JP6995345B2 - Heat monitoring method for heat storage material and heat storage material storage container for this purpose - Google Patents

Heat monitoring method for heat storage material and heat storage material storage container for this purpose Download PDF

Info

Publication number
JP6995345B2
JP6995345B2 JP2017206418A JP2017206418A JP6995345B2 JP 6995345 B2 JP6995345 B2 JP 6995345B2 JP 2017206418 A JP2017206418 A JP 2017206418A JP 2017206418 A JP2017206418 A JP 2017206418A JP 6995345 B2 JP6995345 B2 JP 6995345B2
Authority
JP
Japan
Prior art keywords
storage material
heat storage
thermoelectric conversion
heat
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017206418A
Other languages
Japanese (ja)
Other versions
JP2019078664A (en
Inventor
浩司 末森
聖 植村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2017206418A priority Critical patent/JP6995345B2/en
Publication of JP2019078664A publication Critical patent/JP2019078664A/en
Application granted granted Critical
Publication of JP6995345B2 publication Critical patent/JP6995345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

本発明は、蓄熱材の状態を経時的にモニタリングする方法及びこのための蓄熱材を収容する容器に関する。 The present invention relates to a method for monitoring the state of the heat storage material over time and a container for accommodating the heat storage material for this purpose.

固体/液体などの相互の相変化において、相変化材料は潜熱に相当する熱量を外部から吸収し、その温度は一定に保持される。これを利用して、物体の温度を一定に保持する目的に使用されている。例えば、物流分野で用いられる保冷剤は、これとともに保温容器内に収容された内容物(被冷却物)を低温に安定保持しようとするものである。つまり、かかる保冷剤は、相変化材料からなり、低温時では通常固体であって、外部からの熱の流入を受けて液体へと相転移するのである。 In a mutual phase change such as a solid / liquid, the phase change material absorbs an amount of heat corresponding to latent heat from the outside, and the temperature is kept constant. Utilizing this, it is used for the purpose of keeping the temperature of an object constant. For example, the cold insulating agent used in the physical distribution field is intended to stably keep the contents (cooled material) contained in the heat insulating container at a low temperature. That is, such an ice pack is made of a phase changing material, is usually a solid at a low temperature, and undergoes a phase transition to a liquid by receiving the inflow of heat from the outside.

保冷剤の温度上昇の過程では、その顕熱だけでなく、固体から液体へと相転移する際の潜熱に相当する熱量の流入もある。具体的には、3つの過程が順に生じる。つまり、(1)固体の保冷剤において、融点以下の温度から融点まで温度が上昇する。(2)外部からの熱の流入を通じて、固体から液体に相転移する。この際外部から流入した熱は相転移の潜熱に消費されるから温度上昇を生じさせず、一定の温度に保持される。(3)液体となって温度が上昇する。 In the process of increasing the temperature of the ice pack, not only the sensible heat but also the inflow of heat corresponding to the latent heat at the time of the phase transition from the solid to the liquid. Specifically, three processes occur in sequence. That is, (1) in a solid ice pack, the temperature rises from a temperature below the melting point to the melting point. (2) Phase transition from solid to liquid through the inflow of heat from the outside. At this time, the heat flowing in from the outside is consumed by the latent heat of the phase transition, so that the temperature does not rise and is maintained at a constant temperature. (3) It becomes a liquid and the temperature rises.

一般的に、上記したような保冷剤の温度保持機能を発揮できる時間は、保温容器の容積や内容物の量や状態などによって変化する。そこで、保温容器内の温度や保冷剤自体の温度を計測することが行われる。 Generally, the time during which the temperature holding function of the cooling agent as described above can be exerted varies depending on the volume of the heat insulating container, the amount and state of the contents, and the like. Therefore, the temperature inside the heat insulating container and the temperature of the ice pack itself are measured.

例えば、特許文献1及び2では、保冷剤の使用中の残存冷却能力を色彩の変化で判断できるようにした保冷剤及びこれを収容する保冷剤容器を開示している。ここでは、透明性を有する保冷剤の内部に可逆性示温剤を分散させて、保冷剤自体の温度を目視で把握するとしている。また、保冷剤容器についても内部の可逆性示温剤を目視で把握できるよう、一部又は全部を透明な部材によって与えるとしている。 For example, Patent Documents 1 and 2 disclose a cooling agent in which the residual cooling capacity during use of the cooling agent can be determined by a change in color, and a cooling agent container containing the cooling agent. Here, the reversible temperature indicator is dispersed inside the transparent ice pack, and the temperature of the ice pack itself is visually grasped. In addition, a part or all of the ice pack container is provided with a transparent member so that the reversible temperature indicator inside can be visually grasped.

