JP6996536B2 - Steel plate shear wall - Google Patents

Steel plate shear wall Download PDF

Info

Publication number
JP6996536B2
JP6996536B2 JP2019172420A JP2019172420A JP6996536B2 JP 6996536 B2 JP6996536 B2 JP 6996536B2 JP 2019172420 A JP2019172420 A JP 2019172420A JP 2019172420 A JP2019172420 A JP 2019172420A JP 6996536 B2 JP6996536 B2 JP 6996536B2
Authority
JP
Japan
Prior art keywords
steel plate
plate thickness
plate
shear wall
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019172420A
Other languages
Japanese (ja)
Other versions
JP2020076295A (en
Inventor
隼平 安永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2020076295A publication Critical patent/JP2020076295A/en
Application granted granted Critical
Publication of JP6996536B2 publication Critical patent/JP6996536B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、建物の耐震性を高める壁構造に関し、特に鋼材で構成される鋼板耐震壁に関する。 The present invention relates to a wall structure that enhances the earthquake resistance of a building, and more particularly to a steel plate earthquake-resistant wall made of a steel material.

従来の一般的な鋼板耐震壁11は、図8に示すように、矩形状の鋼板13が建物の柱15(間柱)と梁17で構成される架構19(フレーム)の中に配置され、鋼板13の四辺の周縁端を、断面T字状の接合部材21を介して、柱15や梁17に溶接接合あるいは高力ボルト23によるボルト接合で取り付けられる。 In the conventional general steel plate shear wall 11, as shown in FIG. 8, a rectangular steel plate 13 is arranged in a frame 19 (frame) composed of pillars 15 (studs) and beams 17 of a building, and steel plates are used. The peripheral edges of the four sides of 13 are attached to the columns 15 and beams 17 by welding or bolting with high-strength bolts 23 via the joining members 21 having a T-shaped cross section.

地震・台風などの水平方向外力が建物の柱15(間柱)と梁17から鋼板耐震壁11に入力されると、壁面が面外方向にはらみ出すような変形(座屈)が発生し、耐力が著しく低下する。この座屈現象を防止し、水平方向外力に対して安定した耐力を維持するために、鋼板13を座屈補剛する。 When horizontal external forces such as earthquakes and typhoons are input to the steel plate shear wall 11 from the pillars 15 (studs) and beams 17 of the building, deformation (buckling) occurs so that the wall surface protrudes in the out-of-plane direction, and the bearing capacity. Is significantly reduced. In order to prevent this buckling phenomenon and maintain a stable yield strength against an external force in the horizontal direction, the steel plate 13 is buckled and stiffened.

座屈補剛の方法として、一般的にスチフナによる補剛が行われており、図8、図9に示すように、鋼板13の表と裏でスチフナ25が交差するように配置する手法や、図10に示すように、スチフナ25を鉛直方向に所定の間隔で複数枚配置する手法が取られている。 As a method of buckling stiffening, stiffening with a stiffener is generally performed, and as shown in FIGS. 8 and 9, a method of arranging the stiffener 25 so as to intersect the front and back of the steel plate 13 or As shown in FIG. 10, a method is adopted in which a plurality of stiffeners 25 are arranged at predetermined intervals in the vertical direction.

また、座屈補剛の他の方法として、特許文献1に開示されたように、鋼板13として表面に凹凸を形成するように曲げ加工された波形鋼板を用い、鋼板13に形成された凹凸によって面外剛性を向上させて座屈補剛するという手法もある。 Further, as another method of buckling stiffening, as disclosed in Patent Document 1, a corrugated steel sheet bent so as to form irregularities on the surface of the steel sheet 13 is used, and the unevenness formed on the steel sheet 13 is used. There is also a method of improving the out-of-plane rigidity to buckle and stiffen.

特開2013-2032号公報Japanese Unexamined Patent Publication No. 2013-2032

スチフナ25による座屈補剛の場合、スチフナ25は溶接によって鋼板13に接合されるため、溶接する際の熱により、鋼板13に歪みが生じてしまう。この歪みは、鋼板13の座屈耐力を著しく低下させるため、歪を精密に矯正する必要があるが、歪みの検査や矯正には、多くの手間がかかるという問題がある。そして、外形上は精密に矯正された鋼板耐震壁11であっても、鋼板13の内部には残留応力が生じており、この残留応力が座屈耐力の低下を引き起こす恐れがある。 In the case of buckling stiffening by the stiffener 25, since the stiffener 25 is joined to the steel plate 13 by welding, the steel plate 13 is distorted by the heat during welding. Since this strain significantly reduces the buckling strength of the steel sheet 13, it is necessary to correct the strain precisely, but there is a problem that it takes a lot of time and effort to inspect and correct the strain. Even if the steel plate shear wall 11 is precisely straightened in appearance, residual stress is generated inside the steel plate 13, and this residual stress may cause a decrease in buckling strength.

