JP6997044B2 - Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model - Google Patents

Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model Download PDF

Info

Publication number
JP6997044B2
JP6997044B2 JP2018124514A JP2018124514A JP6997044B2 JP 6997044 B2 JP6997044 B2 JP 6997044B2 JP 2018124514 A JP2018124514 A JP 2018124514A JP 2018124514 A JP2018124514 A JP 2018124514A JP 6997044 B2 JP6997044 B2 JP 6997044B2
Authority
JP
Japan
Prior art keywords
laminated
base material
welded bead
laminated model
modeling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018124514A
Other languages
Japanese (ja)
Other versions
JP2020001075A (en
Inventor
伸志 佐藤
岳史 山田
雄幹 山崎
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2018124514A priority Critical patent/JP6997044B2/en
Publication of JP2020001075A publication Critical patent/JP2020001075A/en
Application granted granted Critical
Publication of JP6997044B2 publication Critical patent/JP6997044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Butt Welding And Welding Of Specific Article (AREA)
  • Laser Beam Processing (AREA)

Description

本発明は、積層造形物の積層造形計画設計方法、製造方法、及び製造装置、並びにプログラムに関する。 The present invention relates to a laminated modeling planning design method, a manufacturing method, a manufacturing apparatus, and a program of a laminated model.

近年、生産手段として3Dプリンタを用いた造形のニーズが高まっており、金属材料を用いた造形の実用化に向けて研究開発が進められている。金属材料を造形する3Dプリンタは、レーザや電子ビーム、更にはアーク等の熱源を用いて、金属粉体や金属ワイヤを溶融させ、溶融金属を積層させることで積層造形物を作製する。
また、板状部材同士を溶接する際に、接合に関する所定のパラメータから反り量を予測し、そり量を制御して所望の形状の接合体とする技術が開示されている(例えば、特許文献1参照)。
In recent years, there has been an increasing need for modeling using a 3D printer as a means of production, and research and development are being promoted toward the practical application of modeling using metal materials. A 3D printer for modeling a metal material uses a heat source such as a laser, an electron beam, or an arc to melt a metal powder or a metal wire, and laminates the molten metal to produce a laminated model.
Further, there is disclosed a technique of predicting a warp amount from a predetermined parameter related to joining when welding plate-shaped members to each other and controlling the warp amount to obtain a joined body having a desired shape (for example, Patent Document 1). reference).

特開2007-237248号公報Japanese Unexamined Patent Publication No. 2007-237248

ところで、溶融金属を積層させて積層造形物を製造する積層造形方法では、母材に溶着ビードからなる溶着ビード層を積層することで、任意の形状を直接的に造形していく。このとき、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層には、熱収縮を伴う変形が生じて造形精度が低下するおそれがある。このため、この熱収縮に伴う変形を極力抑えて積層造形することが望まれている。 By the way, in the laminated modeling method in which molten metal is laminated to produce a laminated model, an arbitrary shape is directly modeled by laminating a welded bead layer made of a welded bead on a base material. At this time, the welded bead layer made of the welded bead obtained by melting and solidifying the filler metal may be deformed with heat shrinkage, and the molding accuracy may be lowered. Therefore, it is desired to perform laminated modeling while suppressing deformation due to this heat shrinkage as much as possible.

本発明の目的は、積層造形時の熱収縮に伴う変形を極力抑えて造形精度を高めることが可能な積層造形物の積層造形計画設計方法、製造方法、及び製造装置、並びにプログラムを提供することにある。 An object of the present invention is to provide a laminated modeling planning design method, a manufacturing method, a manufacturing apparatus, and a program of a laminated model that can suppress deformation due to heat shrinkage during the laminated modeling as much as possible and improve the modeling accuracy. It is in.

本発明は下記構成からなる。
(1) 1つの母材に、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層を複数積層して造形する積層造形物の積層造形計画設計方法であって、
造形する前記積層造形物の3次元形状データを用いて、前記溶着ビード層の積層方向を設定する積層方向設定工程と、
前記積層造形物を1つの前記積層方向について2つの領域に分割する分割位置を設定する分割位置設定工程であって、前記分割位置に前記母材を配置して、前記母材の複数の領域に対向する各対向面に、前記積層方向に沿って前記溶着ビード層を形成して前記複数の領域を形成する、と仮定したとき、前記溶着ビードの熱による前記積層造形物全体の熱収縮が最小となる前記母材の位置である中立位置を前記分割位置に設定する分割位置設定工程と、
前記分割位置を含む大きさ及び形状の前記母材を選択する母材選択工程と、
を含む、積層造形物の積層造形計画設計方法。
(2) (1)記載の積層造形計画設計方法によって決定された積層造形手順に応じて、前記母材に前記溶着ビード層を積層して前記積層造形物を造形する積層造形物の製造方法。
(3) (1)記載の積層造形計画設計方法に応じて、積層造形手順を決定する制御部と、
決定された前記積層造形手順に応じて駆動され、前記母材に前記溶着ビード層を積層して前記積層造形物を造形する造形部と、
を備える積層造形物の製造装置。
(4) 1つの母材に、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層を複数積層して造形する積層造形物の積層造形計画を決定する手順を、コンピュータに実行させるプログラムであって、
前記コンピュータに、
造形する前記積層造形物の3次元形状データを用いて、前記溶着ビード層の積層方向を設定する手順と、
前記積層造形物を1つの前記積層方向について2つの領域に分割する分割位置を求める手順であって、前記分割位置に前記母材を配置して、前記母材の複数の領域に対向する各対向面に、前記積層方向に沿って前記溶着ビード層を形成して前記各領域を形成する、と仮定したとき、前記溶着ビードの熱による前記積層造形物全体の熱収縮が最小となる前記母材の位置である中立位置を前記分割位置に設定する手順と、
前記分割位置を含む大きさ及び形状の前記母材を選択する手順と、
を実行させるプログラム。
The present invention has the following configuration.
(1) A method for planning and designing a laminated model in which a plurality of welded bead layers made of welded beads obtained by melting and solidifying a filler metal are laminated on one base material.
A stacking direction setting step for setting the stacking direction of the welded bead layer using the three-dimensional shape data of the laminated model to be modeled, and a stacking direction setting step.
In the division position setting step of setting the division position for dividing the laminated model into two regions in one stacking direction, the base material is arranged at the division position and the base material is arranged in a plurality of regions of the base material. Assuming that the welded bead layer is formed on each of the facing surfaces to form the plurality of regions along the stacking direction, the heat shrinkage of the entire laminated model due to the heat of the welded bead is minimized. The division position setting step of setting the neutral position , which is the position of the base metal, to the division position,
A base material selection step of selecting the base material having a size and shape including the division position, and
Laminated modeling planning design method for laminated modeling including.
(2) A method for manufacturing a laminated model in which the welded bead layer is laminated on the base material to form the laminated model according to the layered modeling procedure determined by the laminated modeling planning and design method described in (1). ..
(3) A control unit that determines the laminated modeling procedure according to the laminated modeling planning and design method described in (1).
A modeling unit that is driven according to the determined laminated modeling procedure and that forms the laminated model by laminating the welded bead layer on the base material.
Equipment for manufacturing laminated objects.
(4) A program that causes a computer to execute a procedure for determining a laminated modeling plan for a laminated model in which a plurality of welded bead layers composed of welded beads obtained by melting and solidifying a filler metal are laminated on one base material. And
To the computer
A procedure for setting the stacking direction of the welded bead layer using the three-dimensional shape data of the laminated model to be modeled, and a procedure for setting the stacking direction of the welded bead layer.
It is a procedure for obtaining a division position for dividing the laminated model into two regions in one stacking direction, in which the base material is arranged at the division position and each facing a plurality of regions of the base material is opposed to each other. Assuming that the welded bead layer is formed on the surface along the laminated direction to form the respective regions, the base material that minimizes the thermal shrinkage of the entire laminated model due to the heat of the welded bead. The procedure for setting the neutral position, which is the position of, to the divided position, and
A procedure for selecting the base material having a size and shape including the division position, and
A program to execute.

本発明によれば、積層造形時の熱収縮に伴う変形を極力抑えて造形精度を高めることが可能な積層造形物の積層造形計画設計方法、製造方法、及び製造装置、並びにプログラムを提供できる。 INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a laminated modeling planning design method, a manufacturing method, a manufacturing apparatus, and a program of a laminated model that can suppress deformation due to heat shrinkage during the laminated modeling as much as possible and improve the modeling accuracy.

