JP6995488B2 - Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material - Google Patents

Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material Download PDF

Info

Publication number
JP6995488B2
JP6995488B2 JP2017074177A JP2017074177A JP6995488B2 JP 6995488 B2 JP6995488 B2 JP 6995488B2 JP 2017074177 A JP2017074177 A JP 2017074177A JP 2017074177 A JP2017074177 A JP 2017074177A JP 6995488 B2 JP6995488 B2 JP 6995488B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
particles
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017074177A
Other languages
Japanese (ja)
Other versions
JP2017199657A (en
Inventor
拓史 松野
貴一 廣瀬
昌浩 古屋
英和 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Publication of JP2017199657A publication Critical patent/JP2017199657A/en
Application granted granted Critical
Publication of JP6995488B2 publication Critical patent/JP6995488B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、負極活物質、混合負極活物質材料、及び負極活物質の製造方法に関する。 The present invention relates to a negative electrode active material, a mixed negative electrode active material material, and a method for producing a negative electrode active material.

近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。 In recent years, small electronic devices such as mobile terminals have become widespread, and further miniaturization, weight reduction, and long life are strongly required. In response to such market demands, the development of a secondary battery that is particularly compact, lightweight, and capable of obtaining a high energy density is underway. This secondary battery is being considered for application not only to small electronic devices but also to large electronic devices such as automobiles and power storage systems such as houses.

その中でも、リチウムイオン二次電池は小型かつ高容量化が行いやすく、また、鉛電池、ニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。 Among them, lithium-ion secondary batteries are highly expected because they are compact and easy to increase in capacity, and can obtain higher energy density than lead-acid batteries and nickel-cadmium batteries.

上記のリチウムイオン二次電池は、正極および負極、セパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。 The above-mentioned lithium ion secondary battery includes an electrolytic solution together with a positive electrode, a negative electrode, and a separator, and the negative electrode contains a negative electrode active material involved in a charge / discharge reaction.

この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金、酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。 While carbon-based active materials are widely used as the negative electrode active material, further improvement in battery capacity is required due to recent market demands. In order to improve the battery capacity, it is being studied to use silicon as a negative electrode active material. This is because the theoretical capacity of silicon (4199 mAh / g) is more than 10 times larger than the theoretical capacity of graphite (372 mAh / g), so that a significant improvement in battery capacity can be expected. The development of Kay material as a negative electrode active material is being studied not only for silicon alone, but also for alloys and compounds typified by oxides. In addition, the shape of the active material has been studied from the standard coating type for carbon-based active materials to the integrated type that deposits directly on the current collector.

しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。 However, when silicon is used as the main raw material as the negative electrode active material, the negative electrode active material expands and contracts during charging and discharging, so that it is easily cracked mainly in the vicinity of the surface layer of the negative electrode active material. In addition, an ionic substance is generated inside the active material, and the negative electrode active material becomes a fragile substance. When the surface layer of the negative electrode active material is cracked, a new surface is created, which increases the reaction area of the active material. At this time, the decomposition reaction of the electrolytic solution occurs on the new surface, and the electrolytic solution is consumed because a film which is a decomposition product of the electrolytic solution is formed on the new surface. Therefore, the cycle characteristics tend to deteriorate.

これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。 So far, in order to improve the initial efficiency of the battery and the cycle characteristics, various studies have been made on the negative electrode material for lithium ion secondary batteries and the electrode configuration, which are mainly made of Kay material.

具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。 Specifically, silicon and amorphous silicon dioxide are simultaneously deposited using the vapor phase method for the purpose of obtaining good cycle characteristics and high safety (see, for example, Patent Document 1). Further, in order to obtain high battery capacity and safety, a carbon material (electron conductive material) is provided on the surface layer of the silicon oxide particles (see, for example, Patent Document 2). Further, in order to improve the cycle characteristics and obtain high input / output characteristics, an active material containing silicon and oxygen is prepared, and an active material layer having a high oxygen ratio is formed in the vicinity of the current collector (). For example, see Patent Document 3). Further, in order to improve the cycle characteristics, oxygen is contained in the silicon active material, and the average oxygen content is 40 at% or less, and the oxygen content is increased in a place close to the current collector. (See, for example, Patent Document 4).

また、初回充放電効率を改善するためにSi相、SiO、MO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。 Further, in order to improve the initial charge / discharge efficiency, a nanocomposite containing a Si phase, SiO 2 , and My O metal oxide is used (see, for example, Patent Document 5). Further, in order to improve the cycle characteristics, SiO x (0.8 ≦ x ≦ 1.5, particle size range = 1 μm to 50 μm) and a carbon material are mixed and fired at a high temperature (see, for example, Patent Document 6). In addition, in order to improve the cycle characteristics, the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios near the interface between the active material and the current collector is set. The active material is controlled within the range of 0.4 or less (see, for example, Patent Document 7). Further, in order to improve the battery load characteristics, a metal oxide containing lithium is used (see, for example, Patent Document 8). Further, in order to improve the cycle characteristics, a hydrophobic layer such as a silane compound is formed on the surface layer of the Kay material (see, for example, Patent Document 9). Further, in order to improve the cycle characteristics, silicon oxide is used and a graphite film is formed on the surface layer thereof to impart conductivity (see, for example, Patent Document 10). In Patent Document 10, broad peaks appear at 1330 cm -1 and 1580 cm -1 with respect to the shift value obtained from the RAMAN spectrum for the graphite coating, and their intensity ratios I 1330 / I 1580 are 1.5 <I 1330 / I. 1580 <3. Further, in order to improve the battery capacity and cycle characteristics, particles having a silicon microcrystalline phase dispersed in silicon dioxide are used (see, for example, Patent Document 11). Further, in order to improve the overcharge and overdischarge characteristics, a silicon oxide in which the atomic number ratio of silicon and oxygen is controlled to 1: y (0 <y <2) is used (see, for example, Patent Document 12).

特開2001-185127号公報Japanese Unexamined Patent Publication No. 2001-185127 特開2002-042806号公報Japanese Unexamined Patent Publication No. 2002-042806 特開2006-164954号公報Japanese Unexamined Patent Publication No. 2006-164954 特開2006-114454号公報Japanese Unexamined Patent Publication No. 2006-114454 特開2009-070825号公報Japanese Unexamined Patent Publication No. 2009-070825 特開2008-282819号公報Japanese Unexamined Patent Publication No. 2008-282819 特開2008-251369号公報Japanese Unexamined Patent Publication No. 2008-251369 特開2008-177346号公報Japanese Unexamined Patent Publication No. 2008-177346 特開2007-234255号公報JP-A-2007-234255 特開2009-212074号公報Japanese Unexamined Patent Publication No. 2009-21204 特開2009-205950号公報Japanese Unexamined Patent Publication No. 2009-205950 特許第2997741号明細書Japanese Patent No. 2997741

上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素材を用いたリチウムイオン二次電池と同等に近い初回効率、サイクル特性、及び、負極作製時に作製する水系スラリーの安定性が望まれている。しかしながら、炭素材を用いたリチウムイオン二次電池と同等の初回効率、サイクル安定性、スラリー安定性を示す負極活物質を提案するには至っていなかった。 As mentioned above, in recent years, small electronic devices such as mobile terminals have been promoted to have higher performance and higher functionality, and the lithium ion secondary battery, which is the main power source thereof, is required to have an increased battery capacity. ing. As one method for solving this problem, it is desired to develop a lithium ion secondary battery made of a negative electrode using a Kay material as a main material. Further, a lithium ion secondary battery using a Kay material is desired to have initial efficiency and cycle characteristics close to those of a lithium ion secondary battery using a carbon material, and stability of an aqueous slurry produced at the time of producing a negative electrode. There is. However, it has not been possible to propose a negative electrode active material exhibiting initial efficiency, cycle stability, and slurry stability equivalent to those of a lithium ion secondary battery using a carbon material.

本発明は前述のような問題に鑑みてなされたもので、二次電池の負極作製時に作製するスラリーを安定化することができ、二次電池の負極活物質として用いた際に、初期充放電特性及びサイクル特性を向上させることが可能な負極活物質、及び、この負極活物質を含む混合負極活物質材料を提供することを目的とする。また、負極作製時に作製するスラリーを安定化することができ、初期充放電特性及びサイクル特性を向上させることができる負極活物質の製造方法を提供することも目的とする。 The present invention has been made in view of the above-mentioned problems, and can stabilize the slurry produced at the time of producing the negative electrode of the secondary battery, and when used as the negative electrode active material of the secondary battery, the initial charge / discharge is performed. It is an object of the present invention to provide a negative electrode active material capable of improving characteristics and cycle characteristics, and a mixed negative electrode active material material containing the negative electrode active material. Another object of the present invention is to provide a method for producing a negative electrode active material, which can stabilize the slurry produced at the time of producing the negative electrode and can improve the initial charge / discharge characteristics and the cycle characteristics.

上記目的を達成するために、本発明は、負極活物質粒子を含む負極活物質であって、前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、前記ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有し、前記ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であることを特徴とする負極活物質を提供する。 In order to achieve the above object, the present invention is a negative electrode active material containing negative negative active material particles, and the negative negative active material particles contain a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6). The silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 , and among the primary particles of the silicon compound particles, the primary particles having a particle diameter of 1 μm or less. Provided is a negative electrode active material characterized in that the ratio is 15% or less on a volume basis.

本発明の負極活物質は、ケイ素化合物粒子を含む負極活物質粒子(ケイ素系活物質粒子とも呼称する)を含むため、電池容量を向上できる。また、ケイ素化合物粒子が上記のようなリチウムシリケートを含むことにより、充電時に発生する不可逆容量を低減することができる。これにより、電池の初回効率及びサイクル特性を向上できる。また、ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であり、リチウムイオンが溶出しやすい体積あたりの表面積が大きい微粉の量が少ないため、ケイ素化合物粒子からリチウムイオンが溶出し難い。その結果、水系溶媒中に負極活物質等を分散させたスラリー(水系負極スラリー)の作製時に、負極活物質粒子からのLiイオンの溶出が抑えられ、水系負極スラリーの安定性が向上し、初回効率及びサイクル特性が向上する。 Since the negative electrode active material of the present invention contains negative electrode active material particles (also referred to as silicon-based active material particles) containing silicon compound particles, the battery capacity can be improved. Further, when the silicon compound particles contain the above-mentioned lithium silicate, the irreversible capacity generated during charging can be reduced. This makes it possible to improve the initial efficiency and cycle characteristics of the battery. Further, among the primary particles of the silicon compound particles, the ratio of the primary particles having a particle diameter of 1 μm or less is 15% or less on a volume basis, and the amount of fine particles having a large surface area per volume in which lithium ions are easily eluted is small. Lithium ions are difficult to elute from compound particles. As a result, when producing a slurry (water-based negative electrode slurry) in which the negative electrode active material or the like is dispersed in an aqueous solvent, the elution of Li ions from the negative electrode active material particles is suppressed, the stability of the water-based negative electrode slurry is improved, and the first time. Improves efficiency and cycle characteristics.

このとき、前記ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で8%以下であることが好ましい。 At this time, it is preferable that the proportion of the primary particles having a particle diameter of 1 μm or less among the primary particles of the silicon compound particles is 8% or less on a volume basis.

このようなものであれば、ケイ素化合物粒子の一次粒子に含まれる、体積あたりの表面積が大きい微粉の量が少ないため、水系負極スラリーの安定性がさらに向上し、初回効率及びサイクル特性がより向上する。 In such a case, since the amount of fine powder having a large surface area per volume contained in the primary particles of the silicon compound particles is small, the stability of the aqueous negative electrode slurry is further improved, and the initial efficiency and the cycle characteristics are further improved. do.

また、前記ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上6m/g以下であることが好ましい。また、前記ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上4m/g以下であることが特に好ましい。 Further, it is preferable that the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 6 m 2 / g or less. Further, it is particularly preferable that the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 4 m 2 / g or less.

ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上であれば、粒子同士の接触面積を十分に確保できるため、負極活物質の導電性が向上する。その結果、電池のサイクル特性及び初回効率がより向上する。ケイ素化合物粒子の一次粒子のBET比表面積が6m/g以下、特に4m/g以下であれば、ケイ素化合物粒子の比表面積がより適切に小さい範囲内であり、リチウムイオンの溶出をより抑制できる。その結果、水系負極スラリーの安定性がより向上し、初回効率がより向上する。 When the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more, a sufficient contact area between the particles can be sufficiently secured, so that the conductivity of the negative electrode active material is improved. As a result, the cycle characteristics and initial efficiency of the battery are further improved. When the BET specific surface area of the primary particles of the silicon compound particles is 6 m 2 / g or less, particularly 4 m 2 / g or less, the specific surface area of the silicon compound particles is within a range that is more appropriately smaller, and the elution of lithium ions is further suppressed. can. As a result, the stability of the water-based negative electrode slurry is further improved, and the initial efficiency is further improved.

また、前記ケイ素化合物粒子の一次粒子の体積基準の粒度分布におけるモード径が5μm以上10μm以下であり、かつ、前記体積基準の粒度分布における分布累積値が99.9%になる粒子径であるD99.9が20μm以下であることが好ましい。 Further, the mode diameter in the volume-based particle size distribution of the silicon compound particles is 5 μm or more and 10 μm or less, and the distributed cumulative value in the volume-based particle size distribution is 99.9%. It is preferable that 99.9 is 20 μm or less.

モード径が5μm以上10μm以下であれば、ケイ素化合物粒子が適度な大きさを持つため粒子同士の接触面積を十分に確保でき、負極活物質の導電性が向上する。その結果、電池のサイクル特性及び初回効率が向上する。また、D99.9が20μm以下であれば、電極の中の負極活物質径の局所的なばらつきを小さくすることができる。その結果、サイクル特性が向上する。 When the mode diameter is 5 μm or more and 10 μm or less, the silicon compound particles have an appropriate size, so that a sufficient contact area between the particles can be secured and the conductivity of the negative electrode active material is improved. As a result, the cycle characteristics and initial efficiency of the battery are improved. Further, when D 99.9 is 20 μm or less, the local variation in the diameter of the negative electrode active material in the electrode can be reduced. As a result, the cycle characteristics are improved.

また、前記ケイ素化合物粒子は、Cu-Kα線を用いたX線回折スペクトルにおけるSi(111)結晶面に起因するピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。 Further, the silicon compound particles have a peak width at half maximum (2θ) of 1.2 ° or more due to the Si (111) crystal plane in the X-ray diffraction spectrum using Cu—Kα rays, and the crystal plane has a peak width at half maximum (2θ). The corresponding crystallite size is preferably 7.5 nm or less.

ケイ素化合物粒子が上記のケイ素結晶性を有する負極活物質をリチウムイオン二次電池の負極活物質として用いれば、より良好なサイクル特性及び初期充放電特性が得られる。 If the negative electrode active material in which the silicon compound particles have the above-mentioned silicon crystallinity is used as the negative electrode active material of the lithium ion secondary battery, better cycle characteristics and initial charge / discharge characteristics can be obtained.

また、本発明の負極活物質は、前記ケイ素化合物粒子において、29Si-MAS-NMR スペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることが好ましい。 Further, the negative electrode active material of the present invention is the maximum peak intensity value A of the Si and Li silicate regions given at a chemical shift value of -60 to -95 ppm obtained from the 29 Si-MAS-NMR spectrum in the silicon compound particles. It is preferable that the peak intensity value B in the SiO 2 region given as a chemical shift value of −96 to −150 ppm satisfies the relationship of A> B.

ケイ素化合物粒子において、SiO成分を基準としてSi及びLiSiOの量がより多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる負極活物質となる。 If the silicon compound particles have a larger amount of Si and Li 2 SiO 3 with respect to the SiO 2 component, the negative electrode active material can sufficiently obtain the effect of improving the battery characteristics by inserting Li.

