JP2010034508A - Thermoelectric conversion module and method of manufacturing the same - Google Patents

Thermoelectric conversion module and method of manufacturing the same Download PDF

Info

Publication number
JP2010034508A
JP2010034508A JP2009102648A JP2009102648A JP2010034508A JP 2010034508 A JP2010034508 A JP 2010034508A JP 2009102648 A JP2009102648 A JP 2009102648A JP 2009102648 A JP2009102648 A JP 2009102648A JP 2010034508 A JP2010034508 A JP 2010034508A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
type
conversion module
sintering
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009102648A
Other languages
Japanese (ja)
Other versions
JP5427462B2 (en
Inventor
Tatsuo Katakura
辰男 片倉
shunichi Okuzaki
俊一 奧崎
Masashi Numata
正史 沼田
Yukihiro Azuma
之弘 東
Takuya Yasuno
拓也 安野
Katsuyuki Tanaka
勝之 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Denki Bohsai Co Ltd
Original Assignee
Oki Denki Bohsai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Denki Bohsai Co Ltd filed Critical Oki Denki Bohsai Co Ltd
Priority to JP2009102648A priority Critical patent/JP5427462B2/en
Priority to TW098121406A priority patent/TWI505522B/en
Priority to CN 200910159470 priority patent/CN101621111B/en
Publication of JP2010034508A publication Critical patent/JP2010034508A/en
Application granted granted Critical
Publication of JP5427462B2 publication Critical patent/JP5427462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a FeSi2-based thermoelectric conversion module, which facilitates soldering a connection wire to its terminal easily, and to provide a method of manufacturing the same. <P>SOLUTION: Each p-type and n-type FeSi2-based thermoelectric conversion semiconductor raw powder 22', 23' and plate made of predetermined metal or powder 21' and/or 24', which are located at least one edge place thereof, are cast inside a sintering mold 3, and these are sintered and jointed at one step in an electric discharge plasma sintering method. Then, a metal electrode unified thermally and electrically to the FeSi2-based thermoelectric conversion semiconductor can be formed, and connecting wire made of copper and the like can be easily soldered to the electrode. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は熱電変換モジュールおよびその製造方法に関し、更に詳しくは、銅線等からなる接続線を容易にはんだ付け可能な鉄シリサイド(FeSi2)系の熱電変換モジュールおよびその製造方法に関する。   The present invention relates to a thermoelectric conversion module and a manufacturing method thereof, and more particularly to an iron silicide (FeSi 2) type thermoelectric conversion module and a manufacturing method thereof capable of easily soldering a connecting wire made of a copper wire or the like.

一般に、熱電変換モジュールを回路に実装する際には該モジュール(素子)にリード線を接続する必要があるが、熱電変換モジュールでは素子部の温度変化や温度差に応じで熱起電力が発生するため、リード線の接続は熱的にも電気的にも熱電変換半導体素子と一体化させることが望ましい。   In general, when a thermoelectric conversion module is mounted on a circuit, it is necessary to connect a lead wire to the module (element). In the thermoelectric conversion module, a thermoelectromotive force is generated in accordance with a temperature change or a temperature difference of the element portion. Therefore, it is desirable that the connection of the lead wire be integrated with the thermoelectric conversion semiconductor element both thermally and electrically.

しかるに、鉄シリサイド(FeSi2)系の熱電変換半導体は鉄とシリコンの粉末を焼結したものからなるため、耐熱性が高く、通常160°C〜180°Cで溶けるようなはんだがうまく載らない。しかも、はんだ付け作業の限界温度(380°C程度)に近づくと、酸化や侵食等によりこて先自体の寿命を短くし、はんだに含まれるフラックスが炭化したり、フラックスやはんだの飛散にもつながる。また、FeSi2系熱電変換半導体は硬くて、脆いため、ネジ穴を開けて接続線を固定することもできない。   However, since the iron silicide (FeSi2) -based thermoelectric conversion semiconductor is made of sintered iron and silicon powder, it has high heat resistance, and solder that normally melts at 160 ° C to 180 ° C does not fit well. Moreover, when it approaches the limit temperature (about 380 ° C) of the soldering operation, the life of the tip itself is shortened due to oxidation, erosion, etc. Connected. In addition, since the FeSi 2 -based thermoelectric conversion semiconductor is hard and brittle, it is impossible to make a screw hole and fix the connection line.

このため、従来は、銅板などの導電材を銀ペーストや銀の両面テープ等からなる導電性接着材で貼り付け、この導電材(電極)に接続線をはんだ付けすることが行われていた。   For this reason, conventionally, a conductive material such as a copper plate is attached with a conductive adhesive made of silver paste, silver double-sided tape or the like, and a connecting wire is soldered to the conductive material (electrode).

特開2007−324500号公報JP 2007-324500 A

「FeSi2系熱電変換モジュールのゼーベツク係数の測定」田中勝之他、The 28th Japan Symposium on Thermophysical Properties. Oct.24−26. 2007, Sapporo.“Measurement of Seebeck coefficient of FeSi2 based thermoelectric conversion module” Katsuyuki Tanaka et al., The 28th Japan Symposium on Thermophysical Properties. Oct. 24-26. 2007, Sapporo.

しかし、上記導電材を導電性接着材で接着する方法では、導電性接着材のインピーダンスやその経年劣化がFeSi2系熱電変換モジュールの性能を劣化させる問題があった。   However, in the method of bonding the conductive material with the conductive adhesive, there is a problem that the impedance of the conductive adhesive and the deterioration over time deteriorate the performance of the FeSi2 thermoelectric conversion module.

なお、接続線をアーク溶接やレーザ溶接する方法も考えられるが、熱電変換半導体の耐熱温度が高いため、溶接箇所の温度が過度に上昇して熱電変換半導体特性を有する組成(β相)が破壊されて熱電変換半導体としての特性(ゼーベツク係数)が小さくなり、有効な接続線接続方法法ではないことが確認された。   In addition, although the method of arc welding or laser welding of the connecting wire is also conceivable, since the heat-resistant temperature of the thermoelectric conversion semiconductor is high, the temperature of the welded portion is excessively increased and the composition having the thermoelectric conversion semiconductor characteristics (β phase) is destroyed. As a result, the characteristics (Seebeck coefficient) as a thermoelectric conversion semiconductor are reduced, and it has been confirmed that this is not an effective connection line connection method.

本発明は上記従来技術の問題点に鑑みなされたものであり、その目的とするところは、端子部に接続線を容易にはんだ付け可能なFeSi2系の熱電変換モジュール及びその製造方法を提供することにある。   The present invention has been made in view of the above-described problems of the prior art, and an object of the present invention is to provide a FeSi2-based thermoelectric conversion module capable of easily soldering a connecting wire to a terminal portion and a method for manufacturing the same. It is in.

上記の課題を解決するため、本発明の第1の態様によ熱電変換モジュールの製造方法は、焼結型内に、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末と、これらの少なくとも一端部に所定の金属からなる板又は粉末を投入し、これらを放電プラズマ焼結法により一段階で焼結・接合するものである。   In order to solve the above-described problems, a method for manufacturing a thermoelectric conversion module according to the first aspect of the present invention includes, in a sintered mold, each thermoelectric conversion semiconductor raw material powder composed of FeSi2 p-type and n-type, and these A plate or powder made of a predetermined metal is put into at least one end of each of them, and these are sintered and joined in one step by a discharge plasma sintering method.

本発明では、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末の少なくとも一端部に所定の金属を介在させた状態で放電プラズマ焼結法により焼結・接合することにより、FeSi2系の熱電変換半導体に対して熱的にも電気的にも一体化した金属電極を形成でき、この電極部に銅等からなる接続線を容易にはんだ付けできる。また、本発明ではp型及びn型の原料粉末と共に所定の金属を一段階で焼結・接合するため熱電変換モジュールの製造コストを大幅に低減できる。   In the present invention, FeSi2 series is sintered and joined by a discharge plasma sintering method with a predetermined metal interposed at least at one end of each of the thermoelectric conversion semiconductor raw material powders of FeSi2 series p-type and n-type. A metal electrode that is thermally and electrically integrated with the thermoelectric conversion semiconductor can be formed, and a connecting wire made of copper or the like can be easily soldered to the electrode portion. In the present invention, since a predetermined metal is sintered and bonded together with the p-type and n-type raw material powders in one step, the manufacturing cost of the thermoelectric conversion module can be greatly reduced.

本発明の第2の態様では、FeSi2系原料粉末に4.1質量%のクロム(Cr)を混入してp型熱電変換半導体原料粉末とする。   In the second aspect of the present invention, 4.1 mass% chromium (Cr) is mixed in the FeSi2 raw material powder to obtain a p-type thermoelectric conversion semiconductor raw material powder.

本発明の第3の態様では、FeSi2系原料粉末に2.4質量%のコバルト(Co)を混入してn型熱電変換半導体原料粉末とする。   In the third aspect of the present invention, 2.4 mass% cobalt (Co) is mixed into the FeSi2 raw material powder to obtain an n-type thermoelectric conversion semiconductor raw material powder.

本発明の第4の態様では、前記所定の金属は銀(Ag)又は銀系合金からなる。   In the fourth aspect of the present invention, the predetermined metal is made of silver (Ag) or a silver-based alloy.

本発明によれば、銀(Ag)は電気抵抗が小さく、かつ熱伝導率が高いため、熱と電気エネルギーを伝える電極用金属として最適であると共に、銀の融点(略962°C)は熱電変換モジュール(即ち、FeSi2系熱電半導体原料粉末)の焼結に最適な温度よりも幾分高いため、熱電変換半導体部に電極部を適正に焼結・接合できる。   According to the present invention, silver (Ag) has a low electrical resistance and high thermal conductivity, so it is optimal as an electrode metal for transferring heat and electrical energy, and the melting point of silver (approximately 962 ° C.) is thermoelectric. Since the temperature is somewhat higher than the optimum temperature for sintering the conversion module (that is, FeSi2-based thermoelectric semiconductor raw material powder), the electrode portion can be appropriately sintered and joined to the thermoelectric conversion semiconductor portion.

本発明の第5の態様では、前記所定の金属はニッケル(ni)又はチタン(Ti)又はこれらを主とする合金からなる。   In the fifth aspect of the present invention, the predetermined metal is made of nickel (ni), titanium (Ti), or an alloy mainly composed of these.