本発明の積層造形物を製造する製造装置の概略構成図である。It is a schematic block diagram of the manufacturing apparatus which manufactures the laminated model | product of this invention. 本発明の製造方法によって製造する積層造形物の一例を示す概略側面図である。It is a schematic side view which shows an example of the laminated model | manufacturing thing manufactured by the manufacturing method of this invention. 積層方向設定工程を説明する積層造形物の模式図である。It is a schematic diagram of a laminated model | structure explaining the stacking direction setting process. 分割位置設定工程を説明する積層造形物の模式図である。It is a schematic diagram of a laminated model | structure explaining the division position setting process. 母材選択工程を説明する積層造形物の模式図である。It is a schematic diagram of a laminated model | structure explaining the base material selection process. 積層造形工程を説明する積層造形物の模式図である。It is a schematic diagram of the laminated model | structure which explains the laminated modeling process. 製造した積層造形物の概略側面図である。It is a schematic side view of the manufactured laminated model. 参考例に係る積層造形物の概略側面図である。It is a schematic side view of the laminated model | structure which concerns on a reference example. 参考例に係る積層造形物の熱収縮による変形状態を示す積層造形物の模式図である。It is a schematic diagram of a laminated model which shows the deformation state by heat shrinkage of the laminated model which concerns on a reference example. 本例の製造方法によって製造した積層造形物の熱収縮による変形状態を示す積層造形物の模式図である。It is a schematic diagram of a laminated model which shows the deformation state by heat shrinkage of the laminated model manufactured by the manufacturing method of this example. 変形例1に係る積層造形物を示す図であって、(a)は正面図、(b)は上面図、(c)は下面図、(d)は側面図である。It is a figure which shows the laminated model | structure which concerns on modification 1, (a) is a front view, (b) is a top view, (c) is a bottom view, (d) is a side view. 変形例2に係る積層造形物を示す図であって、(a)は正面図、(b)は側面図である。It is a figure which shows the laminated model | structure which concerns on modification 2, (a) is a front view, (b) is a side view. 変形例2に係る積層造形物の熱収縮による変形状態を示す図であって、(a)は製造途中の積層造形物の概略正面図、(b)は製造した積層造形物の概略正面図である。It is a figure which shows the deformation state by the heat shrinkage of the laminated model which concerns on modification 2, (a) is the schematic front view of the laminated model in the process of manufacturing, (b) is the schematic front view of the manufactured laminated model. be. 変形例2に係る積層造形物の製造手順の一例を示す図であって、(a)~(d)はそれぞれ製造途中の積層造形物の概略正面図である。It is a figure which shows an example of the manufacturing procedure of the laminated structure which concerns on modification 2, (a) to (d) are schematic front views of the laminated model in the process of manufacturing, respectively. 変形例3に係る積層造形物における中立位置を示す概略側面図である。It is a schematic side view which shows the neutral position in the laminated model | structure which concerns on modification 3. FIG. 変形例3に係る積層造形物の積層造形計画を説明する図であって、(a)は分割位置設定工程を説明する積層造形物の模式図、(b)は母材選択工程を説明する積層造形物の模式図である。It is a figure explaining the laminated modeling plan of the laminated model which concerns on modification 3, (a) is a schematic diagram of a laminated model explaining a division position setting process, (b) is a stack explaining the base material selection process. It is a schematic diagram of a modeled object. 変形例3に係る積層造形物の他の積層造形計画を説明する図であって、(a)は分割位置設定工程を説明する積層造形物の模式図、(b)は母材選択工程を説明する積層造形物の模式図である。It is a figure explaining another laminated modeling plan of the laminated model which concerns on modification 3, (a) is a schematic diagram of a laminated model explaining a division position setting process, (b) explains a base material selection process. It is a schematic diagram of a laminated modeled object. 変形例4に係る積層造形物を示す図であって、(a)は正面図、(b)は側面図である。It is a figure which shows the laminated model | structure which concerns on the modification 4, (a) is a front view, (b) is a side view. 変形例4に係る積層造形物の製造手順を示す図であって、(a)及び(b)はそれぞれ製造途中の積層造形物の正面図である。It is a figure which shows the manufacturing procedure of the laminated model | structure which concerns on modification 4, (a) and (b) are the front view of the laminated model which is in the process of manufacturing, respectively. 変形例5に係る積層造形物の正面図である。It is a front view of the laminated model | structure which concerns on modification 5. 変形例5に係る積層造形物を製造する際の積層方向設定工程、分割位置設定工程及び母材選択工程を説明する積層造形物の概略正面図である。It is a schematic front view explaining the stacking direction setting process, the division position setting process, and the base material selection process at the time of manufacturing a laminated model | structure which concerns on modification 5. 変形例5に係る積層造形物の製造手順の一例を示す図であって、(a)~(f)はそれぞれ製造途中の積層造形物の概略正面図である。It is a figure which shows an example of the manufacturing procedure of the laminated structure which concerns on modification 5, and (a) to (f) are schematic front views of the laminated model in the process of manufacturing, respectively.

以下、本発明の実施形態について、図面を参照して詳細に説明する。
図1は本発明の積層造形物を製造する製造装置の概略構成図である。
本構成の積層造形物の製造装置100は、積層造型装置である造形部11と、造形部11を統括制御する造形コントローラ13と、電源装置15と、を備える。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic configuration diagram of a manufacturing apparatus for manufacturing a laminated model of the present invention.
The laminated model manufacturing apparatus 100 having this configuration includes a modeling unit 11 which is a laminated modeling device, a modeling controller 13 that controls the modeling unit 11 in an integrated manner, and a power supply device 15.

造形部11は、先端軸にトーチ17が設けられたトーチ移動機構としての溶接ロボット19と、トーチ17に溶加材(溶接ワイヤ)Fmを供給する溶加材供給部21とを有する。溶接ロボット19は、例えば6軸の自由度を有する多関節ロボットであり、ロボットアームの先端軸に取り付けたトーチ17には、溶加材Fmが連続供給可能に支持される。トーチ17の位置や姿勢は、ロボットアームの自由度の範囲で3次元的に任意に設定可能となっている。 The modeling unit 11 has a welding robot 19 as a torch moving mechanism provided with a torch 17 on the tip shaft, and a filler material supply unit 21 that supplies the filler material (welding wire) Fm to the torch 17. The welding robot 19 is, for example, an articulated robot having a degree of freedom of 6 axes, and the filler metal Fm is continuously supplied to the torch 17 attached to the tip axis of the robot arm. The position and posture of the torch 17 can be arbitrarily set three-dimensionally within the range of the degree of freedom of the robot arm.

トーチ17は、溶加材Fmを保持しつつ、シールドガス雰囲気で溶加材Fmの先端からアークを発生する。トーチ17は、不図示のシールドノズルを有し、シールドノズルからシールドガスが供給されるようになっている。アーク溶接法としては、被覆アーク溶接や炭酸ガスアーク溶接等の消耗電極式、TIG溶接やプラズマアーク溶接等の非消耗電極式のいずれであってもよく、作製する積層造形物に応じて適宜選定される。例えば、消耗電極式の場合、シールドノズルの内部にはコンタクトチップが配置され、溶融電流が給電される溶加材Fmがコンタクトチップに保持される。 The torch 17 generates an arc from the tip of the filler Fm in a shield gas atmosphere while holding the filler Fm. The torch 17 has a shield nozzle (not shown), and the shield gas is supplied from the shield nozzle. The arc welding method may be either a consumable electrode type such as shielded metal arc welding or carbon dioxide arc welding, or a non-consumable electrode type such as TIG welding or plasma arc welding, and is appropriately selected according to the laminated model to be manufactured. Weld. For example, in the case of the consumable electrode type, a contact tip is arranged inside the shield nozzle, and the filler metal Fm to which the melting current is supplied is held by the contact tip.

溶加材Fmは、あらゆる市販の溶接ワイヤを用いることができる。例えば、軟鋼,高張力鋼及び低温用鋼用のマグ溶接及びミグ溶接ソリッドワイヤ(JIS Z 3312)、軟鋼,高張力鋼及び低温用鋼用アーク溶接フラックス入りワイヤ(JIS Z 3313)等で規定されるワイヤを用いることができる。 As the filler material Fm, any commercially available welding wire can be used. For example, it is defined by MAG welding and MIG welding solid wire (JIS Z 3312) for mild steel, high tension steel and low temperature steel, arc welding flux containing wire for mild steel, high tension steel and low temperature steel (JIS Z 3313) and the like. Wire can be used.

溶加材Fmは、ロボットアーム等に取り付けた不図示の繰り出し機構により、溶加材供給部21からトーチ17に送給される。そして、造形コントローラ13からの指令により、溶接ロボット19はトーチ17を移動しつつ、連続送給される溶加材Fmを溶融及び凝固させる。これにより、溶加材Fmの溶融凝固体である溶着ビードが形成される。そして、この溶着ビードからなる溶着ビード層を積層させることで積層造形物Wを製造する。 The filler material Fm is fed from the filler material supply unit 21 to the torch 17 by a feeding mechanism (not shown) attached to a robot arm or the like. Then, in response to a command from the modeling controller 13, the welding robot 19 moves the torch 17 to melt and solidify the filler metal Fm that is continuously fed. As a result, a welded bead, which is a melt-solidified body of the filler metal Fm, is formed. Then, the laminated model W is manufactured by laminating the welded bead layer made of the welded bead.

溶加材Fmを溶融させる熱源としては、上記したアークに限らない。例えば、アークとレーザとを併用した加熱方式、プラズマを用いる加熱方式、電子ビームやレーザを用いる加熱方式等、他の方式による熱源を採用してもよい。アークを用いる場合は、シールド性を確保しつつ、素材、構造によらずに簡単にビードを形成できる。電子ビームやレーザにより加熱する場合は、加熱量を更に細かく制御でき、溶着ビードの状態をより適正に維持して、積層造形物の更なる品質向上に寄与できる。 The heat source for melting the filler metal Fm is not limited to the above-mentioned arc. For example, a heat source by another method such as a heating method using both an arc and a laser, a heating method using plasma, and a heating method using an electron beam or a laser may be adopted. When an arc is used, a bead can be easily formed regardless of the material and structure while ensuring the shielding property. When heating with an electron beam or a laser, the amount of heating can be controlled more finely, the state of the welded bead can be maintained more appropriately, and the quality of the laminated model can be further improved.

造形コントローラ13は、ビードマップ生成部31と、プログラム生成部33と、記憶部35と、これらが接続される制御部37と、を有する。制御部37には、作製しようとする積層造形物の形状を表す3次元モデルデータ(CADデータ等)や、各種の指示情報が入力部39から入力される。 The modeling controller 13 has a bead map generation unit 31, a program generation unit 33, a storage unit 35, and a control unit 37 to which these are connected. Three-dimensional model data (CAD data, etc.) representing the shape of the laminated model to be manufactured and various instruction information are input to the control unit 37 from the input unit 39.

ビードマップ生成部31は、入力された積層造形物の3次元モデルデータを用いて、ビードを形成する位置情報を含むビードマップを生成する。生成されたビードマップは、記憶部35に記憶される。 The bead map generation unit 31 uses the input three-dimensional model data of the laminated model to generate a bead map including position information for forming the bead. The generated bead map is stored in the storage unit 35.

プログラム生成部33は、造形部11を駆動して積層造形物Wの造形手順を設定し、この手順をコンピュータに実行させるプログラムを、上記のビードマップを用いて生成する。生成されたプログラムは、記憶部35に記憶される。 The program generation unit 33 drives the modeling unit 11 to set a modeling procedure for the laminated model W, and generates a program for causing a computer to execute this procedure using the above bead map. The generated program is stored in the storage unit 35.