また、前記負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、前記負極活物質にリチウムを挿入するよう電流を流す充電と、前記負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを前記対極リチウムを基準とする前記負極電極の電位Vで微分した微分値dQ/dVと前記電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、前記負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。 Further, a test cell composed of a negative electrode containing a mixture of the negative electrode active material and a carbon-based active material and counterpolar lithium is prepared, and in the test cell, charging is performed by passing a current so as to insert lithium into the negative electrode active material. , A charge / discharge consisting of a discharge in which a current is passed so as to desorb lithium from the negative electrode active material is carried out 30 times, and the discharge capacity Q in each charge / discharge is differentiated by the potential V of the negative electrode electrode with respect to the counter electrode lithium. When a graph showing the relationship between the differential value dQ / dV and the potential V is drawn, the potential V of the negative electrode during the Xth and subsequent discharges (1 ≦ X ≦ 30) is 0.40 V to 0. It is preferable that the peak is in the range of 55V.

V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、上記ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成される負極活物質となる。 The above-mentioned peak in the V-dQ / dV curve is similar to the peak of the Kay material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily expressed when designing the battery. Further, if the peak is expressed by charging / discharging within 30 times, it becomes a negative electrode active material in which a stable bulk is formed.

また、前記ケイ素化合物粒子の一次粒子の、体積基準の粒度分布における分布累積値が50%になる粒子径であるメジアン径が1.0μm以上15μm以下であることが好ましい。 Further, it is preferable that the median diameter of the primary particles of the silicon compound particles, which is the particle diameter at which the cumulative distribution value in the volume-based particle size distribution is 50%, is 1.0 μm or more and 15 μm or less.

ケイ素化合物粒子の一次粒子のメジアン径が1.0μm以上であれば、質量当たりの表面積の増加により電池不可逆容量が増加することを抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。 When the median diameter of the primary particles of the silicon compound particles is 1.0 μm or more, it is possible to suppress an increase in the irreversible capacity of the battery due to an increase in the surface area per mass. On the other hand, when the median diameter is 15 μm or less, the particles are less likely to crack and a new surface is less likely to appear.

また、前記負極活物質粒子は、表層部に炭素材を含むことが好ましい。 Further, it is preferable that the negative electrode active material particles contain a carbon material in the surface layer portion.

このように、負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られる。 As described above, when the negative electrode active material particles contain a carbon material in the surface layer portion thereof, improvement in conductivity can be obtained.

また、前記炭素材の平均厚さは10nm以上5000nm以下であることが好ましい。 Further, the average thickness of the carbon material is preferably 10 nm or more and 5000 nm or less.

炭素材の平均厚さが10nm以上であれば導電性向上が得られる。また、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池に用いることにより、ケイ素化合物粒子を十分な量確保できるので、電池容量の低下を抑制することができる。 If the average thickness of the carbon material is 10 nm or more, the conductivity can be improved. Further, if the average thickness of the carbon material to be coated is 5000 nm or less, a sufficient amount of silicon compound particles can be secured by using the negative electrode active material containing such negative electrode active material particles in the lithium ion secondary battery. , It is possible to suppress a decrease in battery capacity.

上記の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料を提供する。 Provided is a mixed negative electrode active material material characterized by containing the above-mentioned negative electrode active material and a carbon-based active material.

このように、負極活物質層を形成する材料として、本発明の負極活物質(ケイ素系負極活物質)とともに炭素系活物質を含むことで、負極活物質層の導電性を向上させることができるとともに、充電に伴う膨張応力を緩和することが可能となる。また、ケイ素系負極活物質を炭素系活物質に混合することで電池容量を増加させることができる。 As described above, by including the carbon-based active material together with the negative electrode active material (silicon-based negative electrode active material) of the present invention as the material for forming the negative electrode active material layer, the conductivity of the negative electrode active material layer can be improved. At the same time, it becomes possible to relieve the expansion stress associated with charging. Further, the battery capacity can be increased by mixing the silicon-based negative electrode active material with the carbon-based active material.

また、上記目的を達成するために、本発明は、ケイ素化合物粒子を含有する負極活物質粒子を含む負極活物質を製造する方法であって、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、前記ケイ素化合物粒子にリチウムを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる工程と、により負極活物質粒子を作製し、前記負極活物質粒子から、前記ケイ素化合物の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であるものを選別する工程とを含み、該選別した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法を提供する。 Further, in order to achieve the above object, the present invention is a method for producing a negative electrode active material containing negative electrode active material particles containing silicon compound particles, wherein the silicon compound (SiO x : 0.5 ≦ x ≦ 1). Negative electrode active material particles by a step of producing silicon compound particles containing .6) and a step of inserting lithium into the silicon compound particles to contain at least one of Li 2 SiO 3 and Li 4 SiO 4 . The selection comprises the step of selecting from the negative electrode active material particles that the ratio of the primary particles having a particle diameter of 1 μm or less is 15% or less on a volume basis among the primary particles of the silicon compound. Provided is a method for producing a negative electrode active material, which comprises producing a negative electrode active material using the negative electrode active material particles.

負極活物質粒子をこのように選別して、負極活物質を製造することで、負極作製時に作製する水系スラリーを安定化することができ、かつ、リチウムイオン二次電池の負極活物質として使用した際に高容量であるとともに良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。 By selecting the negative electrode active material particles in this way to produce the negative electrode active material, the aqueous slurry produced at the time of producing the negative electrode can be stabilized, and the negative electrode active material is used as the negative electrode active material of the lithium ion secondary battery. It is possible to produce a negative electrode active material having a high capacity and good cycle characteristics and initial charge / discharge characteristics.

本発明の負極活物質は、負極作製時に作製する水系スラリーを安定化することができ、かつ、二次電池の負極活物質として用いた際に、高容量で良好なサイクル特性及び初期充放電特性が得られる。また、この負極活物質を含む混合負極活物質材料においても同様の効果が得られる。また、本発明の負極活物質の製造方法であれば、負極作製時に作製する水系スラリーを安定化することができ、かつ、リチウムイオン二次電池の負極活物質として用いた際に、良好なサイクル特性及び初期充放電特性を有する負極活物質を製造することができる。 The negative electrode active material of the present invention can stabilize the aqueous slurry produced at the time of producing the negative electrode, and when used as the negative electrode active material of the secondary battery, it has a high capacity and good cycle characteristics and initial charge / discharge characteristics. Is obtained. Further, the same effect can be obtained with the mixed negative electrode active material containing the negative electrode active material. Further, according to the method for producing a negative electrode active material of the present invention, the aqueous slurry produced at the time of producing the negative electrode can be stabilized, and a good cycle is obtained when used as the negative electrode active material of the lithium ion secondary battery. A negative electrode active material having characteristics and initial charge / discharge characteristics can be produced.

本発明の負極活物質を含む非水電解質二次電池用負極の構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the negative electrode for a non-aqueous electrolyte secondary battery containing the negative electrode active material of this invention. 酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例である。This is an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when modified by a redox method. 熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例である。This is an example of the 29 Si-MAS-NMR spectrum measured from silicon compound particles when modified by the heat doping method. 本発明の負極活物質を含むリチウム二次電池の構成例(ラミネートフィルム型)を表す図である。It is a figure which shows the structural example (laminate film type) of the lithium secondary battery which contains the negative electrode active material of this invention. 負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフである。It is a graph which shows the relationship between the ratio of silicon-based active material particles with respect to the total amount of a negative electrode active material, and the rate of increase of the battery capacity of a secondary battery.

以下、本発明について実施の形態を説明するが、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described, but the present invention is not limited thereto.

前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素材を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近いスラリー安定性、初期充放電特性、及びサイクル特性が望まれているが、炭素系活物質を用いたリチウムイオン二次電池と同等のスラリー安定性、初期充放電特性、及びサイクル特性を有する負極活物質を提案するには至っていなかった。 As described above, as one method for increasing the battery capacity of a lithium ion secondary battery, it is considered to use a negative electrode using a Kay material as a main material as a negative electrode of a lithium ion secondary battery. Lithium-ion secondary batteries using this Kay material are desired to have slurry stability, initial charge / discharge characteristics, and cycle characteristics that are close to those of lithium-ion secondary batteries using carbon-based active materials. It has not been possible to propose a negative electrode active material having slurry stability, initial charge / discharge characteristics, and cycle characteristics equivalent to those of a lithium ion secondary battery using an active material.

そこで、本発明者らは、二次電池に用いた場合、高電池容量となるとともに、スラリー安定性、サイクル特性、及び初回効率が良好となる負極活物質を得るために鋭意検討を重ね、本発明に至った。 Therefore, the present inventors have made extensive studies in order to obtain a negative electrode active material having a high battery capacity and good slurry stability, cycle characteristics, and initial efficiency when used in a secondary battery. It led to the invention.

本発明の負極活物質は、負極活物質粒子を含む。そして、この負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有する。このケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上のリチウムシリケートを含有している。そして、このケイ素化合物粒子は、その一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下という条件を満たすものである。 The negative electrode active material of the present invention contains negative electrode active material particles. The negative electrode active material particles contain silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6). The silicon compound particles contain at least one lithium silicate of Li 2 SiO 3 and Li 4 SiO 4 . The silicon compound particles satisfy the condition that the proportion of the primary particles having a particle diameter of 1 μm or less among the primary particles is 15% or less on a volume basis.

このような負極活物質は、ケイ素化合物粒子を含む負極活物質粒子を含むため、電池容量を向上できる。また、ケイ素化合物粒子が上記のようなリチウムシリケートを含むことで、充電時に発生する不可逆容量を低減することができる。また、ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であれば、リチウムが溶出し易いケイ素化合物粒子の微粉の存在量が少ないため、水系負極スラリーの作製時などに負極活物質からのリチウムイオンの溶出を抑制することができる。その結果、負極作製時の水系負極スラリーの安定性が向上し、初回効率及びサイクル特性が向上する。 Since such a negative electrode active material contains negative electrode active material particles including silicon compound particles, the battery capacity can be improved. Further, since the silicon compound particles contain the above-mentioned lithium silicate, the irreversible capacity generated during charging can be reduced. Further, when the ratio of the primary particles having a particle diameter of 1 μm or less among the primary particles of the silicon compound particles is 15% or less on a volume basis, the abundance of fine particles of the silicon compound particles in which lithium is easily eluted is small, so that the aqueous negative electrode is used. It is possible to suppress the elution of lithium ions from the negative electrode active material when preparing a slurry. As a result, the stability of the water-based negative electrode slurry at the time of producing the negative electrode is improved, and the initial efficiency and the cycle characteristics are improved.

また、ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で8%以下であることが特に好ましい。このようなものであれば、ケイ素化合物粒子の一次粒子に含まれる、リチウムが溶出し易い微粉の存在量がより少ないため、負極作製時の水系負極スラリーの安定性がより向上する。ケイ素化合物粒子の一次粒子のうちの粒子径1μm以下の一次粒子の割合は、より小さいことが望ましく、体積基準で4%以下がより好ましく、1%以下が更に好ましい。粒子径1μm以下の一次粒子の割合として、最も好ましいのは0%であるが、例えば、後述のような既存の手法の粒度分布測定では測定限界があるため、粒子径1μm以下の一次粒子を全く含まないと断定することは難しい。しかし、測定した粒度分布のうえでは、粒子径1μm以下の一次粒子の割合が体積基準で0%であると判定できることが最も好ましい。 Further, it is particularly preferable that the ratio of the primary particles having a particle diameter of 1 μm or less among the primary particles of the silicon compound particles is 8% or less on a volume basis. In such a case, the abundance of fine powder in which lithium is easily eluted is smaller in the primary particles of the silicon compound particles, so that the stability of the aqueous negative electrode slurry at the time of producing the negative electrode is further improved. The proportion of the primary particles having a particle diameter of 1 μm or less in the primary particles of the silicon compound particles is preferably smaller, more preferably 4% or less, and further preferably 1% or less on a volume basis. The most preferable ratio of the primary particles having a particle size of 1 μm or less is 0%, but for example, since there is a measurement limit in the particle size distribution measurement of the existing method as described later, the primary particles having a particle size of 1 μm or less are completely used. It is difficult to conclude that it is not included. However, based on the measured particle size distribution, it is most preferable that the proportion of primary particles having a particle diameter of 1 μm or less can be determined to be 0% on a volume basis.

ケイ素化合物粒子の一次粒子の粒度分布は、ケイ素化合物粒子に炭素材を被覆した場合、一次粒子の凝集などにより1μm以下の一次粒子が検出されないことがある。よって、この場合には、以下のように被覆した炭素材を除去し、一次粒子を分散させてから一次粒子の粒度分布を測定することができる。例えば、測定用の負極活物質粒子からなる試料を、熱処理し、ケイ素化合物粒子に被覆した炭素材を除去する。熱処理は、例えば、大気下600℃で72時間程度行えば良い。その後、超音波をかけるなどして一次粒子を分散させ、粒度分布を測定する。超音波の照射時間は5分程度で十分である。また、ケイ素化合物粒子に炭素材を被覆しなかった場合、上記の処理は行わなくても良い。 Regarding the particle size distribution of the primary particles of the silicon compound particles, when the silicon compound particles are coated with a carbon material, the primary particles of 1 μm or less may not be detected due to the aggregation of the primary particles or the like. Therefore, in this case, the carbon material coated as described below can be removed, the primary particles can be dispersed, and then the particle size distribution of the primary particles can be measured. For example, a sample consisting of negative electrode active material particles for measurement is heat-treated to remove the carbon material coated on the silicon compound particles. The heat treatment may be performed, for example, at 600 ° C. in the atmosphere for about 72 hours. After that, the primary particles are dispersed by applying ultrasonic waves, and the particle size distribution is measured. An ultrasonic irradiation time of about 5 minutes is sufficient. Further, when the silicon compound particles are not coated with the carbon material, the above treatment may not be performed.

粒度分布の測定には、例えば、レーザー回折式粒度分布測定装置SALD-3100(島津製作所製)を使用すればよい。例えば、表面活性剤によりケイ素化合物粒子(SiOx材)を分散させた分散水をレーザー回折式粒度分布測定装置に滴下して粒度測定を行うことができる。 For the measurement of the particle size distribution, for example, a laser diffraction type particle size distribution measuring device SALD-3100 (manufactured by Shimadzu Corporation) may be used. For example, dispersed water in which silicon compound particles (SiOx material) are dispersed by a surface activator can be dropped onto a laser diffraction type particle size distribution measuring device to measure the particle size.

本発明者らは、粒子径1μm以下のケイ素化合物粒子の一次粒子からリチウムイオンが溶出しやすく、このようなケイ素化合物粒子の一次粒子の微粉が水系負極スラリーの安定性への影響が大きいことを知見した。しかし、従来技術では、負極活物質粒子の粒径を測定する場合には、通常、負極活物質粒子が凝集した二次粒子を含む状態で粒度分布の測定を行っていたため、測定の結果得られる粒度分布は、ケイ素化合物粒子の一次粒子の粒度分布ではなく、二次粒子を含む負極活物質粒子の粒度分布であった。また、ケイ素化合物粒子に粒子径1μm以下の一次粒子が含まれていたとしても、ケイ素化合物粒子に炭素の被覆を行うと、凝集して粒子径の大きな二次粒子となり、このような二次粒子を含む状態で粒度分布の測定を行っても、粒子径1μm以下の一次粒子の存在を検出することは困難であった。これに対して、本発明者らは、例えば上記のような測定方法を使用して、一次粒子の状態のケイ素化合物粒子の粒度分布を測定し、ケイ素化合物粒子の一次粒子の最適な存在割合を規定することで、本発明の負極活物質を完成させた。 The present inventors have found that lithium ions are easily eluted from the primary particles of silicon compound particles having a particle diameter of 1 μm or less, and that the fine powder of the primary particles of such silicon compound particles has a large effect on the stability of the aqueous negative electrode slurry. I found out. However, in the prior art, when measuring the particle size of the negative electrode active material particles, the particle size distribution is usually measured in a state where the negative electrode active material particles include the aggregated secondary particles, so that the measurement result can be obtained. The particle size distribution was not the particle size distribution of the primary particles of the silicon compound particles, but the particle size distribution of the negative electrode active material particles including the secondary particles. Further, even if the silicon compound particles contain primary particles having a particle diameter of 1 μm or less, when the silicon compound particles are coated with carbon, they aggregate to become secondary particles having a large particle size, and such secondary particles. It was difficult to detect the presence of primary particles having a particle size of 1 μm or less even when the particle size distribution was measured in a state containing the above. On the other hand, the present inventors measured the particle size distribution of the silicon compound particles in the state of the primary particles by using, for example, the above-mentioned measuring method, and determined the optimum abundance ratio of the primary particles of the silicon compound particles. By specifying, the negative electrode active material of the present invention was completed.