特開2006-45408号公報Japanese Unexamined Patent Publication No. 2006-45408 特開2006-45464号公報Japanese Unexamined Patent Publication No. 2006-45464

上記したように、保冷剤の状態変化は被冷却物の性質等に大きな影響を与えるため、その経時的なモニタリングの必要がある。一方、保温容器の容積や内容物の種類や量、状態などによって保冷剤の経時変化の状態も大きく異なるため、保冷剤の温度保持機能を発揮できる時間(余寿命)を逐次予測しようとするような場合においては、その都度、正確な保冷剤のモニタリングの必要が生じるのである。 As described above, changes in the state of the ice pack have a great effect on the properties of the object to be cooled, so it is necessary to monitor it over time. On the other hand, since the state of change over time of the ice pack varies greatly depending on the volume of the heat insulating container, the type and amount of the contents, the state, etc. In such cases, accurate monitoring of the ice pack will be required each time.

本発明は、かかる状況に鑑みてなされたものであって、その目的とするところは、保冷剤のような蓄熱材の状態を経時的にモニタリングする方法及びこのための蓄熱材を収容する容器を提供することにある。 The present invention has been made in view of such a situation, and an object of the present invention is to provide a method for monitoring the state of a heat storage material such as an ice pack over time and a container for accommodating the heat storage material for this purpose. To provide.

本願発明者らは、保冷剤のような蓄熱材の状態について、これを構成する相変化材料がどれだけの熱量を外部から吸収(又は、放出)したかを直接計測できれば、蓄熱材の状態が上記の(1)~(3)のいずれの状態にあるかを明らかにすることができるとともに、あとどれだけ熱量を吸収できるかを予測できることに想到し、本願発明に至った。 If the inventors of the present application can directly measure the amount of heat absorbed (or released) from the outside by the phase changing material constituting the heat storage material such as an ice pack, the state of the heat storage material will be the same. We came up with the idea that it is possible to clarify which of the above states (1) to (3) is in, and to predict how much heat can be absorbed, leading to the invention of the present application.

すなわち、本発明による蓄熱材の熱モニタリング方法は、容器に前記蓄熱材を密封させ、前記容器の面に沿って与えられた熱電変換モジュールにより発せられる電気信号として前記容器を通過して外部との間で授受される熱量の測定を与えることを特徴とする。 That is, in the heat monitoring method of the heat storage material according to the present invention, the heat storage material is sealed in a container, and the heat storage material is passed through the container as an electric signal emitted by a thermoelectric conversion module given along the surface of the container to the outside. It is characterized by giving a measurement of the amount of heat exchanged between them.

かかる発明によれば、容器を通過して蓄熱材と外部との間で授受される熱量の経時的な計測を与え得て、蓄熱材の余寿命を逐次予測し得るのである。 According to such an invention, the amount of heat transferred between the heat storage material and the outside through the container can be measured over time, and the remaining life of the heat storage material can be sequentially predicted.

上記した発明において、前記熱電変換モジュールは熱電変換素子からなることを特徴としてもよい。かかる発明によれば、熱電変換モジュールを容易に得ることができる。 In the above-described invention, the thermoelectric conversion module may be characterized by comprising a thermoelectric conversion element. According to such an invention, a thermoelectric conversion module can be easily obtained.

上記した発明において、前記容器は易変形であるとともに前記蓄熱材の周囲に沿って接触するように変形されることを特徴としてもよい。かかる発明によれば、蓄熱材の周囲に沿って熱電変換モジュールを配置できて、外部との間で授受される熱量の測定を正確に行い得る。 In the above-mentioned invention, the container may be easily deformed and may be deformed so as to be in contact with the periphery of the heat storage material. According to such an invention, the thermoelectric conversion module can be arranged along the periphery of the heat storage material, and the amount of heat transferred to and from the outside can be accurately measured.

上記した発明において、前記蓄熱材は保冷剤であることを特徴としてもよい。かかる発明によれば、保冷剤の余寿命を逐次予測し得る。 In the above-mentioned invention, the heat storage material may be characterized by being a cold insulating agent. According to such an invention, the remaining life of the ice pack can be predicted sequentially.

上記した発明において、前記熱電変換モジュールは易変形の高分子材料を基板とする熱電変換素子からなり、可撓性を有することを特徴としてもよい。かかる発明によれば、熱電変換モジュールの与えられる容器を簡単に易変形とすることができる。 In the above-described invention, the thermoelectric conversion module may be characterized by being composed of a thermoelectric conversion element using an easily deformable polymer material as a substrate and having flexibility. According to such an invention, the container provided with the thermoelectric conversion module can be easily deformed.