記憶部35には、造形部11が有する各種の駆動部や可動範囲等の仕様情報も記憶され、プログラム生成部33でプログラム生成する際や、プログラムを実行する際に適宜情報が参照される。この記憶部35は、メモリやハードディスク等の記憶媒体からなり、各種情報の入出力が可能となっている。 The storage unit 35 also stores specification information such as various drive units and movable ranges of the modeling unit 11, and the information is appropriately referred to when the program generation unit 33 generates a program or executes a program. The storage unit 35 is composed of a storage medium such as a memory or a hard disk, and can input and output various types of information.

制御部37を含む造形コントローラ13は、CPU、メモリ、I/Oインターフェース等を備えるコンピュータ装置であって、記憶部35に記憶されたデータやプログラムを読み込み、データの処理やプログラムを実行する機能、及び造形部11の各部を駆動制御する機能を有する。制御部37は、入力部39からの操作や通信等による指示によって、記憶部35からプログラムを読み込み、実行する。 The modeling controller 13 including the control unit 37 is a computer device including a CPU, a memory, an I / O interface, etc., and has a function of reading data and programs stored in the storage unit 35, processing the data, and executing the program. It also has a function of driving and controlling each part of the modeling part 11. The control unit 37 reads a program from the storage unit 35 and executes it by an operation from the input unit 39 or an instruction by communication or the like.

制御部37がプログラムを実行すると、溶接ロボット19や電源装置15等がプログラムされた所定の手順に従って駆動される。溶接ロボット19は、造形コントローラ13からの指令により、プログラムされた軌道軌跡に沿ってトーチ17を移動させるとともに、溶加材Fmを所定のタイミングでアークにより溶融させて、所望の位置に溶着ビードを形成する。 When the control unit 37 executes the program, the welding robot 19, the power supply device 15, and the like are driven according to the programmed predetermined procedure. The welding robot 19 moves the torch 17 along the programmed trajectory according to the command from the modeling controller 13, and melts the filler metal Fm by an arc at a predetermined timing to form a welded bead at a desired position. Form.

ビードマップ生成部31やプログラム生成部33は、造形コントローラ13に設けられるがこれに限らない。図示はしないが、例えば積層造形物の製造装置100とは別体に、ネットワーク等の通信手段や記憶媒体を介して離間して配置されたサーバや端末等の外部コンピュータに、ビードマップ生成部31やプログラム生成部33が設けられてもよい。外部コンピュータにビードマップ生成部31やプログラム生成部33が接続されることで、積層造形物の製造装置100を要せずにビードマップやプログラムを生成でき、プログラム生成作業が繁雑にならない。また、生成したビードマップやプログラムを、造形コントローラ13の記憶部35に転送することで、造形コントローラ13で生成した場合と同様に動作させることができる。 The bead map generation unit 31 and the program generation unit 33 are provided in the modeling controller 13, but are not limited thereto. Although not shown, the bead map generation unit 31 is attached to an external computer such as a server or a terminal which is separated from the laminated model manufacturing apparatus 100, for example, via a communication means such as a network or a storage medium. And the program generation unit 33 may be provided. By connecting the bead map generation unit 31 and the program generation unit 33 to the external computer, the bead map and the program can be generated without the need for the laminated model manufacturing apparatus 100, and the program generation work is not complicated. Further, by transferring the generated bead map or program to the storage unit 35 of the modeling controller 13, it can be operated in the same manner as when it is generated by the modeling controller 13.

次に、上記の製造装置100によって、積層造形物の積層造形計画を設計して積層造形物を製造する基本的な製造手順を工程毎に説明する。 Next, the basic manufacturing procedure for designing a laminated modeling plan for a laminated model and manufacturing the laminated model by the above-mentioned manufacturing apparatus 100 will be described for each process.

(形状データ入力工程)
まず、入力部39から制御部37に積層造形物Wの形状を表す3次元形状データを入力する。3次元形状データには、積層造形物Wの外表面の座標等の寸法情報の他、必要に応じて参照される材料の種類や最終仕上げ等の情報も含まれる。
(Shape data input process)
First, three-dimensional shape data representing the shape of the laminated model W is input from the input unit 39 to the control unit 37. The three-dimensional shape data includes not only dimensional information such as coordinates of the outer surface of the laminated model W, but also information such as the type of material to be referred to and the final finish as necessary.

(積層方向設定工程)
造形する積層造形物Wの3次元形状データを用いて、溶着ビード層の積層方向を設定する。図2Aは一例に係る積層造形物Wを示している。図2Aに示すように、一例として示す積層造形物Wは、直方体形状の造形物である。積層方向設定工程では、図2Aに示す形状の積層造形物Wの3次元形状データが制御部37に入力されることで、この積層造形物Wの3次元形状データを用いて、積層造形物Wを形成する溶着ビード層の積層方向を設定する。ここでは、図2Bに示すように、積層造形物Wを形成する溶着ビード層Bの積層方向Aを上下方向に設定した場合を例示している。
(Laminating direction setting process)
The stacking direction of the welded bead layer is set by using the three-dimensional shape data of the laminated model W to be modeled. FIG. 2A shows a laminated model W according to an example. As shown in FIG. 2A, the laminated model W shown as an example is a rectangular parallelepiped model. In the stacking direction setting step, the three-dimensional shape data of the laminated model W having the shape shown in FIG. 2A is input to the control unit 37, and the three-dimensional shape data of the laminated model W is used to use the laminated model W. The stacking direction of the welded bead layer forming the above is set. Here, as shown in FIG. 2B, a case where the stacking direction A of the welded bead layer B forming the laminated model W is set in the vertical direction is illustrated.

(分割位置設定工程)
積層造形物Wを積層方向Aに関して複数の領域に分割する分割位置を設定する。この分割位置は、母材に積層方向Aに沿って溶着ビード層Bを形成する際に、溶着ビードの熱による積層造形物W全体の熱収縮が最小となる中立位置である。図2Cに示すように、積層方向Aを上下方向に設定した積層造形物Wでは、母材を配置して、母材の複数の領域に対向する各対向面に、積層方向Aに沿って溶着ビード層Bをそれぞれ形成する際に、溶着ビードの熱による積層造形物W全体の熱収縮が最小となる中立位置Tは、上下方向の中央位置となる。したがって、この積層造形物Wでは、積層方向Aである上下方向の面状の中央位置からなる中立位置Tを分割位置Sに設定する。
(Division position setting process)
A division position for dividing the laminated model W into a plurality of regions with respect to the stacking direction A is set. This split position is a neutral position where the heat shrinkage of the entire laminated model W due to the heat of the welded beads is minimized when the welded bead layer B is formed on the base metal along the laminating direction A. As shown in FIG. 2C, in the laminated model W in which the stacking direction A is set in the vertical direction, the base material is arranged and welded to each facing surface facing the plurality of regions of the base material along the stacking direction A. When each of the bead layers B is formed, the neutral position T at which the thermal shrinkage of the entire laminated model W due to the heat of the welded bead is minimized is the central position in the vertical direction. Therefore, in this laminated model W, the neutral position T consisting of the central position of the plane in the vertical direction, which is the stacking direction A, is set as the division position S.

(母材選択工程)
積層造形物Wにおける分割位置Sを設定したら、この分割位置Sを含む大きさ及び形状の母材を選択する。この母材としては、コストを抑えるべく単純形状のものを選択するのが好ましく、例えば、平板、丸棒材、角棒材、ブロック材などを選択する。図2Dに示すように、積層造形物Wでは、例えば、面状の中立位置Tからなる分割位置Sを含む平板からなる母材Mを選択する。
(Base material selection process)
After setting the division position S in the laminated model W, a base material having a size and shape including the division position S is selected. As the base material, it is preferable to select a simple shape in order to reduce the cost, and for example, a flat plate, a round bar, a square bar, a block, or the like is selected. As shown in FIG. 2D, in the laminated model W, for example, a base material M made of a flat plate including a divided position S consisting of a planar neutral position T is selected.

(積層造形工程)
上記のようにして、積層方向Aの決定、分割位置Sの設定及び母材Mの選択を行ったら、その積層造形計画の手順に応じて、母材Mに溶着ビード層Bを積層して積層造形物Wを造形する。図2Eに示すように、製造装置100にセットした平板状の母材Mに対して、設定された層形状データから生成されるトーチ17の移動軌跡に沿って、その表裏面に溶着ビードからなる溶着ビード層Bを積層させる。具体的には、母材Mの表裏面に対して、造形部11のトーチ17を溶接ロボット19の駆動により移動させながら、溶加材Fmを溶融させ、溶融した溶加材Fmを母材Mに供給する。これにより、母材Mの表裏面に対して複数の溶着ビード層Bを積層させる。これにより、図2Fに示すように、母材Mの表裏面に複数の溶着ビード層Bを積層したブロック部53,55が形成された積層造形物Wを製造する。
(Laminate modeling process)
After determining the stacking direction A, setting the division position S, and selecting the base material M as described above, the welded bead layer B is laminated and laminated on the base material M according to the procedure of the laminating modeling plan. Modeling object W is modeled. As shown in FIG. 2E, with respect to the flat plate-shaped base material M set in the manufacturing apparatus 100, welded beads are formed on the front and back surfaces of the torch 17 along the movement locus of the torch 17 generated from the set layer shape data. The welded bead layer B is laminated. Specifically, the filler metal Fm is melted while the torch 17 of the modeling portion 11 is moved with respect to the front and back surfaces of the base metal M by the drive of the welding robot 19, and the melted filler metal Fm is used as the base metal M. Supply to. As a result, a plurality of welded bead layers B are laminated on the front and back surfaces of the base material M. As a result, as shown in FIG. 2F, a laminated model W in which the block portions 53 and 55 in which a plurality of welded bead layers B are laminated on the front and back surfaces of the base material M is formed is manufactured.