また、スチフナ25による座屈補剛の内、図9に示すような表と裏でスチフナ25が交差する場合は、上記の問題に加えて、溶接時に鋼板13を反転させる必要があるため、さらに多くの手間がかかる。 Further, in the buckling stiffening by the stiffener 25, when the stiffener 25 intersects on the front and back as shown in FIG. 9, in addition to the above problem, it is necessary to invert the steel plate 13 at the time of welding. It takes a lot of trouble.

曲げ加工された波形鋼板を用いる手法では、加工による残留応力の影響や、加工された部位の強度低下が懸念される。
また、波形鋼板を用いる手法では、場合によっては凹凸の幅が大きくなり、輸送に支障が出る可能性もある。
In the method using the corrugated steel sheet that has been bent, there are concerns about the influence of residual stress due to processing and the decrease in strength of the processed part.
In addition, in the method using a corrugated steel plate, the width of the unevenness becomes large in some cases, which may hinder transportation.

本発明はかかる課題を解決するためになされたものであり、加工の手間や加工に伴う熱や残留応力の影響がなく、座屈性能に優れた鋼板耐震壁を提供することを目的としている。 The present invention has been made to solve such a problem, and an object of the present invention is to provide a steel sheet shear wall having excellent buckling performance without being affected by processing labor, heat and residual stress associated with processing.

(1)本発明に係る鋼板耐震壁は、柱と梁で囲まれた架構に鋼板を設置して構成される鋼板耐震壁であって、
前記鋼板が、板厚の厚い部位と薄い部位が、高さ方向で交互に形成されて横縞状になるか、又は幅方向で交互に形成されて縦縞状になった板厚変化鋼板であって、鋼板面に溶接や曲げ加工が施されていないものであることを特徴とするものである。
(1) The steel plate shear wall according to the present invention is a steel plate shear wall constructed by installing steel plates in a frame surrounded by columns and beams.
The steel sheet is a plate thickness changing steel plate in which thick and thin portions are alternately formed in the height direction to form horizontal stripes, or alternately formed in the width direction to form vertical stripes. It is characterized in that the surface of the steel plate is not welded or bent.

(2)また、上記(1)に記載のものにおいて、板厚が最も厚い部位から板厚が最も薄い部位への板厚の変化、及び板厚が最も薄い部位から板厚が最も厚い部位への板厚の変化が、一定の変化率で徐々に変化するものであることを特徴とするものである。 (2) Further, in the above-mentioned (1), the change in the plate thickness from the portion having the thickest plate thickness to the portion having the thinnest plate thickness, and from the portion having the thinnest plate thickness to the portion having the thickest plate thickness. It is characterized in that the change in the plate thickness of is gradually changed at a constant rate of change.

本発明においては、板厚変化鋼板を鋼板耐震壁に用いたことにより、例えばスチフナを溶接する従来例で問題となる、溶接熱による歪みやその矯正に起因する問題、あるいは曲げ加工された波形鋼板を用いる従来例で問題となる加工による残留応力の影響や、加工部の強度低下の問題が全くなくなり、板厚変化鋼板のもつ座屈耐力をそのまま期待できるため、信頼性が高い鋼板耐震壁を得ることができる。 In the present invention, by using a steel plate with a variable thickness for a steel sheet seismic wall, for example, a problem caused by distortion due to welding heat and its correction, which is a problem in the conventional example of welding a stiffener, or a bent corrugated steel plate. Since the influence of residual stress due to machining and the problem of decrease in the strength of the machined part, which are problems in the conventional example using, can be completely eliminated and the buckling resistance of the steel plate with changing plate thickness can be expected as it is, a highly reliable steel plate seismic wall can be used. Obtainable.