上記した発明において、前記熱電変換素子は前記基板にカーボンナノチューブを含むことを特徴としてもよい。かかる発明によれば、比較的高い熱電変換効率を有する易変形の熱電変換素子を得ることができる。 In the above-described invention, the thermoelectric conversion element may be characterized in that the substrate contains carbon nanotubes. According to such an invention, it is possible to obtain an easily deformable thermoelectric conversion element having a relatively high thermoelectric conversion efficiency.

また、本発明による蓄熱材収容容器は、蓄熱材を密閉させ該蓄熱材の熱モニタリングを与える容器であって、前記容器の面に沿って与えられた熱電変換モジュールにより発せられる電気信号として前記容器を通過して外部との間で授受される熱量の測定を与えることを特徴とする。 Further, the heat storage material container according to the present invention is a container that seals the heat storage material and gives heat monitoring of the heat storage material, and is the container as an electric signal emitted by a thermoelectric conversion module given along the surface of the container. It is characterized by giving a measurement of the amount of heat transferred to and from the outside through.

かかる発明によれば、容器を通過して蓄熱材と外部との間で授受される熱量の経時的な計測を与え得て、蓄熱材の余寿命を逐次予測し得るのである。 According to such an invention, the amount of heat transferred between the heat storage material and the outside through the container can be measured over time, and the remaining life of the heat storage material can be sequentially predicted.

上記した発明において、前記熱電変換モジュールは熱電変換素子からなることを特徴としてもよい。かかる発明によれば、熱電変換モジュールを容易に得ることができる。 In the above-described invention, the thermoelectric conversion module may be characterized by comprising a thermoelectric conversion element. According to such an invention, a thermoelectric conversion module can be easily obtained.

上記した発明において、前記容器は易変形であるとともに前記蓄熱材の周囲に沿って接触するように変形させられていることを特徴としてもよい。かかる発明によれば、蓄熱材の周囲に沿って熱電変換モジュールを配置できて、外部との間で授受される熱量の測定を正確に行い得る。 In the above-mentioned invention, the container may be easily deformed and may be deformed so as to be in contact with the periphery of the heat storage material. According to such an invention, the thermoelectric conversion module can be arranged along the periphery of the heat storage material, and the amount of heat transferred to and from the outside can be accurately measured.

上記した発明において、前記蓄熱材は保冷剤であることを特徴としてもよい。かかる発明によれば、保冷剤の余寿命を逐次予測し得る。 In the above-mentioned invention, the heat storage material may be characterized by being a cold insulating agent. According to such an invention, the remaining life of the ice pack can be predicted sequentially.

上記した発明において、前記熱電変換モジュールは易変形の高分子材料を基板とする熱電変換素子からなり、可撓性を有することを特徴としてもよい。かかる発明によれば、熱電変換モジュールの与えられる容器を簡単に易変形とすることができる。 In the above-described invention, the thermoelectric conversion module may be characterized by being composed of a thermoelectric conversion element using an easily deformable polymer material as a substrate and having flexibility. According to such an invention, the container provided with the thermoelectric conversion module can be easily deformed.

上記した発明において、前記熱電変換素子は前記基板にカーボンナノチューブを含むことを特徴としてもよい。かかる発明によれば、比較的高い熱電変換効率を有する易変形の熱電変換素子を得ることができる。 In the above-described invention, the thermoelectric conversion element may be characterized in that the substrate contains carbon nanotubes. According to such an invention, it is possible to obtain an easily deformable thermoelectric conversion element having a relatively high thermoelectric conversion efficiency.

本発明による実施例における蓄熱材収容容器の断面図である。It is sectional drawing of the heat storage material accommodating container in the Example by this invention. 熱電変換モジュールの要部の断面図である。It is sectional drawing of the main part of a thermoelectric conversion module. 蓄熱材収容容器の外観写真である。It is an external photograph of a heat storage material storage container. 蓄熱材収容容器を用いたモニタリング装置のブロック図である。It is a block diagram of a monitoring device using a heat storage material storage container. 蓄熱材の温度及び熱電変換モジュールの発生する電圧のグラフである。It is a graph of the temperature of the heat storage material and the voltage generated by the thermoelectric conversion module.

本発明による1つの実施例における蓄熱材収容容器について、図1乃至図3を参照しつつ説明する。 The heat storage material storage container in one embodiment according to the present invention will be described with reference to FIGS. 1 to 3.