ニッケル(ni)、チタン(Ti)、あるいはニッケル系又はチタン系の合金を電極用金属にした場合でも、熱電変換半導体部に電極部を適正に焼結・接合できることが実験により確かめられた。   Experiments have confirmed that even when nickel (ni), titanium (Ti), or a nickel-based or titanium-based alloy is used as the electrode metal, the electrode portion can be appropriately sintered and bonded to the thermoelectric conversion semiconductor portion.

本発明の第6の態様では、前記焼結・接合を、圧力35MPa乃至70MPa、温度923K(650°C)乃至1073K(800°C)、時間300sec乃至3.6ksecで行う。   In the sixth aspect of the present invention, the sintering and joining are performed at a pressure of 35 MPa to 70 MPa, a temperature of 923 K (650 ° C.) to 1073 K (800 ° C.), and a time of 300 sec to 3.6 ksec.

この焼結条件は、基本的には、p型及びn型熱電変換半導体の各焼結体について高いゼーベック係数を示す結晶構造(即ち、β相単層)が得られる条件に左右されるものであるが、本発明では、更に電極用金属についても機械的かつ電気的に適正な接合特性が得られる範囲内で焼結条件が選択されている。   This sintering condition basically depends on conditions for obtaining a crystal structure (that is, a β-phase monolayer) exhibiting a high Seebeck coefficient for each sintered body of p-type and n-type thermoelectric conversion semiconductors. However, in the present invention, the sintering conditions are selected within a range in which appropriate bonding characteristics can be obtained mechanically and electrically for the electrode metal.

本発明の第7の態様による熱電変換モジュールは、焼結型内に、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末と、これらの少なくとも一端部に所定の金属からなる板又は粉末を投入し、これらを放電プラズマ焼結法により一段階で焼結・接合したものである。これにより、高いゼーベック係数を有すると共にリード線のはんだ付けが容易な熱電変換モジュールをローコストで提供できる。   The thermoelectric conversion module according to the seventh aspect of the present invention comprises a sintered die, a thermoelectric conversion semiconductor raw material powder composed of FeSi2 p-type and n-type, and a plate made of a predetermined metal at least at one end thereof. Powders are charged, and these are sintered and joined in one step by the discharge plasma sintering method. Thereby, the thermoelectric conversion module which has a high Seebeck coefficient and can easily solder the lead wire can be provided at low cost.

本発明の第8の態様では、前記所定の金属は銀(Ag)、ニッケル(ni)、チタン(Ti)又はこれらの何れか一つを主とする合金からなる。   In an eighth aspect of the present invention, the predetermined metal is made of silver (Ag), nickel (ni), titanium (Ti), or an alloy mainly containing any one of them.

本発明の第9の態様による熱電変換モジュールは、焼結型内に、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末と、これらの少なくとも一端部にp型及びn型からなる各熱電変換半導体原料粉末と所定の金属粉末の混合粉末を投入し、次に所定の金属からなる粉末を投入し、これらを放電プラズマ焼結法により一段階で焼結・結合したものである。これにより、熱電変換半導体と電極との接合強度が更に強固な熱電変換モジュールを提供できる。   The thermoelectric conversion module according to the ninth aspect of the present invention comprises a thermoelectric conversion semiconductor raw material powder composed of FeSi2 p-type and n-type in a sintered mold, and p-type and n-type at least at one end thereof. A mixed powder of each thermoelectric conversion semiconductor raw material powder and a predetermined metal powder is charged, then a powder made of a predetermined metal is charged, and these are sintered and combined in one step by a discharge plasma sintering method. Thereby, it is possible to provide a thermoelectric conversion module in which the bonding strength between the thermoelectric conversion semiconductor and the electrode is further strong.

本発明の第10の態様では、前記所定の金属は銀(Ag)、ニッケル(ni)、チタン(Ti)又はこれらの何れか一つを主とする合金からなる。   In a tenth aspect of the present invention, the predetermined metal is made of silver (Ag), nickel (ni), titanium (Ti), or an alloy mainly containing any one of them.

以上述べた如く本発明によれば、熱電変換モジュールに接続線を直接はんだ付け可能となるため、この熱電変換モジュールを使用した装置の製造設備費用、製造コストの面からも極めて有効である。   As described above, according to the present invention, since the connecting wire can be directly soldered to the thermoelectric conversion module, it is extremely effective in terms of manufacturing equipment cost and manufacturing cost of the apparatus using the thermoelectric conversion module.

放電プラズマ焼結装置の概略構成図である。It is a schematic block diagram of a discharge plasma sintering apparatus. 実施の形態による熱電変換モジュールの製法を説明する図である。It is a figure explaining the manufacturing method of the thermoelectric conversion module by embodiment. 実施例1の熱電変換モジュールを説明する図である。It is a figure explaining the thermoelectric conversion module of Example 1. FIG. 実施例1の熱電変換モジュールの動作を説明する図である。It is a figure explaining operation | movement of the thermoelectric conversion module of Example 1. FIG. 実施例1の熱電変換モジュールの熱起電力測定結果を示す図である。It is a figure which shows the thermoelectromotive force measurement result of the thermoelectric conversion module of Example 1. FIG. 実施例2の熱電変換モジュールを説明する図である。It is a figure explaining the thermoelectric conversion module of Example 2. FIG. 実施例3の熱電変換モジュールを説明する図である。It is a figure explaining the thermoelectric conversion module of Example 3. FIG. 実施例4の熱電変換モジュールの製法を説明する図である。It is a figure explaining the manufacturing method of the thermoelectric conversion module of Example 4. FIG. 実施例4の熱電変換モジュールの斜視図である。It is a perspective view of the thermoelectric conversion module of Example 4. 実施例5の熱電変換モジュールの製法を説明する図である。It is a figure explaining the manufacturing method of the thermoelectric conversion module of Example 5. FIG.

以下、添付図面に従って本発明による実施の形態を詳細に説明する。なお、本明細書を通して同一又は相当部分には同一の参照番号を付する。図1は本実施の形態で使用した放電プラズマ焼結装置の概略構成図である。この放電プラズマ焼結装置1は、内部を略真空状態に減圧可能な水冷式の真空チャンバ2と、この真空チャンバ2の略中央部に収容される円環状グラファイト製の焼結型3と、この焼結型3の貫通孔内に投入される各種原料粉末の積層体4と、この積層体4に加圧するための上下一対の円柱状グラファイトからなるパンチ(押圧子)5a、5bと、これらのパンチ5a、5bに電流を流すための上下一対のパンチ電極6a、6bとを備える。   Hereinafter, embodiments according to the present invention will be described in detail with reference to the accompanying drawings. Throughout this specification, the same or corresponding parts are denoted by the same reference numerals. FIG. 1 is a schematic configuration diagram of a discharge plasma sintering apparatus used in the present embodiment. The discharge plasma sintering apparatus 1 includes a water-cooled vacuum chamber 2 capable of reducing the pressure in a substantially vacuum state, a ring-shaped graphite sintering die 3 accommodated in a substantially central portion of the vacuum chamber 2, A laminate 4 of various raw material powders put into the through-holes of the sintering mold 3, punches (pressors) 5a and 5b made of a pair of upper and lower columnar graphite for pressurizing the laminate 4, and these A pair of upper and lower punch electrodes 6a and 6b for supplying a current to the punches 5a and 5b is provided.

また、この真空チャンバ2の外部には、本実施の形態による熱電変換モジュールの焼結制御を行う制御部9と、この制御部9の制御下でパンチ電極6a、6bに電流を流す特殊焼結電源7と、同じく制御部9の制御下でパンチ電極6a、6bに圧力を加える加圧機構部8と、真空チャンバ2内の気圧や、熱電対3aで検出した焼結温度等を制御部9にフィードバックする計測部10とを備える。   Further, outside the vacuum chamber 2, a control unit 9 that performs sintering control of the thermoelectric conversion module according to the present embodiment, and special sintering that allows current to flow through the punch electrodes 6a and 6b under the control of the control unit 9. The control unit 9 controls the power source 7, the pressurizing mechanism unit 8 that applies pressure to the punch electrodes 6a and 6b under the control of the control unit 9, the atmospheric pressure in the vacuum chamber 2, the sintering temperature detected by the thermocouple 3a, and the like. And a measurement unit 10 that feeds back to.

次に、このような放電プラズマ焼結装置1を使用した実施の形態による熱電変換モジュールの製造方法を詳細に説明する。図2は実施の形態による熱電変換モジュールの製法を説明する図で、図1の焼結型3に関する部分の拡大図を示している。予め、例えば平均粒径略8μmのFeSi2系原料粉末に例えば4.1質量%のクロム(Cr)を混入してp型熱電変換半導体原料粉末を作成し、またFeSi2系原料粉末に例えば2.4質量%のコバルト(Co)を混入してn型熱電変換半導体原料粉末を作成する。   Next, the manufacturing method of the thermoelectric conversion module by embodiment using such a discharge plasma sintering apparatus 1 is demonstrated in detail. FIG. 2 is a diagram for explaining a method of manufacturing a thermoelectric conversion module according to the embodiment, and shows an enlarged view of a portion related to the sintering mold 3 of FIG. A p-type thermoelectric conversion semiconductor raw material powder is prepared in advance by mixing, for example, 4.1% by mass of chromium (Cr) into an FeSi2 raw material powder having an average particle size of approximately 8 μm, for example, and the FeSi2 raw material powder has, for example, 2.4 An n-type thermoelectric conversion semiconductor raw material powder is prepared by mixing mass% cobalt (Co).

焼結型3の下部にパンチ5bを挿入し、好ましくは、挿入図(a)に示す如く、その上に円盤状のカーボンペーパC1を敷く。更に焼結型3の内周面にカーボンペーパC2を筒状に配置し、その中に原料粉末を順に層状に投入する。例えば銀(Ag)からなる電極用金属粉末24’、上記作成したn型熱電変換半導体原料粉末23’、p型熱電変換半導体原料粉末22’、銀(Ag)からなる電極用金属粉末21’の順序で投入し、その上にカーボンペーパC6を載せる。そして、その上からパンチ5aを挿入し、こうして焼結型3のセットを作成する。   A punch 5b is inserted into the lower portion of the sintering die 3, and preferably a disc-shaped carbon paper C1 is laid thereon as shown in the inset (a). Further, the carbon paper C2 is arranged in a cylindrical shape on the inner peripheral surface of the sintering mold 3, and the raw material powder is put into the layers in order. For example, the electrode metal powder 24 ′ made of silver (Ag), the n-type thermoelectric conversion semiconductor raw material powder 23 ′, the p-type thermoelectric conversion semiconductor raw material powder 22 ′, and the electrode metal powder 21 ′ made of silver (Ag) Put them in order and place the carbon paper C6 on top of it. And the punch 5a is inserted from the top, and the set of the sintering mold | type 3 is created in this way.