本発明の一実施の形態に係る鋼板耐震壁の構造の説明図であり、(a)が正面図、(b)が矢視A-A断面図である。It is explanatory drawing of the structure of the steel plate shear wall which concerns on one Embodiment of this invention, (a) is a front view, and (b) is a sectional view taken along the line AA. 図1に示した板厚変化鋼板の説明図であって、(a)が正面図、(b)が側面図である。It is explanatory drawing of the plate thickness change steel plate shown in FIG. 1, (a) is a front view, (b) is a side view. 図1に示した板厚変化鋼板の他の態様の説明図であって、(a)が正面図、(b)が側面図である。It is explanatory drawing of another aspect of the plate thickness change steel plate shown in FIG. 1, (a) is a front view, (b) is a side view. 板厚変化鋼板の取付方法の説明図である。It is explanatory drawing of the mounting method of the plate thickness change steel plate. 板厚変化鋼板の取付方法の説明図であり、(a)が正面図、(b)が側面図である。It is explanatory drawing of the mounting method of the plate thickness change steel plate, (a) is a front view, (b) is a side view. 図1に示した板厚変化鋼板の他の態様の説明図であって、(a)が正面図、(b)が側面図である。It is explanatory drawing of another aspect of the plate thickness change steel plate shown in FIG. 1, (a) is a front view, (b) is a side view. 図1に示した板厚変化鋼板の他の態様の説明図であって、(a)が正面図、(b)が平面図である。It is explanatory drawing of another aspect of the plate thickness change steel plate shown in FIG. 1, (a) is a front view, (b) is a plan view. 従来の鋼板耐震壁の構造の説明図であり、(a)が正面図、(b)が矢視B-B断面図である。It is explanatory drawing of the structure of the conventional steel plate shear wall, (a) is a front view, (b) is a cross-sectional view of arrow BB. 図8に示した鋼板耐震壁の補剛構造の説明図であって、(a)が正面図、(b)が側面図である。It is explanatory drawing of the stiffening structure of the steel plate shear wall shown in FIG. 8, (a) is a front view, (b) is a side view. 図8に示した鋼板耐震壁の他の補剛構造の説明図であって、(a)が正面図、(b)が側面図である。It is explanatory drawing of the other stiffening structure of the steel plate shear wall shown in FIG. 8, (a) is a front view, (b) is a side view. 実施例において例示した鋼製耐震壁の説明図である。It is explanatory drawing of the steel earthquake-resistant wall exemplified in the Example. 本発明の効果を確認するために行った有限要素解析の結果を示すグラフである。It is a graph which shows the result of the finite element analysis performed for confirming the effect of this invention.

本実施の形態の鋼板耐震壁を図1、図2に基づいて説明する。
本実施の形態の鋼板耐震壁1は、柱15と梁17で囲まれた架構19に鋼板を設置して構成される鋼板耐震壁1である。
そして、鋼板が、板厚の厚い部位と薄い部位が、高さ方向で交互に形成されて横縞状になった板厚変化鋼板3であって、鋼板面に溶接や曲げ加工が施されていないものであることを特徴とするものである。ここで、鋼板面とは、板厚変化鋼板3を架構19に設置して鋼板耐震壁1としたときの壁面に相当する面のことをいう。
The steel plate shear wall of the present embodiment will be described with reference to FIGS. 1 and 2.
The steel plate shear wall 1 of the present embodiment is a steel plate shear wall 1 configured by installing steel plates on a frame 19 surrounded by columns 15 and beams 17.
Further, the steel plate is a plate thickness changing steel plate 3 in which thick and thin portions are alternately formed in the height direction to form a horizontal stripe, and the steel plate surface is not welded or bent. It is characterized by being a thing. Here, the steel plate surface refers to a surface corresponding to a wall surface when the plate thickness changing steel plate 3 is installed on the frame 19 to form a steel plate shear wall 1.

本実施の形態の板厚変化鋼板3は、図2に示すように、板厚が最も薄い最薄部3aから下端に向けて板厚が徐々に増加して最も厚みのある部分である最厚部3bに至り、そこから徐々に板厚が薄くなり、板厚が最も薄い部分である最薄部3aに至り、さらに板厚が徐々に増加するということを繰り返して、下端では板厚が最も薄い最薄部3aとなっている。 As shown in FIG. 2, the plate thickness changing steel plate 3 of the present embodiment is the thickest portion in which the plate thickness gradually increases from the thinnest portion 3a, which is the thinnest, toward the lower end. The plate thickness gradually decreases from the portion 3b, reaches the thinnest portion 3a, which is the thinnest portion, and then gradually increases, and the plate thickness is the highest at the lower end. It is the thinnest part 3a.

本実施の形態では、上下端を除くと板厚が最も厚い最厚部3bが上下方向3カ所で、板厚が最も薄くなる最薄部3aが2か所となっているが、本発明はこれに限られるものではなく、最厚部3bが2カ所以上であればよい。
なお、板厚の変化の数が多いほど、座屈荷重が増加するので、例えば図3に示すように、板厚の最厚部3bが高さ方向で6カ所あるようなものであってもよい。
In the present embodiment, excluding the upper and lower ends, the thickest portion 3b having the thickest plate thickness has three places in the vertical direction, and the thinnest portion 3a having the thinnest plate thickness has two places. The present invention is not limited to this, and the thickest portion 3b may be at two or more locations.
Since the buckling load increases as the number of changes in the plate thickness increases, for example, as shown in FIG. 3, even if the thickest portion 3b of the plate thickness is 6 places in the height direction. good.