図1に示すように、蓄熱材Hを収容し密閉する容器(蓄熱材収容容器)10は、例えば変形の容易な高分子材料からなるフィルム状の一対のシート体1の端部を貼り合わせて、変形の容易な袋状に形成したものであり、蓄熱材Hを収容する部分である袋状部2を熱電変換モジュール3で構成している。つまり、容器10の表面に沿って熱電変換モジュール3を配置させることで蓄熱材Hの周囲を熱電変換モジュール3で覆い、容器10を通過して外部と蓄熱材Hとの間で授受される熱量を熱電変換モジュール3により発せられる電気信号によって測定するのである。 As shown in FIG. 1, the container (heat storage material storage container) 10 for accommodating and sealing the heat storage material H is formed by bonding the ends of a pair of film-shaped sheet bodies 1 made of a easily deformable polymer material, for example. The bag-shaped portion 2 which is formed in a bag shape which is easily deformed and which is a portion for accommodating the heat storage material H is composed of the thermoelectric conversion module 3. That is, by arranging the thermoelectric conversion module 3 along the surface of the container 10, the periphery of the heat storage material H is covered with the thermoelectric conversion module 3, and the amount of heat transferred between the outside and the heat storage material H through the container 10 Is measured by the electric signal generated by the thermoelectric conversion module 3.

図2に示すように、熱電変換モジュール3は、例えば、熱電変換素子11及び電極12をシート体1に組み合わせて得ることができる。詳細には、複数の熱電変換素子11をシート体1の裏側(容器10の内側)から表側(容器10の外側)に貫通させて並べ、シート体1を貫通する電極12によって隣り合う熱電変換素子11の表側と裏側の端部を互いに接続する。これによって、裏側から表側に向かう複数の熱電変換素子11を直列に接続し、裏側から表側、又は表側から裏側へ通過する熱量に応じてこれらの熱電変換素子11によって電気信号として電圧を発生させることができる。 As shown in FIG. 2, the thermoelectric conversion module 3 can be obtained, for example, by combining the thermoelectric conversion element 11 and the electrode 12 with the sheet body 1. Specifically, a plurality of thermoelectric conversion elements 11 are arranged so as to penetrate from the back side (inside of the container 10) to the front side (outside of the container 10) of the sheet body 1, and the thermoelectric conversion elements adjacent to each other by the electrodes 12 penetrating the sheet body 1 are arranged. The front and back ends of 11 are connected to each other. As a result, a plurality of thermoelectric conversion elements 11 heading from the back side to the front side are connected in series, and a voltage is generated as an electric signal by these thermoelectric conversion elements 11 according to the amount of heat passing from the back side to the front side or from the front side to the back side. Can be done.

図3に示すように、熱電変換モジュール3は、例えば、上記したような直列に接続された熱電変換素子11及び電極12の列の複数を並べて、袋状部2の全体に配置するようにすることができる。なお、熱電変換モジュール3における熱電変換素子11及び電極12の配置はこれに限られず、容器10を通過する熱量に応じた電圧を計測できればよい。 As shown in FIG. 3, in the thermoelectric conversion module 3, for example, a plurality of rows of thermoelectric conversion elements 11 and electrodes 12 connected in series as described above are arranged side by side and arranged in the entire bag-shaped portion 2. be able to. The arrangement of the thermoelectric conversion element 11 and the electrode 12 in the thermoelectric conversion module 3 is not limited to this, and it is sufficient that the voltage corresponding to the amount of heat passing through the container 10 can be measured.

熱電変換素子11は、例えば、シート体1を基板としてカーボンナノチューブを含んだポリメチルメタクリレートを用いて得ることができる。ポリメチルメタクリレートを有機溶媒に溶解させた溶液中に単層カーボンナノチューブを分散させ、これをシート体1に塗布して乾燥させるのでる。このようなカーボンナノチューブを含む熱電変換素子11によれば、比較的高い熱電変換効率を有する易変形の熱電変換素子とすることができる。 The thermoelectric conversion element 11 can be obtained, for example, by using polymethylmethacrylate containing carbon nanotubes using the sheet body 1 as a substrate. The single-walled carbon nanotubes are dispersed in a solution in which polymethylmethacrylate is dissolved in an organic solvent, and the single-walled carbon nanotubes are applied to the sheet body 1 and dried. According to the thermoelectric conversion element 11 containing such carbon nanotubes, it is possible to obtain an easily deformable thermoelectric conversion element having a relatively high thermoelectric conversion efficiency.

