立オートモティブシステムズ株式会社 Rotating electric machine
JP2015073406A (en) * 2013-10-04 2015-04-16 日産自動車株式会社 Mold forming method and mold forming device for stator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003028188A1 (en) 2001-09-21 2003-04-03 Aisin Aw Co., Ltd. Core with insulation member, and method of producing the same

Also Published As

Publication number Publication date
JP2017038505A (en) 2017-02-16
JP6335944B2 (en) 2018-05-30
JP2018113861A (en) 2018-07-19

Similar Documents

Publication Publication Date Title
JP6998264B2 (en) Manufacturing method of laminated iron core and laminated iron core
US8729748B2 (en) Split stator and manufacturing method thereof
JP5981295B2 (en) Resin sealing method for laminated core
US8578592B2 (en) Method of manufacturing laminated rotor core
JP5451934B1 (en) Manufacturing method of laminated iron core
JP6383202B2 (en) Manufacturing method of laminated iron core and laminated iron core
JP6417470B2 (en) Resin filling method and resin filling apparatus for core with embedded magnet
JP2016093006A (en) Manufacturing method for rotor
JP2015100157A (en) Method of manufacturing rotor
US9948166B2 (en) Method for producing stator
JP2017038505A5 (en)
JP6814568B2 (en) Laminated iron core
JP6670135B2 (en) Manufacturing method of laminated core
JP6638586B2 (en) Reactor manufacturing method
US20200127539A1 (en) Rotor core manufacturing method, rotor, and motor
US20200227205A1 (en) Fabrication method for an inductor with a vertical vinding and injection molding tooling thereof
JP5773678B2 (en) Manufacturing method of laminated iron core
JP6459869B2 (en) Resin injection method
JP5794848B2 (en) Manufacturing method of laminated iron core
JP2011125116A (en) Manufacturing method and manufacturing device of rotor
JP7434723B2 (en) ignition coil
JP5911312B2 (en) Manufacturing method of rotor core
KR102593130B1 (en) Stator and manufacturing method for the same
KR102605537B1 (en) Stator
WO2018168649A1 (en) Motor stator

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20181227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200608

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210119

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210127

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210202

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20210219

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20210224

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210622

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210831

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211025

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211116

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211214

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211220

R150 Certificate of patent or registration of utility model

Ref document number: 6998264

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150