この焼結型3のセットを放電プラズマ焼結装置1におけるパンチ電極6a、6bの間にセットし、真空チャンバ2内の雰囲気圧力を略真空(例えば3Pa以下)に下げる。そして、上下パンチ電極6a、6bに圧力を加えつつ該両パンチ電極6a、6bの間に特殊焼結電流を流し、グラファイト(黒鉛)3、5a、5bを発熱体とする放電プラズマ焼結法により、以下の焼結条件下で各原料粉末を一段階で焼結・接合する。   The set of the sintering mold 3 is set between the punch electrodes 6a and 6b in the discharge plasma sintering apparatus 1, and the atmospheric pressure in the vacuum chamber 2 is reduced to a substantially vacuum (for example, 3 Pa or less). A special sintering current is passed between the punch electrodes 6a and 6b while applying pressure to the upper and lower punch electrodes 6a and 6b, and a discharge plasma sintering method using graphite (graphite) 3, 5a and 5b as a heating element. Each raw material powder is sintered and bonded in one step under the following sintering conditions.

好ましくは、加圧力は35MPa〜70MPaの範囲内とする。焼結・接合の際には、各原料粉末に大きな加圧力を加えることで物質が移動し易くなると共に、焼結による収縮初期に粉末粒子の再配列が促進され、急速に緻密化させることができる。加圧力がこの範囲より低いと焼結体が低密度になり、機械的特性が低く、またこの範囲より高いと焼結体が高密度になり、脆くなることが確認された。   Preferably, the applied pressure is in the range of 35 MPa to 70 MPa. During sintering and joining, a large pressure is applied to each raw material powder to facilitate the movement of the substance, and the rearrangement of the powder particles is promoted at the initial stage of shrinkage due to sintering, which can be rapidly densified. it can. It was confirmed that when the applied pressure is lower than this range, the sintered body has a low density and mechanical properties are low, and when the pressure is higher than this range, the sintered body has a high density and becomes brittle.

また好ましくは、焼結温度は923K(650°C)〜1073K(800°C)の範囲内とする。焼結温度がこの範囲より低くても、あるいは高くても熱電変換半導体の熱起電力(ゼーベック係数)が低下する結果となった。   Preferably, the sintering temperature is in the range of 923K (650 ° C) to 1073K (800 ° C). Even if the sintering temperature is lower or higher than this range, the thermoelectromotive force (Seebeck coefficient) of the thermoelectric conversion semiconductor is reduced.

また好ましくは、焼結時間は300sec〜3.6ksecの範囲内とする。焼結時間がこの範囲よりも短いと焼結体が低密度になり、機械的特性が低く、またこの範囲よりも長いと高密度で脆くなることが確かめられた。   Preferably, the sintering time is in the range of 300 sec to 3.6 ksec. It was confirmed that when the sintering time was shorter than this range, the sintered body had a low density and the mechanical properties were low, and when the sintering time was longer than this range, it became dense and brittle.

焼結後は、真空チャンバ2内を例えば523K(250°C)程度まで冷却すると共に、内部を常圧(大気圧)に戻し、こうして得られた円柱状の焼結体を外部に取り出す。これにより、熱電変換モジュールの両端面部には銀(Ag)からなる電極層が一体的に焼結・接合され、この電極に対して銅等からなる接続線を容易にはんだ付け可能となる。   After sintering, the inside of the vacuum chamber 2 is cooled to about 523 K (250 ° C.), for example, and the inside is returned to normal pressure (atmospheric pressure), and the cylindrical sintered body thus obtained is taken out. Thereby, an electrode layer made of silver (Ag) is integrally sintered and bonded to both end portions of the thermoelectric conversion module, and a connecting wire made of copper or the like can be easily soldered to the electrode.

なお、上記の焼結条件については、基本的には、p型及びn型の各熱電半導体原料粉末の焼結体について有効な熱電変換特性(ゼーベック係数)を示すβ相単相の結晶構造が得られる条件に左右されるものであるが、本実施の形態では、更に、このようなFeSi2系熱電半導体に対して銀(Ag)等の電極用金属が適正に焼結・接合される範囲を焼結条件としている。例えば、Agの融点は1235K(略962°C)であり、本実施の形態による焼結・接合はこれよりも低いプロセス温度で適正に行われている。   The above sintering conditions basically include a β-phase single-phase crystal structure that exhibits effective thermoelectric conversion characteristics (Seebeck coefficient) for sintered bodies of p-type and n-type thermoelectric semiconductor raw material powders. Although it depends on the conditions to be obtained, in the present embodiment, the range in which an electrode metal such as silver (Ag) is appropriately sintered and bonded to such an FeSi2-based thermoelectric semiconductor is further set. Sintering conditions. For example, the melting point of Ag is 1235 K (approximately 962 ° C.), and the sintering and joining according to the present embodiment are appropriately performed at a lower process temperature.

また、この熱電変換モジュールに対する接続線の接続は、上記のはんだ付け以外にも、電気溶接、短時間でのレーザ照射によるレーザ溶接など、熱電変換半導体の組成(β相)に影響を与えない温度であれば、可能である。   In addition to the above soldering, the connection of the connecting wire to the thermoelectric conversion module is a temperature that does not affect the composition (β phase) of the thermoelectric conversion semiconductor, such as electric welding and laser welding by laser irradiation in a short time. If so, it is possible.

また、この熱電変換モジュールに使用する電極用金属については、上記銀(Ag)の他にも、ニッケル(ni)、チタン(Ti)やこれらを主とする合金でも良好に焼結・接合できることが確認された。この場合に、ニッケル金属の融点は1453°C、チタン金属の融点は1680°Cと極めて高く、限界温度(380°C)前後でのはんだ付け作業が可能である。   In addition to the above-mentioned silver (Ag), nickel (ni), titanium (Ti), and alloys mainly composed of these can be sintered and bonded satisfactorily for the electrode metal used in the thermoelectric conversion module. confirmed. In this case, the melting point of nickel metal is 1453 ° C. and the melting point of titanium metal is very high, 1680 ° C., and soldering work can be performed around the limit temperature (380 ° C.).

なお、電極用金属に銅(Cu)板や銅粉末を使用した場合には、焼結体の電極部に割れや欠け等が発生し、良好な焼結・接合が得られなかった。   When a copper (Cu) plate or copper powder was used for the electrode metal, cracks, chips, etc. occurred in the electrode portion of the sintered body, and good sintering / joining could not be obtained.

次に、本発明による熱電変換モジュールの実施例を説明する。   Next, examples of the thermoelectric conversion module according to the present invention will be described.

<実施例1>
図3は実施例1の熱電変換モジュール20Aを説明する図で、この熱電変換モジュールを温度変化を検出するための熱電変換温度センサとして使用する場合を示している。この熱電変換モジュール20Aは例えば以下の方法で製造した。即ち、平均粒径略8μmのFeSi2原料粉末に4.1質量%のクロム(Cr)を混入してp型熱電変換半導体原料粉末を作成し、また2.4質量%のコバルト(Co)を混入してn型熱電変換半導体原料粉末を作成する。更に、焼結型3の底から、銀(Ag)粉末、n型熱電変換半導体原料粉末、p型熱電変換半導体原料粉末、銀(Ag)粉末を順に層状に投入し、これらを加圧力35MPa、焼結温度1023K(750°C)、焼結時間600secの焼結条件下で、放電プラズマ焼結法により一段階で焼結・接合した。なお、直径20mm、p型層、n型層の厚み約7mmの材料は其々10g、直径20mmで、Ag金属粉末の材料は0.2g、このとき厚み約1mmで作成した。Agは直径20mmで焼結する場合、0.2g〜2gの範囲とする。Ag材料は高価なため、少ない量が好ましいが、実験により直径20mm全般に均一に焼結できる量が0.2gである。尚、焼結するAg層部の型を変えることによりAg層の直径を小さくすればAg量が少なくできる。又、Agの融点は962と焼結温度に近いため、多量の場合にはAgがn型層、p型層に入りこんでしまい、実験により効果的なAg層ができるのは直径20mmの場合2gであった。
<Example 1>
FIG. 3 is a diagram for explaining the thermoelectric conversion module 20A of the first embodiment, and shows a case where the thermoelectric conversion module is used as a thermoelectric conversion temperature sensor for detecting a temperature change. This thermoelectric conversion module 20A was manufactured by the following method, for example. That is, p-type thermoelectric conversion semiconductor raw material powder is prepared by mixing 4.1% by mass of chromium (Cr) into FeSi2 raw material powder having an average particle size of about 8 μm, and 2.4% by mass of cobalt (Co) is mixed. Thus, an n-type thermoelectric conversion semiconductor raw material powder is prepared. Further, from the bottom of the sintering mold 3, silver (Ag) powder, n-type thermoelectric conversion semiconductor raw material powder, p-type thermoelectric conversion semiconductor raw material powder, and silver (Ag) powder are sequentially added in layers, and these are applied with a pressure of 35 MPa, Sintering and joining were performed in one step by a discharge plasma sintering method under sintering conditions of a sintering temperature of 1023 K (750 ° C.) and a sintering time of 600 seconds. The material having a diameter of 20 mm, the p-type layer, and the n-type layer having a thickness of about 7 mm was 10 g and the diameter was 20 mm, and the Ag metal powder material was 0.2 g, and the thickness was about 1 mm. Ag is in the range of 0.2 g to 2 g when sintered at a diameter of 20 mm. Since the Ag material is expensive, a small amount is preferable, but the amount that can be uniformly sintered over a diameter of 20 mm by experiment is 0.2 g. Note that the Ag amount can be reduced by reducing the diameter of the Ag layer by changing the mold of the Ag layer portion to be sintered. Also, since the melting point of Ag is 962, which is close to the sintering temperature, Ag penetrates into the n-type layer and the p-type layer in the case of a large amount, and an effective Ag layer can be formed by experiments when the diameter is 20 mm. Met.