ここで、変形の容易なシート体1によって容器10を得ると、容器10は容易に変形される。すると、蓄熱材Hを氷や凍結した保冷剤などの固体としたときでも、その表面に沿って変形して蓄熱材Hの周囲に接触するように変形される。これによって、蓄熱材Hの周囲に沿って熱電変換モジュール3を配置できて、熱電変換モジュール3の変形を容易としつつ蓄熱材Hと容器10の外部との間で授受される熱量を正確に測定し得る。 Here, when the container 10 is obtained by the easily deformable sheet body 1, the container 10 is easily deformed. Then, even when the heat storage material H is made into a solid such as ice or a frozen ice pack, it is deformed along the surface thereof so as to be in contact with the periphery of the heat storage material H. As a result, the thermoelectric conversion module 3 can be arranged along the periphery of the heat storage material H, and the amount of heat transferred between the heat storage material H and the outside of the container 10 can be accurately measured while facilitating the deformation of the thermoelectric conversion module 3. Can be.

図4に示すように、容器10を通過して外部との間で授受される熱量を熱電変換モジュール3から発せられる電気信号として電圧計21を用いて外部からモニタリングできる。例えば、電圧計21として無線機付きの電圧計を用い、電圧計21からの無線による電気信号を受信機22で受信しパーソナルコンピュータなどの外部端末23によって得て、電圧を示す電気信号を熱量に換算するのである。 As shown in FIG. 4, the amount of heat transferred to and from the outside through the container 10 can be monitored from the outside using a voltmeter 21 as an electric signal emitted from the thermoelectric conversion module 3. For example, a voltmeter with a radio is used as the voltmeter 21, a wireless electric signal from the voltmeter 21 is received by the receiver 22 and obtained by an external terminal 23 such as a personal computer, and the electric signal indicating the voltage is converted into a calorific value. Convert.

以上のような、蓄熱材Hを収容する容器10によれば、熱電変換モジュール3によって容器10を通過して蓄熱材Hと外部との間で授受される熱量の経時的な計測を可能とし、蓄熱材Hの余寿命を逐次予測することができる。つまり、蓄熱材Hが保冷剤であれば、保冷剤の余寿命を逐次予測できる。 According to the container 10 accommodating the heat storage material H as described above, the thermoelectric conversion module 3 makes it possible to measure the amount of heat transferred between the heat storage material H and the outside through the container 10 over time. The remaining life of the heat storage material H can be predicted sequentially. That is, if the heat storage material H is a cold insulating agent, the remaining life of the cold insulating agent can be predicted sequentially.

また、熱電変換モジュール3は、変形の容易なシート体1を基板とする熱電変換素子11を含んで構成されるため可撓性を有し、容器10の変形を容易とする。これによって、蓄熱材Hの周囲に沿って熱電変換モジュール3を配置できて、外部との間で授受される熱量の測定を正確に行うことができる。 Further, since the thermoelectric conversion module 3 includes a thermoelectric conversion element 11 having a sheet body 1 that is easily deformed as a substrate, the thermoelectric conversion module 3 has flexibility and facilitates deformation of the container 10. As a result, the thermoelectric conversion module 3 can be arranged along the periphery of the heat storage material H, and the amount of heat transferred to and from the outside can be accurately measured.

容器10を通過して蓄熱材Hと外部との間で授受される熱量の経時的な計測は、例えば以下のように行うことができる。熱電変換モジュール3は通過した熱流量qに比例した電圧Vを発生するから、比例定数をAとしてq=AVである。そこで、測定開始からの経過時間をt1、測定開始から経過時間t1となるまでに容器10内に流入した熱量(又は流出した熱量)をQ1とすると、以下の式1が成立する。 The time-dependent measurement of the amount of heat transferred between the heat storage material H and the outside through the container 10 can be performed as follows, for example. Since the thermoelectric conversion module 3 generates a voltage V proportional to the heat flow rate q that has passed through, q = AV with the proportionality constant as A. Therefore, if the elapsed time from the start of measurement is t1 and the amount of heat that has flowed into the container 10 (or the amount of heat that has flowed out) from the start of measurement to the elapsed time t1 is Q1, the following equation 1 is established.

Figure 0006995345000001
Figure 0006995345000001

すなわち、比例定数Aが定まっていれば、Vを逐次測定してこれを積分することで、比例定数Aを乗じて熱量Q1を経時的に求めることができる。 That is, if the proportionality constant A is determined, V can be sequentially measured and integrated to obtain the calorific value Q1 by multiplying the proportionality constant A over time.

[実施例]
容器10を用いて蓄熱材Hを氷として外部との間で授受された熱量の経時的な計測を行った例について説明する。
[Example]
An example of measuring the amount of heat transferred to and from the outside using the heat storage material H as ice using the container 10 with time will be described.