本実施の形態に上下方向で板厚が一定の変化率で徐々に変化して横縞状にした板厚変化鋼板3を用いることで、最薄部と等しい板厚を有する一様に等厚な鋼板13(以下、「等厚鋼板13」という)にスチフナ25で補剛を施した鋼板耐震壁11(以下、「等厚鋼板耐震壁11」という)(図9、図10参照)と同等あるいはそれ以上の座屈耐力が期待できる。この点を、より詳細に説明すると以下の通りである。 By using the plate thickness changing steel plate 3 in which the plate thickness gradually changes at a constant rate of change in the vertical direction to form a horizontal stripe shape in the present embodiment, the plate thickness is uniformly equal to that of the thinnest portion. Equivalent to or equal to the steel plate shear wall 11 (hereinafter referred to as "equal thickness steel plate shear wall 11") (see FIGS. 9 and 10) in which the steel plate 13 (hereinafter referred to as "equal thickness steel plate 13") is stiffened with a stiffener 25. Further buckling resistance can be expected. This point will be described in more detail as follows.

等厚鋼板耐震壁では、水平力が作用した際に、等厚鋼板13が面内で一様に降伏して全面で剛性低下する。この剛性低下に伴う面外への座屈を防ぐために、スチフナ25を壁面全域に配置して座屈補剛する仕組みである。
一方、板厚変化鋼板3を用いた鋼板耐震壁1では、水平力が作用した際に、面内で最薄部が先行して降伏し、その後、徐々に増厚部が降伏するため、剛性低下は壁面全体で一様ではない。すなわち、板厚変化鋼板3を用いた鋼板耐震壁1では、剛性低下を壁面内で分布させることにより、座屈発生を遅らせ座屈補剛する仕組みであり、等厚鋼板耐震壁11以上の座屈耐力が期待できる。
しかも、本実施の形態では、補剛材を溶接したり、鋼板を曲げ加工したりする必要がないため、上述したような溶接や曲げ加工にともなう問題点が発生することなく、板厚変化鋼板3のもつ本来の座屈耐力を期待することができ、信頼性の高い鋼板耐震壁1を構成することができる。
In the equal-thickness steel plate shear wall, when a horizontal force is applied, the equal-thickness steel plate 13 yields uniformly in the plane and the rigidity is lowered on the entire surface. In order to prevent out-of-plane buckling due to this decrease in rigidity, the stiffener 25 is arranged over the entire wall surface to buckle and stiffen.
On the other hand, in the steel plate shear wall 1 using the plate thickness changing steel plate 3, when a horizontal force is applied, the thinnest part in the plane yields first, and then the thickened part gradually yields, so that the rigidity is increased. The drop is not uniform across the wall. That is, the steel plate shear wall 1 using the plate thickness changing steel plate 3 has a mechanism of delaying the occurrence of buckling and buckling stiffening by distributing the decrease in rigidity in the wall surface. You can expect buckling.
Moreover, in the present embodiment, it is not necessary to weld the stiffener or bend the steel plate, so that the problems associated with the welding and bending as described above do not occur and the steel plate thickness changes. The original buckling resistance of 3 can be expected, and a highly reliable steel plate earthquake-resistant wall 1 can be constructed.

なお、板厚変化鋼板3は、圧延によって製造することができ、座屈補剛のために、スチフナ等の溶接や、曲げ加工等が不要であるので、耐震壁の製作の手間も低減できる。 The plate thickness changing steel plate 3 can be manufactured by rolling, and since buckling stiffening does not require welding such as stiffeners or bending, the labor of manufacturing a shear wall can be reduced.

板厚変化鋼板3の架構19への設置に関し、図1に示すように、上下の梁17に対しては、断面がT字状の接合部材5を介してボルト接合される。すなわち、板厚変化鋼板3の上辺部には、T字を倒立させた状態でその横片5aを溶接接合し、板厚変化鋼板3の下辺部には、T字の横片5aを溶接接合する。そして、接合部材5の縦片5bを梁17側の添接板8に高力ボルト23でボルト接合される。 Regarding the installation of the plate thickness changing steel plate 3 on the frame 19, as shown in FIG. 1, the upper and lower beams 17 are bolted to each other via a joining member 5 having a T-shaped cross section. That is, the horizontal piece 5a is welded to the upper side of the plate thickness changing steel plate 3 in an inverted state, and the T-shaped horizontal piece 5a is welded to the lower side of the plate thickness changing steel plate 3. do. Then, the vertical piece 5b of the joining member 5 is bolted to the splicing plate 8 on the beam 17 side with a high-strength bolt 23.