図3(A)に実施例1の熱電変換モジュール20Aの正面図、図3(B)にその斜視図を示す。この熱電変換モジュール20Aでは、銀(Ag)電極21と、p型熱電変換半導体22と、n型熱電変換半導体23と、銀(Ag)電極24とが一体的に焼結・接合されている。一例の寸法を言うと、円柱の直径は20mm、p型層22及びn型層23の厚みは共に約7mm、各Ag電極21、24の厚みは約1mmである。この熱電変換モジュール20Aでは上下の電極21、24が共に銀(Ag)からなるため、銅(Cu)等からなる接続線32a、32bを容易にはんだ付け可能となっている。ここで、31a、31bははんだである。   FIG. 3A is a front view of the thermoelectric conversion module 20A of the first embodiment, and FIG. 3B is a perspective view thereof. In this thermoelectric conversion module 20A, a silver (Ag) electrode 21, a p-type thermoelectric conversion semiconductor 22, an n-type thermoelectric conversion semiconductor 23, and a silver (Ag) electrode 24 are integrally sintered and bonded. As an example, the diameter of the cylinder is 20 mm, the thicknesses of the p-type layer 22 and the n-type layer 23 are both about 7 mm, and the thicknesses of the Ag electrodes 21 and 24 are about 1 mm. In the thermoelectric conversion module 20A, since the upper and lower electrodes 21 and 24 are both made of silver (Ag), the connecting wires 32a and 32b made of copper (Cu) or the like can be easily soldered. Here, 31a and 31b are solders.

次に図4を参照して実施例1の熱電変換モジュール20Aを温度変化を検出する熱電変換温度センサとして使用した場合の動作を説明する。図4は熱電変換モジュール20Aを横にした場合の正面図を示しており、この熱電変換モジュール20Aの全体を下から加熱した状態を示している。一般に、物質中の帯電したキャリア(金属中の電子、半導体中の電子、正孔等)は、導体や半導体の一端が異なる温度にされたときその熱勾配に従って拡散することが知られている。即ち、熱い端にいる熱いキャリア(ホール、電子)は熱いキャリアの密度が薄い冷たい端のほうへ拡散する性質がある。   Next, the operation when the thermoelectric conversion module 20A of the first embodiment is used as a thermoelectric conversion temperature sensor that detects a temperature change will be described with reference to FIG. FIG. 4 shows a front view when the thermoelectric conversion module 20A is placed sideways, and shows a state where the entire thermoelectric conversion module 20A is heated from below. In general, it is known that charged carriers (electrons in a metal, electrons in a semiconductor, holes, etc.) in a substance diffuse according to the thermal gradient when one end of a conductor or semiconductor is at a different temperature. That is, hot carriers (holes, electrons) at the hot end have a property of diffusing toward the cold end where the density of hot carriers is thin.

これを図4の例で具体的に言うと、両端部のAg電極21、24は、熱伝導率が高い(即ち、熱容量が小さい)ため、速やかにその全体が暖まる。一方、p−n界面が接する半導体接合部は、熱容量が大きいセラミックからなるため、熱伝導が遅れて相対的に冷温部となる。その結果、p型領域22では、暖められて活発になったホールがエネルギーの低い冷温端(接合面)側へ移動することにより、電極21の側はホール不足で−極になり、接合面の側はホールが集まって+極になる。また、n型領域23では、暖められた電子が冷温端(接合面)の側へ移動することにより、電極24の側は電子不足で+極になり、接合面の側は電子が集まって−極になる。そして、p−n接合の全体ではこれらの熱電変換作用が電気的に重なることにより、電極24の側が+極になり、電極21の側が−極になる。この場合でも、銀(Ag)電極21、24は電気抵抗が小さいため、生成された熱起電力をロス無く外部に伝える。   Specifically, in the example of FIG. 4, the Ag electrodes 21 and 24 at both ends have high thermal conductivity (that is, a small heat capacity), so that the whole is quickly warmed. On the other hand, the semiconductor junction with which the pn interface is in contact is made of ceramic having a large heat capacity, so that the heat conduction is delayed and the semiconductor junction becomes a relatively cold part. As a result, in the p-type region 22, the heated and active holes move to the cold end (junction surface) side where the energy is low, so that the electrode 21 side becomes a minus pole due to the lack of holes. On the side, the holes gather and become a + pole. Further, in the n-type region 23, the warmed electrons move to the cold end (junction surface) side, so that the electrode 24 side becomes a + pole due to the lack of electrons, and the electrons gather on the junction surface side − Become the pole. In the entire pn junction, these thermoelectric conversion actions are electrically overlapped, so that the electrode 24 side becomes a positive electrode and the electrode 21 side becomes a negative electrode. Even in this case, since the silver (Ag) electrodes 21 and 24 have a small electric resistance, the generated thermoelectromotive force is transmitted to the outside without loss.

図5は実施例1の熱電変換温度センサ20Aの熱起電力測定結果を示す図である。グラフは、この熱電変換温度センサ20Aの全体を室温よりも30°C高く、風速85cm/秒の垂直気流に投入して、時間経過に伴う熱起電力の変化を測定したものである。図5に示すように、この熱電変換温度センサ20Aの熱起電力は熱気流の投入から約30秒後に最大の約0.97mVに達しており、熱がセンサ全体に伝達された後は、熱起電力が徐々に低下している。この熱電変換温度センサ20Aとしては、熱起電力が上昇している区間の変化率により投入した温度差を推定することができる。   FIG. 5 is a diagram showing the measurement result of the thermoelectromotive force of the thermoelectric conversion temperature sensor 20A of the first embodiment. In the graph, the entire thermoelectric conversion temperature sensor 20A is 30 ° C. higher than room temperature and is introduced into a vertical airflow at a wind speed of 85 cm / sec, and the change in thermoelectromotive force with time is measured. As shown in FIG. 5, the thermoelectromotive force of the thermoelectric conversion temperature sensor 20A reaches a maximum of about 0.97 mV about 30 seconds after the introduction of the hot air current, and after the heat is transferred to the entire sensor, The electromotive force is gradually decreasing. The thermoelectric conversion temperature sensor 20A can estimate the difference in temperature introduced based on the rate of change in the section where the thermoelectromotive force is rising.

<実施例2>
図6は実施例2の熱電変換モジュール20Bを説明する図で、本発明により熱電変換モジュールに接続線を接続する他の場合を示している。図6(A)は原料粉末積層時の正面図を示している。この熱電変換モジュールの製造時には、Agからなる両電極粉末21’、24’と、FeSi2系のp型及びn型からなる熱電半導体原料粉末22’、23’の積層後、電極粉末21’とp型原料粉末22’の中心部に貫通孔33aを途中まで貫通させ、また電極粉末24’とn型原料粉末23’の中心部にも貫通孔33bを途中まで貫通させている。このような貫通孔33a、33bは、予め圧力を加えてある程度押し固めた状態の各原料粉末の積層部にドリル等で孔を開けたり、または円柱棒等を差し込むことで形成できる。
<Example 2>
FIG. 6 is a diagram for explaining the thermoelectric conversion module 20B of the second embodiment, and shows another case of connecting a connection line to the thermoelectric conversion module according to the present invention. FIG. 6 (A) shows a front view when the raw material powder is laminated. At the time of manufacturing this thermoelectric conversion module, both electrode powders 21 'and 24' made of Ag and FeSi2-based p-type and n-type thermoelectric semiconductor raw material powders 22 'and 23' are laminated, and then electrode powders 21 'and p A through-hole 33a is made to penetrate partway through the center of the mold raw material powder 22 ', and a through-hole 33b is made partway through the central part of the electrode powder 24' and the n-type raw material powder 23 '. Such through-holes 33a and 33b can be formed by drilling holes or inserting cylindrical rods or the like in the laminated portions of the raw material powders that have been preliminarily pressed and hardened to some extent.

図6(B)は実施例2の熱電変換モジュール20Bの電極21,24にリ一ド端子をはんだ付けした状態の正面図である。このリード端子34a、34bは銅や黄銅等の導電性素材で製作されており、先端部から所定の長さの位置にフランジ部35a、35bが固定されている。この所定の長さは貫通孔33a、33bの深さに対応している。熱電変換モジュール20Bの貫通孔33a、33bにリード端子34a、34bの先端部を差し込み、これらのフランジ部35a、35bがAg電極21、24の表面に当接するまで挿入すると共に、これらをAg電極21、24にはんだ付けする。この実施例2の熱電変換モジュール20Bの動作については、上記実施冷1の熱電変換モジュール20Aについて述べたものと同様で良い。   FIG. 6B is a front view of a state in which the lead terminals are soldered to the electrodes 21 and 24 of the thermoelectric conversion module 20B of the second embodiment. The lead terminals 34a and 34b are made of a conductive material such as copper or brass, and flange portions 35a and 35b are fixed at positions of a predetermined length from the tip portion. This predetermined length corresponds to the depth of the through holes 33a and 33b. The leading end portions of the lead terminals 34a and 34b are inserted into the through holes 33a and 33b of the thermoelectric conversion module 20B, and inserted until the flange portions 35a and 35b come into contact with the surfaces of the Ag electrodes 21 and 24. , 24. The operation of the thermoelectric conversion module 20B of the second embodiment may be the same as that described for the thermoelectric conversion module 20A of the first embodiment cold.

<実施例3>
図7は実施例3の熱電変換モジュール20Cを説明する図で、p−n−p−n型の熱電変換モジュールを熱電変換温度センサとして使用する場合を示している。図7(A)に従ってこの熱電変換モジュール20Cの製法を概説する。この例では、不図示の焼結型3の底から、Ag24’、n型熱電変換半導体26’、p型熱電変換半導体25’、n型熱電変換半導体23’、p型熱電変換半導体22’、Ag21’の順で各原料粉末を層状に投入する。好ましくは、通常に従って上部及び下部パンチと粉末の境界面にカーボンペーパを設け、こうして得られた焼結型3を加圧力35MPa、焼結温度1023K(750°C)、焼結時間600secの条件下で、放電プラズマ焼結法により一段階で焼結・接合する。
<Example 3>
FIG. 7 is a diagram for explaining the thermoelectric conversion module 20C according to the third embodiment, and shows a case where a pnpn type thermoelectric conversion module is used as a thermoelectric conversion temperature sensor. The manufacturing method of this thermoelectric conversion module 20C will be outlined according to FIG. In this example, Ag24 ′, n-type thermoelectric conversion semiconductor 26 ′, p-type thermoelectric conversion semiconductor 25 ′, n-type thermoelectric conversion semiconductor 23 ′, p-type thermoelectric conversion semiconductor 22 ′, Each raw material powder is put into a layer in the order of Ag21 ′. Preferably, carbon paper is provided on the boundary surface between the upper and lower punches and the powder according to usual conditions, and the sintered mold 3 thus obtained is subjected to a pressure of 35 MPa, a sintering temperature of 1023 K (750 ° C.), and a sintering time of 600 sec. Thus, sintering and joining are performed in one step by the discharge plasma sintering method.