ここで、参考例について説明する。
図3Aに示すように、参考例では、積層方向Aの一端側に板状の母材Mを設置し、この母材Mの一方の面に溶着ビード層Bを積層して積層造形物Wを製造している。この参考例では、図3Bに示すように、一方向に連続して溶着ビード層Bを積層していくことで、熱収縮が一方向側に累積し、目標形状(図3B中点線で示す形状)に対して積層造形物Wが偏って変形して造形精度が低下してしまう。
Here, a reference example will be described.
As shown in FIG. 3A, in the reference example, a plate-shaped base material M is installed on one end side in the stacking direction A, and a welded bead layer B is laminated on one surface of the base material M to form a laminated model W. Manufacture. In this reference example, as shown in FIG. 3B, by continuously laminating the welded bead layer B in one direction, heat shrinkage is accumulated in one direction, and the target shape (the shape shown by the middle dotted line in FIG. 3B). ), The laminated model W is biased and deformed, and the modeling accuracy is lowered.

これに対して、本例によれば、図4に示すように、母材Mに積層方向Aに沿って溶着ビード層Bを形成する際に、溶着ビードの熱による積層造形物W全体の熱収縮が最小となる中立位置Tを割り出し、この中立位置Tを、積層造形物Wを積層方向Aに関して複数の領域に分割する分割位置Sに設定し、この分割位置Sを含む大きさ及び形状の母材Mを選択する。したがって、選択した母材Mに溶着ビード層Bを積層させて積層造形物Wを製造した際に、熱収縮が母材Mの表裏の両側の領域にバランスよく分散されるので、溶着ビードの熱による熱収縮の影響を極力抑えることができる。これにより、熱収縮による変形及び熱収縮の偏りを抑え、高い造形精度で積層造形物Wを製造することができる。 On the other hand, according to this example, as shown in FIG. 4, when the welded bead layer B is formed on the base metal M along the laminating direction A, the heat of the entire laminated model W due to the heat of the welded beads A neutral position T that minimizes shrinkage is determined, and this neutral position T is set as a division position S that divides the laminated model W into a plurality of regions with respect to the stacking direction A, and the size and shape including the division position S are set. Select the base material M. Therefore, when the welded bead layer B is laminated on the selected base material M to produce the laminated model W, the heat shrinkage is dispersed in the regions on both the front and back surfaces of the base material M in a well-balanced manner, so that the heat of the welded bead is distributed. The effect of heat shrinkage due to heat shrinkage can be suppressed as much as possible. As a result, deformation due to heat shrinkage and unevenness of heat shrinkage can be suppressed, and the laminated model W can be manufactured with high modeling accuracy.

次に、各種の変形例について説明する。ただし、以下に示す変形例1~3は、本発明とは異なる他の形態を表す参考例である。
(変形例1)
図5の(a)~図5の(d)に示すように、変形例1に係る積層造形物W1は、板状の母材Mの表裏に、異なる外形の角筒部63,65を有しており、これらの角筒部63,65は、溶着ビード層Bを積層することで造形される。この積層造形物W1では、積層方向をAとすると、角筒部63,65の境界部分が面状の中立位置Tである。したがって、この積層造形物W1を製造する場合は、中立位置Tを積層方向Aに関して二つの領域に分割する分割位置Sに設定する(分割位置設定工程)。そして、面状の中立位置Tからなる分割位置Sを含む平板状の母材Mを選択し(母材選択工程)、この母材Mの表裏面に溶着ビード層Bを積層する。これにより、平板状の母材Mの表裏に、異なる外形の角筒部63,65が形成された積層造形物W1を造形する(積層造形工程)。
Next, various modification examples will be described. However, the following modifications 1 to 3 are reference examples representing other forms different from the present invention.
(Modification 1)
As shown in FIGS. 5A to 5D, the laminated model W1 according to the modified example 1 has square tubular portions 63 and 65 having different outer shapes on the front and back surfaces of the plate-shaped base material M. These square tube portions 63 and 65 are formed by laminating the welded bead layer B. In this laminated model W1, when the stacking direction is A, the boundary portion of the square tube portions 63 and 65 is a planar neutral position T. Therefore, when manufacturing this laminated model W1, the neutral position T is set to the division position S that divides the laminated product W1 into two regions with respect to the stacking direction A (division position setting step). Then, a flat plate-shaped base material M including the divided position S including the planar neutral position T is selected (base material selection step), and the welded bead layer B is laminated on the front and back surfaces of the base material M. As a result, the laminated model W1 in which the square tubular portions 63 and 65 having different outer shapes are formed on the front and back surfaces of the flat plate-shaped base material M is modeled (laminated modeling process).

この変形例1の場合も、選択した母材Mに溶着ビード層Bを積層させて積層造形物W1を製造した際に、熱収縮が母材Mの表裏の両側の領域にバランスよく分散されるので、溶着ビードの熱による熱収縮の影響を極力抑えることができる。 Also in the case of this modification 1, when the welded bead layer B is laminated on the selected base material M to produce the laminated model W1, the heat shrinkage is dispersed in the regions on both the front and back surfaces of the base material M in a well-balanced manner. Therefore, the influence of heat shrinkage due to the heat of the welded bead can be suppressed as much as possible.

(変形例2)
図6の(a)及び図6の(b)に示すように、変形例2に係る積層造形物W2は、板状の母材Mの表裏面に、異なる外形のブロック部73,75を有しており、これらのブロック部73,75は、溶着ビード層Bを積層することで造形される。この積層造形物W2は、積層方向をAとすると、ブロック部73,75の境界部分が面状の中立位置Tとなる。したがって、この積層造形物W2を製造する場合は、中立位置Tを積層方向Aに関して二つの領域に分割する分割位置Sに設定する(分割位置設定工程)。そして、面状の中立位置Tからなる分割位置Sを含む平板状の母材Mを選択し(母材選択工程)、この母材Mの表裏に溶着ビード層Bを積層する。これにより、平板状の母材Mの表裏面に、異なる外形のブロック部73,75が形成された積層造形物W2を造形する(積層造形工程)。
(Modification 2)
As shown in FIGS. 6A and 6B, the laminated model W2 according to the modified example 2 has block portions 73 and 75 having different outer shapes on the front and back surfaces of the plate-shaped base material M. These block portions 73 and 75 are formed by laminating the welded bead layer B. In this laminated model W2, when the stacking direction is A, the boundary portion between the block portions 73 and 75 is a planar neutral position T. Therefore, when manufacturing this laminated model W2, the neutral position T is set to the division position S that divides the laminated product W2 into two regions with respect to the stacking direction A (division position setting step). Then, a flat plate-shaped base material M including the divided position S including the planar neutral position T is selected (base material selection step), and the welded bead layer B is laminated on the front and back surfaces of the base material M. As a result, the laminated model W2 in which the block portions 73 and 75 having different outer shapes are formed on the front and back surfaces of the flat plate-shaped base material M is modeled (laminated modeling process).

この変形例2に係る積層造形物W2を製造する場合、例えば、図7の(a)に示すように、母材Mに対して一方の領域側のブロック部73を造形すると、このブロック部73を造形した時点で、ブロック部73の熱収縮の影響で曲げ応力F1が付与される。その後、他方の領域側のブロック部75を造形すると、図7の(b)に示すように、他方のブロック部75の熱収縮の影響で、ブロック部73の造形時と逆方向の曲げ応力F2が付与される。これにより、積層造形物W2には、各領域毎に大きな熱収縮が偏って付与されることで歪みが生じるおそれがある。 In the case of manufacturing the laminated model W2 according to the modification 2, for example, as shown in FIG. 7A, when the block portion 73 on one region side with respect to the base material M is formed, the block portion 73 is formed. At the time of modeling, bending stress F1 is applied due to the influence of heat shrinkage of the block portion 73. After that, when the block portion 75 on the other region side is molded, as shown in FIG. 7B, the bending stress F2 in the direction opposite to that at the time of molding the block portion 73 due to the influence of the heat shrinkage of the other block portion 75. Is given. As a result, the laminated model W2 may be distorted due to the uneven distribution of large heat shrinkage in each region.

このため、積層造形物W2を造形する際には、熱収縮による歪みを抑制すべく、次のように溶着ビード層Bを積層する。 Therefore, when modeling the laminated model W2, the welded bead layer B is laminated as follows in order to suppress distortion due to heat shrinkage.

母材Mに対して一方の領域に溶着ビード層Bを形成する。すると、図8の(a)に示すように、形成した溶着ビード層Bの熱収縮の影響により、分割位置Sに対して造形途中の積層造形物の中立位置T0が溶着ビード層Bを形成した一方の領域側に変位する。 A welded bead layer B is formed in one region with respect to the base metal M. Then, as shown in FIG. 8A, due to the influence of heat shrinkage of the formed welded bead layer B, the neutral position T0 of the laminated model in the middle of modeling formed the welded bead layer B with respect to the divided position S. Displace to one area side.

この状態から、分割位置Sに対して、中立位置T0と反対側の他方の領域に溶着ビード層Bを形成する。すると、図8の(b)に示すように、形成した溶着ビード層Bの熱収縮の影響により中立位置T0が溶着ビード層Bを形成した他方の領域側に変位する。 From this state, the welded bead layer B is formed in the other region opposite to the neutral position T0 with respect to the split position S. Then, as shown in FIG. 8B, the neutral position T0 is displaced to the other region side where the welded bead layer B is formed due to the influence of the heat shrinkage of the formed welded bead layer B.

この状態から、分割位置Sに対して、中立位置T0と反対側の一方の領域に溶着ビード層Bを形成する。すると、図8の(c)に示すように、形成した溶着ビード層Bの熱収縮の影響により中立位置T0が溶着ビード層Bを形成した一方の領域側に変位する。 From this state, the welded bead layer B is formed in one region on the opposite side of the neutral position T0 with respect to the split position S. Then, as shown in FIG. 8 (c), the neutral position T0 is displaced to the one region side where the welded bead layer B is formed due to the influence of the heat shrinkage of the formed welded bead layer B.

同様に、分割位置Sに対して、中立位置T0と反対側の他方の領域に溶着ビード層Bを形成する。すると、図8の(d)に示すように、形成した溶着ビード層Bの熱収縮の影響により中立位置T0が溶着ビード層Bを形成した他方の領域側に変位する。 Similarly, the welded bead layer B is formed in the other region opposite to the neutral position T0 with respect to the split position S. Then, as shown in FIG. 8D, the neutral position T0 is displaced to the other region side where the welded bead layer B is formed due to the influence of the heat shrinkage of the formed welded bead layer B.