容器10に脱イオン水110gを入れて冷凍庫で凍らせた。つまり、この脱イオン水による氷を蓄熱材Hとした。次いで、容器10を冷凍庫から取り出してからの経過時間に対する熱電変換モジュール3により発生された電圧を計測した。これとともに外気温(室温)及び容器10内の蓄熱材Hの温度も計測した。 110 g of deionized water was put in a container 10 and frozen in a freezer. That is, the ice produced by this deionized water was used as the heat storage material H. Next, the voltage generated by the thermoelectric conversion module 3 with respect to the elapsed time from taking out the container 10 from the freezer was measured. At the same time, the outside air temperature (room temperature) and the temperature of the heat storage material H in the container 10 were also measured.

図5示すように、計測開始直後の蓄熱材Hは凍った状態であり、室温との温度差によって熱電変換モジュール3に電圧を発生させる。時間の経過とともに氷が融けてやがて蓄熱材Hの温度を室温に近づける。これにつれて発生する電圧は減少し計測開始から400分程度で概ねゼロとなった。これは約400分で蓄熱材Hの温度が室温と同程度になったことを示している。実際に計測された蓄熱材Hの温度及び外気温も400分付近でほぼ一致している。 As shown in FIG. 5, the heat storage material H immediately after the start of measurement is in a frozen state, and a voltage is generated in the thermoelectric conversion module 3 due to the temperature difference from room temperature. With the passage of time, the ice melts and the temperature of the heat storage material H approaches room temperature. Along with this, the voltage generated decreased and became almost zero about 400 minutes after the start of measurement. This indicates that the temperature of the heat storage material H became about the same as room temperature in about 400 minutes. The actually measured temperature of the heat storage material H and the outside air temperature are almost the same at around 400 minutes.

この間、蓄熱材Hの温度は-8.3℃から25.5℃まで変化している。110gの-8.3℃の氷を25.5℃の水になるまで温度上昇させるためには、約50.6kJの熱量が必要となる。式1にこれらの数値を代入すると以下の式2のようになる。なお、時間の単位は「分」とする。 During this period, the temperature of the heat storage material H has changed from −8.3 ° C. to 25.5 ° C. In order to raise the temperature of 110 g of −8.3 ° C. ice to 25.5 ° C. water, a calorific value of about 50.6 kJ is required. Substituting these numerical values into Equation 1 gives Equation 2 below. The unit of time is "minutes".

Figure 0006995345000002
Figure 0006995345000002

外気からの熱は、容器10の熱電変換モジュール3を介して蓄熱材Hへ流入する。すなわち、計測開始から400分経過するまでの間に熱電変換モジュール3を通過した熱量は約50.6kJとなる。これに計測した電圧を用いて式2から比例定数Aを8.47kW/Vと求めることができた。つまり、このように実験的に比例定数Aを予め求めておくことで、上記したような温度を計測せずとも、熱電変換モジュール3から得られる電圧によって、容器10内に流入した熱量Q1を経時的に求めることができるのである。また、この例では、50.6kJから計測されたQ1を差し引くことで、蓄熱材Hが室温に達するまでの残りの熱量が算出でき、蓄熱材Hの余寿命をも逐次予測し得る。 The heat from the outside air flows into the heat storage material H via the thermoelectric conversion module 3 of the container 10. That is, the amount of heat that has passed through the thermoelectric conversion module 3 from the start of measurement to the elapse of 400 minutes is about 50.6 kJ. Using the measured voltage, the proportionality constant A could be obtained as 8.47 kW / V from Equation 2. That is, by experimentally obtaining the proportionality constant A in advance in this way, the amount of heat Q1 flowing into the container 10 by the voltage obtained from the thermoelectric conversion module 3 can be measured over time without measuring the temperature as described above. Can be sought. Further, in this example, by subtracting the measured Q1 from 50.6 kJ, the remaining heat amount until the heat storage material H reaches room temperature can be calculated, and the remaining life of the heat storage material H can be sequentially predicted.

以上、本発明による実施例及びこれに基づく変形例を説明したが、本発明は必ずしもこれに限定されるものではなく、当業者であれば、本発明の主旨又は添付した特許請求の範囲を逸脱することなく、様々な代替実施例及び改変例を見出すことができるであろう。 Although the examples according to the present invention and the modifications based on the present invention have been described above, the present invention is not necessarily limited to this, and those skilled in the art deviate from the gist of the present invention or the scope of the attached claims. Without doing so, various alternative and modified examples could be found.