図7(B)に実施例3の熱電変換モジュール20Cの斜視図を示す。上記の製法で得られた焼結体では、Ag電極21と、p型熱電変換半導体22と、n型熱電変換半導体23と、p型熱電変換半導体25と、n型熱電変換半導体26と、Ag電極24とが一体的に焼結・接合されている。   FIG. 7B is a perspective view of the thermoelectric conversion module 20C of the third embodiment. In the sintered body obtained by the above manufacturing method, the Ag electrode 21, the p-type thermoelectric conversion semiconductor 22, the n-type thermoelectric conversion semiconductor 23, the p-type thermoelectric conversion semiconductor 25, the n-type thermoelectric conversion semiconductor 26, and Ag The electrode 24 is integrally sintered and bonded.

この実施例3では、更に、この焼結体に対して、図7(B)に示す如く、中央部の接触面s3を含むn型領域23の下半部とp型領域25の上半部とをワイヤカッタ等により切削加工することで、図示のように、中間部がくびれた形状の熱電変換モジュール20Cを形成している。一例の寸法を言うと、円柱部の直径Φ1が20mm、小円柱の直径Φ2が10mm、p型層及びn型層の厚みは共に約7mm、中央のくびれ部の厚みは約7mm、各Ag電極の厚みは共に約1mmである。更に、熱電変換温度センサ20Cとして使用する場合は、上下端面のAg電極21、24に銅線等からなる接続線32a、32bをはんだ31a、31bによりはんだ付けして不図示の回路に実装する。   In Example 3, as shown in FIG. 7B, the lower half of the n-type region 23 and the upper half of the p-type region 25 including the contact surface s3 at the center are further provided for this sintered body. Are cut with a wire cutter or the like, thereby forming a thermoelectric conversion module 20C having a constricted intermediate portion as shown in the figure. As an example, the diameter Φ1 of the cylindrical part is 20 mm, the diameter Φ2 of the small cylinder is 10 mm, the thickness of the p-type layer and the n-type layer are both about 7 mm, the thickness of the central constriction part is about 7 mm, and each Ag electrode The thickness of each is about 1 mm. Further, when used as the thermoelectric conversion temperature sensor 20C, the connection wires 32a and 32b made of copper wire or the like are soldered to the Ag electrodes 21 and 24 on the upper and lower end surfaces by solders 31a and 31b and mounted on a circuit (not shown).

次に、このような熱電変換温度センサ20Cの熱電変換動作を概説する。なお、Ag電極21、24については熱伝導率が高く、かつ厚みが薄いので、熱容量は極めて小さい。このため、熱伝導に関してはAg電極21、24が無いものとして説明する。   Next, the thermoelectric conversion operation of such a thermoelectric conversion temperature sensor 20C will be outlined. Note that the Ag electrodes 21 and 24 have a high thermal conductivity and a small thickness, and therefore have a very small heat capacity. For this reason, it is assumed that the Ag electrodes 21 and 24 are not provided for heat conduction.

この熱電変換温度センサ20Cの全体に対して外部から熱を加えると、p型半導体領域22では、接合面s1の側が外気に近いため温度は速やかに上昇するが、接合面s2の側はn型半導体領域23と接するため温度は遅れて緩やかに上昇する。即ち、(接合面s1の熱容量)<(接合面s2の熱容量)の関係になる。このため接合面s1とs2は一時的に「温」、「冷」の関係になり、接合面s1の側はホールが少なく−極になり、接合面s2の側はホールが多く+極になる。またn型半導体領域23では、(接合面s2の面積)>(接合面s3の面積)のため、(接合面s2の熱容量)>(接合面s3の熱容量)の関係になる。このため接合面s2とs3は「冷」、「温」の関係になり、接合面s2の側は電子が多く−極になり、接合面s3の側は電子が少なく+極になる。   When heat is applied from the outside to the entire thermoelectric conversion temperature sensor 20C, in the p-type semiconductor region 22, the temperature rises quickly because the side of the joint surface s1 is close to the outside air, but the side of the joint surface s2 is n-type. Since it is in contact with the semiconductor region 23, the temperature rises slowly with a delay. That is, a relationship of (heat capacity of the joint surface s1) <(heat capacity of the joint surface s2) is established. For this reason, the joint surfaces s1 and s2 temporarily have a relationship of “warm” and “cold”, the joint surface s1 side has a small number of holes and a negative pole, and the joint surface s2 side has many holes and a positive pole. . In the n-type semiconductor region 23, (area of the bonding surface s2)> (area of the bonding surface s3), so that the relationship of (heat capacity of the bonding surface s2)> (heat capacity of the bonding surface s3) is satisfied. For this reason, the bonding surfaces s2 and s3 have a relationship of “cold” and “warm”, the bonding surface s2 side has many electrons and becomes a negative pole, and the bonding surface s3 side has few electrons and has a positive pole.

次に、p型半導体領域25では、(接合面s3の面積)<(接合面s4の面積)のため、(接合面s3の熱容量)<(接合面s4の熱容量)の関係になる。このため接合面s3とs4は「温」、「冷」の関係になり、接合面s3の側はホールが少なく−極になり、接合面s4の側はホールが多く+極になる。更に、n型半導体領域26では、接合面s5の側が外気に近いため温度は速やかに上昇するが、接合面s4の側はp型半導体領域25と接するため温度は遅れて緩やかに上昇する。即ち、(接合面s5の熱容量)<(接合面s4の熱容量)の関係になる。このため接合面s4とs5は「冷」、「温」の関係になり、接合面s4の側は電子が多く−極になり、接合面s5の側は電子が少なく+極になる。   Next, in the p-type semiconductor region 25, since (the area of the bonding surface s3) <(the area of the bonding surface s4), the relationship of (heat capacity of the bonding surface s3) <(heat capacity of the bonding surface s4) is satisfied. For this reason, the bonding surfaces s3 and s4 have a relationship of “warm” and “cold”, the bonding surface s3 side has a small number of holes and a negative pole, and the bonding surface s4 side has a large number of holes and a positive pole. Further, in the n-type semiconductor region 26, the temperature rises quickly because the side of the junction surface s5 is close to the outside air, but the temperature rises slowly with a delay because the side of the junction surface s4 is in contact with the p-type semiconductor region 25. That is, a relationship of (heat capacity of bonding surface s5) <(heat capacity of bonding surface s4) is established. For this reason, the bonding surfaces s4 and s5 have a relationship of “cold” and “warm”, the bonding surface s4 side has many electrons and becomes a negative pole, and the bonding surface s5 side has few electrons and becomes a positive pole.

かくして、p−n−p−n接合の全体では、各層の熱電変換作用が電気的に重なることにより、Ag電極21の側が−極になり、Ag電極24の側が+極になる。この場合も、銀(Ag)電極21、24は電気抵抗が小さいため、熱起電力をロス無く外部に伝える。   Thus, in the entire pnpn junction, the thermoelectric conversion action of each layer is electrically overlapped, so that the Ag electrode 21 side becomes a negative electrode and the Ag electrode 24 side becomes a positive electrode. Also in this case, since the silver (Ag) electrodes 21 and 24 have small electric resistance, the thermoelectromotive force is transmitted to the outside without loss.

なお、上記のような熱電変換作用からして、接合面s2又はs4の面積と、接合面s3の面積の比は出来るだけ大きくすることが好ましい。この面積比を大きくすれば、熱容量により大きな差が生じて、より大きな温度差が発生し易くなり、より大きな熱起電力が得られるからである。   In view of the thermoelectric conversion action as described above, the ratio of the area of the bonding surface s2 or s4 and the area of the bonding surface s3 is preferably as large as possible. This is because if this area ratio is increased, a large difference is generated in the heat capacity, a larger temperature difference is easily generated, and a larger thermoelectromotive force can be obtained.

<実施例4>
図8は実施例4の熱電変換モジュール20Dの製法を説明する図で、この図は焼結型11に関する部分の拡大図を示している。図8(A)にその平断面図、図8(B)に側断面図を示す。この焼結型11は、円柱状グラファイトの中央部が矩形にくり抜かれた形状をしており、この焼結型11の内部に箱形状の下側焼結型12aと蓋状の上側焼結型12bとを収納し、その上下に一対の矩形状パンチ13a、13bを挿入する形になっている。
<Example 4>
FIG. 8 is a view for explaining a method of manufacturing the thermoelectric conversion module 20D of the fourth embodiment, and this figure shows an enlarged view of a portion related to the sintering mold 11. FIG. FIG. 8A is a plan sectional view, and FIG. 8B is a side sectional view. The sintering mold 11 has a shape in which a central portion of columnar graphite is hollowed out into a rectangular shape. A box-shaped lower sintering mold 12 a and a lid-shaped upper sintering mold are formed inside the sintering mold 11. 12b, and a pair of rectangular punches 13a and 13b are inserted above and below.

p型及びn型の各熱電変換半導体原料粉末42’、43’については上記図2で述べたものと同様のものを用い得る。好ましくは、下側焼結型12aの内壁面を覆うようにカーボンペーパを設けると共に、その床面にカーボンペーパを敷き、その上にAg粉末41’と44’を層状に投入する。更に、Ag粉末41’の上にp型熱電変換半導体原料粉末42’を充填する。また、Ag粉末44’の上にn型熱電変換半導体原料粉末43’を充填する。そして、これらp型及びn型の各熱電変換半導体原料粉末42’、43’の上にカーボンペーパを敷き、その上に上側焼結型12bを搭載する。こうして得られた焼結型11のセットを放電プラズマ焼結装置1にセットし、図2で述べたと同様の焼結条件下で各原料粉末を一段階で焼結・接合する。   As the p-type and n-type thermoelectric conversion semiconductor raw material powders 42 ′ and 43 ′, those similar to those described in FIG. 2 can be used. Preferably, carbon paper is provided so as to cover the inner wall surface of the lower sintered mold 12a, carbon paper is laid on the floor surface, and Ag powders 41 'and 44' are charged in layers. Further, the p-type thermoelectric conversion semiconductor raw material powder 42 ′ is filled on the Ag powder 41 ′. Further, the n-type thermoelectric conversion semiconductor raw material powder 43 ′ is filled on the Ag powder 44 ′. Then, carbon paper is laid on the p-type and n-type thermoelectric conversion semiconductor raw material powders 42 ′ and 43 ′, and the upper sintered mold 12 b is mounted thereon. The set of sintering molds 11 thus obtained is set in the discharge plasma sintering apparatus 1, and each raw material powder is sintered and joined in one step under the same sintering conditions as described in FIG.