また、左右の柱15(間柱)に対する接合方法としては、図4に示すように、板厚変化鋼板3と同様に板厚が変化するスプライスプレート7で板厚変化鋼板3を挟持してボルト接合して、スプライスプレート7を柱15(間柱)と接合するようにしてもよい。
また、図5に示すように、板厚変化鋼板3の最も板厚の薄い最薄部3aと同じ厚さの平板からなる添接板9を板厚変化鋼板3の両側辺に溶接して、添接板9を柱15(間柱)に接合するようにしてもよい。
As a method of joining the left and right columns 15 (studs), as shown in FIG. 4, the plate thickness changing steel plate 3 is sandwiched between the splice plates 7 having the same plate thickness changing steel plate 3 and bolted. Then, the splice plate 7 may be joined to the pillar 15 (stud).
Further, as shown in FIG. 5, a splicing plate 9 made of a flat plate having the same thickness as the thinnest portion 3a of the plate thickness changing steel plate 3 is welded to both sides of the plate thickness changing steel plate 3. The splicing plate 9 may be joined to the pillar 15 (stud).

以上のように構成された鋼板耐震壁1においては、鋼板として板厚変化鋼板3を用いたので、例えばスチフナ25を溶接する従来例で問題となる、溶接熱による歪みやその矯正に起因する問題、あるいは曲げ加工された波形鋼板を用いる従来例で問題となる加工による残留応力の影響や、加工部の強度低下の問題が全くなくなり、板厚変化鋼板3のもつ座屈耐力を期待できるため、信頼性が高い鋼板耐震壁1を得ることができる。 In the steel plate seismic wall 1 configured as described above, since the steel plate thickness changing steel plate 3 is used as the steel plate, for example, a problem caused by distortion due to welding heat and its correction, which is a problem in the conventional example of welding the stiffener 25. Or, the influence of residual stress due to machining, which is a problem in the conventional example using a bent corrugated steel sheet, and the problem of a decrease in the strength of the machined portion are completely eliminated, and the buckling resistance of the sheet thickness changing steel sheet 3 can be expected. A highly reliable steel plate seismic wall 1 can be obtained.

また、板厚変化鋼板3を用いることで、鋼板耐震壁1を製作するに際して、スチフナ25を溶接する方法に比較して、溶接作業や、熱歪みの矯正作業等がなく、また波形鋼板を用いる場合に比較しても、曲げ加工や、残留応力の影響の検査作業がなく、耐震壁を製作する際の手間がなく作業性に優れるという効果を得ることができる。 Further, by using the plate thickness changing steel plate 3, when manufacturing the steel plate shear wall 1, there is no welding work, thermal strain correction work, etc. as compared with the method of welding the stiffener 25, and a corrugated steel plate is used. Compared to the case, there is no bending process or inspection work of the influence of residual stress, and there is no trouble in manufacturing the earthquake-resistant wall, and the effect of excellent workability can be obtained.

なお、上記の実施の形態では、板厚変化鋼板3として表裏の両面に凹凸面が形成されたものを例示したが、図6に示すように、片方の面が平坦面で、他方の面のみが凹凸面になるようなものであってもよい。
また、上記の実施の形態では、板厚が高さ方向で規則的に変化し、横縞が形成されたものであったが、図7に示すように、縦縞が形成されるように、板厚が水平方向で変化するものであってもよい。
In the above embodiment, the plate thickness changing steel plate 3 having uneven surfaces formed on both the front and back surfaces is exemplified, but as shown in FIG. 6, one surface is a flat surface and only the other surface is formed. May be an uneven surface.
Further, in the above embodiment, the plate thickness changes regularly in the height direction to form horizontal stripes, but as shown in FIG. 7, the plate thickness is such that vertical stripes are formed. May change in the horizontal direction.

また、上記の実施の形態では、板厚が最薄部3aから最厚部3bへと徐々に変化するものであったが、板厚が最も厚い最厚部3bでは板厚方向に直交する断面形状が矩形状の凸部となるように、最厚部3bの板厚は一定で、板厚の最も薄い最薄部3aの板厚も一定で、これらの最厚部3bと最薄部3aが交互に現れるような態様であってもよい。
この場合、板厚が一定の最薄部3aと最厚部3bを繋ぐ部分は、板厚が急激に変化するような垂直面でもよいし、板厚が徐々に変化するような傾斜面でもよい。
Further, in the above embodiment, the plate thickness gradually changes from the thinnest portion 3a to the thickest portion 3b, but the thickest portion 3b having the thickest plate thickness has a cross section orthogonal to the plate thickness direction. The plate thickness of the thickest portion 3b is constant, the plate thickness of the thinnest portion 3a having the thinnest plate thickness is also constant, and the thickest portion 3b and the thinnest portion 3a are constant so that the shape becomes a rectangular convex portion. May appear alternately.
In this case, the portion connecting the thinnest portion 3a and the thickest portion 3b having a constant plate thickness may be a vertical surface in which the plate thickness changes abruptly, or an inclined surface in which the plate thickness gradually changes. ..