このように、母材Mに溶着ビード層Bを積層する際に、分割位置Sに対して、造形途中の積層造形物の中立位置T0と反対側に溶着ビード層Bを積層させる。これにより、造形途中の積層造形物の中立位置T0を分割位置Sに近付けながら造形することができ、熱収縮による変形及び熱収縮の偏りを、よりバランスよく抑えることができる。 In this way, when the welded bead layer B is laminated on the base material M, the welded bead layer B is laminated on the side opposite to the neutral position T0 of the laminated model in the middle of modeling with respect to the division position S. As a result, the neutral position T0 of the laminated model in the process of modeling can be modeled while approaching the split position S, and the deformation due to heat shrinkage and the bias of the heat shrinkage can be suppressed in a more balanced manner.

(変形例3)
図9に示すように、変形例3に係る積層造形物W3では、溶着ビード層Bの積層方向Aと直交する特定方向Cに沿って中立位置Tが変化している。このように、中立位置Tが特定方向Cに沿って変化する積層造形物W3において、分割位置Sを設定する場合について説明する。
(Modification 3)
As shown in FIG. 9, in the laminated model W3 according to the modified example 3, the neutral position T changes along the specific direction C orthogonal to the laminating direction A of the welded bead layer B. In this way, a case where the division position S is set in the laminated model W3 in which the neutral position T changes along the specific direction C will be described.

まず、図10の(a)に示すように、積層造形物W3を、積層方向Aと直交する特定方向Cに関して中立位置Tが連続する領域毎に分割する。次に、分割した複数の分割体W3a,W3b,W3c,W3dから、体積が最大となる分割体を選択する。積層造形物W3では、体積が最大となる分割体はW3bであるので、この分割体W3bを選択する。そして、図10の(b)に示すように、選択した分割体W3bの中立位置Tを分割位置Sに設定する。その後、この分割位置Sを含む平板状の母材Mを選択し(母材選択工程)、この母材Mの表裏面に溶着ビード層Bを積層して積層造形物W3を造形する(積層造形工程)。 First, as shown in FIG. 10A, the laminated model W3 is divided into regions where the neutral position T is continuous with respect to the specific direction C orthogonal to the stacking direction A. Next, the divided body having the maximum volume is selected from the plurality of divided bodies W3a, W3b, W3c, and W3d. In the laminated model W3, the divided body having the maximum volume is W3b, so this divided body W3b is selected. Then, as shown in FIG. 10B, the neutral position T of the selected split body W3b is set to the split position S. After that, a flat plate-shaped base material M including the divided position S is selected (base material selection step), and a welded bead layer B is laminated on the front and back surfaces of the base material M to form a laminated model W3 (laminated modeling). Process).

次に、溶着ビード層Bの積層方向Aと直交する特定方向Cに沿って中立位置Tが変化する変形例3に係る積層造形物W3の分割位置Sの他の設定の仕方について説明する。 Next, another method of setting the division position S of the laminated model W3 according to the modification 3 in which the neutral position T changes along the specific direction C orthogonal to the stacking direction A of the welded bead layer B will be described.

まず、図11の(a)に示すように、積層造形物W3を、積層方向Aに沿って体積が等分となる位置で分割する。そして、図11の(b)に示すように、体積が等分となる位置で分割した分割体W3e,W3fの分割位置を、母材Mの選択基準とする分割位置Sに設定する。その後、この分割位置Sを含む平板状の母材Mを選択し(母材選択工程)、この母材Mの表裏面に溶着ビード層Bを積層して積層造形物W3を造形する(積層造形工程)。 First, as shown in FIG. 11A, the laminated model W3 is divided at positions where the volumes are equally divided along the stacking direction A. Then, as shown in FIG. 11B, the divided positions of the divided bodies W3e and W3f divided at the positions where the volumes are equally divided are set as the divided positions S which are the selection criteria of the base material M. After that, a flat plate-shaped base material M including the divided position S is selected (base material selection step), and a welded bead layer B is laminated on the front and back surfaces of the base material M to form a laminated model W3 (laminated modeling). Process).

このように、変形例3によれば、積層方向Aと直交する特定方向Cに形状が変化する複雑形状の積層造形物W3を製造する際の熱収縮による変形及び熱収縮の偏りをバランスよく抑えることができる。 As described above, according to the modification 3, the deformation and the bias of the heat shrinkage due to the heat shrinkage when manufacturing the laminated model W3 having a complicated shape whose shape changes in the specific direction C orthogonal to the stacking direction A are suppressed in a well-balanced manner. be able to.

(変形例4)
図12の(a)及び図12の(b)に示すように、変形例4に係る積層造形物W4は、異なる外形の4つのブロック部93,95,97,99を有している。ブロック部93,95及びブロック部97,99は、それぞれ互いに対向方向に延在されている。
(Modification example 4)
As shown in (a) of FIG. 12 and (b) of FIG. 12, the laminated model W4 according to the modified example 4 has four block portions 93, 95, 97, 99 having different outer shapes. The block portions 93, 95 and the block portions 97, 99 extend in opposite directions to each other.

このような積層造形物W4では、例えば、造形する積層造形物W4の3次元形状データを用いて、ブロック部93,95に沿う積層方向A1及びブロック部97,99に沿う積層方向A2を設定する(積層方向設定工程)。 In such a laminated model W4, for example, the stacking direction A1 along the block portions 93 and 95 and the stacking direction A2 along the block portions 97 and 99 are set by using the three-dimensional shape data of the laminated model W4 to be modeled. (Laminating direction setting process).

次に、積層造形物W4の分割位置を設定する。具体的には、設定した積層方向A1,A2に関して、溶着ビードの熱による積層造形物W4全体の熱収縮が最小となるそれぞれの中立位置Tを割り出す。そして、これらの中立位置Tを分割位置S1,S2に設定する(分割位置設定工程)。 Next, the division position of the laminated model W4 is set. Specifically, with respect to the set stacking directions A1 and A2, each neutral position T that minimizes the heat shrinkage of the entire laminated model W4 due to the heat of the welded bead is determined. Then, these neutral positions T are set at the division positions S1 and S2 (division position setting step).

積層造形物W4における分割位置S1,S2を設定したら、これらの分割位置S1,S2の交差部S0を含む大きさ及び形状の母材Mを選択する(母材選択工程)。例えば、母材Mとしては、極力コストを抑えることが可能な単純形状の棒材を選択する。ここでは、丸棒材からなる棒材を用いている。なお、母材Mとしては、丸棒材に限らず角棒材であってもよい。 After setting the division positions S1 and S2 in the laminated model W4, the base material M having a size and shape including the intersection S0 of the division positions S1 and S2 is selected (base material selection step). For example, as the base material M, a rod material having a simple shape that can suppress the cost as much as possible is selected. Here, a bar made of a round bar is used. The base material M is not limited to the round bar material, but may be a square bar material.

積層方向A1,A2の決定、分割位置S1,S2の設定及び母材Mの選択を行ったら、丸棒材からなる母材Mに対して溶着ビード層Bを積層方向A1,A2に積層させ、ブロック部93,95,97,99を造形する(積層造形工程)。このとき、図13の(a)に示すように、まず、母材Mに対して積層方向A1に沿う互いに対向したブロック部93,95を造形する。そして、ブロック部93,95の造形後、図13の(b)に示すように、母材Mに対して積層方向A2に沿う互いに対向したブロック部97,99を造形する。 After determining the stacking directions A1 and A2, setting the division positions S1 and S2, and selecting the base material M, the welded bead layer B is laminated on the base material M made of a round bar in the stacking directions A1 and A2. The block portions 93, 95, 97, 99 are modeled (laminated modeling process). At this time, as shown in FIG. 13A, first, the block portions 93 and 95 facing each other along the stacking direction A1 with respect to the base material M are formed. Then, after the block portions 93 and 95 are formed, as shown in FIG. 13 (b), the block portions 97 and 99 facing each other along the stacking direction A2 are formed with respect to the base material M.

このように、変形例4では、複数の積層方向A1,A2を設定することで割り出される複数の中立位置Tからなる分割位置S1,S2を設定し、これらの分割位置S1,S2の交差部S0を含む大きさ及び形状の母材Mを選択する。したがって、棒材からなる母材Mに対して直交する方向に溶着ビード層Bが積層された積層造形物W4を、熱収縮による変形及び熱収縮の偏りをより細かく抑えつつ高い造形精度で製造することができる。 As described above, in the modification 4, the division positions S1 and S2 composed of the plurality of neutral positions T calculated by setting the plurality of stacking directions A1 and A2 are set, and the intersections of the division positions S1 and S2 are set. A base material M having a size and shape including S0 is selected. Therefore, the laminated model W4 in which the welded bead layer B is laminated in the direction orthogonal to the base material M made of the bar is manufactured with high modeling accuracy while suppressing deformation due to heat shrinkage and bias of heat shrinkage more finely. be able to.

(変形例5)
図14に示すように、変形例5に係る積層造形物W5は、3つのブロック部103,105,107を有している。これらのブロック部103,105,107は、放射状に延在されている。
(Modification 5)
As shown in FIG. 14, the laminated model W5 according to the modified example 5 has three block portions 103, 105, 107. These block portions 103, 105, 107 extend radially.

このような積層造形物W5では、図15に示すように、例えば、造形する積層造形物W5の3次元形状データを用いて、ブロック部103に沿う積層方向A1、ブロック部105に沿う積層方向A2及びブロック部107に沿う積層方向A3を設定する(積層方向設定工程)。 In such a laminated model W5, as shown in FIG. 15, for example, using the three-dimensional shape data of the laminated model W5 to be modeled, the stacking direction A1 along the block portion 103 and the stacking direction A2 along the block portion 105 are used. And the stacking direction A3 along the block portion 107 is set (stacking direction setting step).