<非水電解質二次電池用負極>
まず、本発明の負極活物質を含む非水電解質二次電池用負極について説明する。図1は非水電解質二次電池用負極(以下、「負極」とも呼称する)の構成の一例を示す断面図である。
<Negative electrode for non-aqueous electrolyte secondary battery>
First, the negative electrode for a non-aqueous electrolyte secondary battery containing the negative electrode active material of the present invention will be described. FIG. 1 is a cross-sectional view showing an example of the configuration of a negative electrode for a non-aqueous electrolyte secondary battery (hereinafter, also referred to as “negative electrode”).

[負極の構成]
図1に示したように、負極10は、負極集電体11の上に負極活物質層12を有する構成になっている。この負極活物質層12は負極集電体11の両面、又は、片面だけに設けられていても良い。さらに、本発明の負極活物質が用いられたものであれば、負極集電体11はなくてもよい。
[Construction of negative electrode]
As shown in FIG. 1, the negative electrode 10 has a negative electrode active material layer 12 on the negative electrode current collector 11. The negative electrode active material layer 12 may be provided on both sides or only one side of the negative electrode current collector 11. Further, as long as the negative electrode active material of the present invention is used, the negative electrode current collector 11 may be omitted.

[負極集電体]
負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)があげられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
[Negative electrode current collector]
The negative electrode current collector 11 is made of an excellent conductive material and has excellent mechanical strength. Examples of the conductive material that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). The conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).

負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。 The negative electrode current collector 11 preferably contains carbon (C) or sulfur (S) in addition to the main element. This is because the physical strength of the negative electrode current collector is improved. In particular, when the current collector has an active material layer that expands during charging, if the current collector contains the above elements, there is an effect of suppressing deformation of the electrode including the current collector. The content of the above-mentioned contained elements is not particularly limited, but is preferably 100 mass ppm or less. This is because a higher deformation suppressing effect can be obtained. The cycle characteristics can be further improved by such a deformation suppressing effect.

また、負極集電体11の表面は粗化されていてもよいし、粗化されていなくてもよい。粗化されている負極集電体は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。粗化されていない負極集電体は、例えば、圧延金属箔などである。 Further, the surface of the negative electrode current collector 11 may or may not be roughened. The roughened negative electrode current collector is, for example, a metal foil that has been electrolyzed, embossed, or chemically etched. The non-roughened negative electrode current collector is, for example, a rolled metal foil.

[負極活物質層]
負極活物質層12は、リチウムイオンを吸蔵、放出可能な本発明の負極活物質を含んでおり、電池設計上の観点から、さらに、負極結着剤(バインダ)や導電助剤など他の材料を含んでいてもよい。負極活物質は負極活物質粒子を含み、負極活物質粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有するケイ素化合物粒子を含む。
[Negative electrode active material layer]
The negative electrode active material layer 12 contains the negative electrode active material of the present invention capable of occluding and releasing lithium ions, and from the viewpoint of battery design, further, other materials such as a negative electrode binder (binder) and a conductive auxiliary agent. May include. The negative electrode active material contains negative electrode active material particles, and the negative electrode active material particles include silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6).

また、負極活物質層12は、本発明の負極活物質と炭素系活物質とを含む混合負極活物質材料を含んでいても良い。これにより、負極活物質層の電気抵抗が低下するとともに、充電に伴う膨張応力を緩和することが可能となる。炭素系活物質としては、例えば、熱分解炭素類、コークス類、ガラス状炭素繊維、有機高分子化合物焼成体、カーボンブラック類などを使用できる。 Further, the negative electrode active material layer 12 may contain a mixed negative electrode active material material containing the negative electrode active material and the carbon-based active material of the present invention. As a result, the electrical resistance of the negative electrode active material layer is reduced, and the expansion stress associated with charging can be relaxed. As the carbon-based active material, for example, pyrolytic carbons, cokes, glassy carbon fibers, calcined organic polymer compounds, carbon blacks and the like can be used.

また、混合負極活物質材料は、本発明の負極活物質(ケイ素系負極活物質)と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であることが好ましい。ケイ素系負極活物質と炭素系活物質の質量の合計に対する、ケイ素系負極活物質の質量の割合が6質量%以上であれば、電池容量を確実に向上させることが可能となる。 Further, in the mixed negative electrode active material, the ratio of the mass of the silicon-based negative electrode active material to the total mass of the negative electrode active material (silicon-based negative electrode active material) and the carbon-based active material of the present invention is 6% by mass or more. Is preferable. If the ratio of the mass of the silicon-based negative electrode active material to the total mass of the silicon-based negative electrode active material and the carbon-based negative electrode active material is 6% by mass or more, the battery capacity can be reliably improved.

また、上記のように本発明の負極活物質は、ケイ素化合物粒子を含み、ケイ素化合物粒子はケイ素化合物(SiO:0.5≦x≦1.6)を含有する酸化ケイ素材であるが、その組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。 Further, as described above, the negative electrode active material of the present invention contains silicon compound particles, and the silicon compound particles are a silicon oxide material containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6). The composition preferably has x close to 1. This is because high cycle characteristics can be obtained. The composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain a trace amount of impurity elements.

また、本発明の負極活物質において、ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有している。このようなものは、ケイ素化合物中の、電池の充放電時のリチウムの挿入、脱離時に不安定化するSiO成分部を予め別のリチウムシリケートに改質させたものであるので、充電時に発生する不可逆容量を低減することができる。 Further, in the negative electrode active material of the present invention, the silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 . In such a product, the SiO 2 component portion, which is destabilized during insertion and desorption of lithium during charging and discharging of the battery, is modified in advance into another lithium silicate in the silicon compound, and therefore during charging. The generated irreversible capacity can be reduced.

また、ケイ素化合物粒子のバルク内部にLiSiO、LiSiOは少なくとも1種以上存在することで電池特性が向上するが、上記2種類のLi化合物を共存させる場合に電池特性がより向上する。なお、これらのリチウムシリケートは、NMR(Nuclear Magnetic Resonance:核磁気共鳴)又はXPS(X-ray photoelectron spectroscopy:X線光電子分光)で定量可能である。XPSとNMRの測定は、例えば、以下の条件により行うことができる。
XPS
・装置: X線光電子分光装置、
・X線源: 単色化Al Kα線、
・X線スポット径: 100μm、
・Arイオン銃スパッタ条件: 0.5kV/2mm×2mm。
29Si MAS NMR(マジック角回転核磁気共鳴)
・装置: Bruker社製700NMR分光器、
・プローブ: 4mmHR-MASローター 50μL、
・試料回転速度: 10kHz、
・測定環境温度: 25℃。
Further, the battery characteristics are improved by the presence of at least one type of Li 4 SiO 4 and Li 2 SiO 3 inside the bulk of the silicon compound particles, but the battery characteristics are further improved when the above two types of Li compounds coexist. do. These lithium silicates can be quantified by NMR (Nuclear Magnetic Resonance) or XPS (X-ray photoelectron spectroscopy: X-ray photoelectron spectroscopy). XPS and NMR measurements can be performed, for example, under the following conditions.
XPS
・ Equipment: X-ray photoelectron spectrometer,
・ X-ray source: Monochromatic Al Kα ray,
・ X-ray spot diameter: 100 μm,
-Ar ion gun sputtering conditions: 0.5 kV / 2 mm x 2 mm.
29 Si MAS NMR (Magic Angle Spinning Nuclear Magnetic Resonance)
-Equipment: Bruker 700 NMR spectrometer,
-Probe: 4 mm HR-MAS rotor 50 μL,
・ Sample rotation speed: 10 kHz,
-Measurement environment temperature: 25 ° C.

また、ケイ素化合物粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることが好ましい。このピークは、結晶性が高い時(半値幅が狭い時)2θ=28.4±0.5°付近に現れる。ケイ素化合物粒子におけるケイ素化合物のケイ素結晶性は低いほどよく、特に、Si結晶の存在量が少なければ、電池特性を向上でき、さらに、安定的なLi化合物が生成できる。 Further, the silicon compound particles have a half-value width (2θ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction using Cu—Kα rays of 1.2 ° or more, and the crystal plane thereof. The crystallite size corresponding to is preferably 7.5 nm or less. This peak appears near 2θ = 28.4 ± 0.5 ° when the crystallinity is high (when the half width is narrow). The lower the silicon crystallinity of the silicon compound in the silicon compound particles, the better. In particular, when the abundance of Si crystals is small, the battery characteristics can be improved and a stable Li compound can be produced.

また、本発明の負極活物質は、ケイ素化合物粒子において、29Si-MAS-NMRスペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすことが好ましい。ケイ素化合物粒子において、SiO成分を基準とした場合にケイ素成分又はLiSiOの量が比較的多いものであれば、Liの挿入による電池特性の向上効果を十分に得られる。なお、29Si-MAS-NMRの測定条件は上記と同様でよい。 Further, the negative electrode active material of the present invention has the maximum peak intensity value A of the Si and Li silicate regions given at a chemical shift value of -60 to -95 ppm obtained from the 29 Si-MAS-NMR spectrum in the silicon compound particles. It is preferable that the peak intensity value B in the SiO 2 region given at -96 to -150 ppm as the chemical shift value satisfies the relationship of A> B. If the amount of the silicon component or Li 2 SiO 3 is relatively large in the silicon compound particles based on the SiO 2 component, the effect of improving the battery characteristics by inserting Li can be sufficiently obtained. The measurement conditions of 29 Si-MAS-NMR may be the same as described above.

また、本発明の負極活物質において、負極活物質粒子は、表層部に炭素材を含むことが好ましい。負極活物質粒子がその表層部に炭素材を含むことで、導電性の向上が得られるため、このような負極活物質粒子を含む負極活物質を二次電池の負極活物質として用いた際に、電池特性を向上させることができる。 Further, in the negative electrode active material of the present invention, it is preferable that the negative electrode active material particles contain a carbon material in the surface layer portion. Since the negative electrode active material particles contain a carbon material in the surface layer portion, the conductivity can be improved. Therefore, when the negative electrode active material containing such negative electrode active material particles is used as the negative electrode active material of the secondary battery. , Battery characteristics can be improved.

また、負極活物質粒子の表層部の炭素材の平均厚さは、10nm以上5000nm以下であることが好ましい。炭素材の平均厚さが10nm以上であれば導電性向上が得られ、被覆する炭素材の平均厚さが5000nm以下であれば、このような負極活物質粒子を含む負極活物質をリチウムイオン二次電池の負極活物質として用いた際に、電池容量の低下を抑制することができる。 Further, the average thickness of the carbon material on the surface layer of the negative electrode active material particles is preferably 10 nm or more and 5000 nm or less. When the average thickness of the carbon material is 10 nm or more, the conductivity is improved, and when the average thickness of the carbon material to be coated is 5000 nm or less, the negative electrode active material containing such negative electrode active material particles is lithium ion. When used as the negative electrode active material of the next battery, it is possible to suppress a decrease in battery capacity.

この炭素材の平均厚さは、例えば、以下の手順により算出できる。先ず、TEM(透過型電子顕微鏡)により任意の倍率で負極活物質粒子を観察する。この倍率は、厚さを測定できるように、目視で炭素材の厚さを確認できる倍率が好ましい。続いて、任意の15点において、炭素材の厚さを測定する。この場合、できるだけ特定の場所に集中せず、広くランダムに測定位置を設定することが好ましい。最後に、上記の15点の炭素材の厚さの平均値を算出する。 The average thickness of this carbon material can be calculated, for example, by the following procedure. First, the negative electrode active material particles are observed at an arbitrary magnification by a TEM (transmission electron microscope). The magnification is preferably such that the thickness of the carbon material can be visually confirmed so that the thickness can be measured. Subsequently, the thickness of the carbon material is measured at any 15 points. In this case, it is preferable to set the measurement position widely and randomly without concentrating on a specific place as much as possible. Finally, the average value of the thicknesses of the above 15 carbon materials is calculated.

炭素材の被覆率は特に限定されないが、できるだけ高い方が望ましい。被覆率が30%以上であれば、電気伝導性がより向上するため好ましい。炭素材の被覆手法は特に限定されないが、糖炭化法、炭化水素ガスの熱分解法が好ましい。なぜならば、被覆率を向上させることができるからである。 The coverage of the carbon material is not particularly limited, but it is desirable that the coverage is as high as possible. When the coverage is 30% or more, the electrical conductivity is further improved, which is preferable. The method for coating the carbon material is not particularly limited, but the sugar carbonization method and the thermal decomposition method for hydrocarbon gas are preferable. This is because the coverage can be improved.

また、ケイ素化合物粒子の一次粒子のメジアン径(D50:累積体積が50%となる時の粒子径)が1.0μm以上15μm以下であることが好ましい。ケイ素化合物粒子の一次粒子のメジアン径が上記の範囲であれば、充放電時においてリチウムイオンの吸蔵放出がされやすくなるとともに、ケイ素化合物粒子が割れにくくなるからである。メジアン径が1.0μm以上であれば、ケイ素化合物粒子の質量当たりの表面積を小さくでき、電池不可逆容量の増加を抑制することができる。一方で、メジアン径を15μm以下とすることで、粒子が割れ難くなるため新表面が出難くなる。なお、ケイ素化合物粒子のメジアン径は、上記と同様の粒度の測定方法によって測定できる。 Further, it is preferable that the median diameter (D 50 : particle diameter when the cumulative volume is 50%) of the primary particles of the silicon compound particles is 1.0 μm or more and 15 μm or less. This is because if the median diameter of the primary particles of the silicon compound particles is in the above range, lithium ions are easily occluded and discharged during charging and discharging, and the silicon compound particles are less likely to be broken. When the median diameter is 1.0 μm or more, the surface area per mass of the silicon compound particles can be reduced, and the increase in the irreversible capacity of the battery can be suppressed. On the other hand, when the median diameter is 15 μm or less, the particles are less likely to crack and a new surface is less likely to appear. The median diameter of the silicon compound particles can be measured by the same particle size measuring method as described above.

また、本発明の負極活物質では、ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上6m/g以下であることが好ましい。特に、ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上4m/g以下であることが好ましい。ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上であれば、粒子同士の接触面積を十分に確保できるため、負極活物質の導電性が向上する。その結果、電池のサイクル特性及び初回効率が向上する。ケイ素化合物粒子の一次粒子のBET比表面積が6m/g以下、特に4m/g以下であれば、ケイ素化合物粒子の比表面積がより適切な小さい範囲となり、リチウムイオンの溶出をより抑制できる。その結果、水系負極スラリーの安定性がより向上する。 Further, in the negative electrode active material of the present invention, it is preferable that the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 6 m 2 / g or less. In particular, it is preferable that the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 4 m 2 / g or less. When the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more, a sufficient contact area between the particles can be sufficiently secured, so that the conductivity of the negative electrode active material is improved. As a result, the cycle characteristics and initial efficiency of the battery are improved. When the BET specific surface area of the primary particles of the silicon compound particles is 6 m 2 / g or less, particularly 4 m 2 / g or less, the specific surface area of the silicon compound particles is in a more appropriate small range, and the elution of lithium ions can be further suppressed. As a result, the stability of the water-based negative electrode slurry is further improved.