3 熱電変換モジュール
10 容器(蓄熱材収容容器)
11 熱電変換素子
H 蓄熱材
3 Thermoelectric conversion module 10 container (heat storage material storage container)
11 Thermoelectric conversion element H Heat storage material

Claims (12)

蓄熱材の熱モニタリング方法であって、容器に前記蓄熱材を密封させ、前記容器の面に沿って与えられた熱電変換モジュールで前記蓄熱材の周囲を覆い前記熱電変換モジュールにより発せられる電気信号として前記容器を通過して外部との間で授受される熱量の測定を与えることを特徴とする蓄熱材の熱モニタリング方法。 It is a method of heat monitoring of a heat storage material, in which a container is sealed with the heat storage material, and a thermoelectric conversion module given along the surface of the container covers the periphery of the heat storage material as an electric signal emitted by the thermoelectric conversion module . A method for monitoring heat of a heat storage material, which comprises measuring the amount of heat transferred to and from the outside through the container. 前記熱電変換モジュールは熱電変換素子からなることを特徴とする請求項1記載の熱モニタリング方法。 The thermal monitoring method according to claim 1, wherein the thermoelectric conversion module comprises a thermoelectric conversion element. 前記容器は易変形であるとともに前記蓄熱材の周囲に沿って接触するように変形されることを特徴とする請求項1又は2に記載の熱モニタリング方法。 The heat monitoring method according to claim 1 or 2, wherein the container is easily deformed and is deformed so as to be in contact with the periphery of the heat storage material. 前記蓄熱材は保冷剤であることを特徴とする請求項3記載の熱モニタリング方法。 The heat monitoring method according to claim 3, wherein the heat storage material is an ice pack. 前記熱電変換モジュールは易変形の高分子材料を基板とする熱電変換素子からなり、可撓性を有することを特徴とする請求項1乃至4のうちの1つに記載の熱モニタリング方法。 The thermal monitoring method according to claim 1, wherein the thermoelectric conversion module comprises a thermoelectric conversion element using an easily deformable polymer material as a substrate and has flexibility. 前記熱電変換素子は前記基板にカーボンナノチューブを含むことを特徴とする請求項5記載の熱モニタリング方法。 The thermal monitoring method according to claim 5, wherein the thermoelectric conversion element contains carbon nanotubes in the substrate. 蓄熱材を密封させ該蓄熱材の熱モニタリングを与える容器であって、前記容器の面に沿って与えられた熱電変換モジュールで前記蓄熱材の周囲を覆い前記熱電変換モジュールにより発せられる電気信号として前記容器を通過して外部との間で授受される熱量の測定を与えることを特徴とする蓄熱材収容容器。 A container that seals the heat storage material and provides heat monitoring of the heat storage material, and covers the periphery of the heat storage material with a thermoelectric conversion module given along the surface of the container, and is described as an electric signal emitted by the thermoelectric conversion module. A heat storage material storage container characterized in that it provides a measurement of the amount of heat transferred to and from the outside through the container. 前記熱電変換モジュールは熱電変換素子からなることを特徴とする請求項記載の蓄熱材収容容器。 The heat storage material accommodating container according to claim 7 , wherein the thermoelectric conversion module comprises a thermoelectric conversion element. 前記容器は易変形であるとともに前記蓄熱材の周囲に沿って接触するように変形させられていることを特徴とする請求項7又は8に記載の蓄熱材収容容器。 The heat storage material storage container according to claim 7 or 8, wherein the container is easily deformed and is deformed so as to be in contact with the periphery of the heat storage material. 前記蓄熱材は保冷剤であることを特徴とする請求項9記載の蓄熱材収容容器。 The heat storage material storage container according to claim 9, wherein the heat storage material is a cold insulating agent. 前記熱電変換モジュールは易変形の高分子材料を基板とする熱電変換素子からなり、可撓性を有することを特徴とする請求項7乃至10のうちの1つに記載の蓄熱材収容容器。 The heat storage material storage container according to claim 7, wherein the thermoelectric conversion module comprises a thermoelectric conversion element having an easily deformable polymer material as a substrate and has flexibility. 前記熱電変換素子は前記基板にカーボンナノチューブを含むことを特徴とする請求項11記載の蓄熱材収容容器。
The heat storage material storage container according to claim 11, wherein the thermoelectric conversion element contains carbon nanotubes in the substrate.
JP2017206418A 2017-10-25 2017-10-25 Heat monitoring method for heat storage material and heat storage material storage container for this purpose Active JP6995345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017206418A JP6995345B2 (en) 2017-10-25 2017-10-25 Heat monitoring method for heat storage material and heat storage material storage container for this purpose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017206418A JP6995345B2 (en) 2017-10-25 2017-10-25 Heat monitoring method for heat storage material and heat storage material storage container for this purpose

Publications (2)

Publication Number Publication Date
JP2019078664A JP2019078664A (en) 2019-05-23
JP6995345B2 true JP6995345B2 (en) 2022-02-04