次に、積層造形物W5の分割位置を設定する。具体的には、設定した積層方向A1,A2,A3に関して、溶着ビードの熱による積層造形物W5全体の熱収縮が最小となるそれぞれの中立位置Tを割り出し、これらの中立位置Tを分割位置S1,S2,S3に設定する(分割位置設定工程)。 Next, the division position of the laminated model W5 is set. Specifically, with respect to the set stacking directions A1, A2, and A3, each neutral position T that minimizes the heat shrinkage of the entire laminated model W5 due to the heat of the welded bead is determined, and these neutral positions T are divided into the split positions S1. , S2, S3 (division position setting step).

積層造形物W5における分割位置S1,S2,S3を設定したら、これらの分割位置S1,S2,S3の交差部S0を含む大きさ及び形状の母材Mを選択する(母材選択工程)。例えば、母材Mとしては、極力コストを抑えることが可能な単純形状の丸棒材を選択する。 After setting the division positions S1, S2, and S3 in the laminated model W5, the base material M having a size and shape including the intersection S0 of the division positions S1, S2, and S3 is selected (base material selection step). For example, as the base material M, a round bar material having a simple shape that can suppress the cost as much as possible is selected.

積層方向A1,A2,A3の決定、分割位置S1,S2,S3の設定及び母材Mの選択を行ったら、丸棒材からなる母材Mに対して溶着ビード層Bを積層方向A1,A2,A3に積層させ、ブロック部103,105,107を造形する(積層造形工程)。母材Mに対して溶着ビード層Bを積層させる場合、熱収縮の付与の偏りを抑えながら積層方向A1,A2,A3へ溶着ビード層Bを積層させる。具体的には、母材Mに溶着ビード層Bを積層する際には、造形途中の積層造形物の各積層方向A1,A2,A3に沿う中立位置の交差部T0が分割位置S1,S2,S3の交差部S0から極力外れないようにする。 After determining the stacking directions A1, A2 and A3, setting the division positions S1, S2 and S3 and selecting the base material M, the welded bead layer B is laminated on the base material M made of a round bar in the stacking directions A1 and A2. , A3, and the block portions 103, 105, 107 are modeled (laminated modeling process). When the welded bead layer B is laminated on the base material M, the welded bead layer B is laminated in the stacking directions A1, A2, and A3 while suppressing the bias of heat shrinkage. Specifically, when the welded bead layer B is laminated on the base metal M, the intersection T0 at the neutral position along each stacking direction A1, A2, A3 of the laminated model in the process of modeling is the division position S1, S2. Try not to deviate from the intersection S0 of S3 as much as possible.

ここで、図16は、丸棒材からなる母材Mに対して積層方向A1,A2,A3へ順に溶着ビード層Bを積層させた場合の造形途中の積層造形物の中立位置の交差部T0の変動を示している。 Here, FIG. 16 shows the intersection T0 at the neutral position of the laminated model in the middle of modeling when the welded bead layer B is laminated in order in the stacking directions A1, A2, and A3 on the base material M made of a round bar. Shows fluctuations in.

図16の(a)に示すように、母材Mに対して積層方向A1へ溶着ビード層Bを形成する。すると、溶着ビード層Bの熱収縮の影響により、造形途中の積層造形物の中立位置の交差部T0が積層方向A1に沿って溶着ビード層Bを積層した領域側に変位する。 As shown in FIG. 16A, the welded bead layer B is formed in the stacking direction A1 with respect to the base metal M. Then, due to the influence of the heat shrinkage of the welded bead layer B, the intersection T0 at the neutral position of the laminated model in the middle of modeling is displaced toward the region where the welded bead layer B is laminated along the stacking direction A1.

この状態から、図16の(b)に示すように、母材Mに対して積層方向A2へ溶着ビード層Bを形成する。すると、溶着ビード層Bの熱収縮の影響により、造形途中の積層造形物の中立位置の交差部T0が積層方向A1,A2に沿って溶着ビード層Bを積層した領域側に変位する。 From this state, as shown in FIG. 16B, the welded bead layer B is formed in the stacking direction A2 with respect to the base metal M. Then, due to the influence of the heat shrinkage of the welded bead layer B, the intersection T0 at the neutral position of the laminated model in the middle of modeling is displaced toward the region where the welded bead layer B is laminated along the stacking directions A1 and A2.

さらに、この状態から、図16の(c)に示すように、母材Mに対して積層方向A3へ溶着ビード層Bを形成する。すると、母材Mに対して溶着ビード層Bの熱収縮が均等に付与されることで、造形途中の積層造形物の中立位置の交差部T0が、分割位置S1,S2,S3の交差部S0に一致される。 Further, from this state, as shown in FIG. 16C, a welded bead layer B is formed in the stacking direction A3 with respect to the base metal M. Then, the heat shrinkage of the welded bead layer B is evenly applied to the base metal M, so that the intersection T0 at the neutral position of the laminated model in the middle of modeling becomes the intersection S0 at the division positions S1, S2, S3. Is matched to.

この状態から、図16の(d)に示すように、母材Mに対して積層方向A3へ溶着ビード層Bを形成する。すると、溶着ビード層Bの熱収縮の影響により、造形途中の積層造形物の中立位置の交差部T0が積層方向A3に沿って溶着ビード層Bを積層した領域側に変位する。 From this state, as shown in FIG. 16D, the welded bead layer B is formed in the stacking direction A3 with respect to the base material M. Then, due to the influence of the heat shrinkage of the welded bead layer B, the intersection T0 at the neutral position of the laminated model in the middle of modeling is displaced toward the region where the welded bead layer B is laminated along the stacking direction A3.

この状態から、図16の(e)に示すように、母材Mに対して積層方向A1へ溶着ビード層Bを形成する。すると、溶着ビード層Bの熱収縮の影響により、造形途中の積層造形物の中立位置の交差部T0が積層方向A1,A3に沿って溶着ビード層Bを積層した領域側に変位する。 From this state, as shown in FIG. 16 (e), the welded bead layer B is formed in the stacking direction A1 with respect to the base metal M. Then, due to the influence of the heat shrinkage of the welded bead layer B, the intersection T0 at the neutral position of the laminated model in the middle of modeling is displaced toward the region where the welded bead layer B is laminated along the stacking directions A1 and A3.

さらに、この状態から、図16の(f)に示すように、母材Mに対して積層方向A2へ溶着ビード層Bを形成する。すると、母材Mに対して溶着ビード層Bの熱収縮が均等に付与されることで、造形途中の積層造形物の中立位置の交差部T0が、分割位置S1,S2,S3の交差部S0に一致される。 Further, from this state, as shown in FIG. 16 (f), the welded bead layer B is formed in the stacking direction A2 with respect to the base metal M. Then, the heat shrinkage of the welded bead layer B is evenly applied to the base metal M, so that the intersection T0 at the neutral position of the laminated model in the middle of modeling becomes the intersection S0 at the division positions S1, S2, S3. Is matched to.

このように、母材Mに溶着ビード層Bを積層する際に、造形途中の積層造形物の中立位置の交差部T0が分割位置S1,S2,S3の交差部S0から極力外れないようにすることで、製造した積層造形物W5の全体の歪みを抑制することができる。 In this way, when the welded bead layer B is laminated on the base metal M, the intersection T0 at the neutral position of the laminated model during modeling is prevented from deviating from the intersection S0 at the division positions S1, S2, S3 as much as possible. This makes it possible to suppress the overall distortion of the manufactured laminated model W5.

このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。 As described above, the present invention is not limited to the above-described embodiment, and can be modified or applied by those skilled in the art based on the mutual combination of the configurations of the embodiments, the description of the specification, and the well-known technique. It is also a matter of the present invention to do so, and it is included in the scope of seeking protection.

以上の通り、本明細書には次の事項が開示されている。
(1) 母材に、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層を複数積層して造形する積層造形物の積層造形計画設計方法であって、
造形する前記積層造形物の3次元形状データを用いて、前記溶着ビード層の積層方向を設定する積層方向設定工程と、
前記母材に前記積層方向に沿って前記溶着ビード層を形成する際に、前記溶着ビードの熱による前記積層造形物全体の熱収縮が最小となる中立位置を割り出し、この中立位置を、前記積層造形物を前記積層方向に関して複数の領域に分割する分割位置に設定する分割位置設定工程と、
前記分割位置を含む大きさ及び形状の前記母材を選択する母材選択工程と、
を含む、積層造形物の積層造形計画設計方法。
この積層造形計画設計方法によれば、母材に積層方向に沿って溶着ビード層を形成する際に、溶着ビードの熱による積層造形物全体の熱収縮が最小となる中立位置を割り出し、この中立位置を、積層造形物を積層方向に関して複数の領域に分割する分割位置に設定し、この分割位置を含む大きさ及び形状の母材を選択する。したがって、選択した母材に溶着ビード層を積層させて積層造形物を製造した際に、溶着ビードの熱による熱収縮の影響を極力抑えることができる。これにより、熱収縮による変形及び熱収縮の偏りを抑え、高い造形精度で積層造形物を製造することができる。
As described above, the following matters are disclosed in this specification.
(1) A method for planning and designing a laminated model of a laminated model in which a plurality of welded bead layers composed of welded beads obtained by melting and solidifying a filler metal are laminated on a base material.
A stacking direction setting step for setting the stacking direction of the welded bead layer using the three-dimensional shape data of the laminated model to be modeled, and a stacking direction setting step.
When the welded bead layer is formed on the base metal along the laminating direction, a neutral position where the heat shrinkage of the entire laminated model due to the heat of the welded bead is minimized is determined, and the neutral position is set to the neutral position. A division position setting step of setting a division position for dividing a modeled object into a plurality of regions with respect to the stacking direction, and a division position setting step.
A base material selection step of selecting the base material having a size and shape including the division position, and
Laminated modeling planning design method for laminated modeling including.
According to this laminated molding planning and design method, when the welded bead layer is formed on the base metal along the laminating direction, a neutral position where the heat shrinkage of the entire laminated model due to the heat of the welded bead is minimized is determined and this neutral position is obtained. The position is set to a division position that divides the laminated model into a plurality of regions with respect to the lamination direction, and a base material having a size and shape including this division position is selected. Therefore, when the welded bead layer is laminated on the selected base material to produce a laminated model, the influence of heat shrinkage due to the heat of the welded bead can be suppressed as much as possible. As a result, deformation due to heat shrinkage and unevenness of heat shrinkage can be suppressed, and a laminated model can be manufactured with high molding accuracy.