また、本発明の負極活物質では、ケイ素化合物粒子の一次粒子の体積基準の粒度分布におけるモード径が5μm以上10μm以下であり、かつ、体積基準の粒度分布における分布累積値が99.9%になる粒子径であるD99.9が20μm以下であることが好ましい。モード径が5μm以上10μm以下であれば、ケイ素化合物粒子が適度な大きさを持ち、粒子同士の接触面積を十分に確保できるため、負極活物質の導電性が向上する。その結果、電池のサイクル特性及び初回効率が向上する。また、D99.9が20μm以下であれば、電極の中の負極活物質径の局所的なばらつきを小さくすることができる。その結果、サイクル特性が向上する。 Further, in the negative electrode active material of the present invention, the mode diameter in the volume-based particle size distribution of the primary particles of the silicon compound particles is 5 μm or more and 10 μm or less, and the distribution cumulative value in the volume-based particle size distribution is 99.9%. It is preferable that the particle size D 99.9 is 20 μm or less. When the mode diameter is 5 μm or more and 10 μm or less, the silicon compound particles have an appropriate size and a sufficient contact area between the particles can be secured, so that the conductivity of the negative electrode active material is improved. As a result, the cycle characteristics and initial efficiency of the battery are improved. Further, when D 99.9 is 20 μm or less, the local variation in the diameter of the negative electrode active material in the electrode can be reduced. As a result, the cycle characteristics are improved.

また、本発明の負極活物質(ケイ素系負極活物質)は、該ケイ素系負極活物質と炭素系活物質との混合物を含む負極電極と対極リチウムとから成る試験セルを作製し、該試験セルにおいて、ケイ素系負極活物質にリチウムを挿入するよう電流を流す充電と、ケイ素系負極活物質からリチウムを脱離するよう電流を流す放電とから成る充放電を30回実施し、各充放電における放電容量Qを対極リチウムを基準とする負極電極の電位Vで微分した微分値dQ/dVと電位Vとの関係を示すグラフを描いた場合に、X回目以降(1≦X≦30)の放電時における、負極電極の電位Vが0.40V~0.55Vの範囲にピークを有するものであることが好ましい。V-dQ/dV曲線における上記のピークはケイ素材のピークと類似しており、より高電位側における放電カーブが鋭く立ち上がるため、電池設計を行う際、容量発現しやすくなる。また、30回以内の充放電で上記ピークが発現する負極活物質であれば、安定したバルクが形成されるものであると判断できる。 Further, for the negative electrode active material (silicon-based negative electrode active material) of the present invention, a test cell composed of a negative electrode containing a mixture of the silicon-based negative electrode active material and the carbon-based active material and counter-polar lithium is prepared, and the test cell is prepared. In each charge / discharge, charging / discharging consisting of charging in which a current is passed so as to insert lithium into the silicon-based negative electrode active material and discharge in which a current is passed so as to desorb lithium from the silicon-based negative electrode active material is carried out 30 times. When a graph showing the relationship between the differential value dQ / dV differentiated by the potential V of the negative electrode with the discharge capacity Q as the reference electrode and the potential V is drawn, the discharge after the Xth time (1 ≦ X ≦ 30) It is preferable that the potential V of the negative electrode at the time has a peak in the range of 0.40V to 0.55V. The above-mentioned peak in the V-dQ / dV curve is similar to the peak of the Kay material, and the discharge curve on the higher potential side rises sharply, so that the capacity is easily expressed when designing the battery. Further, it can be determined that a stable bulk is formed if the negative electrode active material has the above-mentioned peak after being charged and discharged within 30 times.

また、負極活物質層に含まれる負極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。 Further, as the negative electrode binder contained in the negative electrode active material layer, for example, any one or more of a polymer material, synthetic rubber and the like can be used. The polymer material is, for example, polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, carboxymethyl cellulose and the like. Examples of the synthetic rubber include styrene-butadiene rubber, fluororubber, ethylene propylene diene and the like.

負極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。 As the negative electrode conductive auxiliary agent, for example, any one or more of carbon materials such as carbon black, acetylene black, graphite, kechen black, carbon nanotubes, and carbon nanofibers can be used.

負極活物質層は、例えば、塗布法で形成される。塗布法とは、負極活物質粒子と上記の結着剤など、また、必要に応じて導電助剤、炭素材料を混合した後に、有機溶剤や水などに分散させ塗布する方法である。 The negative electrode active material layer is formed, for example, by a coating method. The coating method is a method in which the negative electrode active material particles and the above-mentioned binder, or if necessary, a conductive auxiliary agent and a carbon material are mixed, and then dispersed in an organic solvent, water, or the like for coating.

[負極の製造方法]
負極は、例えば、以下の手順により製造できる。まず、負極に使用する負極活物質の製造方法を説明する。最初に、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する。次に、ケイ素化合物粒子にLiを挿入し、LiSiO、LiSiOのうち少なくとも1種以上を含有させる。このようにして、負極活物質粒子を作製する。次に、作製した負極活物質粒子から、ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であるのものを選別する。そして、選別した負極活物質粒子を用いて、負極活物質を製造する。
[Manufacturing method of negative electrode]
The negative electrode can be manufactured, for example, by the following procedure. First, a method for manufacturing a negative electrode active material used for a negative electrode will be described. First, silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6) are prepared. Next, Li is inserted into the silicon compound particles to contain at least one of Li 2 SiO 3 and Li 4 SiO 4 . In this way, the negative electrode active material particles are produced. Next, from the prepared negative electrode active material particles, among the primary particles of the silicon compound particles, those having a ratio of the primary particles having a particle diameter of 1 μm or less of 15% or less on a volume basis are selected. Then, the negative electrode active material is produced by using the selected negative electrode active material particles.

より具体的には以下のように負極活物質を製造できる。先ず、酸化珪素ガスを発生する原料を不活性ガスの存在下、減圧下で900℃~1600℃の温度範囲で加熱し、酸化珪素ガスを発生させる。金属珪素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.8<金属珪素粉末/二酸化珪素粉末<1.3の範囲であることが望ましい。 More specifically, the negative electrode active material can be produced as follows. First, the raw material that generates silicon oxide gas is heated in the temperature range of 900 ° C. to 1600 ° C. under reduced pressure in the presence of the inert gas to generate silicon oxide gas. Considering the presence of surface oxygen of the metallic silicon powder and trace oxygen in the reaction furnace, it is desirable that the mixed molar ratio is in the range of 0.8 <metal silicon powder / silicon dioxide powder <1.3.

発生した酸化珪素ガスは吸着板上で固体化され堆積される。次に、反応炉内温度を100℃以下に下げた状態で酸化珪素の堆積物を取出し、ボールミル、ジェットミルなどを用いて粉砕し、粉末化を行う。このようにして得られた粉末を分級しても良い。本発明では、粉砕工程及び分級工程時にケイ素化合物粒子の粒度分布を調整することができる。以上のようにして、ケイ素化合物粒子を作製することができる。なお、ケイ素化合物粒子中のSi結晶子は、気化温度の変更、又は、生成後の熱処理で制御できる。 The generated silicon oxide gas is solidified and deposited on the adsorption plate. Next, the deposit of silicon oxide is taken out in a state where the temperature in the reaction furnace is lowered to 100 ° C. or lower, and pulverized by using a ball mill, a jet mill or the like to perform pulverization. The powder thus obtained may be classified. In the present invention, the particle size distribution of the silicon compound particles can be adjusted during the pulverization step and the classification step. As described above, silicon compound particles can be produced. The Si crystals in the silicon compound particles can be controlled by changing the vaporization temperature or by heat treatment after formation.

ここで、ケイ素化合物粒子の表層に炭素材の層を生成しても良い。炭素材の層を生成する方法としては、熱分解CVD法が望ましい。熱分解CVD法で炭素材の層を生成する方法について説明する。 Here, a layer of carbon material may be formed on the surface layer of the silicon compound particles. A pyrolysis CVD method is desirable as a method for forming a layer of carbon material. A method of forming a layer of carbon material by a pyrolysis CVD method will be described.

先ず、ケイ素化合物粒子を炉内にセットする。次に、炉内に炭化水素ガスを導入し、炉内温度を昇温させる。分解温度は特に限定しないが、1200℃以下が望ましく、より望ましいのは950℃以下である。分解温度を1200℃以下にすることで、活物質粒子の意図しない不均化を抑制することができる。所定の温度まで炉内温度を昇温させた後に、ケイ素化合物粒子の表面に炭素層を生成する。また、炭素材の原料となる炭化水素ガスは、特に限定しないが、C組成においてn≦3であることが望ましい。n≦3であれは、製造コストを低くでき、また、分解生成物の物性を良好にすることができる。 First, the silicon compound particles are set in the furnace. Next, a hydrocarbon gas is introduced into the furnace to raise the temperature inside the furnace. The decomposition temperature is not particularly limited, but is preferably 1200 ° C. or lower, and more preferably 950 ° C. or lower. By setting the decomposition temperature to 1200 ° C. or lower, unintended disproportionation of the active material particles can be suppressed. After raising the temperature in the furnace to a predetermined temperature, a carbon layer is formed on the surface of the silicon compound particles. The hydrocarbon gas used as a raw material for the carbon material is not particularly limited, but it is desirable that n ≦ 3 in the Cn Hm composition. When n ≦ 3, the manufacturing cost can be lowered and the physical properties of the decomposition product can be improved.

次に、上記のように作製したケイ素活物質粒子に、Liを挿入し、LiSiO、LiSiOのうち少なくとも1種以上を含有させる。Liの挿入は、熱ドープ法により行うことが好ましい。 Next, Li is inserted into the silicon active material particles prepared as described above to contain at least one of Li 2 SiO 3 and Li 4 SiO 4 . It is preferable to insert Li by the heat doping method.

熱ドープ法による改質では、例えば、ケイ素活物質粒子をLiH粉やLi粉と混合し、非酸化雰囲気下で加熱をすることで改質可能である。非酸化雰囲気としては、例えば、Ar雰囲気などが使用できる。より具体的には、まず、Ar雰囲気下でLiH粉又はLi粉と酸化珪素粉末を十分に混ぜ、封止を行い、封止した容器ごと撹拌することで均一化する。その後、700℃~750℃の範囲で加熱し改質を行う。またこの場合、Liをケイ素化合物から脱離するには、加熱後の粉末を十分に冷却し、その後アルコールやアルカリ水、弱酸や純水で洗浄してもよい。このバルク内改質後の洗浄工程において、負極活物質粒子から微粉を取り除いても良い。 In the modification by the heat doping method, for example, the silicon active material particles can be modified by mixing them with LiH powder or Li powder and heating them in a non-oxidizing atmosphere. As the non-oxidizing atmosphere, for example, an Ar atmosphere can be used. More specifically, first, LiH powder or Li powder and silicon oxide powder are sufficiently mixed in an Ar atmosphere, sealed, and stirred together with the sealed container to make them uniform. Then, it is reformed by heating in the range of 700 ° C. to 750 ° C. In this case, in order to desorb Li from the silicon compound, the heated powder may be sufficiently cooled and then washed with alcohol, alkaline water, a weak acid or pure water. In the cleaning step after the modification in the bulk, fine powder may be removed from the negative electrode active material particles.

また、酸化還元法によって、ケイ素活物質粒子にLiを挿入しても良い。酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aにケイ素活物質粒子を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませても良い。リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bにケイ素活物質粒子を浸漬することで、ケイ素活物質粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又はこれらの混合溶媒を使用できる。また、溶液Bへのケイ素活物質粒子の浸漬は繰り返し行っても良い。このようにして、リチウムの挿入後、活性なリチウムを脱離すれば、より耐水性の高い負極活物質となる。また、溶液Bへのケイ素活物質粒子の浸漬工程において、負極活物質粒子から微粉を取り除いても良い。 Further, Li may be inserted into the silicon active material particles by a redox method. In the modification by the redox method, for example, lithium can be inserted by first immersing the silicon active material particles in the solution A in which lithium is dissolved in an ether solvent. This solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound. After inserting lithium, the active lithium can be desorbed from the silicon active material particles by immersing the silicon active material particles in the solution B containing the polycyclic aromatic compound or its derivative. As the solvent of this solution B, for example, an ether solvent, a ketone solvent, an ester solvent, an alcohol solvent, an amine solvent, or a mixed solvent thereof can be used. Further, the silicon active material particles may be repeatedly immersed in the solution B. In this way, if the active lithium is desorbed after the lithium is inserted, the negative electrode active material having higher water resistance can be obtained. Further, in the step of immersing the silicon active material particles in the solution B, fine powder may be removed from the negative electrode active material particles.

溶液Aに用いるエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、又はこれらの混合溶媒等を用いることができる。この中でも特にテトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンを用いることが好ましい。これらの溶媒は、脱水されていることが好ましく、脱酸素されていることが好ましい。 As the ether solvent used for the solution A, diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or a mixed solvent thereof or the like is used. Can be used. Of these, tetrahydrofuran, dioxane and 1,2-dimethoxyethane are particularly preferable. These solvents are preferably dehydrated and preferably deoxidized.

また、溶液Aに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができ、直鎖ポリフェニレン化合物としては、ビフェニル、ターフェニル、及びこれらの誘導体のうち1種類以上を用いることができる。 Further, as the polycyclic aromatic compound contained in the solution A, one or more of naphthalene, anthracene, phenanthrene, naphthalene, pentacene, pyrene, picene, triphenylene, coronene, chrysen and derivatives thereof can be used. As the chain polyphenylene compound, one or more of biphenyl, terphenyl, and derivatives thereof can be used.

溶液Bに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができる。 As the polycyclic aromatic compound contained in the solution B, one or more of naphthalene, anthracene, phenanthrene, naphthalene, pentacene, pyrene, picene, triphenylene, coronene, chrysene and derivatives thereof can be used.

また、溶液Bのエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、及びテトラエチレングリコールジメチルエーテル等を用いることができる。 Further, as the ether solvent of the solution B, diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether and the like can be used. ..

ケトン系溶媒としては、アセトン、アセトフェノン等を用いることができる。 As the ketone solvent, acetone, acetophenone and the like can be used.

エステル系溶媒としては、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、及び酢酸イソプロピル等を用いることができる。 As the ester solvent, methyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate and the like can be used.

アルコール系溶媒としては、メタノール、エタノール、プロパノール、及びイソプロピルアルコール等を用いることができる。 As the alcohol solvent, methanol, ethanol, propanol, isopropyl alcohol and the like can be used.

アミン系溶媒としては、メチルアミン、エチルアミン、及びエチレンジアミン等を用いることができる。 As the amine solvent, methylamine, ethylamine, ethylenediamine and the like can be used.

なお、熱ドープ法によって改質を行った場合、ケイ素化合物粒子から得られる29Si-MAS-NMRスペクトルは酸化還元法を用いた場合とは異なる。図2に酸化還元法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例を示す。図2において、-75ppm近辺に与えられるピークがLiSiOに由来するピークであり、-80~-100ppmに与えられるピークがSiに由来するピークである。なお、-80~-100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。 When the modification is performed by the heat doping method, the 29 Si-MAS-NMR spectrum obtained from the silicon compound particles is different from that in the case of using the redox method. FIG. 2 shows an example of a 29 Si-MAS-NMR spectrum measured from silicon compound particles when modified by a redox method. In FIG. 2, the peak given in the vicinity of −75 ppm is the peak derived from Li 2 SiO 3 , and the peak given in the vicinity of −80 to −100 ppm is the peak derived from Si. In addition, it may have a Li silicate peak other than Li 2 SiO 3 and Li 4 SiO 4 from -80 to -100 ppm.