図9は実施例4の熱電変換モジュール20Dの斜視図で、温度差を検出可能な熱電変換モジュールへの適用例を示している。この熱電変換モジュール20Dでは、Ag電極41と、p型熱電変換半導体42と、n型熱電変換半導体43と、Ag電極44とが一体的に焼結・接合されている。この例では、熱電変換モジュールの両端電極41、44が金属(Ag)となり、リード線等を容易にはんだ付け可能である。または、Ag電極41、44の部分をプリント配線上に載せて直接にはんだ付けしても良い。或いは、電気溶接や、短時間でのレーザ照射によるレーザ溶接など、熱電変換半導体組成に影響を与えない温度であれば、これらの方法でも接続できる。   FIG. 9 is a perspective view of the thermoelectric conversion module 20D of the fourth embodiment, and shows an application example to a thermoelectric conversion module capable of detecting a temperature difference. In this thermoelectric conversion module 20D, an Ag electrode 41, a p-type thermoelectric conversion semiconductor 42, an n-type thermoelectric conversion semiconductor 43, and an Ag electrode 44 are integrally sintered and bonded. In this example, both end electrodes 41 and 44 of the thermoelectric conversion module are made of metal (Ag), and a lead wire or the like can be easily soldered. Alternatively, the Ag electrodes 41 and 44 may be placed on the printed wiring and soldered directly. Alternatively, these methods can be used as long as the temperature does not affect the thermoelectric conversion semiconductor composition, such as electric welding or laser welding by laser irradiation in a short time.

次にこのような熱電変換モジュール20Dを使用して温度差を測定する場合の動作を説明する。図9に示す如く、この熱電変換モジュール20Dを上から加熱し、下から冷却すると、p型熱電変換半導体42ではホールが冷温(電極41)側へ移動することにより、加熱側は−極になり、冷温側は+極になる。また、n型熱電変換半導体43では電子が冷温(電極44)側へ移動することにより、加熱側は+極になり、冷温側は−極になる。そして、熱電変換モジュール20Dの全体ではこれらの熱電変換作用が電気的に重なることにより、Ag電極41の側が+極になり、Ag電極44の側が−極になる。この場合に、各Ag電極41、44は電気抵抗が小さく、熱伝導率が高いため、熱と電気エネルギーを伝える電極用金属として最適に作用する。   Next, the operation when measuring the temperature difference using such a thermoelectric conversion module 20D will be described. As shown in FIG. 9, when this thermoelectric conversion module 20D is heated from above and cooled from below, the holes move to the cold temperature (electrode 41) side in the p-type thermoelectric conversion semiconductor 42, so that the heating side becomes a negative electrode. The cold side becomes the + pole. Further, in the n-type thermoelectric conversion semiconductor 43, electrons move to the cold temperature (electrode 44) side, so that the heating side becomes a positive electrode and the cold temperature side becomes a negative electrode. Then, in the entire thermoelectric conversion module 20D, these thermoelectric conversion actions are electrically overlapped, so that the Ag electrode 41 side becomes a positive electrode and the Ag electrode 44 side becomes a negative electrode. In this case, since each Ag electrode 41, 44 has a small electrical resistance and a high thermal conductivity, it works optimally as an electrode metal that transmits heat and electrical energy.

<実施例5>
図10は実施例5の熱電変換モジュールの製法を説明する図で、図1の焼結型3に関する部分の拡大図を示している。実施例5の熱電変換モジュールは、FeSi2系のp型及びn型からなる熱電変換半導体原料粉末22’、23’と、これらの一端部と電極用の金属粉末21’、24’との間に中間層の原料としてp型熱電変換半導体原料粉末22’と金属粉末21’との混合粉末215’、及びn型熱電変換半導体原料粉末23’と金属粉末24’との混合粉末235’をそれぞれ投入し、次に所定の金属からなる金属粉末21’、24’を投入し、従前の焼結条件下で、放電プラズマ焼結法により一段階で焼結・接合したものである。以下において、p型熱電変換半導体と電極間の中間層をp側中間層、n型熱電変換半導体と電極間の中間層をn側中間層という。したがって、実施例5の熱電変換モジュールは、電極、n側中間層、n型熱電変換半導体、p型熱電変換半導体、p側中間層、電極が積層された構造を有する。
<Example 5>
FIG. 10 is a diagram for explaining a method of manufacturing the thermoelectric conversion module of Example 5, and shows an enlarged view of a portion related to the sintering mold 3 of FIG. The thermoelectric conversion module of Example 5 includes FeSi2 based p-type and n-type thermoelectric conversion semiconductor raw material powders 22 'and 23', and one end portion thereof and metal powders 21 'and 24' for electrodes. As a raw material for the intermediate layer, a mixed powder 215 ′ of p-type thermoelectric conversion semiconductor raw material powder 22 ′ and metal powder 21 ′ and a mixed powder 235 ′ of n-type thermoelectric conversion semiconductor raw material powder 23 ′ and metal powder 24 ′ are respectively added. Next, metal powders 21 'and 24' made of a predetermined metal are added, and sintered and joined in one step by a discharge plasma sintering method under the conventional sintering conditions. Hereinafter, the intermediate layer between the p-type thermoelectric conversion semiconductor and the electrode is referred to as a p-side intermediate layer, and the intermediate layer between the n-type thermoelectric conversion semiconductor and the electrode is referred to as an n-side intermediate layer. Therefore, the thermoelectric conversion module of Example 5 has a structure in which an electrode, an n-side intermediate layer, an n-type thermoelectric conversion semiconductor, a p-type thermoelectric conversion semiconductor, a p-side intermediate layer, and an electrode are stacked.

図10に示したように、焼結型3の下部にパンチ5bを挿入し、好ましくは、挿入図(a)に示す如く、パンチ5b上に円盤状のカーボンペーパC1を敷く。更に焼結型3の内周面にカーボンペーパC2を筒状に配置し、その中に原料粉末を順に層状に投入する。例えば銀(Ag)からなる電極用の金属粉末24’、金属粉末24’と上記作成したn型熱電変換半導体原料粉末23’との混合粉末235’、n型熱電変換半導体原料粉末23’、上記作成したp型熱電変換半導体原料粉末22’、銀(Ag)からなる電極用の金属粉末21’とp型熱電変換半導体原料粉末22’との混合粉末215’、金属粉末21’の順序で筒状のカーボンペーパC2の内部に投入し、金属粉末21’の上にカーボンペーパC6を載せる。そして、その上からパンチ5aを焼結型3の上部に挿入し、こうして焼結型3のセットを作成する。   As shown in FIG. 10, a punch 5b is inserted into the lower portion of the sintering die 3, and preferably a disc-shaped carbon paper C1 is laid on the punch 5b as shown in the inset (a). Further, the carbon paper C2 is arranged in a cylindrical shape on the inner peripheral surface of the sintering mold 3, and the raw material powder is put into the layers in order. For example, electrode metal powder 24 ′ made of silver (Ag), mixed powder 235 ′ of metal powder 24 ′ and n-type thermoelectric conversion semiconductor raw material powder 23 ′ prepared above, n-type thermoelectric conversion semiconductor raw material powder 23 ′, and above The produced p-type thermoelectric conversion semiconductor raw material powder 22 ′, the mixed powder 215 ′ of the metal powder 21 ′ for electrode made of silver (Ag) and the p-type thermoelectric conversion semiconductor raw material powder 22 ′, and the metal powder 21 ′ in this order The carbon paper C6 is put into the carbon paper C2 and the carbon paper C6 is placed on the metal powder 21 '. Then, the punch 5a is inserted into the upper part of the sintering mold 3 from above, and thus a set of the sintering mold 3 is created.

なお、各粉末層間にカーボンペーパを配置してもよい。例えば図10に示すように、金属粉末24’と混合粉末235’間にカーボンペーパC3、混合粉末235’とn型熱電変換半導体原料粉末23’間にカーボンペーパC8がそれぞれ配置される。n型熱電変換半導体原料粉末23’とp型熱電変換半導体原料粉末22’間にカーボンペーパC4が配置される。更に、p型熱電変換半導体原料粉末22’と混合粉末215’間にカーボンペーパC7、混合粉末215’と金属粉末21’間にカーボンペーパC5がそれぞれ配置される。   Carbon paper may be disposed between the powder layers. For example, as shown in FIG. 10, carbon paper C3 is disposed between the metal powder 24 'and the mixed powder 235', and carbon paper C8 is disposed between the mixed powder 235 'and the n-type thermoelectric conversion semiconductor raw material powder 23'. Carbon paper C4 is disposed between the n-type thermoelectric conversion semiconductor raw material powder 23 'and the p-type thermoelectric conversion semiconductor raw material powder 22'. Further, carbon paper C7 is disposed between the p-type thermoelectric conversion semiconductor raw material powder 22 'and the mixed powder 215', and carbon paper C5 is disposed between the mixed powder 215 'and the metal powder 21'.

例えば図2で述べたと同様の焼結条件下で、焼結型3の各原料粉末を一段階で焼結・接合し、実施例5の熱電変換モジュールが製造される。混合粉末215’が焼結されてp側中間層が形成され、混合粉末235’が焼結されてn側中間層が形成される。つまり、金属粉末24’を焼結して形成された電極と、n型熱電変換半導体原料粉末23’を焼結して形成されるn型熱電変換半導体との間に、n側中間層が形成される。そして、p型熱電変換半導体原料粉末22’を焼結して形成されるp型熱電変換半導体と、金属粉末21’を焼結して形成された電極との間に、p側中間層が形成される。   For example, under the same sintering conditions as described in FIG. 2, the raw material powders of the sintering mold 3 are sintered and joined in one step, and the thermoelectric conversion module of Example 5 is manufactured. The mixed powder 215 'is sintered to form a p-side intermediate layer, and the mixed powder 235' is sintered to form an n-side intermediate layer. That is, an n-side intermediate layer is formed between the electrode formed by sintering the metal powder 24 ′ and the n-type thermoelectric conversion semiconductor formed by sintering the n-type thermoelectric conversion semiconductor raw material powder 23 ′. Is done. A p-side intermediate layer is formed between the p-type thermoelectric conversion semiconductor formed by sintering the p-type thermoelectric conversion semiconductor raw material powder 22 ′ and the electrode formed by sintering the metal powder 21 ′. Is done.

p型熱電変換半導体粉末とAg電極の例の場合、p側中間層はp型熱電変換半導体粉末とAg粉末の質量比が3:1の場合に良好な焼結・結合となった。一方、p型熱電変換半導体粉末とAg粉末の質量比が1:1の場合や1:3の場合には割れや欠けが発生し、良好な焼結・結合が得られなかった。これは、p側中間層のAg比率が多いとAgのぬれ性のため、p側中間層とAg電極間で焼結・結合が十分におこなわれなかったためと推定される。   In the case of the example of the p-type thermoelectric conversion semiconductor powder and the Ag electrode, the p-side intermediate layer was satisfactorily sintered and bonded when the mass ratio of the p-type thermoelectric conversion semiconductor powder and the Ag powder was 3: 1. On the other hand, when the mass ratio of the p-type thermoelectric conversion semiconductor powder and the Ag powder was 1: 1 or 1: 3, cracks and chipping occurred, and good sintering / bonding could not be obtained. This is presumably because sintering and bonding were not sufficiently performed between the p-side intermediate layer and the Ag electrode due to the wettability of Ag when the Ag ratio of the p-side intermediate layer was large.