もっとも、一定の変化率で徐々に変化する傾斜面とすることで、後述する実施例で示すように、塑性変形性能の向上が期待できる。
特に、座屈発生を遅らせ座屈補剛する上では、最厚部と最薄部の板厚比で1.5以上あることが好ましい。一方、板厚比が2.0以上の場合は塑性変形性能が頭打ちになる傾向がある。よって、経済性を考慮すると板厚比で1.5~2.0が好ましい範囲であるといえる。
However, by using an inclined surface that gradually changes at a constant rate of change, improvement in plastic deformation performance can be expected, as shown in Examples described later.
In particular, in order to delay the occurrence of buckling and to stiffen the buckling, it is preferable that the plate thickness ratio between the thickest part and the thinnest part is 1.5 or more. On the other hand, when the plate thickness ratio is 2.0 or more, the plastic deformation performance tends to reach a plateau. Therefore, considering economic efficiency, it can be said that a plate thickness ratio of 1.5 to 2.0 is a preferable range.

本発明による効果を検証するために、有限要素解析を実施した。解析対象は高さH=3240mm、幅D=1620mmの鋼板である。解析ケースを図11に示す。図11(a)(b)は本発明を適用したテーパー鋼板であり、図11(c)は比較例として実施した従来技術のスチフナ補剛された鋼板である。 A finite element analysis was performed to verify the effect of the present invention. The analysis target is a steel plate with a height H = 3240 mm and a width D = 1620 mm. The analysis case is shown in FIG. 11 (a) and 11 (b) are tapered steel sheets to which the present invention is applied, and FIG. 11 (c) is a stiffener-stiffened steel sheet of the prior art carried out as a comparative example.

図11(a)(b)に示すものは、板厚の厚い部位と薄い部位が、高さ方向で交互に形成されて横縞状になっており、薄い部分の板厚をt=12mmに統一し、厚い部分の板厚を2種類(t=19,22mm)とした。また、等厚部分の高さを250mm、勾配を有する部分の高さを497.5mmとして統一した。
これにより、図11(a)に示すものの板厚比(最厚部/最薄部)=1.58であり、板厚変化率は14mm/mとなる。また、図11(b)に示すものの板厚比(最厚部/最薄部)=1.83であり、板厚変化率は20mm/mとなる。
In FIGS. 11 (a) and 11 (b), thick portions and thin portions are alternately formed in the height direction to form horizontal stripes, and the plate thickness of the thin portions is unified to t = 12 mm. However, the plate thickness of the thick part was set to two types (t = 19,22 mm). In addition, the height of the equal-thickness part is 250 mm, and the height of the sloped part is 497.5 mm.
As a result, the plate thickness ratio (thickest part / thinnest part) of what is shown in FIG. 11A is 1.58, and the plate thickness change rate is 14 mm / m. Further, as shown in FIG. 11B, the plate thickness ratio (thickest part / thinnest part) = 1.83, and the plate thickness change rate is 20 mm / m.

また、図11(c)の比較例は、縦方向に2本、横方向に5本のスチフナが等間隔に配置されている。スチフナの板厚tsは鋼板の薄い部位の板厚t(=12mm)と同じとし、スチフナ高さはhs=70mmとした。 Further, in the comparative example of FIG. 11C, two stiffeners in the vertical direction and five stiffeners in the horizontal direction are arranged at equal intervals. The plate thickness ts of the stiffener was the same as the plate thickness t (= 12 mm) of the thin portion of the steel plate, and the stiffener height was hs = 70 mm.

材料特性は、降伏強度σy=235N/mm2、引張強度σu=400N/mm2、初期剛性E=20,5000N/mm2に対して、二次剛性をE/60、三次剛性をE/1000となるトリリニア型とした。また、境界条件は4辺固定支持とし、壁面に一様なせん断応力を作用させた。予め座屈固有値解析を実施し、得られた1次モードを面外変位がH/1000となるように初期不整として入力し、幾何学的非線形解析を実施した。 The material properties are yield strength σy = 235N / mm 2 , tensile strength σu = 400N / mm 2 , initial rigidity E = 20,5000N / mm 2 , secondary rigidity E / 60, and tertiary rigidity E / 1000. The trilinear type is used. In addition, the boundary condition was fixed support on four sides, and a uniform shear stress was applied to the wall surface. A buckling eigenvalue analysis was performed in advance, and the obtained primary mode was input as an initial irregularity so that the out-of-plane displacement was H / 1000, and a geometric nonlinear analysis was performed.