また、図3に熱ドープ法により改質を行った場合にケイ素化合物粒子から測定される29Si-MAS-NMRスペクトルの一例を示す。図3において、-75ppm近辺に与えられるピークがLiSiOに由来するピークであり、-80~-100ppmに与えられるピークがSiに由来するピークである。なお、-80~-100ppmにかけて、LiSiO、LiSiO以外のLiシリケートのピークを有する場合もある。なお、XPSスペクトルから、LiSiOのピークを確認できる。 Further, FIG. 3 shows an example of the 29 Si-MAS-NMR spectrum measured from the silicon compound particles when the modification is performed by the thermal doping method. In FIG. 3, the peak given in the vicinity of −75 ppm is the peak derived from Li 2 SiO 3 , and the peak given in the vicinity of −80 to −100 ppm is the peak derived from Si. In addition, it may have a Li silicate peak other than Li 2 SiO 3 and Li 4 SiO 4 from -80 to -100 ppm. From the XPS spectrum, the peak of Li 4 SiO 4 can be confirmed.

次に、改質後の負極活物質粒子から、ケイ素化合物の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であるものを選別する。 Next, from the modified negative electrode active material particles, among the primary particles of the silicon compound, those having a ratio of the primary particles having a particle diameter of 1 μm or less of 15% or less on a volume basis are selected.

このとき、ケイ素化合物粒子に炭素材を被覆した場合、上記と同様に、被覆した炭素材を除去し、一次粒子を分散させてから一次粒子の粒度分布を測定し選別を行うことができる。また、ケイ素化合物粒子に炭素材を被覆しなかった場合、炭素材の除去処理は行わなくても良い。 At this time, when the silicon compound particles are coated with a carbon material, the coated carbon material can be removed, the primary particles are dispersed, and then the particle size distribution of the primary particles can be measured and sorted. Further, when the silicon compound particles are not coated with the carbon material, the carbon material removal treatment may not be performed.

尚、負極活物質粒子の選別は、必ずしも負極活物質の製造の都度行う必要はなく、一度ケイ素化合物の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下となる条件を満たす製造条件を見出して選択すれば、その後は、その選択された条件と同じ条件で負極活物質を製造することができる。 It should be noted that the selection of the negative electrode active material particles does not necessarily have to be performed each time the negative electrode active material is manufactured, and the ratio of the primary particles having a particle diameter of 1 μm or less among the primary particles of the silicon compound is 15% or less on a volume basis. After finding and selecting the production conditions that satisfy the conditions, the negative electrode active material can be produced under the same conditions as the selected conditions.

以上のようにして作製した負極活物質を、負極結着剤、導電助剤などの他の材料と混合して、負極合剤とした後に、有機溶剤又は水などを加えてスラリーとする。次に負極集電体の表面に、上記のスラリーを塗布し、乾燥させて、負極活物質層を形成する。この時、必要に応じて加熱プレスなどを行ってもよい。以上のようにして、負極を作製できる。 The negative electrode active material prepared as described above is mixed with other materials such as a negative electrode binder and a conductive auxiliary agent to form a negative electrode mixture, and then an organic solvent or water is added to form a slurry. Next, the above slurry is applied to the surface of the negative electrode current collector and dried to form a negative electrode active material layer. At this time, a heating press or the like may be performed if necessary. As described above, the negative electrode can be manufactured.

<リチウムイオン二次電池>
次に、本発明の負極活物質を含むリチウムイオン二次電池について説明する。ここでは具体例として、ラミネートフィルム型のリチウムイオン二次電池を例に挙げる。
<Lithium-ion secondary battery>
Next, the lithium ion secondary battery containing the negative electrode active material of the present invention will be described. Here, as a specific example, a laminated film type lithium ion secondary battery will be taken as an example.

[ラミネートフィルム型のリチウムイオン二次電池の構成]
図4に示すラミネートフィルム型のリチウムイオン二次電池20は、主にシート状の外装部材25の内部に巻回電極体21が収納されたものである。この巻回体は正極、負極間にセパレータを有し、巻回されたものである。また正極、負極間にセパレータを有し積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード22が取り付けられ、負極に負極リード23が取り付けられている。電極体の最外周部は保護テープにより保護されている。
[Structure of laminated film type lithium ion secondary battery]
In the laminated film type lithium ion secondary battery 20 shown in FIG. 4, the wound electrode body 21 is mainly housed inside a sheet-shaped exterior member 25. This wound body has a separator between the positive electrode and the negative electrode, and is wound. There is also a case where a separator is provided between the positive electrode and the negative electrode to store the laminated body. In both electrode bodies, the positive electrode lead 22 is attached to the positive electrode, and the negative electrode lead 23 is attached to the negative electrode. The outermost peripheral portion of the electrode body is protected by a protective tape.

正負極リードは、例えば、外装部材25の内部から外部に向かって一方向で導出されている。正極リード22は、例えば、アルミニウムなどの導電性材料により形成され、負極リード23は、例えば、ニッケル、銅などの導電性材料により形成される。 The positive and negative electrode leads are led out in one direction from the inside of the exterior member 25 toward the outside, for example. The positive electrode lead 22 is formed of a conductive material such as aluminum, and the negative electrode lead 23 is formed of a conductive material such as nickel or copper.

外装部材25は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体21と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。 The exterior member 25 is, for example, a laminated film in which a fused layer, a metal layer, and a surface protective layer are laminated in this order. The laminated film consists of two films so that the fused layer faces the electrode body 21. The outer peripheral edges of the fused layer are fused or bonded together with an adhesive or the like. The fused portion is a film such as polyethylene or polypropylene, and the metal portion is an aluminum foil or the like. The protective layer is, for example, nylon.

外装部材25と正負極リードとの間には、外気侵入防止のため密着フィルム24が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。 A close contact film 24 is inserted between the exterior member 25 and the positive and negative electrode leads to prevent outside air from entering. This material is, for example, polyethylene, polypropylene, polyolefin resin.

[正極]
正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
[Positive electrode]
The positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, similar to the negative electrode 10 in FIG.

正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。 The positive electrode current collector is formed of a conductive material such as aluminum.

正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて結着剤、導電助剤、分散剤などの他の材料を含んでいても良い。この場合、結着剤、導電助剤に関する詳細は、例えば既に記述した負極結着剤、負極導電助剤と同様である。 The positive electrode active material layer contains any one or more of the positive electrode materials capable of occluding and releasing lithium ions, and contains other materials such as a binder, a conductive auxiliary agent, and a dispersant depending on the design. You can go out. In this case, the details regarding the binder and the conductive auxiliary agent are the same as those of the negative electrode binder and the negative electrode conductive auxiliary agent already described, for example.

正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これら記述される正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiM1OあるいはLiM2POで表される。式中、M1、M2は少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。 As the positive electrode material, a lithium-containing compound is desirable. Examples of the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphoric acid compound having lithium and a transition metal element. Among these described positive electrode materials, a compound having at least one of nickel, iron, manganese, and cobalt is preferable. These chemical formulas are represented by, for example, Li x M1O 2 or Li y M2PO 4 . In the formula, M1 and M2 represent at least one transition metal element. The values of x and y show different values depending on the battery charge / discharge state, but are generally shown by 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)などが挙げられる。リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量が得られるとともに、優れたサイクル特性も得られるからである。 Examples of the composite oxide having lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ) and lithium nickel composite oxide (Li x NiO 2 ). Examples of the phosphoric acid compound having lithium and a transition metal element include a lithium iron phosphoric acid compound (LiFePO 4 ) and a lithium iron manganese phosphoric acid compound (LiFe 1-u Mn u PO 4 (0 <u <1)). Can be mentioned. This is because when these positive electrode materials are used, a high battery capacity can be obtained and also excellent cycle characteristics can be obtained.

[負極]
負極は、上記した図1のリチウムイオン二次電池用負極10と同様の構成を有し、例えば、集電体11の両面に負極活物質層12を有している。この負極は、正極活物質剤から得られる電気容量(電池として充電容量)に対して、負極充電容量が大きくなることが好ましい。負極上でのリチウム金属の析出を抑制することができるためである。
[Negative electrode]
The negative electrode has the same configuration as the negative electrode 10 for the lithium ion secondary battery of FIG. 1 described above, and has, for example, the negative electrode active material layers 12 on both sides of the current collector 11. It is preferable that the negative electrode has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material. This is because the precipitation of lithium metal on the negative electrode can be suppressed.

正極活物質層は、正極集電体の両面の一部に設けられており、負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられている。これは、安定した電池設計を行うためである。 The positive electrode active material layer is provided on a part of both sides of the positive electrode current collector, and the negative electrode active material layer is also provided on a part of both sides of the negative electrode current collector. In this case, for example, the negative electrode active material layer provided on the negative electrode current collector is provided with a region in which the opposite positive electrode active material layer does not exist. This is for stable battery design.

非対向領域、すなわち、上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため負極活物質層の状態が形成直後のまま維持される。これによって負極活物質の組成など、充放電の有無に依存せずに再現性良く組成などを正確に調べることができる。 The non-opposed region, that is, the region where the negative electrode active material layer and the positive electrode active material layer do not face each other, is hardly affected by charging and discharging. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation. As a result, the composition of the negative electrode active material can be accurately investigated with good reproducibility regardless of the presence or absence of charge / discharge.

[セパレータ]
セパレータは正極、負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有しても良い。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
[Separator]
The separator separates the positive electrode and the negative electrode, and allows lithium ions to pass through while preventing a current short circuit due to contact between the two electrodes. This separator is formed of, for example, a porous film made of synthetic resin or ceramic, and may have a laminated structure in which two or more kinds of porous films are laminated. Examples of the synthetic resin include polytetrafluoroethylene, polypropylene, polyethylene and the like.

[電解液]
活物質層の少なくとも一部、又は、セパレータには、液状の電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
[Electrolytic solution]
At least a part of the active material layer or the separator is impregnated with a liquid electrolyte (electrolyte solution). The electrolyte salt has an electrolyte salt dissolved in the solvent, and may contain other materials such as additives.

溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。より良い特性が得られるからである。またこの場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。 As the solvent, for example, a non-aqueous solvent can be used. Examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, and tetrahydrofuran. Among these, it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate. This is because better characteristics can be obtained. Further, in this case, more advantageous characteristics can be obtained by combining a high-viscosity solvent such as ethylene carbonate and propylene carbonate with a low-viscosity solvent such as dimethyl carbonate, ethylmethyl carbonate and diethyl carbonate. This is because the dissociative property and ion mobility of the electrolyte salt are improved.

合金系負極を用いる場合、特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。 When an alloy-based negative electrode is used, it is particularly desirable that the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate. As a result, a stable film is formed on the surface of the negative electrode active material during charging / discharging, particularly during charging. Here, the halogenated chain-chain carbonic acid ester is a chain-chain carbonic acid ester having halogen as a constituent element (at least one hydrogen is substituted with halogen). Further, the halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is substituted with halogen).

ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。 The type of halogen is not particularly limited, but fluorine is preferable. This is because it forms a better film than other halogens. Further, the larger the number of halogens, the more desirable. This is because the obtained film is more stable and the decomposition reaction of the electrolytic solution is reduced.

ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。 Examples of the halogenated chain carbonate include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate. Examples of the halogenated cyclic carbonate include 4-fluoro-1,3-dioxolane-2-one, 4,5-difluoro-1,3-dioxolan-2-one and the like.

溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。 It is preferable to contain unsaturated carbon-bonded cyclic carbonate as a solvent additive. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed. Examples of unsaturated carbon-bonded cyclic carbonates include vinylene carbonate and vinylethylene carbonate.

また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。 Further, it is preferable to contain sultone (cyclic sulfonic acid ester) as a solvent additive. This is because the chemical stability of the battery is improved. Examples of the sultone include propane sultone and propene sultone.

さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。 Further, the solvent preferably contains acid anhydride. This is because the chemical stability of the electrolytic solution is improved. Examples of the acid anhydride include propanedisulfonic acid anhydride.

電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。 The electrolyte salt may contain, for example, any one or more of light metal salts such as lithium salts. Examples of the lithium salt include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).

電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。 The content of the electrolyte salt is preferably 0.5 mol / kg or more and 2.5 mol / kg or less with respect to the solvent. This is because high ionic conductivity can be obtained.

[ラミネートフィルム型二次電池の製造方法]
本発明では、上記の本発明の負極活物質の製造方法によって製造した負極活物質を用いて負極を作製でき、該作製した負極を用いてリチウムイオン二次電池を製造することができる。
[Manufacturing method of laminated film type secondary battery]
In the present invention, a negative electrode can be produced using the negative electrode active material produced by the above-mentioned method for producing a negative electrode active material of the present invention, and a lithium ion secondary battery can be produced using the produced negative electrode.

最初に上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて結着剤、導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また加熱又は圧縮を複数回繰り返しても良い。 First, a positive electrode is manufactured using the above-mentioned positive electrode material. First, the positive electrode active material is mixed with a binder, a conductive auxiliary agent, etc., if necessary, to form a positive electrode mixture, and then dispersed in an organic solvent to form a positive electrode mixture slurry. Subsequently, the mixture slurry is applied to the positive electrode current collector with a coating device such as a knife roll or a die coater having a die head, and dried with hot air to obtain a positive electrode active material layer. Finally, the positive electrode active material layer is compression-molded with a roll press or the like. At this time, heating may be performed, or heating or compression may be repeated a plurality of times.

次に、上記したリチウムイオン二次電池用負極10の作製と同様の作業手順を用い、負極集電体に負極活物質層を形成し負極を作製する。 Next, the negative electrode active material layer is formed on the negative electrode current collector to prepare the negative electrode by using the same work procedure as the manufacturing of the negative electrode 10 for the lithium ion secondary battery described above.

正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていても良い(図1を参照)。 When the positive electrode and the negative electrode are manufactured, the active material layers are formed on both sides of the positive electrode and the negative electrode current collector. At this time, the active material coating lengths on both sides of either electrode may be different (see FIG. 1).

続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード22を取り付けると共に、負極集電体に負極リード23を取り付ける。続いて、正極と負極とをセパレータを介して積層、又は巻回させて巻回電極体21を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回体を成型する。続いて、折りたたんだフィルム状の外装部材25の間に巻回電極体を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体を封入する。正極リード、及び負極リードと外装部材の間に密着フィルムを挿入する。解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型のリチウムイオン二次電池20を製造することができる。 Then, the electrolytic solution is adjusted. Subsequently, the positive electrode lead 22 is attached to the positive electrode current collector by ultrasonic welding or the like, and the negative electrode lead 23 is attached to the negative electrode current collector. Subsequently, the positive electrode and the negative electrode are laminated or wound via a separator to prepare a wound electrode body 21, and a protective tape is adhered to the outermost peripheral portion thereof. Next, the winding body is molded so as to have a flat shape. Subsequently, after sandwiching the wound electrode body between the folded film-shaped exterior members 25, the insulating portions of the exterior members are adhered to each other by a heat fusion method, and the wound electrode body is released in only one direction. Is enclosed. An adhesive film is inserted between the positive electrode lead and the negative electrode lead and the exterior member. A predetermined amount of the prepared electrolytic solution is charged from the release portion, and vacuum impregnation is performed. After impregnation, the release portion is adhered by a vacuum heat fusion method. As described above, the laminated film type lithium ion secondary battery 20 can be manufactured.

以下、本発明の実施例及び比較例を示して本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples of the present invention, but the present invention is not limited to these Examples.

(実施例1-1)
以下の手順により、図4に示したラミネートフィルム型のリチウムイオン二次電池20を作製した。
(Example 1-1)
The laminated film type lithium ion secondary battery 20 shown in FIG. 4 was manufactured by the following procedure.