(2) 前記積層方向設定工程において、前記積層方向を複数設定し、
前記分割位置設定工程において、それぞれの前記積層方向に関して前記中立位置を割り出して前記分割位置に設定し、
前記母材選択工程において、複数の前記分割位置の交差部を含む大きさ及び形状の前記母材を選択する(1)に記載の積層造形物の積層造形計画設計方法。
この積層造形計画設計方法によれば、積層方向を複数設定することで割り出される複数の中立位置からなる分割位置を設定し、分割位置の交差部を含む大きさ及び形状の母材を選択する。したがって、熱収縮による変形及び熱収縮の偏りをより細かく抑えることができ、さらに高い造形精度で積層造形物を製造することができる。
(2) In the stacking direction setting step, a plurality of the stacking directions are set.
In the division position setting step, the neutral position is determined for each of the stacking directions and set to the division position.
The method for planning and designing a laminated model according to (1), wherein in the base material selection step, the base material having a size and shape including an intersection of a plurality of the divided positions is selected.
According to this laminated modeling plan design method, a divided position consisting of a plurality of neutral positions determined by setting a plurality of laminated directions is set, and a base material having a size and a shape including the intersection of the divided positions is selected. .. Therefore, deformation due to heat shrinkage and bias of heat shrinkage can be suppressed more finely, and a laminated model can be manufactured with higher molding accuracy.

(3) 前記分割位置設定工程において、前記積層造形物を、前記積層方向と直交する特定方向に関して前記中立位置が連続する領域毎に分割し、
分割された複数の分割体から、体積が最大となる分割体の前記中立位置を前記分割位置に設定する(1)または(2)に記載の積層造形物の積層造形計画設計方法。
この積層造形計画設計方法によれば、積層方向と直交する特定方向に形状が変化する複雑形状の積層造形物を製造する際の熱収縮による変形及び熱収縮の偏りをバランスよく抑えることができる。
(3) In the division position setting step, the laminated model is divided into regions in which the neutral position is continuous in a specific direction orthogonal to the lamination direction.
The method for planning and designing a laminated model according to (1) or (2), wherein the neutral position of the divided body having the maximum volume is set to the divided position from the plurality of divided bodies.
According to this laminated modeling planning and designing method, it is possible to suppress deformation and bias of thermal shrinkage due to heat shrinkage in manufacturing a laminated modeled product having a complicated shape whose shape changes in a specific direction orthogonal to the stacking direction in a well-balanced manner.

(4) 前記分割位置設定工程において、前記積層造形物を、前記積層方向に沿って体積が等分となる位置で分割し、当該分割位置を前記分割位置に設定する(1)または(2)に記載の積層造形物の積層造形計画設計方法。
この積層造形計画設計方法によれば、積層方向と直交する特定方向に形状が変化する複雑形状の積層造形物を製造する際の熱収縮による変形及び熱収縮の偏りをバランスよく抑えることができる。
(4) In the division position setting step, the laminated model is divided at a position where the volume is equally divided along the lamination direction, and the division position is set to the division position (1) or (2). The method for planning and designing a laminated model according to the above.
According to this laminated modeling planning and designing method, it is possible to suppress deformation and bias of thermal shrinkage due to heat shrinkage in manufacturing a laminated modeled product having a complicated shape whose shape changes in a specific direction orthogonal to the stacking direction in a well-balanced manner.

(5) (1)~(4)のいずれか一つに記載の積層造形計画設計方法によって決定された積層造形手順に応じて、前記母材に前記溶着ビード層を積層して前記積層造形物を造形する積層造形物の製造方法。
この積層造形物の製造方法によれば、溶着ビードの熱で生じる熱収縮による変形及び熱収縮の偏りが抑えられた高い造形精度の積層造形物を製造することができる。
(5) According to the laminated modeling procedure determined by the laminated modeling planning and design method according to any one of (1) to (4), the welded bead layer is laminated on the base material and the laminated model is formed. A method of manufacturing a laminated model.
According to this method for manufacturing a laminated model, it is possible to produce a laminated model with high molding accuracy in which deformation due to heat shrinkage caused by heat of the welded bead and bias of heat shrinkage are suppressed.

(6) 前記母材選択工程において、板材からなる前記母材を選択し、当該板材からなる前記母材の表裏面に、前記積層方向に沿って前記溶着ビード層を積層する(5)に記載の積層造形物の製造方法。
この積層造形物の製造方法によれば、板材からなる母材の表裏に溶着ビード層が積層された積層造形物を高い造形精度で製造することができる。
(6) The welding bead layer is laminated along the laminating direction on the front and back surfaces of the base material made of the plate material by selecting the base material made of the plate material in the base material selection step. Manufacturing method of laminated model.
According to this method for manufacturing a laminated model, it is possible to manufacture a laminated model in which a welded bead layer is laminated on the front and back of a base material made of a plate material with high modeling accuracy.

(7) 前記母材選択工程において、棒材からなる前記母材を選択し、当該棒材からなる前記母材に対して、互いに直交する前記積層方向に沿って前記溶着ビード層を積層する(5)に記載の積層造形物の製造方法。
この積層造形物の製造方法によれば、棒材からなる母材に対して直交する方向に溶着ビード層が積層された積層造形物を高い造形精度で製造することができる。
(7) In the base material selection step, the base material made of a bar is selected, and the welded bead layer is laminated on the base material made of the bar along the stacking directions orthogonal to each other (7). The method for manufacturing a laminated model according to 5).
According to this method for manufacturing a laminated model, a laminated model in which a welded bead layer is laminated in a direction orthogonal to a base material made of a bar can be manufactured with high modeling accuracy.

(8) 前記母材選択工程において、丸棒材からなる前記母材を選択し、当該丸棒材からなる前記母材の周面に、前記積層方向に沿って前記溶着ビード層を放射状に積層する(5)に記載の積層造形物の製造方法。
この積層造形物の製造方法によれば、丸棒材からなる母材の周面に溶着ビード層が放射状に積層された積層造形物を高い造形精度で製造することができる。
(8) In the base material selection step, the base material made of a round bar is selected, and the welded bead layer is radially laminated on the peripheral surface of the base material made of the round bar along the laminating direction. The method for manufacturing a laminated model according to (5).
According to this method for manufacturing a laminated model, a laminated model in which welded bead layers are radially laminated on the peripheral surface of a base material made of a round bar can be manufactured with high modeling accuracy.

(9) (1)~(4)のいずれか一つに記載の積層造形計画設計方法に応じて、積層造形手順を決定する制御部と、
決定された前記積層造形手順に応じて駆動され、前記母材に前記溶着ビード層を積層して前記積層造形物を造形する造形部と、
を備える積層造形物の製造装置。
この積層造形物の製造装置によれば、溶着ビードの熱で生じる熱収縮による変形及び熱収縮の偏りが抑えられた高い造形精度の積層造形物を製造することができる。
(9) A control unit that determines a laminated modeling procedure according to the laminated modeling planning and design method according to any one of (1) to (4).
A modeling unit that is driven according to the determined laminated modeling procedure and that forms the laminated model by laminating the welded bead layer on the base material.
Equipment for manufacturing laminated objects.
According to this laminated model manufacturing apparatus, it is possible to manufacture a laminated model with high molding accuracy in which deformation due to heat shrinkage caused by heat of the welded bead and bias of heat shrinkage are suppressed.

(10) 母材に、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層を複数積層して造形する積層造形物の積層造形計画を決定する手順を、コンピュータに実行させるプログラムであって、
前記コンピュータに、
造形する前記積層造形物の3次元形状データを用いて、前記溶着ビード層の積層方向を設定する手順と、
前記母材に前記積層方向に沿って前記溶着ビード層を形成する際に、前記溶着ビードの熱による前記積層造形物全体の熱収縮が最小となる中立位置を割り出し、この中立位置を、前記積層造形物を前記積層方向に関して複数の領域に分割する分割位置に設定する手順と、
前記分割位置を含む大きさ及び形状の前記母材を選択する手順と、
を実行させるプログラム。
このプログラムによれば、選択した母材に溶着ビード層を積層させて積層造形物を製造した際に、溶着ビードの熱による熱収縮の影響が極力抑えられる。これにより、熱収縮による変形及び熱収縮の偏りを抑え、高い造形精度で積層造形物を製造することができる。
(10) A program that causes a computer to execute a procedure for determining a laminated modeling plan for a laminated model in which a plurality of welded bead layers composed of welded beads obtained by melting and solidifying a filler metal are laminated on a base material. hand,
To the computer
A procedure for setting the stacking direction of the welded bead layer using the three-dimensional shape data of the laminated model to be modeled, and a procedure for setting the stacking direction of the welded bead layer.
When the welded bead layer is formed on the base metal along the laminating direction, a neutral position where the heat shrinkage of the entire laminated model due to the heat of the welded bead is minimized is determined, and the neutral position is set to the neutral position. A procedure for setting a division position for dividing a modeled object into a plurality of regions with respect to the stacking direction, and a procedure for setting the modeled object at a division position.
A procedure for selecting the base material having a size and shape including the division position, and
A program to execute.
According to this program, when a welded bead layer is laminated on a selected base material to produce a laminated model, the influence of heat shrinkage due to the heat of the welded bead is suppressed as much as possible. As a result, deformation due to heat shrinkage and unevenness of heat shrinkage can be suppressed, and a laminated model can be manufactured with high molding accuracy.