解析結果を図12に示す。図12の縦軸は、せん断応力度τを降伏応力度τyで無次元化した無次元せん断応力度(τ/τ)を示し、横軸は変形角Rを降伏変形角Ryで無次元化した無次元変形角(R/R)を示している。
図12では、テーパー鋼板の結果を実線で、スチフナ補剛された鋼板の結果を破線でそれぞれ示し、また各曲線の最大耐力を▽印で示している。
The analysis result is shown in FIG. The vertical axis of FIG. 12 shows the dimensionless shear stress degree (τ / τ y ) in which the shear stress degree τ is made dimensionless by the yield stress degree τy, and the horizontal axis shows the deformation angle R made dimensionless by the yield deformation angle Ry. The dimensionless deformation angle (R / R y ) is shown.
In FIG. 12, the result of the tapered steel plate is shown by a solid line, the result of the stiffened steel plate is shown by a broken line, and the maximum yield strength of each curve is shown by a ▽ mark.

テーパー鋼板(t12-t19)(図11(a)板厚比:1.58、板厚変化率:14mm/m)では、最大耐力が降伏応力度を上回っている。また、従来のスチフナ補剛された鋼板に比べて、最大耐力後の劣化勾配も緩やかであり、塑性変形性能に優れることが分かる。
テーパー鋼板(t12-t22)(図11(b)板厚比:1.83、板厚変化率:20mm/m)では、耐力および塑性変形性能の両面で従来のスチフナ補剛された鋼板を上回る耐力および塑性変形性能が確認できる。
In the tapered steel plate (t12-t19) (FIG. 11 (a) plate thickness ratio: 1.58, plate thickness change rate: 14 mm / m), the maximum yield strength exceeds the yield stress degree. Further, it can be seen that the deterioration gradient after the maximum proof stress is gentler than that of the conventional steel plate reinforced with stiffener, and the plastic deformation performance is excellent.
The tapered steel sheet (t12-t22) (Fig. 11 (b) plate thickness ratio: 1.83, plate thickness change rate: 20 mm / m) has a higher yield strength than the conventional stiffener-stiffened steel plate in terms of both yield strength and plastic deformation performance. The plastic deformation performance can be confirmed.

上記のように、本発明を適用することで、塑性変形性能が従来例をより優れていることが実証され、また壁面のサイズならびに薄い部分の板厚に応じて厚い部分の板厚を適切に設定することで、壁面の局部座屈を抑制し、耐力の確保および塑性変形性能の向上が可能であることが分かる。 As described above, by applying the present invention, it is demonstrated that the plastic deformation performance is superior to the conventional example, and the thickness of the thick portion is appropriately adjusted according to the size of the wall surface and the thickness of the thin portion. It can be seen that by setting it, it is possible to suppress local buckling of the wall surface, secure the yield strength, and improve the plastic deformation performance.

1 鋼板耐震壁
3 板厚変化鋼板
3a 最薄部
3b 最厚部
5 接合部材
5a 横片
5b 縦片
7 スプライスプレート
8 添接板(梁側)
9 添接板(板厚変化鋼板)
<従来例>
11 鋼板耐震壁
13 鋼板
15 柱
17 梁
19 架構
21 接合部材
23 高力ボルト
25 スチフナ
1 Steel plate shear wall 3 Plate thickness change steel plate 3a Thinnest part 3b Thickest part 5 Joining member 5a Horizontal piece 5b Vertical piece 7 Splice plate 8 Splicing plate (beam side)
9 Splicing plate (plate thickness change steel plate)
<Conventional example>
11 Steel plate shear wall 13 Steel plate 15 Pillar 17 Beam 19 Frame 21 Joining member 23 High-strength bolt 25 Stifuna

Claims (2)