最初に正極を作製した。正極活物質はリチウムニッケルコバルト複合酸化物であるLiNi0.7Co0.25Al0.05Oを95質量%と、正極導電助剤2.5質量%と、正極結着剤(ポリフッ化ビニリデン:PVDF)2.5質量%とを混合し、正極合剤とした。続いて正極合剤を有機溶剤(N-メチル-2-ピロリドン:NMP)に分散させてペースト状のスラリーとした。続いてダイヘッドを有するコーティング装置で正極集電体の両面にスラリーを塗布し、熱風式乾燥装置で乾燥した。この時正極集電体は厚み15μmのものを用いた。最後にロールプレスで圧縮成型を行った。 First, a positive electrode was prepared. The positive electrode active material is LiNi 0.7 Co 0.25 Al 0.05 O, which is a lithium nickel-cobalt composite oxide, in an amount of 95% by mass, a positive electrode conductive aid of 2.5% by mass, and a positive electrode binder (polyfluorovinylidene). : PVDF) 2.5% by mass was mixed to prepare a positive electrode mixture. Subsequently, the positive electrode mixture was dispersed in an organic solvent (N-methyl-2-pyrrolidone: NMP) to obtain a paste-like slurry. Subsequently, the slurry was applied to both sides of the positive electrode current collector with a coating device having a die head, and dried with a hot air type drying device. At this time, a positive electrode current collector having a thickness of 15 μm was used. Finally, compression molding was performed with a roll press.

次に負極を作製した。まず、負極活物質を以下のようにして作製した。金属ケイ素と二酸化ケイ素を混合した原料を反応炉に導入し、10Paの真空度の雰囲気中で気化させたものを吸着板上に堆積させ、十分に冷却した後、堆積物を取出しボールミルで粉砕した。このようにして得たケイ素化合物粒子のSiOのxの値は0.5であった。続いて、ケイ素化合物粒子の粒径を分級により調整した。その後、熱分解CVDを行うことで、ケイ素化合物粒子の表面に炭素材を被覆した。 Next, a negative electrode was prepared. First, the negative electrode active material was prepared as follows. A raw material in which metallic silicon and silicon dioxide were mixed was introduced into a reactor, vaporized in an atmosphere of 10 Pa of vacuum, deposited on an adsorption plate, cooled sufficiently, and then the sediment was taken out and pulverized with a ball mill. .. The value of x of SiO x of the silicon compound particles thus obtained was 0.5. Subsequently, the particle size of the silicon compound particles was adjusted by classification. Then, by performing thermal decomposition CVD, the surface of the silicon compound particles was coated with a carbon material.

続いて、熱ドープ法によりケイ素化合物粒子にリチウムを挿入し改質した。まず、Ar雰囲気下でLiH粉とケイ素化合物粒子を十分に混ぜ、封止を行い、封止した容器ごと撹拌して均一化した。その後、700℃~750℃の範囲で加熱し改質を行った。また、一部の活性なLiをケイ素化合物から脱離するために、加熱後のケイ素化合物粒子を十分に冷却した後、アルコールで洗浄した。以上の処理により、負極活物質粒子を作製した。 Subsequently, lithium was inserted into the silicon compound particles by the heat doping method to modify the particles. First, LiH powder and silicon compound particles were sufficiently mixed under an Ar atmosphere, sealed, and stirred together with the sealed container to make them uniform. Then, it was reformed by heating in the range of 700 ° C. to 750 ° C. Further, in order to desorb some of the active Li from the silicon compound, the heated silicon compound particles were sufficiently cooled and then washed with alcohol. By the above treatment, negative electrode active material particles were produced.

ここで、負極活物質粒子の一部を測定試料として取り出し、負極活物質粒子に被覆された炭素材を除去してケイ素化合物粒子としてから、該ケイ素化合物粒子の一次粒子の粒度分布を測定した。まず、取り出した負極活物質粒子を、大気下600℃で72時間熱処理して、被覆した炭素材を除去し、ケイ素化合物粒子のみとした後、超音波をかけて5分間分散させた。その後、表面活性剤によりケイ素化合物粒子を分散させた分散水をレーザー回折式粒度分布測定装置SALD-3100(島津製作所製)に滴下して粒度分布の測定を行った。 Here, a part of the negative electrode active material particles was taken out as a measurement sample, the carbon material coated on the negative electrode active material particles was removed to obtain silicon compound particles, and then the particle size distribution of the primary particles of the silicon compound particles was measured. First, the extracted negative electrode active material particles were heat-treated at 600 ° C. for 72 hours in the atmosphere to remove the coated carbon material, and only silicon compound particles were obtained, and then ultrasonic waves were applied to disperse the particles for 5 minutes. Then, the dispersed water in which the silicon compound particles were dispersed by the surface activator was dropped onto the laser diffraction type particle size distribution measuring device SALD-3100 (manufactured by Shimadzu Corporation) to measure the particle size distribution.

その結果、ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で12%であった。また、ケイ素化合物粒子の一次粒子の体積基準の粒度分布におけるモード径が6μmであり、D99.9が18μmであり、メジアン径D50は5.0μmであった。 As a result, the ratio of the primary particles having a particle diameter of 1 μm or less among the primary particles of the silicon compound particles was 12% on a volume basis. Further, the mode diameter in the volume-based particle size distribution of the primary particles of the silicon compound particles was 6 μm, D 99.9 was 18 μm, and the median diameter D 50 was 5.0 μm.

また、ケイ素化合物粒子の一次粒子のBET比表面積を測定したところ、5m/gであった。 The BET specific surface area of the primary particles of the silicon compound particles was measured and found to be 5 m 2 / g.

次に、負極作製用の負極活物質粒子と、炭素系活物質を1:9の質量比で配合し、負極活物質を作製した。ここで、炭素系活物質としては、ピッチ層で被覆した天然黒鉛及び人造黒鉛を5:5の質量比で混合したものを使用した。また、炭素系活物質のメジアン径は20μmであった。 Next, the negative electrode active material particles for producing the negative electrode and the carbon-based active material were blended at a mass ratio of 1: 9 to prepare the negative electrode active material. Here, as the carbon-based active material, a mixture of natural graphite coated with a pitch layer and artificial graphite at a mass ratio of 5: 5 was used. The median diameter of the carbon-based active material was 20 μm.

次に、作製した負極活物質、導電助剤1(カーボンナノチューブ、CNT)、導電助剤2(メジアン径が約50nmの炭素微粒子)、スチレンブタジエンゴム(スチレンブタジエンコポリマー、以下、SBRと称する)、カルボキシメチルセルロース(以下、CMCと称する)92.5:1:1:2.5:3の乾燥質量比で混合した後、純水で希釈し負極合剤スラリーとした。尚、上記のSBR、CMCは負極バインダー(負極結着剤)である。 Next, the prepared negative electrode active material, conductive auxiliary agent 1 (carbon nanotube, CNT), conductive auxiliary agent 2 (carbon fine particles having a median diameter of about 50 nm), styrene butadiene rubber (styrene butadiene copolymer, hereinafter referred to as SBR), Carboxymethyl cellulose (hereinafter referred to as CMC) was mixed at a dry mass ratio of 92.5: 1: 1: 2.5: 3 and then diluted with pure water to obtain a negative electrode mixture slurry. The above SBR and CMC are negative electrode binders (negative electrode binders).

また、負極集電体としては、厚さ15μmの電解銅箔を用いた。この電解銅箔には、炭素及び硫黄がそれぞれ70質量ppmの濃度で含まれていた。最後に、負極合剤スラリーを負極集電体に塗布し真空雰囲気中で100℃×1時間の乾燥を行った。乾燥後の、負極の片面における単位面積あたりの負極活物質層の堆積量(面積密度とも称する)は5mg/cmであった。 Further, as the negative electrode current collector, an electrolytic copper foil having a thickness of 15 μm was used. The electrolytic copper foil contained carbon and sulfur at concentrations of 70 mass ppm each. Finally, the negative electrode mixture slurry was applied to the negative electrode current collector and dried at 100 ° C. for 1 hour in a vacuum atmosphere. After drying, the deposited amount (also referred to as area density) of the negative electrode active material layer per unit area on one side of the negative electrode was 5 mg / cm 2 .

次に、溶媒(4-フルオロ-1,3-ジオキソラン-2-オン(FEC)、エチレンカーボネート(EC)およびジメチルカーボネート(DMC))を混合した後、電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液を調製した。この場合には、溶媒の組成を体積比でFEC:EC:DMC=10:20:70とし、電解質塩の含有量を溶媒に対して1.2mol/kgとした。 Next, the solvent (4-fluoro-1,3-dioxolane-2-one (FEC), ethylene carbonate (EC) and dimethyl carbonate (DMC)) was mixed, and then the electrolyte salt (lithium hexafluorophosphate: LiPF) was mixed. 6 ) was dissolved to prepare an electrolytic solution. In this case, the composition of the solvent was FEC: EC: DMC = 10: 20: 70 in volume ratio, and the content of the electrolyte salt was 1.2 mol / kg with respect to the solvent.

次に、以下のようにして二次電池を組み立てた。最初に、正極集電体の一端にアルミリードを超音波溶接し、負極集電体の一端にはニッケルリードを溶接した。続いて、正極、セパレータ、負極、セパレータをこの順に積層し、長手方向に倦回させ倦回電極体を得た。その捲き終わり部分をPET保護テープで固定した。セパレータは多孔性ポリプロピレンを主成分とするフィルムにより多孔性ポリエチレンを主成分とするフィルムに挟まれた積層フィルム(厚さ12μm)を用いた。続いて、外装部材間に電極体を挟んだ後、一辺を除く外周縁部同士を熱融着し、内部に電極体を収納した。外装部材はナイロンフィルム、アルミ箔及び、ポリプロピレンフィルムが積層されたアルミラミネートフィルムを用いた。続いて、開口部から調整した電解液を注入し、真空雰囲気下で含浸した後、熱融着し、封止した。 Next, the secondary battery was assembled as follows. First, an aluminum lead was ultrasonically welded to one end of the positive electrode current collector, and a nickel lead was welded to one end of the negative electrode current collector. Subsequently, the positive electrode, the separator, the negative electrode, and the separator were laminated in this order and rotated in the longitudinal direction to obtain a rotating electrode body. The winding end portion was fixed with PET protective tape. As the separator, a laminated film (thickness 12 μm) sandwiched between a film containing porous polyethylene as a main component and a film containing porous polyethylene as a main component was used. Subsequently, after sandwiching the electrode body between the exterior members, the outer peripheral edges except one side were heat-sealed, and the electrode body was housed inside. As the exterior member, a nylon film, an aluminum foil, and an aluminum laminated film in which a polypropylene film was laminated were used. Subsequently, the adjusted electrolytic solution was injected through the opening, impregnated in a vacuum atmosphere, then heat-sealed and sealed.

以上のようにして作製した二次電池のサイクル特性及び初回充放電特性を評価した。 The cycle characteristics and initial charge / discharge characteristics of the secondary battery produced as described above were evaluated.

サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。続いて、総サイクル数が499サイクルとなるまで充放電を行い、その都度放電容量を測定した。最後に、0.2C充放電で得られた500サイクル目の放電容量を2サイクル目の放電容量で割り、容量維持率(以下、単に維持率ともいう)を算出した。通常サイクル、すなわち3サイクル目から499サイクル目までは、充電0.7C、放電0.5Cで充放電を行った。 The cycle characteristics were investigated as follows. First, in order to stabilize the battery, charging and discharging were performed for two cycles at 0.2 C in an atmosphere of 25 ° C., and the discharge capacity of the second cycle was measured. Subsequently, charging and discharging were performed until the total number of cycles reached 499 cycles, and the discharge capacity was measured each time. Finally, the discharge capacity at the 500th cycle obtained by charging / discharging at 0.2C was divided by the discharge capacity at the second cycle to calculate the capacity retention rate (hereinafter, also simply referred to as the maintenance rate). From the normal cycle, that is, from the 3rd cycle to the 499th cycle, charging and discharging were performed with a charge of 0.7 C and a discharge of 0.5 C.

初回充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。雰囲気温度は、サイクル特性を調べた場合と同様にした。 When investigating the initial charge / discharge characteristics, the initial efficiency (hereinafter sometimes referred to as the initial efficiency) was calculated. The initial efficiency was calculated from the formula represented by the initial efficiency (%) = (initial discharge capacity / initial charge capacity) × 100. The atmospheric temperature was the same as when the cycle characteristics were examined.

(実施例1-2~実施例1-3、比較例1-1、1-2)
ケイ素化合物のバルク内酸素量を調整したことを除き、実施例1-1と同様に、二次電池の製造を行った。この場合、ケイ素化合物の原料中の金属ケイ素と二酸化ケイ素との比率や加熱温度を変化させることで、酸素量を調整した。実施例1-1~1-3、比較例1-1、1-2における、SiOで表されるケイ素化合物のxの値を表1中に示した。
(Examples 1-2 to 1-3, Comparative Examples 1-1 and 1-2)
A secondary battery was manufactured in the same manner as in Example 1-1, except that the amount of oxygen in the bulk of the silicon compound was adjusted. In this case, the amount of oxygen was adjusted by changing the ratio of metallic silicon and silicon dioxide in the raw material of the silicon compound and the heating temperature. The values of x of the silicon compound represented by SiO x in Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2 are shown in Table 1.

このとき、実施例1-1~1-3及び比較例1-1、1-2のケイ素系活物質粒子は以下のような性質を有していた。負極活物質粒子中のケイ素化合物粒子の内部には、LiSiO及びLiSiOが含まれていた。また、ケイ素化合物は、X線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.755°であり、Si(111)結晶面に起因する結晶子サイズは4.86nmであった。また、表面に被覆された炭素材の平均厚さは100nmであった。 At this time, the silicon-based active material particles of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2 had the following properties. Li 2 SiO 3 and Li 4 SiO 4 were contained inside the silicon compound particles in the negative electrode active material particles. Further, in the silicon compound, the half width (2θ) of the diffraction peak due to the Si (111) crystal plane obtained by X-ray diffraction is 1.755 °, and the crystallite size due to the Si (111) crystal plane is It was 4.86 nm. The average thickness of the carbon material coated on the surface was 100 nm.

また、上記の全ての実施例及び比較例において、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域のピークが発現した。また、上記全ての実施例、比較例で、29Si-MAS-NMR スペクトルから得られるケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、-96~-150ppmで与えられるSiO領域のピーク強度値Bとの関係がA>Bであった。 Further, in all the above Examples and Comparative Examples, peaks in the Si and Li silicate regions given at -60 to -95 ppm as chemical shift values obtained from the 29 Si-MAS-NMR spectrum were expressed. Further, in all the above Examples and Comparative Examples, the maximum peak intensity values A of the Si and Li silicate regions given at -60 to -95 ppm as the chemical shift values obtained from the 29 Si-MAS-NMR spectrum and -96 to -96 to The relationship with the peak intensity value B in the SiO 2 region given at −150 ppm was A> B.

また、上記のように作製した負極と対極リチウムとから、2032サイズのコイン電池型の試験セルを作製し、その放電挙動を評価した。より具体的には、まず、対極Liで0Vまで定電流定電圧充電を行い、電流密度が0.05mA/cmに達した時点で充電を終止させた。その後、1.2Vまで定電流放電を行った。この時の電流密度は0.2mA/cmであった。この充放電を30回繰り返し、各充放電において得られたデータから、縦軸を容量の変化率(dQ/dV)、横軸を電圧(V)としてグラフを描き、Vが0.4~0.55(V)の範囲にピークが得られるかを確認した。その結果、SiOxのxが0.5未満である比較例1では、上記ピークが得られなかった。その他の実施例、比較例では、30回以内の充放電において上記ピークは得られ、上記ピークが初めて発現した充放電から30回目の充放電まで、全ての充放電において上記ピークが得られた。 Further, a 2032 size coin battery type test cell was prepared from the negative electrode and the counter electrode lithium prepared as described above, and the discharge behavior thereof was evaluated. More specifically, first, constant current and constant voltage charging was performed up to 0 V with counter electrode Li, and charging was terminated when the current density reached 0.05 mA / cm 2 . Then, constant current discharge was performed up to 1.2V. The current density at this time was 0.2 mA / cm 2 . This charging / discharging is repeated 30 times, and from the data obtained in each charging / discharging, a graph is drawn with the vertical axis as the capacity change rate (dQ / dV) and the horizontal axis as the voltage (V), and V is 0.4 to 0. It was confirmed whether a peak could be obtained in the range of .55 (V). As a result, the above peak was not obtained in Comparative Example 1 in which x of SiOx was less than 0.5. In the other examples and comparative examples, the peak was obtained within 30 times of charging and discharging, and the above peak was obtained in all charging and discharging from the first charging and discharging to the 30th charging and discharging.