又、n型熱電変換半導体粉末とAg電極の例の場合、n側中間層はn型熱電変換半導体粉末とAg粉末の質量比が1:1の場合に良好な焼結・結合となった。一方、n型熱電変換半導体粉末とAg粉末の質量比が3:1の場合には割れや欠けが発生し、良好な焼結・結合が得られなかった。   In the case of the n-type thermoelectric conversion semiconductor powder and the Ag electrode, the n-side intermediate layer was satisfactorily sintered and bonded when the mass ratio of the n-type thermoelectric conversion semiconductor powder and the Ag powder was 1: 1. On the other hand, when the mass ratio of the n-type thermoelectric conversion semiconductor powder and the Ag powder was 3: 1, cracking and chipping occurred, and good sintering / bonding could not be obtained.

p側中間層とn側中間層を形成することにより、電極と熱電変換半導体間の強度が更に強固になり、リード線とモジュール間の強度がp側中間層、n側中間層が無いものと比べ更に強固になることが実験で確認された。   By forming the p-side intermediate layer and the n-side intermediate layer, the strength between the electrode and the thermoelectric conversion semiconductor is further strengthened, and the strength between the lead wire and the module is such that there is no p-side intermediate layer and no n-side intermediate layer. Experiments have confirmed that it is even stronger.

実験ではAg電極0.4g、n側中間層の混合粉末0.8g 、n型熱電変換半導体粉末21gをΦ20mm円筒形状に焼結・結合し、確認した。又、Ag電極0.4g、p側中間層の混合粉末0.8g、p型熱電変換半導体粉末17.2gをΦ20mm円筒形状に焼結・結合し、確認した。   In the experiment, 0.4 g of the Ag electrode, 0.8 g of the mixed powder of the n-side intermediate layer, and 21 g of the n-type thermoelectric conversion semiconductor powder were sintered and bonded into a Φ20 mm cylindrical shape and confirmed. Further, 0.4 g of the Ag electrode, 0.8 g of the mixed powder of the p-side intermediate layer, and 17.2 g of the p-type thermoelectric conversion semiconductor powder were sintered and bonded into a Φ20 mm cylindrical shape and confirmed.

又、中間層は1層が好ましい。熱電変換半導体粉末と金属粉末の混合比率を変えた2層、3層の中間層を作成した実験では、割れ、欠けにより良好な焼結・接合は得られなかった。   The intermediate layer is preferably one layer. In an experiment in which a two-layer or three-layer intermediate layer in which the mixing ratio of the thermoelectric conversion semiconductor powder and the metal powder was changed, good sintering / joining could not be obtained due to cracking and chipping.

上記のような特徴を有する本発明の熱電変換モジュールは、熱から電気に変換するゼーベック効果を利用した温泉廃熱発電、バイオマス熱利用発電、発電所廃熱発電、自動車廃熱発電等における熱電変換モジュールとして、或いは空調機、プラント、火災報知設備等において温度変化を検出する熱電変換温度センサとして利用可能である。また本発明の熱電変換モジュールは、電気から熱に変換するペルチェ効果を利用したCPU冷却、電子機器冷却、道路の凍結防止、冬場の融雪対策、ノンフロン冷蔵庫等における熱電変換モジュールとしても利用可能である。   The thermoelectric conversion module of the present invention having the above-described features is a thermoelectric conversion in hot spring waste heat power generation, biomass heat utilization power generation, power plant waste heat power generation, automobile waste heat power generation, etc. using the Seebeck effect for converting heat into electricity. It can be used as a module, or as a thermoelectric conversion temperature sensor that detects a temperature change in an air conditioner, a plant, a fire alarm facility, or the like. The thermoelectric conversion module of the present invention can also be used as a thermoelectric conversion module in CPU cooling, electronic equipment cooling, road freezing prevention, snow melting countermeasures in winter, non-Freon refrigerator, etc. using the Peltier effect that converts electricity to heat. .

なお、上記各実施例では1対又は2対のp−n接合を含む熱電変換モジュールを具体的に述べたが、3対以上のp−n接合を含む熱電変換モジュールについても同様に構成できる。また、p−n接合のみならず、n−p接合の熱電変換モジュールについても本発明を適用できる。   In the above embodiments, the thermoelectric conversion module including one or two pairs of pn junctions is specifically described. However, a thermoelectric conversion module including three or more pairs of pn junctions can be similarly configured. Further, the present invention can be applied not only to a pn junction but also to an np junction thermoelectric conversion module.

また、上記各実施例では電極部を構成するためのAg粉末を層状に積層したが、これに限らない。Ag粉末等の積層形状を変えることで、他の様々な形状の電極を形成できる。   Moreover, although Ag powder for constituting an electrode part was laminated in layers in each of the above embodiments, the present invention is not limited to this. Various other shapes of electrodes can be formed by changing the laminated shape of Ag powder or the like.

1 放電プラズマ焼結装置
2 真空チャンバ
3 焼結型
3a 熱電対
4 原料粉末
5 パンチ(押圧子)
6 パンチ電極
7 特殊焼結電源
8 加圧機構部
9 制御部
10 計測部
11 焼結型
12a 下側焼結型
12b 上側焼結型
13a、13b 矩形状パンチ
20A〜20D 熱電変換モジュール
21、24、41、44 電極用金属(Ag)
22、25、42 p型熱電変換半導体
23、26、43 n型熱電変換半導体
31a、31b はんだ
32a、32b 接続線
34a、34b リード端子
35a、35b フランジ部
C カーボンペーパ
1 Discharge Plasma Sintering Equipment 2 Vacuum Chamber 3 Sintering Mold 3a Thermocouple 4 Raw Material Powder 5 Punch (Presser)
6 Punch Electrode 7 Special Sintering Power Supply 8 Pressurizing Mechanism 9 Control Unit 10 Measuring Unit 11 Sintering Mold 12a Lower Sintering Mold 12b Upper Sintering Mold 13a, 13b Rectangular Punches 20A-20D Thermoelectric Conversion Modules 21, 24, 41, 44 Metal for electrodes (Ag)
22, 25, 42 p-type thermoelectric conversion semiconductors 23, 26, 43 n-type thermoelectric conversion semiconductors 31a, 31b solder 32a, 32b connection wires 34a, 34b lead terminals 35a, 35b flange portion C carbon paper

Claims (10)

焼結型内に、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末と、これらの少なくとも一端部に所定の金属からなる板又は粉末を投入し、これらを放電プラズマ焼結法により一段階で焼結・接合することを特徴とする熱電変換モジュールの製造方法。 Each thermoelectric conversion semiconductor raw material powder made of FeSi2 p-type and n-type and a plate or powder made of a predetermined metal at least one end thereof are put into a sintering mold, and these are discharged by a discharge plasma sintering method. A method for producing a thermoelectric conversion module, characterized by sintering and joining in one step. FeSi2系原料粉末に4.1質量%のクロム(Cr)を混入してp型熱電変換半導体原料粉末とすることを特徴とする請求項1記載の熱電変換モジュールの製造方法。 The method for producing a thermoelectric conversion module according to claim 1, wherein 4.1 mass% of chromium (Cr) is mixed into the FeSi2 raw material powder to obtain a p-type thermoelectric conversion semiconductor raw material powder. FeSi2系原料粉末に2.4質量%のコバルト(Co)を混入してn型熱電変換半導体原料粉末とすることを特徴とする請求項1記載の熱電変換モジュールの製造方法。 2. The method of manufacturing a thermoelectric conversion module according to claim 1, wherein 2.4 mass% of cobalt (Co) is mixed into the FeSi2 raw material powder to obtain an n-type thermoelectric conversion semiconductor raw material powder. 前記所定の金属は銀(Ag)又は銀系合金からなることを特徴とする請求項1乃至3の何れか一つに記載の熱電変換モジュールの製造方法。 The method of manufacturing a thermoelectric conversion module according to any one of claims 1 to 3, wherein the predetermined metal is made of silver (Ag) or a silver-based alloy. 前記所定の金属はニッケル(Ni)又はチタン(Ti)又はこれらを主とする合金からなることを特徴とする請求項1乃至3の何れか一つに記載の熱電変換モジュールの製造方法。 The method of manufacturing a thermoelectric conversion module according to any one of claims 1 to 3, wherein the predetermined metal is made of nickel (Ni), titanium (Ti), or an alloy mainly composed of these. 前記焼結・接合を、圧力35MPa乃至70MPa、温度923K(650°C)乃至1073K(800°C)、時間300sec乃至3.6ksecで行うことを特徴とする請求項1乃至5の何れか一つに記載の熱電変換モジュールの製造方法。 6. The sintering and bonding are performed at a pressure of 35 MPa to 70 MPa, a temperature of 923 K (650 ° C.) to 1073 K (800 ° C.), and a time of 300 sec to 3.6 ksec. The manufacturing method of the thermoelectric conversion module of description. 焼結型内に、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末と、これらの少なくとも一端部に所定の金属からなる板又は粉末を投入し、これらを放電プラズマ焼結法により一段階で焼結・接合したことを特徴とする熱電変換モジュール。 Each thermoelectric conversion semiconductor raw material powder made of FeSi2 p-type and n-type and a plate or powder made of a predetermined metal at least one end thereof are put into a sintering mold, and these are discharged by a discharge plasma sintering method. Thermoelectric conversion module characterized by sintering and joining in one stage. 前記所定の金属は銀(Ag)、ニッケル(Ni)、チタン(Ti)又はこれらの何れか一つを主とする合金からなることを特徴とする請求項7記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 7, wherein the predetermined metal is made of silver (Ag), nickel (Ni), titanium (Ti), or an alloy mainly including any one of them. 焼結型内に、FeSi2系のp型及びn型からなる各熱電変換半導体原料粉末と、これらの少なくとも一端部にp型及びn型からなる各熱電変換半導体原料粉末と所定の金属粉末の混合粉末を投入し、次に前記所定の金属からなる粉末を投入し、これらを放電プラズマ焼結法により一段階で焼結・結合したことを特徴とする熱電変換モジュール。 In the sintering mold, FeSi2 type p-type and n-type thermoelectric conversion semiconductor raw material powders, and at least one end of each thermoelectric conversion semiconductor raw material powder consisting of p-type and n-type and a predetermined metal powder A thermoelectric conversion module, wherein powder is charged, and then powder made of the predetermined metal is charged, and these are sintered and bonded in one step by a discharge plasma sintering method. 前記所定の金属は銀(Ag)、ニッケル(Ni)、チタン(Ti)又はこれらの何れか一つを主とする合金からなることを特徴とする請求項9記載の熱電変換モジュール。 The thermoelectric conversion module according to claim 9, wherein the predetermined metal is made of silver (Ag), nickel (Ni), titanium (Ti), or an alloy mainly including any one of them.
JP2009102648A 2008-07-02 2009-04-21 Thermoelectric conversion module Active JP5427462B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2009102648A JP5427462B2 (en) 2008-07-02 2009-04-21 Thermoelectric conversion module
TW098121406A TWI505522B (en) 2008-07-02 2009-06-25 Method for manufacturing thermoelectric conversion module
CN 200910159470 CN101621111B (en) 2008-07-02 2009-07-01 Thermo-electric conversion module and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008173933 2008-07-02
JP2008173933 2008-07-02
JP2009102648A JP5427462B2 (en) 2008-07-02 2009-04-21 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2010034508A true JP2010034508A (en) 2010-02-12
JP5427462B2 JP5427462B2 (en) 2014-02-26