Family

ID=66627570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017206418A Active JP6995345B2 (en) 2017-10-25 2017-10-25 Heat monitoring method for heat storage material and heat storage material storage container for this purpose

Country Status (1)

Country Link
JP (1) JP6995345B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190394A1 (en) * 2022-03-31 2023-10-05 日本ゼオン株式会社 Method and system for measuring damage of building caused by earthquake

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060112717A1 (en) 2003-01-21 2006-06-01 Walton Philip A Bag-in-box containers and coolers
JP2008182160A (en) 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd Flexible thermoelectric conversion element and its manufacturing method
JP2010034508A (en) 2008-07-02 2010-02-12 Oki Denki Bosai Kk Thermoelectric conversion module and method of manufacturing the same
JP2012001659A (en) 2010-06-18 2012-01-05 Shozo Endo Gelatin crosslinked gel-polyurethane based cooling/heating medium and cold/heat insulation material
JP2017143148A (en) 2016-02-09 2017-08-17 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4531585Y1 (en) * 1966-10-25 1970-12-03

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060112717A1 (en) 2003-01-21 2006-06-01 Walton Philip A Bag-in-box containers and coolers
JP2008182160A (en) 2007-01-26 2008-08-07 Nippon Steel Chem Co Ltd Flexible thermoelectric conversion element and its manufacturing method
JP2010034508A (en) 2008-07-02 2010-02-12 Oki Denki Bosai Kk Thermoelectric conversion module and method of manufacturing the same
JP2012001659A (en) 2010-06-18 2012-01-05 Shozo Endo Gelatin crosslinked gel-polyurethane based cooling/heating medium and cold/heat insulation material
JP2017143148A (en) 2016-02-09 2017-08-17 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material, thermoelectric conversion element, and thermoelectric conversion module

Also Published As

Publication number Publication date
JP2019078664A (en) 2019-05-23

Similar Documents

Publication Publication Date Title
Nieto et al. Thermal modeling of large format lithium-ion cells
Troxler et al. The effect of thermal gradients on the performance of lithium-ion batteries
Mehrabi-Kermani et al. A novel hybrid thermal management for Li-ion batteries using phase change materials embedded in copper foams combined with forced-air convection
Raijmakers et al. A review on various temperature-indication methods for Li-ion batteries
Bazinski et al. Experimental study on the influence of temperature and state-of-charge on the thermophysical properties of an LFP pouch cell
Fleming et al. The design and impact of in-situ and operando thermal sensing for smart energy storage
Bandhauer et al. Temperature-dependent electrochemical heat generation in a commercial lithium-ion battery
De Vita et al. Transient thermal analysis of a lithium-ion battery pack comparing different cooling solutions for automotive applications
US10809133B2 (en) Measurement set-up for controlling the function of rechargeable batteries
US20090312976A1 (en) Mini-Cell, On-Orbit, Temperature Re-calibration Apparatus and Method
US8556501B2 (en) Mini-cell, on-orbit, temperature re-calibration apparatus and method
Doh et al. Entropy measurement of a large format lithium ion battery and its application to calculate heat generation
JP6995345B2 (en) Heat monitoring method for heat storage material and heat storage material storage container for this purpose
Alipour et al. Investigation of 3-D multilayer approach in predicting the thermal behavior of 20 Ah Li-ion cells
JP5420487B2 (en) Thermocouple temperature detector for high viscosity materials
Han et al. Experimental investigation on thermal performance of battery thermal management system with heat pipe assisted hybrid fin structure under fast charging conditions
Farulla et al. Optimal design of lithium ion battery thermal management systems based on phase change material at high current and high environmental temperature
Tardy et al. Internal temperature distribution in lithium-ion battery cell and module based on a 3D electrothermal model: An investigation of real geometry, entropy change and thermal process
Peng et al. Real-time mechanical and thermal monitoring of lithium batteries with PVDF-TrFE thin films integrated within the battery
Qin et al. A novel algorithm for heat generation and core temperature based on single-temperature in-situ measurement of lithium ion cells
Xiao et al. Online Monitoring of Internal Temperature in Lithium-Ion Batteries
Wang et al. High thermal energy storage density LiNO3–NaNO3–KNO3–KNO2 quaternary molten salt for parabolic trough solar power generation
Khan et al. Determination of the behavior and performance of commercial Li-Ion pouch cells by means of isothermal calorimeter
CN104241722B (en) battery pack thermistor test method
EP2957879B1 (en) Temperature monitoring

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200716

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211201

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211208

R150 Certificate of patent or registration of utility model

Ref document number: 6995345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150