実施例1-1~1-3、比較例1-1、1-2の評価結果を表1に示す。 Table 1 shows the evaluation results of Examples 1-1 to 1-3 and Comparative Examples 1-1 and 1-2.

Figure 0006995488000001
Figure 0006995488000001

表1に示すように、SiOxで表わされるケイ素化合物において、xの値が、0.5≦x≦1.6の範囲外の場合、電池特性が悪化した。例えば、比較例1-1に示すように、酸素が十分にない場合(x=0.3)、初回効率が向上するが、容量維持率が著しく悪化する。一方、比較例1-2に示すように、酸素量が多い場合(x=1.8)は導電性の低下が生じ実質的にケイ素酸化物の容量が発現しないため、評価を停止した。 As shown in Table 1, in the silicon compound represented by SiOx, when the value of x was out of the range of 0.5 ≦ x ≦ 1.6, the battery characteristics deteriorated. For example, as shown in Comparative Example 1-1, when there is not enough oxygen (x = 0.3), the initial efficiency is improved, but the capacity retention rate is significantly deteriorated. On the other hand, as shown in Comparative Example 1-2, when the amount of oxygen was large (x = 1.8), the conductivity was lowered and the capacity of the silicon oxide was not substantially developed, so the evaluation was stopped.

(実施例2-1、実施例2-2)
ケイ素化合物粒子の内部に含ませるリチウムシリケートの種類を表2のように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 2-1 and Example 2-2)
A secondary battery was produced under the same conditions as in Example 1-2 except that the type of lithium silicate contained inside the silicon compound particles was changed as shown in Table 2, and the cycle characteristics and initial efficiency were evaluated.

(比較例2-1)
ケイ素化合物粒子にリチウムの挿入を行わなかったこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Comparative Example 2-1)
A secondary battery was prepared under the same conditions as in Example 1-2 except that lithium was not inserted into the silicon compound particles, and the cycle characteristics and initial efficiency were evaluated.

実施例2-1、実施例2-2、比較例2-1の結果を表2に示す。 The results of Example 2-1 and Example 2-2 and Comparative Example 2-1 are shown in Table 2.

Figure 0006995488000002
Figure 0006995488000002

ケイ素化合物がLiSiO、LiSiOのような安定したリチウムシリケートを含むことで、容量維持率、初期効率が向上した。特に、LiSiOとLiSiOの両方のリチウムシリケートを含む場合に、容量維持率、初期効率がより向上した。一方で、改質を行わず、ケイ素化合物にリチウムを含ませなかった比較例2-1では容量維持率、初期効率が低下した。 Since the silicon compound contains a stable lithium silicate such as Li 2 SiO 3 and Li 4 SiO 4 , the capacity retention rate and the initial efficiency are improved. In particular, when both Li 2 SiO 3 and Li 4 SiO 4 are contained in lithium silicate, the capacity retention rate and the initial efficiency are further improved. On the other hand, in Comparative Example 2-1 which was not modified and did not contain lithium in the silicon compound, the capacity retention rate and the initial efficiency were lowered.

(実施例3-1~実施例3-9、比較例3-1~比較例3-2)
ケイ素化合物粒子の一次粒子のうち1μm以下の一次粒子の割合、BET比表面積、粒度分布におけるモード径、D99.9、及びメジアン径D50を表3に示すように変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。ケイ素化合物粒子の一次粒子の粒度分布については、ケイ素化合物粒子の作製後の粉砕工程、分級工程で調整した。ケイ素化合物粒子の一次粒子のBET比表面積の調整(制御)は、反応炉の析出室温度及びSiOガスの蒸気濃度を調整することで行うことができる。析出室温度が高いほど、SiOガスの蒸気濃度が高いほどBET比表面積は小さくなる。ここで、SiOガスの蒸気濃度は、製造条件によって変えることができ、例えば、反応温度を上げたり、原料の仕込み量を増やしたりすることで、SiOガスの蒸気濃度を高めることが可能である。
(Examples 3-1 to 3-9, Comparative Examples 3-1 to 3-2)
Examples except that the ratio of primary particles of 1 μm or less, BET specific surface area, mode diameter in particle size distribution, D99.9 , and median diameter D50 among the primary particles of silicon compound particles were changed as shown in Table 3. A secondary battery was prepared under the same conditions as 1-2, and the cycle characteristics and initial efficiency were evaluated. The particle size distribution of the primary particles of the silicon compound particles was adjusted in the pulverization step and the classification step after the silicon compound particles were produced. The BET specific surface area of the primary particles of the silicon compound particles can be adjusted (controlled) by adjusting the precipitation chamber temperature of the reactor and the vapor concentration of the SiO gas. The higher the precipitation chamber temperature and the higher the vapor concentration of SiO gas, the smaller the BET specific surface area. Here, the vapor concentration of SiO gas can be changed depending on the production conditions. For example, the vapor concentration of SiO gas can be increased by increasing the reaction temperature or increasing the amount of raw materials charged.

また、ここでは、負極活物質粒子を含む水系スラリーの安定性を評価するために、作製した負極合剤スラリーの一部を二次電池の作製用のものとは別に30g取り出し、20℃で保存し、負極合剤スラリー作製後からガス発生迄の時間を測定した。 Further, here, in order to evaluate the stability of the aqueous slurry containing the negative electrode active material particles, 30 g of a part of the prepared negative electrode mixture slurry is taken out separately from the one for making a secondary battery and stored at 20 ° C. Then, the time from the preparation of the negative electrode mixture slurry to the generation of gas was measured.

実施例3-1~3-9、比較例3-1~3-2の結果を表3に示す。 Table 3 shows the results of Examples 3-1 to 3-9 and Comparative Examples 3-1 to 3-2.

Figure 0006995488000003
Figure 0006995488000003

表3から分かるように、実施例3-1~3-9、1-2のように、ケイ素化合物粒子の一次粒子の1μm以下の一次粒子の割合が15%以下であると、負極合剤スラリー中で負極活物質からリチウムイオンが溶出し難いため、負極合剤スラリーが安定化し、ガス発生までの時間が36時間以上となった。それに対して比較例3-1、3-2では、ケイ素化合物粒子の一次粒子の1μm以下の一次粒子の割合が15%より大きいため、負極活物質からリチウムイオンが溶出しやすく、負極合剤スラリーが不安定となり、ガス発生までの時間が6時間となってしまった。また、比較例3-1、3-2に比べて、実施例3-1~3-9では、容量維持率及び初期効率が向上した。また、特に、ケイ素化合物粒子の一次粒子の1μm以下の一次粒子の割合が8%以下である実施例3-2、3-3、3-5では、ガス発生までの時間が72時間以上と更に長くなり、負極合剤スラリーがより安定化したことが分かった。また、これらの実施例の場合、特に良好な容量維持率及び初期効率が得られた。 As can be seen from Table 3, as shown in Examples 3-1 to 3-9 and 1-2, when the ratio of the primary particles of 1 μm or less of the silicon compound particles is 15% or less, the negative electrode mixture slurry is used. Among them, lithium ions are difficult to elute from the negative electrode active material, so that the negative electrode mixture slurry is stabilized and the time until gas generation is 36 hours or more. On the other hand, in Comparative Examples 3-1 and 3-2, since the ratio of the primary particles of the silicon compound particles to 1 μm or less is larger than 15%, lithium ions are easily eluted from the negative electrode active material, and the negative electrode mixture slurry. Became unstable, and it took 6 hours to generate gas. Further, as compared with Comparative Examples 3-1 and 3-2, in Examples 3-1 to 3-9, the capacity retention rate and the initial efficiency were improved. Further, in particular, in Examples 3-2, 3-3, and 3-5 in which the ratio of the primary particles of 1 μm or less of the silicon compound particles is 8% or less, the time until gas generation is 72 hours or more. It was found that the length became longer and the negative electrode mixture slurry became more stable. Moreover, in the case of these examples, a particularly good capacity retention rate and initial efficiency were obtained.

また、ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上6m/g以下を満たす実施例3-1~3-3、1-2は、BET比表面積が6m/gより大きい実施例3-7やBET比表面積が1m/g未満の実施例3-8に比べて容量維持率及び初期効率がより向上した。 Further, in Examples 3-1 to 3-3 and 1-2 in which the BET specific surface area of the primary particles of the silicon compound particles satisfies 1 m 2 / g or more and 6 m 2 / g or less, the BET specific surface area is 6 m 2 / g. The capacity retention rate and the initial efficiency were further improved as compared with the large Example 3-7 and the Example 3-8 having a BET specific surface area of less than 1 m 2 / g.

また、ケイ素化合物粒子の一次粒子の粒度分布におけるモード径が5~10μmであり、かつ、D99.9が20μm以下である実施例3-1~3-3、1-2では、モード径が5未満の実施例3-4、モード径が10より大きい実施例3-5、D99.9が20μm以上である実施例3-6に比べて容量維持率及び初期効率がより向上した。 Further, in Examples 3-1 to 3-3 and 1-2 in which the mode diameter in the particle size distribution of the primary particles of the silicon compound particles is 5 to 10 μm and D 99.9 is 20 μm or less, the mode diameter is The capacity retention rate and the initial efficiency were further improved as compared with Example 3-4 having a mode diameter of less than 5, Example 3-5 having a mode diameter larger than 10, and Example 3-6 having a D99.9 of 20 μm or more.

ケイ素化合物粒子の一次粒子のメジアン径が、1.0μm以上15μm以下である実施例3-1~3-3、1-2では、メジアン径が15μmを超える実施例3-9に比べて、容量維持率及び初期効率がより向上した。ケイ素化合物粒子の一次粒子のメジアン径D50が1.0μm以下の場合、1μm以下の一次粒子の割合が15%を大きく上回るため、比較例3-1、3-2と同様に、リチウムイオンの溶出が起き易くなり、また、電池特性が悪化すると考えられる。 In Examples 3-1 to 3-3 and 1-2 in which the median diameter of the primary particles of the silicon compound particles is 1.0 μm or more and 15 μm or less, the capacity is higher than that in Example 3-9 in which the median diameter exceeds 15 μm. The maintenance rate and initial efficiency have been improved. When the median diameter D 50 of the primary particles of the silicon compound particles is 1.0 μm or less, the proportion of the primary particles of 1 μm or less greatly exceeds 15%. It is considered that elution is likely to occur and the battery characteristics are deteriorated.

(実施例4-1~4-6)
ケイ素化合物粒子の結晶性を表4のように変化させたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。なお、ケイ素化合物粒子中の結晶性は、原料の気化温度の変更、又は、ケイ素化合物粒子の生成後の熱処理で制御できる。
(Examples 4-1 to 4-6)
A secondary battery was prepared under the same conditions as in Example 1-2 except that the crystallinity of the silicon compound particles was changed as shown in Table 4, and the cycle characteristics and the initial efficiency were evaluated. The crystallinity in the silicon compound particles can be controlled by changing the vaporization temperature of the raw material or by heat treatment after the silicon compound particles are formed.

Figure 0006995488000004
Figure 0006995488000004

特に半値幅が1.2°以上で、尚且つSi(111)面に起因する結晶子サイズが7.5nm以下の低結晶性材料で高い容量維持率が得られた。 In particular, a high capacity retention rate was obtained with a low crystallinity material having a half width of 1.2 ° or more and a crystallinity size of 7.5 nm or less due to the Si (111) plane.

(実施例5-1)
ケイ素化合物をSi及びLiシリケート領域の最大ピーク強度値Aと上記SiO領域に由来するピーク強度値Bとの関係がA<Bのものとしたこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。この場合、改質時にリチウムの挿入量を減らすことで、LiSiOの量を減らし、LiSiOに由来するピークの強度Aを小さくした。
(Example 5-1)
Under the same conditions as in Example 1-2, except that the relationship between the maximum peak intensity value A of the Si and Li silicate regions and the peak intensity value B derived from the SiO 2 region of the silicon compound is A <B. The next battery was prepared and the cycle characteristics and initial efficiency were evaluated. In this case, by reducing the amount of lithium inserted at the time of reforming, the amount of Li 2 SiO 3 was reduced, and the intensity A of the peak derived from Li 2 SiO 3 was reduced.

Figure 0006995488000005
Figure 0006995488000005

表5から分かるように、ピーク強度の関係がA>Bである場合の方が、電池特性が向上した。 As can be seen from Table 5, the battery characteristics were improved when the relationship of peak intensities was A> B.

(実施例6-1)
上記試験セルにおける30回の充放電で得られたV-dQ/dV曲線において、いずれの充放電でもVが0.40V~0.55Vの範囲にピークが得られなかった負極活物質を用いた以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 6-1)
In the V-dQ / dV curve obtained by charging and discharging 30 times in the above test cell, a negative electrode active material in which a peak was not obtained in the range of V of 0.40V to 0.55V was used in any charging and discharging. A secondary battery was produced under the same conditions as in Example 1-2 except that the cycle characteristics and the initial efficiency were evaluated.

Figure 0006995488000006
Figure 0006995488000006

放電カーブ形状がより鋭く立ち上がるためには、ケイ素化合物(SiOx)において、ケイ素(Si)と同様の放電挙動を示す必要がある。30回の充放電で上記の範囲にピークが発現しない、ケイ素化合物は比較的緩やかな放電カーブとなるため、二次電池にした際に、若干初期効率が低下する結果となった。ピークが30回以内の充放電で発現するものであれば、安定したバルクが形成され、容量維持率及び初期効率が向上した。 In order for the discharge curve shape to rise sharper, it is necessary for the silicon compound (SiOx) to exhibit the same discharge behavior as silicon (Si). Since the silicon compound has a relatively gentle discharge curve in which the peak does not appear in the above range after 30 times of charging and discharging, the initial efficiency is slightly lowered when the secondary battery is used. If the peak is expressed by charging / discharging within 30 times, a stable bulk is formed, and the capacity retention rate and the initial efficiency are improved.

(実施例7-1~7-4)
ケイ素系活物質粒子の表面に被覆された炭素材の平均厚さを変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。炭素材の平均厚さは、CVD条件を変更することで調整できる。
(Examples 7-1 to 7-4)
A secondary battery was prepared under the same conditions as in Example 1-2 except that the average thickness of the carbon material coated on the surface of the silicon-based active material particles was changed, and the cycle characteristics and the initial efficiency were evaluated. The average thickness of the carbon material can be adjusted by changing the CVD conditions.

Figure 0006995488000007
Figure 0006995488000007

表7からわかるように、炭素層の膜厚が10nm以上で導電性が特に向上するため、容量維持率及び初期効率を向上させることができる。一方、炭素層の膜厚が5000nm以下であれば、電池設計上、ケイ素化合物粒子の量を十分に確保できるため、電池容量が低下することが無い。 As can be seen from Table 7, when the film thickness of the carbon layer is 10 nm or more, the conductivity is particularly improved, so that the capacity retention rate and the initial efficiency can be improved. On the other hand, when the film thickness of the carbon layer is 5000 nm or less, the amount of silicon compound particles can be sufficiently secured in the battery design, so that the battery capacity does not decrease.

(実施例8-1)
改質方法を酸化還元法に変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、サイクル特性及び初回効率を評価した。
(Example 8-1)
A secondary battery was produced under the same conditions as in Example 1-2 except that the modification method was changed to the redox method, and the cycle characteristics and initial efficiency were evaluated.