Family

ID=41514233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009102648A Active JP5427462B2 (en) 2008-07-02 2009-04-21 Thermoelectric conversion module

Country Status (3)

Country Link
JP (1) JP5427462B2 (en)
CN (1) CN101621111B (en)
TW (1) TWI505522B (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093009A (en) * 2008-10-07 2010-04-22 Sumitomo Chemical Co Ltd Thermoelectric transduction module and thermoelectric transducer
WO2012107281A1 (en) * 2011-02-09 2012-08-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Coated thermoelectric element and a method for the production of same
WO2013074967A1 (en) * 2011-11-17 2013-05-23 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
WO2014141699A1 (en) * 2013-03-12 2014-09-18 パナソニック株式会社 Thermoelectric generating element, thermoelectric generating unit, and thermoelectric generation system
JP2015159199A (en) * 2014-02-24 2015-09-03 直江津電子工業株式会社 Apparatus and method of manufacturing thermoelectric conversion material
JP2017204501A (en) * 2016-05-09 2017-11-16 日本ドライケミカル株式会社 Thermoelectric conversion element, distributed temperature sensor and manufacturing method of thermoelectric conversion element
JP2019078664A (en) * 2017-10-25 2019-05-23 国立研究開発法人産業技術総合研究所 Method for thermal monitoring of heat storage material and heat storage material container for the same
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
JP2021073685A (en) * 2020-12-25 2021-05-13 日本ドライケミカル株式会社 Thermoelectric transducer, distribution type temperature sensor, and manufacturing method of thermoelectric transducer

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928605B (en) * 2014-04-30 2017-05-24 中国科学院上海高等研究院 Manufacturing method of thermoelectric device
US11575076B2 (en) * 2017-10-24 2023-02-07 Showa Denko Materials Co., Ltd. Method for manufacturing thermoelectric conversion module, thermoelectric conversion module, and binder for thermoelectric conversion module
CN110976863B (en) * 2019-12-17 2022-03-11 哈尔滨工业大学(深圳) Application of chromium-nickel austenitic stainless steel alloy in thermoelectric material electrode and Mg3Sb2Thermoelectric connector

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001189497A (en) * 1999-12-28 2001-07-10 Sumitomo Special Metals Co Ltd Thermoelectric conversion element and manufacturing method therefor
JP2001210879A (en) * 1999-11-17 2001-08-03 Sumitomo Metal Ind Ltd High-output porous thermoelectric conversion element
JP2005268240A (en) * 2004-03-16 2005-09-29 Toyota Central Res & Dev Lab Inc Thermoelectric module
JP2007324500A (en) * 2006-06-05 2007-12-13 Sps Syntex Inc Fesi2 system thermoelectric conversion material and its manufacturing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH077186A (en) * 1993-06-16 1995-01-10 Idemitsu Material Kk Production of thermoelectric conversion material
JPH09213454A (en) * 1996-02-06 1997-08-15 Tokai Konetsu Kogyo Co Ltd Lead wire terminal connecting structure of thin plate-shaped far infrared radiation heater
CN1242916C (en) * 2003-12-22 2006-02-22 华中科技大学 Method and its device for preparing beta-FeSi2 thermoelectric material by laser cintering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001210879A (en) * 1999-11-17 2001-08-03 Sumitomo Metal Ind Ltd High-output porous thermoelectric conversion element
JP2001189497A (en) * 1999-12-28 2001-07-10 Sumitomo Special Metals Co Ltd Thermoelectric conversion element and manufacturing method therefor
JP2005268240A (en) * 2004-03-16 2005-09-29 Toyota Central Res & Dev Lab Inc Thermoelectric module
JP2007324500A (en) * 2006-06-05 2007-12-13 Sps Syntex Inc Fesi2 system thermoelectric conversion material and its manufacturing method

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093009A (en) * 2008-10-07 2010-04-22 Sumitomo Chemical Co Ltd Thermoelectric transduction module and thermoelectric transducer
WO2012107281A1 (en) * 2011-02-09 2012-08-16 Emitec Gesellschaft Für Emissionstechnologie Mbh Coated thermoelectric element and a method for the production of same
US9865794B2 (en) 2011-11-17 2018-01-09 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
WO2013074967A1 (en) * 2011-11-17 2013-05-23 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
US9178128B2 (en) 2011-11-17 2015-11-03 Gentherm Incorporated Thermoelectric devices with interface materials and methods of manufacturing the same
WO2014141699A1 (en) * 2013-03-12 2014-09-18 パナソニック株式会社 Thermoelectric generating element, thermoelectric generating unit, and thermoelectric generation system
JP5834256B2 (en) * 2013-03-12 2015-12-16 パナソニックIpマネジメント株式会社 Thermoelectric generator, thermoelectric generator unit and thermoelectric generator system
JPWO2014141699A1 (en) * 2013-03-12 2017-02-16 パナソニックIpマネジメント株式会社 Thermoelectric generator, thermoelectric generator unit and thermoelectric generator system
JP2015159199A (en) * 2014-02-24 2015-09-03 直江津電子工業株式会社 Apparatus and method of manufacturing thermoelectric conversion material
JP2017204501A (en) * 2016-05-09 2017-11-16 日本ドライケミカル株式会社 Thermoelectric conversion element, distributed temperature sensor and manufacturing method of thermoelectric conversion element
JP2019078664A (en) * 2017-10-25 2019-05-23 国立研究開発法人産業技術総合研究所 Method for thermal monitoring of heat storage material and heat storage material container for the same
JP6995345B2 (en) 2017-10-25 2022-02-04 国立研究開発法人産業技術総合研究所 Heat monitoring method for heat storage material and heat storage material storage container for this purpose
US10991869B2 (en) 2018-07-30 2021-04-27 Gentherm Incorporated Thermoelectric device having a plurality of sealing materials
US11075331B2 (en) 2018-07-30 2021-07-27 Gentherm Incorporated Thermoelectric device having circuitry with structural rigidity
US11223004B2 (en) 2018-07-30 2022-01-11 Gentherm Incorporated Thermoelectric device having a polymeric coating
JP2021073685A (en) * 2020-12-25 2021-05-13 日本ドライケミカル株式会社 Thermoelectric transducer, distribution type temperature sensor, and manufacturing method of thermoelectric transducer
JP7014885B2 (en) 2020-12-25 2022-02-01 日本ドライケミカル株式会社 Manufacturing method of thermoelectric conversion element, distributed temperature sensor and thermoelectric conversion element

Also Published As

Publication number Publication date
JP5427462B2 (en) 2014-02-26
TW201004003A (en) 2010-01-16
TWI505522B (en) 2015-10-21
CN101621111A (en) 2010-01-06
CN101621111B (en) 2013-05-01

Similar Documents

Publication Publication Date Title
JP5427462B2 (en) Thermoelectric conversion module
JP5499317B2 (en) Thermoelectric conversion element and thermoelectric conversion module
EP2377175B1 (en) Method for fabricating thermoelectric device
CN104508846B (en) Thermo-electric conversion module
JP5212937B2 (en) Thermoelectric conversion element, thermoelectric module including the thermoelectric conversion element, and method for manufacturing thermoelectric conversion element
WO2002023643A1 (en) Thermoelectric conversion element
WO2010111462A2 (en) Thermoelectric device, electrode materials and method for fabricating thereof
JP2007109942A (en) Thermoelectric module and manufacturing method thereof
KR20170076358A (en) Thermoelectric module and method for fabricating the same
JP2013191838A (en) Thermoelectric conversion module and manufacturing method of the same
JP4850083B2 (en) Thermoelectric conversion module, power generation device and cooling device using the same
US20160163944A1 (en) Thermoelectric power module
WO2006043402A1 (en) Thermoelectric conversion module
JP2006319210A (en) Manufacturing method of thermoelectric conversion element
TW201448294A (en) Thermoelectric device fabrication using direct bonding
JP4524382B2 (en) Thermoelectric power generation elements that are subject to temperature differences
JP2001267642A (en) Method of manufacturing thermoelectric conversion module
JP4584035B2 (en) Thermoelectric module
JP6668645B2 (en) Thermoelectric conversion module and method of manufacturing the same
JP2006339283A (en) Thermoelectric module
JP6471241B2 (en) Thermoelectric module
JP2010016132A (en) Thermoelectric conversion module and method of producing the same
JPH09172204A (en) Thermoelectric conversion apparatus and thermoelectric its manufacture
JPH11298052A (en) Thermoelectric element, thermoelectric material and manufacture thereof
JP2018152499A (en) Thermoelectric conversion module and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120229

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130604

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130724

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131202

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5427462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250