柱と梁で囲まれた架構に鋼板を設置して構成される鋼板耐震壁であって、
前記鋼板が、板厚の厚い部位と薄い部位が、高さ方向で交互に形成されて横縞状になるか、又は幅方向で交互に形成されて縦縞状になった板厚変化鋼板であって、鋼板面に溶接や曲げ加工が施されていないものであることを特徴とする鋼板耐震壁。
It is a steel plate shear wall constructed by installing steel plates on a frame surrounded by columns and beams.
The steel sheet is a plate thickness changing steel plate in which thick and thin portions are alternately formed in the height direction to form horizontal stripes, or alternately formed in the width direction to form vertical stripes. A steel plate shear wall characterized by the fact that the surface of the steel plate is not welded or bent.
板厚が最も厚い部位板厚が最も薄い部位とをつなぐ部分が一定の変化率で徐々に変化する傾斜面であり、かつ板厚が最も薄い部位板厚が最も厚い部位とをつなぐ部分が一定の変化率で徐々に変化する傾斜面であることを特徴とする請求項1記載の鋼板耐震壁。 The part that connects the part with the thickest plate thickness and the part with the thinnest plate thickness is an inclined surface that gradually changes at a constant rate of change, and the part that connects the part with the thinnest plate thickness and the part with the thickest plate thickness. The steel plate shear wall according to claim 1, wherein is an inclined surface that gradually changes at a constant rate of change .
JP2019172420A 2018-09-28 2019-09-24 Steel plate shear wall Active JP6996536B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018183323 2018-09-28
JP2018183323 2018-09-28

Publications (2)

Publication Number Publication Date
JP2020076295A JP2020076295A (en) 2020-05-21
JP6996536B2 true JP6996536B2 (en) 2022-01-17

Family

ID=70723707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019172420A Active JP6996536B2 (en) 2018-09-28 2019-09-24 Steel plate shear wall

Country Status (1)

Country Link
JP (1) JP6996536B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013227A (en) 2000-06-30 2002-01-18 Nkk Corp Earthquake resisting wall
CN101982625A (en) 2010-10-15 2011-03-02 清华大学 Shear wall composed of multilayer steel plates
JP2011127278A (en) 2009-12-15 2011-06-30 Takenaka Komuten Co Ltd Earthquake-resisting steel wall and building having the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4133158A (en) * 1977-10-07 1979-01-09 H. H. Robertson Company Non-composite impact-resistant structure
JPH06288033A (en) * 1993-04-01 1994-10-11 Nippon Steel Corp Steel member for building construction
JPH07292802A (en) * 1994-04-22 1995-11-07 Atsushi Nakagawa Building wall structure
JP3397969B2 (en) * 1996-04-03 2003-04-21 新日本製鐵株式会社 Bridge structure
JPH10184075A (en) * 1996-12-24 1998-07-14 Nkk Corp Earthquake-resistant wall made of steel
JPH11303451A (en) * 1998-04-20 1999-11-02 Nkk Corp Vibration damping member for construction

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002013227A (en) 2000-06-30 2002-01-18 Nkk Corp Earthquake resisting wall
JP2011127278A (en) 2009-12-15 2011-06-30 Takenaka Komuten Co Ltd Earthquake-resisting steel wall and building having the same
CN101982625A (en) 2010-10-15 2011-03-02 清华大学 Shear wall composed of multilayer steel plates

Also Published As

Publication number Publication date
JP2020076295A (en) 2020-05-21

Similar Documents

Publication Publication Date Title
US10689876B2 (en) Beam-to-column connection systems and moment-resisting frames including the same
JP3890515B2 (en) Earthquake-resistant column / beam joint structure
JP2010133229A (en) Earthquake-resisting wall, building, and construction method of the earthquake-resisting wall
JP2017057665A (en) Column-beam joining structure
JP6919672B2 (en) H-shaped steel beam
JP6809039B2 (en) Steel parts
JP6996536B2 (en) Steel plate shear wall
KR20180089145A (en) Steel structure including earthquake-resistant intermediate moment connection
JP2016084874A (en) Shear damper
KR102366228B1 (en) Method for manufacturing a column-beam joint structure and a column-beam joint structure
JP7295731B2 (en) Beam formation method and erection method
JP7456413B2 (en) Steel shear walls, buildings equipped with them, and installation methods for steel shear walls
JP6885370B2 (en) Steel beam and column-beam joint structure using the steel beam
JP6986751B2 (en) Column-beam joint structure
KR102012499B1 (en) Boiler Spiral Wall Supporting Structure For Thermal Power Plants
JP2017020270A (en) Structure reinforcement member
JP6645770B2 (en) Seismic reinforcement structure
JP6728742B2 (en) Steel beam
JP6885823B2 (en) Bottom muscle curvature correction method and placement defect correction method
JP7334703B2 (en) Box-shaped section member and its design method
JP6497270B2 (en) Brace
JP7047856B2 (en) Assembling method of four-sided welded box-shaped cross-section columns, skin plate members, four-sided welded box-shaped cross-section columns, and concrete-filled steel pipe columns
JP6260554B2 (en) Column and beam joint structure
JP6517052B2 (en) Shear damper
JP6999997B2 (en) Lattice structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200422

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210427

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210614

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211129

R150 Certificate of patent or registration of utility model

Ref document number: 6996536

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150