酸化還元法による改質は以下のように行った。まず、炭素材被覆後の負極活物質粒子を、リチウム片と、芳香族化合物であるナフタレンとをテトラヒドロフラン(以下、THFとも呼称する)に溶解させた溶液(溶液A)に浸漬した。この溶液Aは、THF溶媒にナフタレンを0.2mol/Lの濃度で溶解させた後に、このTHFとナフタレンの混合液に対して10質量%の質量分のリチウム片を加えることで作製した。また、負極活物質粒子を浸漬する際の溶液の温度は20℃で、浸漬時間は20時間とした。その後、負極活物質粒子を濾取した。以上の処理により、負極活物質粒子にリチウムを挿入した。 Modification by the redox method was performed as follows. First, the negative electrode active material particles coated with the carbon material were immersed in a solution (solution A) in which lithium pieces and naphthalene, which is an aromatic compound, were dissolved in tetrahydrofuran (hereinafter, also referred to as THF). This solution A was prepared by dissolving naphthalene in a THF solvent at a concentration of 0.2 mol / L, and then adding 10% by mass of lithium pieces to the mixed solution of THF and naphthalene. The temperature of the solution when immersing the negative electrode active material particles was 20 ° C., and the immersing time was 20 hours. Then, the negative electrode active material particles were collected by filtration. Through the above treatment, lithium was inserted into the negative electrode active material particles.

続いて、得られたケイ素化合物粒子をアルゴン雰囲気下600℃で24時間熱処理を行いLi化合物の安定化を行った。 Subsequently, the obtained silicon compound particles were heat-treated at 600 ° C. for 24 hours under an argon atmosphere to stabilize the Li compound.

次に、負極活物質粒子を洗浄処理し、洗浄処理後の負極活物質粒子を減圧下で乾燥処理した。このようにして、負極活物質粒子の改質を行った。 Next, the negative electrode active material particles were washed, and the negative electrode active material particles after the washing treatment were dried under reduced pressure. In this way, the negative electrode active material particles were modified.

Figure 0006995488000008
Figure 0006995488000008

酸化還元法を用いた場合であっても良好な容量維持率及び初期効率が得られた。 Good capacity retention and initial efficiency were obtained even when the redox method was used.

(実施例9-1)
負極活物質中のケイ素系活物質粒子の質量の割合を変更したこと以外、実施例1-2と同じ条件で二次電池を作製し、電池容量の増加率を評価した。
(Example 9-1)
A secondary battery was produced under the same conditions as in Example 1-2 except that the ratio of the mass of the silicon-based active material particles in the negative electrode active material was changed, and the rate of increase in battery capacity was evaluated.

図5に、負極活物質の総量に対するケイ素系活物質粒子の割合と二次電池の電池容量の増加率との関係を表すグラフを示す。図5中のAで示すグラフは、本発明の負極の負極活物質において、ケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。一方、図5中のBで示すグラフは、Liをドープしていないケイ素化合物粒子の割合を増加させた場合の電池容量の増加率を示している。図5から分かるように、ケイ素化合物の割合が6質量%以上となると、電池容量の増加率は従来に比べて大きくなり、体積エネルギー密度が、特に顕著に増加する。 FIG. 5 shows a graph showing the relationship between the ratio of silicon-based active material particles to the total amount of negative electrode active material and the rate of increase in battery capacity of the secondary battery. The graph shown by A in FIG. 5 shows the rate of increase in battery capacity when the proportion of silicon compound particles is increased in the negative electrode active material of the negative electrode of the present invention. On the other hand, the graph shown by B in FIG. 5 shows the rate of increase in battery capacity when the proportion of silicon compound particles not doped with Li is increased. As can be seen from FIG. 5, when the proportion of the silicon compound is 6% by mass or more, the rate of increase in battery capacity becomes larger than in the conventional case, and the volume energy density increases particularly remarkably.

なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。 The present invention is not limited to the above embodiment. The above-described embodiment is an example, and the present invention can be anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits the same function and effect. Is included in the technical scope of.

10…負極、 11…負極集電体、 12…負極活物質層、
20…リチウム二次電池(ラミネートフィルム型)、 21…巻回電極体、
22…正極リード、 23…負極リード、 24…密着フィルム、
25…外装部材。
10 ... Negative electrode, 11 ... Negative electrode current collector, 12 ... Negative electrode active material layer,
20 ... Lithium secondary battery (laminated film type), 21 ... Winding electrode body,
22 ... Positive electrode lead, 23 ... Negative electrode lead, 24 ... Adhesive film,
25 ... Exterior member.

Claims (10)

負極活物質粒子を含む水系負極スラリー用負極活物質であって、
前記負極活物質粒子は、ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を含有し、
前記ケイ素化合物粒子は、LiSiO及びLiSiOのうち少なくとも1種以上を含有し、
前記ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であり、
前記ケイ素化合物粒子の一次粒子のBET比表面積が、1m /g以上6m /g以下であり、
前記ケイ素化合物粒子の一次粒子の体積基準の粒度分布におけるモード径が5μm以上10μm以下であり、かつ、前記体積基準の粒度分布における分布累積値が99.9%になる粒子径であるD 99.9 が20μm以下であることを特徴とする負極活物質。
Negative electrode active material A negative electrode active material for an aqueous negative electrode slurry containing particles.
The negative electrode active material particles contain silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6).
The silicon compound particles contain at least one of Li 2 SiO 3 and Li 4 SiO 4 .
Among the primary particles of the silicon compound particles, the ratio of the primary particles having a particle diameter of 1 μm or less is 15% or less on a volume basis.
The BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 6 m 2 / g or less.
D 99. The mode diameter of the primary particles of the silicon compound particles in the volume-based particle size distribution is 5 μm or more and 10 μm or less, and the cumulative distribution value in the volume-based particle size distribution is 99.9% . A negative electrode active material characterized in that 9 is 20 μm or less .
前記ケイ素化合物粒子の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で8%以下であることを特徴とする請求項1に記載の負極活物質。 The negative electrode active material according to claim 1, wherein the ratio of the primary particles having a particle diameter of 1 μm or less to the primary particles of the silicon compound particles is 8% or less on a volume basis. 前記ケイ素化合物粒子の一次粒子のBET比表面積が、1m/g以上4m/g以下であることを特徴とする請求項1又は請求項2に記載の負極活物質。 The negative electrode active material according to claim 1 or 2 , wherein the BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 4 m 2 / g or less. 前記ケイ素化合物粒子は、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因する回折ピークの半値幅(2θ)が1.2°以上であるとともに、その結晶面に対応する結晶子サイズは7.5nm以下であることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。 The silicon compound particles have a half-value width (2θ) of 1.2 ° or more of the diffraction peak caused by the Si (111) crystal plane obtained by X-ray diffraction using Cu—Kα rays, and the crystal plane has a half-value width (2θ) or more. The negative electrode active material according to any one of claims 1 to 3 , wherein the corresponding crystal face size is 7.5 nm or less. 前記ケイ素化合物粒子において、29Si-MAS-NMR スペクトルから得られる、ケミカルシフト値として-60~-95ppmで与えられるSi及びLiシリケート領域の最大ピーク強度値Aと、ケミカルシフト値として-96~-150ppmで与えられるSiO領域のピーク強度値Bが、A>Bという関係を満たすものであることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。 In the silicon compound particles, the maximum peak intensity value A of the Si and Li silicate regions given at -60 to -95 ppm as the chemical shift value obtained from the 29 Si-MAS-NMR spectrum, and -96 to-as the chemical shift value. The negative electrode active material according to any one of claims 1 to 4 , wherein the peak intensity value B in the SiO 2 region given at 150 ppm satisfies the relationship A> B. 前記ケイ素化合物粒子の一次粒子の、体積基準の粒度分布における分布累積値が50%になる粒子径であるメジアン径が、1.0μm以上15μm以下であることを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。 Claim 1 to claim 1, wherein the median diameter, which is the particle diameter at which the cumulative distribution value of the primary particles of the silicon compound particles in the volume-based particle size distribution is 50%, is 1.0 μm or more and 15 μm or less. 5. The negative electrode active material according to any one of 5. 前記負極活物質粒子は、表層部に炭素材を含むことを特徴とする請求項1から請求項のいずれか1項に記載の負極活物質。 The negative electrode active material according to any one of claims 1 to 6 , wherein the negative electrode active material particles contain a carbon material in the surface layer portion. 前記炭素材の平均厚さは10nm以上5000nm以下であることを特徴とする請求項に記載の負極活物質。 The negative electrode active material according to claim 7 , wherein the carbon material has an average thickness of 10 nm or more and 5000 nm or less. 請求項1から請求項のいずれか1項に記載の負極活物質と炭素系活物質とを含むことを特徴とする混合負極活物質材料。 A mixed negative electrode active material material comprising the negative electrode active material according to any one of claims 1 to 8 and a carbon-based active material. ケイ素化合物粒子を含有する負極活物質粒子を含む水系負極スラリー用負極活物質を製造する方法であって、
ケイ素化合物(SiO:0.5≦x≦1.6)を含むケイ素化合物粒子を作製する工程と、
前記ケイ素化合物粒子にリチウムを挿入し、LiSiO及びLiSiOのうち少なくとも1種以上を含有させる工程と、
により負極活物質粒子を作製し、
前記負極活物質粒子から、前記ケイ素化合物の一次粒子のうち、粒子径1μm以下の一次粒子の割合が体積基準で15%以下であり、
前記ケイ素化合物粒子の一次粒子のBET比表面積が、1m /g以上6m /g以下であり、
前記ケイ素化合物粒子の一次粒子の体積基準の粒度分布におけるモード径が5μm以上10μm以下であり、かつ、前記体積基準の粒度分布における分布累積値が99.9%になる粒子径であるD 99.9 が20μm以下であるものを選別する工程とを含み、
該選別した前記負極活物質粒子を用いて、負極活物質を製造することを特徴とする負極活物質の製造方法。
A method for producing a negative electrode active material for an aqueous negative electrode slurry containing negative electrode active material particles containing silicon compound particles.
A step of producing silicon compound particles containing a silicon compound (SiO x : 0.5 ≦ x ≦ 1.6) and
A step of inserting lithium into the silicon compound particles to contain at least one of Li 2 SiO 3 and Li 4 SiO 4 .
To produce negative electrode active material particles by
From the negative electrode active material particles, the proportion of the primary particles having a particle diameter of 1 μm or less among the primary particles of the silicon compound is 15% or less on a volume basis.
The BET specific surface area of the primary particles of the silicon compound particles is 1 m 2 / g or more and 6 m 2 / g or less.
D 99. The mode diameter of the primary particles of the silicon compound particles in the volume-based particle size distribution is 5 μm or more and 10 μm or less, and the cumulative distribution value in the volume-based particle size distribution is 99.9% . Including the step of selecting those having 9 of 20 μm or less .
A method for producing a negative electrode active material, which comprises producing a negative electrode active material using the selected negative electrode active material particles.
JP2017074177A 2016-04-21 2017-04-04 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material Active JP6995488B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016085464 2016-04-21
JP2016085464 2016-04-21

Publications (2)

Publication Number Publication Date
JP2017199657A JP2017199657A (en) 2017-11-02
JP6995488B2 true JP6995488B2 (en) 2022-02-04

Family

ID=60239395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017074177A Active JP6995488B2 (en) 2016-04-21 2017-04-04 Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material

Country Status (1)

Country Link
JP (1) JP6995488B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113437274A (en) 2017-12-12 2021-09-24 贝特瑞新材料集团股份有限公司 Lithium ion battery cathode material and preparation method thereof
US20210013489A1 (en) * 2018-01-19 2021-01-14 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP6889412B2 (en) 2018-07-19 2021-06-18 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery, evaluation method of negative electrode mixture layer, and manufacturing method of non-aqueous electrolyte secondary battery
JP6683221B2 (en) * 2018-07-26 2020-04-15 トヨタ自動車株式会社 Negative electrode, non-aqueous electrolyte secondary battery, and method for manufacturing negative electrode
CN109841831B (en) * 2019-03-21 2020-12-25 宁德新能源科技有限公司 Negative electrode material, negative electrode comprising same, and electrochemical device
JP7388936B2 (en) * 2020-01-29 2023-11-29 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode material for nonaqueous electrolyte secondary batteries, and lithium ion secondary batteries
JP2022187707A (en) * 2021-06-08 2022-12-20 信越化学工業株式会社 Anode active material, anode and lithium ion secondary battery
WO2024095539A1 (en) * 2022-11-01 2024-05-10 株式会社大阪チタニウムテクノロジーズ Silicon oxide and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205950A (en) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2011222151A (en) 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
WO2012077268A1 (en) 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
WO2013069197A1 (en) 2011-11-11 2013-05-16 株式会社豊田自動織機 Negative-electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2015156355A (en) 2013-08-21 2015-08-27 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, method of manufacturing negative electrode active substance, and method of manufacturing lithium ion secondary battery

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4880016B2 (en) * 2009-09-18 2012-02-22 株式会社大阪チタニウムテクノロジーズ Anode material for lithium ion secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009205950A (en) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2011222151A (en) 2010-04-05 2011-11-04 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous secondary battery and method for producing the material, and lithium ion secondary battery
WO2012077268A1 (en) 2010-12-07 2012-06-14 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
WO2013069197A1 (en) 2011-11-11 2013-05-16 株式会社豊田自動織機 Negative-electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2015156355A (en) 2013-08-21 2015-08-27 信越化学工業株式会社 Negative-electrode active substance, negative electrode active substance material, negative electrode, lithium ion secondary battery, method of manufacturing negative electrode, method of manufacturing negative electrode active substance, and method of manufacturing lithium ion secondary battery

Also Published As

Publication number Publication date
JP2017199657A (en) 2017-11-02

Similar Documents

Publication Publication Date Title
JP7082228B2 (en) Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, method for manufacturing negative electrode active material for lithium ion secondary battery, lithium A method for manufacturing a negative electrode for an ion secondary battery and a method for manufacturing a lithium ion secondary battery.
JP6765997B2 (en) Negative electrode material, manufacturing method of the negative electrode material, and mixed negative electrode material
JP6995488B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP6867821B2 (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, negative electrode manufacturing method, and lithium ion secondary Battery manufacturing method
JP6719554B2 (en) Negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and method for producing negative electrode active material for lithium ion secondary battery
JP6964386B2 (en) Method for manufacturing negative electrode active material for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery
JP6592603B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6861565B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP7078346B2 (en) Method for manufacturing negative electrode active material and lithium ion secondary battery
JP6797739B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP6445956B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP6535581B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery
JP7019284B2 (en) Negative electrode active material, mixed negative electrode active material, and method for manufacturing negative electrode active material
JP6766143B2 (en) Method for manufacturing negative electrode active material for lithium ion secondary battery, mixed negative electrode active material for lithium ion secondary battery, and negative electrode active material for lithium ion secondary battery
JP7084849B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, aqueous negative electrode slurry composition, and negative electrode active material
JP6719262B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
JP6460960B2 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for nonaqueous electrolyte secondary battery, lithium ion secondary battery, method for producing negative electrode active material, and method for producing lithium ion secondary battery
JP6862091B2 (en) Method for manufacturing negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and negative electrode active material
KR20190049683A (en) A negative electrode active material, a mixed negative electrode active material, and a method for manufacturing a negative electrode active material
JP6862090B2 (en) Negative electrode active material, mixed negative electrode active material material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, negative electrode active material manufacturing method, and lithium ion secondary battery manufacturing method
JP6746526B2 (en) Negative electrode active material, mixed negative electrode active material, and method for producing negative electrode active material
KR102679366B1 (en) Negative electrode active material, mixed negative electrode active material, negative electrode for non-aqueous electrolyte secondary battery, lithium ion secondary battery, manufacturing method of negative electrode active material, and manufacturing method of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200707

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20200918

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210518

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20210817

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210930

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20211005

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20211116

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20211214

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20211214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6995488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150