11 造形部
37 制御部
100 積層造形物の製造装置
A,A1,A2,A3 積層方向
B 溶着ビード層
C 特定方向
Fm 溶加材
M 母材
S 分割位置
T 中立位置
W,W1~W5 積層造形物
W3a~W3f 分割体
11 Modeling unit 37 Control unit 100 Laminated model manufacturing equipment A, A1, A2, A3 Laminated direction B Welding bead layer C Specific direction Fm Lubricant M Base material S Divided position T Neutral position W, W1 to W5 Laminated model W3a to W3f divided body

Claims (8)

1つの母材に、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層を複数積層して造形する積層造形物の積層造形計画設計方法であって、
造形する前記積層造形物の3次元形状データを用いて、前記溶着ビード層の積層方向を設定する積層方向設定工程と、
前記積層造形物を1つの前記積層方向について2つの領域に分割する分割位置を設定する分割位置設定工程であって、前記分割位置に前記母材を配置して、前記母材の複数の領域に対向する各対向面に、前記積層方向に沿って前記溶着ビード層を形成して前記複数の領域を形成する、と仮定したとき、前記溶着ビードの熱による前記積層造形物全体の熱収縮が最小となる前記母材の位置である中立位置を前記分割位置に設定する分割位置設定工程と、
前記分割位置を含む大きさ及び形状の前記母材を選択する母材選択工程と、
を含む、積層造形物の積層造形計画設計方法。
It is a method of planning and designing a laminated model of a laminated model in which a plurality of welded bead layers composed of welded beads obtained by melting and solidifying a filler metal are laminated on one base material.
A stacking direction setting step for setting the stacking direction of the welded bead layer using the three-dimensional shape data of the laminated model to be modeled, and a stacking direction setting step.
In the division position setting step of setting the division position for dividing the laminated model into two regions in one stacking direction, the base material is arranged at the division position and the base material is arranged in a plurality of regions of the base material. Assuming that the welded bead layer is formed on each of the facing surfaces to form the plurality of regions along the stacking direction, the heat shrinkage of the entire laminated model due to the heat of the welded bead is minimized. The division position setting step of setting the neutral position , which is the position of the base metal, to the division position,
A base material selection step of selecting the base material having a size and shape including the division position, and
Laminated modeling planning design method for laminated modeling including.
前記積層方向設定工程において、前記積層方向を複数設定し、
前記分割位置設定工程において、それぞれの前記積層方向に関して前記中立位置を割り出して前記分割位置に設定し、
前記母材選択工程において、複数の前記分割位置の交差部を含む大きさ及び形状の前記母材を選択する
請求項1に記載の積層造形物の積層造形計画設計方法。
In the stacking direction setting step, a plurality of the stacking directions are set.
In the division position setting step, the neutral position is determined for each of the stacking directions and set to the division position.
The method for planning and designing a laminated model according to claim 1, wherein in the process of selecting a base material, the base material having a size and shape including an intersection of a plurality of the divided positions is selected.
請求項1または2に記載の積層造形計画設計方法によって決定された積層造形手順に応じて、前記母材に前記溶着ビード層を積層して前記積層造形物を造形する積層造形物の製造方法。 A method for manufacturing a laminated model, in which the welded bead layer is laminated on the base material to form the laminated model according to the layered modeling procedure determined by the laminated modeling planning and design method according to claim 1 or 2 . 前記母材選択工程において、板材からなる前記母材を選択し、当該板材からなる前記母材の表裏面に、前記積層方向に沿って前記溶着ビード層を積層する
請求項に記載の積層造形物の製造方法。
The laminated molding according to claim 3 , wherein in the base material selection step, the base material made of a plate material is selected, and the welded bead layer is laminated on the front and back surfaces of the base material made of the plate material along the laminating direction. Manufacturing method of goods.
前記母材選択工程において、棒材からなる前記母材を選択し、当該棒材からなる前記母材に対して、互いに直交する前記積層方向に沿って前記溶着ビード層を積層する
請求項に記載の積層造形物の製造方法。
The third aspect of the present invention is that in the base material selection step, the base material made of a bar is selected, and the welded bead layer is laminated on the base material made of the bar along the laminating direction orthogonal to each other. The method for manufacturing a laminated model according to the description.
前記母材選択工程において、丸棒材からなる前記母材を選択し、当該丸棒材からなる前記母材の周面に、前記積層方向に沿って前記溶着ビード層を放射状に積層する
請求項に記載の積層造形物の製造方法。
The claim that the base material made of a round bar material is selected in the base material selection step, and the welded bead layer is radially laminated on the peripheral surface of the base material made of the round bar material along the laminating direction. 3. The method for manufacturing a laminated model according to 3.
請求項1または2に記載の積層造形計画設計方法に応じて、積層造形手順を決定する制御部と、
決定された前記積層造形手順に応じて駆動され、前記母材に前記溶着ビード層を積層して前記積層造形物を造形する造形部と、
を備える積層造形物の製造装置。
A control unit that determines a laminated modeling procedure according to the laminated modeling planning and design method according to claim 1 or 2 .
A modeling unit that is driven according to the determined laminated modeling procedure and that forms the laminated model by laminating the welded bead layer on the base material.
Equipment for manufacturing laminated objects.
1つの母材に、溶加材を溶融及び凝固させた溶着ビードからなる溶着ビード層を複数積層して造形する積層造形物の積層造形計画を決定する手順を、コンピュータに実行させるプログラムであって、
前記コンピュータに、
造形する前記積層造形物の3次元形状データを用いて、前記溶着ビード層の積層方向を設定する手順と、
前記積層造形物を1つの前記積層方向について2つの領域に分割する分割位置を求める手順であって、前記分割位置に前記母材を配置して、前記母材の複数の領域に対向する各対向面に、前記積層方向に沿って前記溶着ビード層を形成して前記各領域を形成する、と仮定したとき、前記溶着ビードの熱による前記積層造形物全体の熱収縮が最小となる前記母材の位置である中立位置を前記分割位置に設定する手順と、
前記分割位置を含む大きさ及び形状の前記母材を選択する手順と、
を実行させるプログラム。
It is a program that causes a computer to execute a procedure for determining a laminated modeling plan for a laminated model in which a plurality of welded bead layers composed of welded beads obtained by melting and solidifying a filler metal are laminated on one base material. ,
To the computer
A procedure for setting the stacking direction of the welded bead layer using the three-dimensional shape data of the laminated model to be modeled, and a procedure for setting the stacking direction of the welded bead layer.
It is a procedure for obtaining a division position for dividing the laminated model into two regions in one stacking direction, in which the base material is arranged at the division position and each facing a plurality of regions of the base material is opposed to each other. Assuming that the welded bead layer is formed on the surface along the laminated direction to form the respective regions, the base material that minimizes the thermal shrinkage of the entire laminated model due to the heat of the welded bead. The procedure for setting the neutral position, which is the position of, to the divided position, and
A procedure for selecting the base material having a size and shape including the division position, and
A program to execute.
JP2018124514A 2018-06-29 2018-06-29 Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model Active JP6997044B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018124514A JP6997044B2 (en) 2018-06-29 2018-06-29 Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018124514A JP6997044B2 (en) 2018-06-29 2018-06-29 Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model

Publications (2)

Publication Number Publication Date
JP2020001075A JP2020001075A (en) 2020-01-09
JP6997044B2 true JP6997044B2 (en) 2022-01-17

Family

ID=69098013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018124514A Active JP6997044B2 (en) 2018-06-29 2018-06-29 Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model

Country Status (1)

Country Link
JP (1) JP6997044B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11338523B2 (en) * 2020-06-10 2022-05-24 Xerox Corporation System and method for operating a multi-nozzle extruder during additive manufacturing
DE102023102410A1 (en) * 2023-02-01 2024-08-01 Bayerische Motoren Werke Aktiengesellschaft Method for producing a structural component and structural component

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087379A (en) 2016-11-29 2018-06-07 リンカーン グローバル,インコーポレイテッド Metal laminate molding system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018087379A (en) 2016-11-29 2018-06-07 リンカーン グローバル,インコーポレイテッド Metal laminate molding system

Also Published As

Publication number Publication date
JP2020001075A (en) 2020-01-09

Similar Documents

Publication Publication Date Title
JP7048435B2 (en) Laminating planning method of laminated model, manufacturing method and manufacturing equipment of laminated model
JP6936580B2 (en) Stacking control device, stacking control method and program
WO2017141639A1 (en) Layering control device, layering control method, and program
JP6738789B2 (en) Laminated object design method, manufacturing method, manufacturing apparatus, and program
JP2019089108A (en) Manufacturing method and manufacturing apparatus for molded object
WO2020129560A1 (en) Method for setting excess thickness, device for setting excess thickness, method for producing shaped object, and program
WO2018180135A1 (en) Method and system for manufacturing laminated shaped product
JP7020995B2 (en) Modeling procedure design method for laminated model, modeling method and manufacturing equipment for laminated model, and program
JP6997044B2 (en) Laminated modeling plan Design method, manufacturing method, manufacturing equipment, and program of laminated model
CN111770806A (en) Method for forming laminated formed article, apparatus for producing laminated formed article, and program
JP2021016885A (en) Lamination planning method for laminate molded object, manufacturing method and manufacturing apparatus for laminate molded object
JP2019076916A (en) Manufacturing method of lamination molded product and lamination molded product
JP7428621B2 (en) How to set printing conditions, additive manufacturing method, additive manufacturing system, and program
JP7181163B2 (en) Laminated structure manufacturing method
JP7355672B2 (en) Manufacturing method for additively manufactured objects
JP7007237B2 (en) Manufacturing method of laminated model and laminated model
JP2024025180A (en) Control information generation device, control information generation method, program, and laminate molding method
JP7560416B2 (en) Method for controlling layered manufacturing device, layered manufacturing device, and program
WO2023204113A1 (en) Control information generation device, additive manufacturing system and program
JP7303162B2 (en) Laminate-molded article manufacturing method
JP7572313B2 (en) Additive manufacturing support device, additive manufacturing device, additive manufacturing support method, and program
WO2023149143A1 (en) Control information generation device, control information generation method, program, welding control device, and welding device
JP7160774B2 (en) Structure manufacturing method and structure
WO2024053281A1 (en) Control information generation device, control information generation method, and program
JP2024058958A (en) Method for manufacturing molded article and lamination planning method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211216

R150 Certificate of patent or registration of utility model

Ref document number: 6997044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150